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ABSTRACT 

Chronic myelogenous leukemia (CML) is a clonal hematopoietic disorder caused by an 

acquired genetic defect in a pluripotent stem cell. A number of theories have been 

postulated to describe the etiology of CML such as genetic alterations and alterations in 

cytokine production. A combination of inflammatory cytokines have an important role 

in cancer development. The aim of this study was to screen for mutations of IRF-8 gene 

in CML cases and healthy controls of the Kashmiri population. We included eighty 

confirmed CML cases and an equal number of age, district and gender matched controls 

in this study. HaeIII enzyme digestion cuts amplified product at 5’-GGCC-3’ sequence 

and any mutation in it abrogates restriction digestion by this enzyme. Restriction results 

showed wild conditions with no mutation at any of the 6 positions where HaeIII cuts, 

which was confirmed by the sequencing results as well. Further sequencing results 

showed interesting single G     A substitution at position 92 of the amplified product. In 

CML cases, the allelic frequency for normal allele (G) was found to be 47.5% (76/160) 

and the allelic frequency observed for G     A type was found to be 52.5% (84/160). The 

allelic frequency observed in controls for normal allele (G) was 91.25% (146/160). The 

frequencies analyzed for G    A allele was 8.75% (14/160). Since the frequency 

observed for G    A allele was higher in CML cases (52.5%) than in normal controls 

(8.75%) and it was found to be statistically significant (OR= 11.52, 95%CI: (6.13-21.6); 

p = 0.001). Sequencing results further showed occasional deletion at the same position 

where transition was seen. Also we found that CML is prevalent more in males as 

compared to females (ratio is 1:1.12). Majority of the CML case were from district 

Srinagar of the Valley. Mean age of the cases and controls were found to be 44.7 years 

and 43.6 years respectively. We observed a higher representation of CML cases in the 

age group between 30 and 40. Furthermore, the presence of the Philadelphia 

chromosome (BCR-ABL fusion gene) was observed in 82.5% of CML cases in our 

study. This is the first report of the sequence variation in exon 7 region of IRF-8 gene 

and the risk to CML in the Kashmiri population. However, more insight need to be 

gained and further substantiated by conducting a similar study on statistically 

significant sample size. 
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Chronic myelogenous (or myeloid) leukemia (CML), also known as chronic 

granulocytic leukemia (CGL), is a clonal hematopoietic disorder caused by an acquired 

genetic defect in a pluripotent stem cell. A blood stem cell may become a myeloid stem 

cell or lymphoid stem cell. It is a form of clonal bone marrow stem cell disorder 

characterized by the increased and unregulated growth of predominantly myeloid cells 

in the bone marrow and thus accumulation of abnormal granulocytes (neutrophils, 

eosinophil’s, and basophils) also called leukemic cells in the blood. The disease has the 

capacity to progress to a more-aggressive leukemia as a malignant clone loses the 

capacity for terminal differentiation. The leukemic cells can build up in the blood and 

bone marrow, so there is less room for healthy white blood cells, red blood cells and 

platelets. When this happens, infection, anemia or easy bleeding may occur (Faderl et 

al., 1999). The number of blast cells in the blood and bone marrow and the severity 

of symptoms determine the phase of the disease.  In the absence of intervention, CML 

typically begins in the chronic phase, and over the course of several years progresses to 

an accelerated phase and ultimately to a blast crisis. It is associated with a 

characteristic chromosomal translocation called the Philadelphia chromosome. In this 

translocation, parts of two chromosomes (the 9th and 22nd by conventional karyotypic 

numbering) switch places (Faderl et al., 1999, Rowley et al., 1973). As a result, part of 

the BCR (breakpoint cluster region) gene from chromosome 22 is fused with the ABL 

gene on chromosome 9. This abnormal "fusion" gene generates a protein of p210 or 

sometimes p190. Because ABL carries a domain that can add phosphate groups to 

tyrosine residues (a tyrosine kinase), the BCR-ABL fusion gene product is also a 

tyrosine kinase (Hehlmann et al., 2007). The BCR-ABL transcript is continuously 

active and does not require activation by other cellular messaging proteins. In turn, 

BCR-ABL activates a cascade of proteins that control the cell cycle, speeding up cell 

division. Moreover, the BCR-ABL protein inhibits DNA repair, causing genomic 

instability and making the cell more susceptible to developing further genetic 

abnormalities. This characteristic chromosomal abnormality can be detected by routine 

cyto-genetics, by fluorescent in-situ hybridization, or PCR for the BCR-ABL fusion 

gene (Hehlmann et al., 2007). 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45022&version=Patient&language=English
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The interferon regulatory factor (IRF) family, consisting of nine members in mammals, 

was identified in the late 1980’s in the context of research into the type I interferon 

system (Au et al., 1995). Indeed, many IRF members play central roles in the cellular 

differentiation of hematopoietic cells and in the regulation of gene expression in 

response to pathogen-derived danger signals. Moreover the role of several IRF family 

members in the regulation of cell cycle and apoptosis has important implications for 

understanding susceptibility to and progression of several cancers (Tomohiko et al., 

2007). IRFs also play an important role in pathogen defence, autoimmunity, lymphocyte 

development, cell growth and susceptibility to transformation. The IRF family includes 

IRF-1, IRF-2, ISGF3γ/p48, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7 and 

IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA binding 

domains and a divergent C-terminal region that serves as the regulatory domain. IRF 

family members regulate transcription through interactions with proteins that share 

similar DNA binding motifs, such as IFN-stimulated response elements (ISRE), IFN 

consensus sequences (ICS) and IFN regulatory elements (IRF-E) (Honda et al., 2006). 

Interferon regulatory factor-8, also known as IRF-8 and ICSBP, encoded by IRF-8 

gene, is a protein which in humans is a transcription factor of the interferon regulatory 

factor (IRF) family (Huang et al., 2007). IRF-8/ICSCP is expressed predominately in 

hematopoietic cells and is further increased upon treatment with interferon (Driggers et 

al., 1990, Weisz et al., 1992). IRF-8 can function as a transcription repressor of ICS-

containing promoters (Weisz et al., 1992). Expression of IRF-8 can lead to the down-

regulation of the anti-apoptotic protein Bcl-2 (Burchert et al., 2004). Originally 

described as being induced by IFN-γ, IRF-8 expression is also elevated by IRF-α as 

well as IL-12 in NK and T cells (Lehtonen et al., 2003). IRF-8 is a critical regulator of 

myelopoiesis, which when deleted in mice results in a syndrome highly similar to 

human chronic myelogenous leukemia (Seung-Hee et al., 2010). In human patients 

with CML and acute myeloid leukemia, IRF-8 expression is dramatically decreased 

(Schmidt et al., 1998). These studies thus revealed that IRF-8 plays a pivotal role in 

regulation of leukemogenesis and functions as a tumor suppressor of certain myeloid 

malignancies. The molecular events involved in the control of leukemogenesis by IRF-8 

are not fully understood. However, it has been shown that deficiency of IRF-8 in 
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hemopoietic cells leads to decreased spontaneous apoptosis and enhanced resistance to 

extrinsic apoptosis induction (Burchert et al., 2004, Holtschke et al., 1996, Gabriele 

et. al., 1999), which suggests that acquisition of apoptosis resistance in myeloid cells 

might represent at least one of the molecular mechanisms involved in the pathogenesis 

of CML. Therefore, IRF-8 might function as a tumor suppressor through regulation of 

apoptotic cell death. Although no direct link between IRF-8 and inflammation-

associated cancer promotion has been observed, IRF-8 has been shown to be involved 

in IFN-γ induced inducible NO synthase expression (Xiong et al., 2003). Several other 

reports and studies of over two decades has now confirmed that transcription factors are 

commonly disrupted in CML either by their fusion as a result of chromosomal 

translocations or by point mutations.   

CML accounts for approximately 15% of all leukemia’s, with 4000 to 5000 new cases 

diagnosed in the United States annually. The incidence of CML is 1.6 to 2.0 cases per 

100,000 persons per year, and the incidence is similar in all countries worldwide. No 

authentic study about the incidence of leukemia has been carried out so far, among the 

ethnic Kashmiri population. But as far as frequency of leukemia is concerned, it has 

been reported towards higher side. Main objective of the proposed work is to determine 

the mutations of IRF-8 gene in chronic myeloid leukemia (CML) and to generate 

information about role of IRF-8 gene in blood cancer susceptibility in Kashmir. 

In the present study after the amplification of exon 7 region of IRF-8 gene, restriction 

digestion was followed by HaeIII enzyme, which cuts the amplified product at 5’-

GGCC-3’ sequence and any mutation in it abrogates restriction by the enzyme. For 

further confirmation, sequencing of both the CML case and control samples for any 

potential variation in the nucleotide sequence in the amplified product was done 

commercially. If we know the nature and position of mutation we will be able to benefit 

in the near future from different therapies that target specific mutations. 
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The term leukemia (Greek leukos - white, and haima - blood) coined by Rudolf 

Virchow in 1856, a renowned German pathologist, is a type of cancer of 

the blood or bone marrow characterized by an abnormal increase of white blood cells. 

Leukemia is a part of the broader group of diseases called hematological neoplasms.  

An HSC can enter one of the two pathways –the lymphoid pathway or myeloid pathway 

to form common lymphoid progenitor cell or a common myeloid progenitor cell, 

respectively. If it forms the lymphoid progenitor, it can become either B progenitor or T 

progenitor. If the HSC becomes a myeloid progenitor, it can develop into erythrocyte 

progenitor, granulocyte-monocyte progenitor, eosinophils progenitor, basophil 

progenitor and megakaryocytic (Figure 1). The type of cell that has become cancerous, 

as well as the number of these cells, help to determine the type of leukemia. Clinically 

and pathologically, leukemia is subdivided into a variety of large groups. The four main 

types of leukemia are- 

 Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in 

young children. 

 Chronic lymphocytic leukemia (CLL) most often affects adults over the age of 

55. 

 Acute myelogenous leukemia (AML) occurs more commonly in adults than in 

children, and more commonly in men than women. 

 Chronic myelogenous leukemia (CML) occurs mainly in adults. 

Chronic myelogenous leukemia (CML; also called chronic myeloid leukemia or 

chronic granulocytic leukemia) is a clonal hematopoietic disorder caused by an 

acquired genetic defect in a pluripotent stem cell. The disease has the capacity to 

progress to a more-aggressive leukemia as a malignant clone loses the capacity for 

terminal differentiation.  

In CML, too many blood stem cells develop into a type of white blood cell 

called granulocytes. These granulocytes are abnormal and do not become healthy white 

blood cells. They may also be called leukemic cells. The leukemic cells can build up in 

the blood and bone marrow so there is less room for healthy white blood cells, red 

blood cells, and platelets. When this happens, infection, anemia, or easy bleeding may 

occur. CML is often divided into three phases based on clinical characteristics and 

http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Bone_marrow
http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Hematological_malignancy
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=46374&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=44636&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45360&version=Patient&language=English
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laboratory findings. In the absence of intervention, CML typically begins in 

the chronic phase, and over the course of several years progresses to 

an accelerated phase and ultimately to a blast crisis. These phases differ in number of 

blast cells (≤ 10%, 10% to 20% and ≥ 20% respectively) in the blood and bone marrow and 

the severity of symptoms presented. 

Most cases (85%) are diagnosed in the chronic phase; about 50% of cases are diagnosed 

by routine tests. Common findings at presentation are fatigue, weight loss, abdominal 

fullness, bleeding, purpura, splenomegaly, leukocytosis, anemia, and thrombocytosis, 

but about 40 percent of patients are asymptomatic, and in these patients, the diagnosis is 

based solely on an abnormal blood count. Three to five years after onset, CML 

progresses to the accelerated and blast phases (Kantarjian et al., 1988). The definition 

of the accelerated phase is vague. The blast phase is defined by the presence of 30 

percent or more leukemic cells in peripheral blood or marrow or the presence of 

extramedullary infiltrates of blast cells (Sokal et al., 1988). In one third of cases, the 

blasts have a lymphoid morphology and express lymphoid markers such as terminal 

deoxynucleotidyl transferase or CD10 (common acute lymphoblastic leukemia antigen). 

The remaining two thirds of cases have a phenotype similar to that of acute 

myeloblastic leukemia and form a heterogeneous group (Griffin et al., 1983).
  

The disorderly expansion of myeloid progenitor cells appears to result from alterations 

in their proliferative capacity and a shift in the balance between self-renewal and 

differentiation toward differentiation, increasing the number of progenitor cells and 

reducing the pool of stem cells. Stem cells become part of the proliferating 

compartment, causing the neoplastic cell population to expand exponentially in later 

maturational compartments, where they may also be less responsive to growth-

regulatory signals from either cytokines or the bone marrow microenvironment (Strife 

et al., 1988, Clarkson et al., 1993).  

 

 

 

 

 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45022&version=Patient&language=English
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          Figure 1:  A blood stem cell goes through several steps to become a red blood cell,    

                            Platelet and white blood cell. (Source: www.health-reply.com) 
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2.1. The Biology of Chronic Myeloid Leukemia 

Chronic myeloid leukemia (CML) is part of a group of six myeloproliferative disorders 

in humans—that includes polycythemia Vera, chronic idiopathic myelofibrosis, 

essential thrombocythemia, chronic neutrophilic leukemia, and chronic eosinophilic 

leukemia—which are chronic diseases that can progress to acute leukemia (Cortes et 

al., 2004, Beutler et al., 2001). CML is generally characterized by the cytogenetically 

detectable 9:22 translocation known as the Philadelphia (Ph) chromosome (Faderl et 

al., 1999, Rowley et al., 1973). However, 5–8% of CML are Ph negative (Kurzrock et 

al., 1988, Specchia et al., 1995). The Ph translocation adds a 3' segment of the ABL 

gene from chromosome 9q34 to the 5' part of the BCR gene on chromosome 22q11, 

creating a hybrid BCR–ABL gene that is transcribed into a chimeric BCR–ABL 

messenger RNA (mRNA) (Figure 2).  

The ABL gene encodes a non-receptor tyrosine kinase with a molecular mass of 145kd 

(p145
ABL

). It has 11 exons and spans over 230 kilobases (kb). The breakpoint in the 

ABL gene occurs usually 5' (toward the centromere) of exon 2 of ABL. The breakpoint 

locations within BCR fall either 5' between exons b2 and b3 or 3' (toward the telomere) 

between exons b3 and b4. A BCR–ABL fusion gene with a b2a2 or b3a2 junction is 

created and transcribed into an 8.5-kb mRNA. The fusion mRNA is translated into a 

chimeric protein of 210 kd called p210
BCR–ABL

 (Kurzrock et al., 1988).
 
In most cases, 

CML cells have either b2a2 or b3a2 transcripts, but in 5 percent of cases, alternative 

splicing events allow the expression of both fusion products (Melo et al., 1996). 

Splicing out exons e1' and e2' forms a BCR–ABL transcript that is translated into a 

smaller BCR–ABL fusion protein of 190kd, termed p190 
BCR–ABL

. A third breakpoint 

location in the BCR gene has been identified 3' from the M-BCR region between exons 

e19 and e20 (the μ-BCR); it translates into a fusion transcript with an e19a2 junction. 

The translation product is a protein of 230kd termed p230 
BCR–ABL 

(Pane et al., 1996).
 

BCR–ABL transcripts cause factor-independent and leukemogenic cell growth in 

hematopoietic cell lines and can generate in mice a syndrome that closely resembles 

human CML (Daley et al., 1990). 
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                        Figure 2: The translocation of t(9;22)(q34;q11) in CML. (source: wikipedia) 
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2.2. Pathways of BCR–ABL Signaling  

ABL proteins are non-receptor tyrosine kinases that have important roles in signal 

transduction and the regulation of cell growth (Wang et al., 1993). The N-terminal 

segment of ABL includes two SRC homology domains (SH2 and SH3), which regulate 

the tyrosine kinase function of ABL, the catalytic domain, and a myristoylation 

sequence that connects ABL to proteins of the plasma membrane. Defects in the 

functional integrity of SH2 decrease phosphotyrosine binding and reduce the 

transforming capacities of ABL (Gale et al., 1993). SH3 has a negative regulatory 

effect on the tyrosine kinase function and deletion of SH3 facilitates transformation of 

ABL. The C-terminal part of ABL contains a DNA-binding domain, nuclear 

localization signals, and a binding site for actin (Chung et al., 1996).
 
Various structural 

alterations of ABL and BCR facilitate the leukemogenic transformation of BCR–ABL.  

The N-terminal coiled-coil motif of BCR increases its tyrosine kinase activity and 

enables binding of F-actin by ABL (McWhirter et al., 1993). The serine–threonine 

kinase domain of BCR activates signaling pathways mediated by ABL tyrosine kinase 

and p210
BCR–ABL 

(Reuter et al., 1994). N-terminal fusion of BCR to ABL adds a large 

amino acid sequence to the SH2 segment of ABL (Pendergast et al., 1991). BCR 

interferes with the adjacent SH3 kinase regulatory domain, which in turn causes ABL to 

become constitutively active as a tyrosine phosphokinase. Both p210
BCR–ABL

and 

p190
BCR–ABL

 have higher tyrosine phosphokinase activity than the normal ABL protein 

p145
ABL

. The structure of p210 
BCR–ABL

 allows multiple protein–protein interactions and 

suggests the involvement of diverse intracellular signaling pathways. Several BCR 

domains serve to bind adapter proteins such as growth factor receptor–bound protein 2 

(GRB2), CRK-oncogene–like protein (CRKL), casitas B-lineage lymphoma protein 

(CBL), and SRC homology 2–containing protein (SHC) (Puil et al., 1994). The SH2 

domain of GRB2 binds to a conserved tyrosine residue (Y177) of BCR in p210
BCR–ABL

. 

This links p210
BCR–ABL

 to RAS, a guanosine triphosphate–binding protein involved in 

the regulation of cell proliferation and differentiation and at the core of the most 

prominent signaling pathway in the pathogenesis of CML (Sawyers et al., 1995). 

Signaling events downstream of RAS are not well characterized and may involve 

mitogen-activated protein kinases (MAPKs), such as the JUN kinase (JNK) pathway 
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(Raitano et al., 1995). Signaling cascades of p210
BCR–ABL

 not involving RAS, such as 

c-Myc, have been identified, (Afar et al., 1994) but their role in the pathogenesis of 

CML is unclear. 

2.3. The Cellular Biology of CML and Clinical Features 

CML is a myeloproliferative disorder. Myeloid progenitor cells expand in various 

stages of maturation, are released prematurely into the peripheral blood, and home to 

extramedullary locations. Stem cells become part of the proliferating compartment, 

causing the neoplastic cell population to expand exponentially in later maturational 

compartments, where they may also be less responsive to growth-regulatory signals 

from either cytokines or the bone marrow microenvironment (Strife et al., 1988, 

Clarkson et al., 1993).
 

Defective adherence of immature hematopoietic CML 

progenitors to marrow stromal elements may facilitate their release into the blood 

(Gordon et al., 1984). Normal hematopoietic progenitor cells adhere to the 

extracellular matrix or to immobilized growth-regulating cytokines. The attachment is 

mediated by cell-surface receptors on the progenitor cells, especially integrins. Integrins 

are cell-surface glycoproteins composed of two subunits, α and β. Whereas, the α- chain 

determines ligand specificity, the β chain initiates signal transduction pathways after 

binding to the ligand (Verfaillie et al., 1997). This signaling results in the recruitment 

of cytoskeletal adhesion proteins, the activation of adapter proteins, and the RAS–

MAPK pathway (Schlaepfer et al., 1994). Defective cyto-adhesion of CML cells has 

been restored by pre-incubation of Ph-positive cells with antisense Oligonucleotides 

against p210 
BCR–ABL

, tyrosine kinase inhibitors targeted against p210 
BCR–ABL

, and 

treatment with interferon alfa (Verfaillie et al., 1998). 

The suppression of pathways of programmed cell death, or apoptosis, has been 

implicated in the pathogenesis of CML. Hematopoietic progenitor cells that express 

p210
BCR–ABL 

are able to escape dependency on growth factors and can withstand the 

noxious effects of cytotoxic drugs and irradiation (Sirard et al., 1994 and McGahon et 

al., 1994). The activation of anti-apoptotic mechanisms seems to depend on the 

phosphotyrosine kinase activity of p210
BCR–ABL 

in addition to other structural domains 

of the fusion protein, including adapter protein-binding and phosphorylation sites 

(Cortez et al., 1995). 
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The expression of specific cytokine profiles may increase the expansion of CML 

progenitor cells. Serum from patients with CML can stimulate the proliferation of 

hematopoietic colony-forming cells (Brown et al., 1986). Marrow cells from patients 

with CML who have advanced disease produce large amounts of interleukin-1b, and 

inhibition of interleukin-1b by either interleukin-1–receptor antagonists or soluble 

interleukin-1 receptors inhibits the proliferation of CML cells (Estrov et al., 1991). 

 

2.4. Diagnosis and Monitoring of CML 

CML is often suspected on the basis on the complete blood count, which shows 

increased granulocytes of all types, typically including mature myeloid cells. 

Basophils and eosinophils are almost universally increased; this feature may help 

differentiate CML from a leukemoid reaction. A bone marrow biopsy is often 

performed as part of the evaluation for CML, but bone marrow morphology alone is 

insufficient to diagnose CML (Tefferi et. al., 2006, Hehlmann et. al., 2007). 

Ultimately, CML is diagnosed by detecting the Philadelphia chromosome. This 

characteristic chromosomal abnormality can be detected by routine cytogenetics, 

by fluorescent in situ hybridization, or by PCR for the BCR-ABL fusion gene.
 

However, the procedure is tedious and time consuming, and only 20 to 25 cells in 

metaphase are examined per sample.  

Genomic polymerase-chain-reaction (PCR) and Southern blot analysis can determine 

the exact breakpoints of DNA fusion products. Reverse-transcriptase PCR (RT-PCR) 

and Northern blot analysis allow detection of BCR–ABL transcripts at the RNA level. 

The p210
BCR–ABL 

protein can be demonstrated by using antibodies against the N-

terminal region of BCR and the C-terminal region of ABL in immuneprecipitation or 

Western blot analysis (Guo et al., 1991). Further Quantitative Southern-blot analysis is 

a powerful molecular tool for initial diagnosis and monitoring of CML patients during 

IFN-α therapy (Skladny et al., 2010). 

Monitoring patients who are receiving therapy is commonly done by PCR and 

fluorescence in situ hybridization for BCR–ABL. Quantitative RT-PCR is used for 

follow-up of patients after stem-cell transplantation (Hochhaus et. al., 1998),
 
but its use 

in that receiving interferon alfa therapy is more controversial. Fluorescence in situ 

hybridization allows analysis of both cells in metaphase and non-dividing cells in 

http://en.wikipedia.org/wiki/Complete_blood_count
http://en.wikipedia.org/wiki/Granulocyte
http://en.wikipedia.org/wiki/Myelocyte
http://en.wikipedia.org/wiki/Basophil
http://en.wikipedia.org/wiki/Eosinophil
http://en.wikipedia.org/wiki/Leukemoid_reaction
http://en.wikipedia.org/wiki/Bone_marrow_biopsy
http://en.wikipedia.org/wiki/Philadelphia_chromosome
http://en.wikipedia.org/wiki/Chromosome_abnormality
http://en.wikipedia.org/wiki/Cytogenetics
http://en.wikipedia.org/wiki/Fluorescent_in_situ_hybridization
http://en.wikipedia.org/wiki/Polymerase_chain_reaction
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Interphase, and the results are easily quantifiable. Peripheral-blood specimens can be 

analyzed by Interphase fluorescence in situ hybridization (averting the need for marrow 

aspiration). It is fast, allows analysis of more cells than is possible with conventional 

cytogenetic methods, and is reliable in assessing cytogenetic responses in CML 

(Muhlmann et al., 1998). However; it has a false positive rate of up to 10 percent and 

is not useful if fewer than 10 percent of cells contain a Ph chromosome. 

Hypermetaphase fluorescence in situ hybridization allows analysis of up to 500 cells in 

metaphase per sample in a time efficient manner and produces no false positive results, 

but it cannot be performed on peripheral blood samples (Seong et al., 1995). Another 

technique of fluorescence in situ hybridization that is applicable to blood samples uses 

double-color probes for the detection of Ph-chromosome–positive leukemias and has 

shown superior sensitivity and specificity (Dewald et al., 1998, Buno et al., 1998).  

The detection of the BCR–ABL translocation is not only a diagnostic tool but also 

useful for assessing the response of patients to therapy with either stem-cell 

transplantation or interferon alfa and for evaluating the efficacy of treatment by 

monitoring residual disease. In most centers, PCR, because of its superior sensitivity, 

has become the diagnostic test of choice for monitoring residual leukemia. Cytogenetic 

relapse usually precedes hematologic relapse, and effective salvage therapy is available 

for patients whose relapse is detected early. Whereas 80 percent of patients in 

hematologic remission after stem-cell transplantation are negative for BCR–ABL 

transcripts by PCR, almost all patients treated with interferon alfa have these transcripts 

in their bone marrow (Hochhaus et al., 1995). If followed for a sufficiently long time, 

however, some patients treated with interferon alfa who have cytogenetically complete 

responses eventually have PCR tests that are negative for BCR–ABL (Kurzrock et al., 

1998). The importance of PCR results for the predictability of relapse and survival is 

unclear, however, and dormant CML progenitor cells that are below the threshold of 

detection by PCR may still be present. 

Monitoring the percentage of Philadelphia chromosome-positive
 
cells is the best 

validated system for the assessment of the
 
response to interferon-α and tyrosine kinase 

inhibitors, since
 
the cytogenetic response is the best surrogate marker of survival 

(O’Brien et al., 2003, Goldman, 2007).
 

For patients who achieve a complete 
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cytogenetic response to
 
interferon-α, the 10-year survival is about 75% (Baccarani et 

al., 2003). For patients
 
who achieve a complete cytogenetic response to imatinib, the

 
5-

year survival rate is close to 100% (Druker et al., 2006) .The response is 

conventionally determined by chromosome banding analysis of marrow cell 

metaphases.
 
A panel of experts appointed by the European LeukemiaNet 

recommended
 
that at least two cultures should be performed, one for 24 hours

 
and 

another for 48 hours (Haferlach et al., 2007). 

  

2.5. Disease Transformation and Oncogene Cooperation 

Disease transformation is often heralded by refractoriness to treatment, leukocytosis 

with increases in blood and marrow blasts, basophilia, increases or decreases in platelet 

counts unrelated to therapy, and clinical manifestations such as unexplained fever, 

splenomegaly, extramedullary disease, weight loss, and bone and joint pains. 

Cytogenetic and molecular changes occur in 50 to 80 percent of patients during the 

transition to the accelerated and blast phases. Minor cytogenetic changes include 

Monosomies of chromosomes 7, 17, and Y; Trisomies of chromosomes 17 and 21; and 

translocation t(3;21)(q26;q22) (Mitelman et al., 1993). Major changes include trisomy 

8, isochromosome i(17q), trisomy 19, and an extra Ph chromosome (double Ph). 

Trisomy 8 is most common, and isochromosome i(17q) occurs almost exclusively in the 

myeloid type blast phase. 

Molecular abnormalities may correspond to cytogenetic changes. These include 

abnormalities in p53 (on chromosome 17p13); RB1 (13q14); c-MYC (8q24); p16
INK4A 

(9p21); RAS; and AML–EVI-1, a fusion protein resulting from translocation t(3;21) 

(q26;q22). Alterations of p53 (deletions, rearrangements, and mutations) occur in 20 to 

30 percent of patients with CML in the blast phase (Ahuja et al., 1989) and are 

associated exclusively with myeloid transformation,
 
(Stuppia et al., 1997) where as 

abnormalities of RB1 are associated more with lymphoid transformation, although the 

association is weaker than it was between p53 and myeloid transformation. Mutations 

of p53 in the progression of CML are associated with an aberrant methylation status of 

CML cells (Guinn et al., 1997).
 

The introduction of a methyl group causing 

transcriptional silencing of the calcitonin gene has been found in the transition of 

chronic-phase CML to blast-phase CML (Malinen et al., 1991). Altered methylation 
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was also described within the M-bcr of cells from patients with chronic-phase CML 

(Litz et al., 1996). Up to 50% of patients with lymphoid transformation have 

homozygous deletion of p16
INK4A  

(Guo et al., 1991). Alterations of RB1, amplifications 

of c-MYC, and mutations of RAS are less frequent. 

Interferons (IFNs) are a large family of multifunctional secreted proteins involved in 

antiviral defense, cell growth regulation and immune activation (Vilcek et al., 1992). 

The biomodulatory activities pertinent to this group of cytokines have been extensively 

exploited at the clinical level, and are used in therapy for many hematological 

malignancies and multiple sclerosis (Gutterman et. al., 1994). They act by binding 

their receptors, which leads to subsequent phosphorylation events and the association of 

activated transcription factors with different response elements in the promoter regions 

of IFN-regulated genes. Interferon alfa/beta (type I IFNs) and interferon gamma (type II 

IFN) mediate their action through distinct pathways and thus regulate various genes 

(Pestka et al., 1987, Tanaka et al., 1992, Darnell et al., 1994, Schindler et al., 1995). 

IFNs elicit their effects through the transcriptional activation of target genes that 

possess specific consensus DNA-binding recognition sites within their promoters. These 

genes are regulated through the JAK–STAT signaling pathway and through the 

interferon regulatory factors (IRFs), a growing family of transcription factors with a 

broad range of activities (Nguyen et al., 1997). 

2.6. The Family of Interferon regulatory factors (IRFs) 

A family of transcription factors, the interferon regulatory factors (IRF), was identified 

originally in the context of the regulation of the type I interferon (IFN)-α/β system. The 

original discovery of the first two members of the interferon (IFN) regulatory factor 

(IRF) family, IRF-1 and IRF-2, opened up new avenues of research in immunity and 

oncogenesis, which we may call ‘the IRF world’. The transcription factor IRF-1 was 

identified originally as a regulator of the IFN system (Miyamoto et al., 1988). 

Following this at least nine structurally related members have been identified thus far, 

and currently constitute a family of IRF transcription factors which includes IRF-1, 

IRF-2, ISGF3γ/p48, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7 and IRF-

8/ICSBP. These function to regulate interferon (IFN) and IFN-inducible gene 

expression in response to viral infection (Taniguchi et al., 2001). They play an 
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important role in pathogen defense, autoimmunity, lymphocyte development, cell 

growth and susceptibility to transformation. Loss of expression or function of IRF is 

observed in human cancers, whereas a certain IRF member is over expressed in 

hematological malignancy. Interestingly, human herpes virus (HHV)-8 encodes several 

proteins, termed vIRF, that are analogous to human IRF proteins and may be involved 

in the pathogenesis of Kaposi’s sarcoma or other cancers (Moore et al., 2003, 

Offermann et al., 2007). In the context of oncogenesis, we can therefore categorize 

several IRF family members into two types: antioncogenic IRF and oncogenic IRF. All 

IRF proteins share homology in their amino-terminal DNA binding domains which is 

characterized by having a winged-type helix-loop-helix motif with a signature 

tryptophan pentad. IRF family members regulate transcription through interactions with 

proteins that share similar DNA binding motifs, such as IFN-stimulated response 

elements (ISRE), IFN consensus sequences (ICS) and IFN regulatory elements (IRF-E) 

(Honda et al., 2006). The secondary structures of the DNA-binding domains of IRF are 

similar to each other, suggesting that IRF members recognize similar, if not identical, 

DNA sequences. The C-terminal portion varies among these members and promotes 

versatile biological functions. In addition to their intrinsic transactivation potential, 

some IRF acquire a specific function by associating with another IRF member, other 

transcriptional factors, or cofactors. In addition, their transcriptional activities vary, 

resulting in activation, repression, or dual activity on their target genes. This is partly 

attributed to the partner proteins associated with IRF. These interactions are mediated 

by two types of association module of the C-terminal region: (1) IRF-associated 

domain-1 (Sharf et al., 1997), which was initially found in IRF-8 and is conserved in 

all IRF (excluding IRF-1 and IRF-2); and (2) IAD2, which is shared only by IRF-1 and 

IRF-2. In most cases, these protein complexes enhance the ability of IRF to bind to 

target DNA sequences such as ISRE or IRF-E. For example, IRF-9 acts as a DNA-

binding subunit that associates with STAT1 and STAT2 to form the ISGF3 

heterotrimeric complex in response to type I IFN signalling (Takaoka et al., 2006). 

IRF8 forms multiple protein complexes with both IRF-1 and IRF-2, resulting in 

increased binding activity to ISRE (Sharf et al., 1997, Bovolenta et al., 1994) IAD2 of 

IRF-1 and IRF-2 is an independent module for this interaction with IRF-8. The IRF-8 
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and IRF-1 complex generally functions as a suppressor of transcription. IRF-4 and IRF-

8 interact with PU.1, a member of the ETS family, and this interaction allows them to 

bind to the immunoglobulin light-chain enhancer λB (Brass et al., 1996, Eisenbeis et 

al., 1995) for the subsequent activation of gene transcription. On the other hand, IRF-2, 

IRF-4, IRF-8, and IRF-7 suppress transcription from several ISRE promoters (Harada 

et al., 1990, Nelson et al., 1993, Yamagata et al., 1996). However, these IRF also 

function as activators in other promoters (Eisenbeis et al., 1995, Vaughan et al., 1995). 

IRF transcriptional activities are varied, resulting in either activation or repression. This 

variability enables classification of IRF proteins into three categories : activators (IRF-

1, IRF-3, IRF-7, IRF-9), repressors (IRF-2, IRF-8) and those that are able to both, 

activate and repress gene transcription, depending on the target gene (IRF-2, IRF-4, 

IRF-5 and IRF-8) (Shellacs et al., 2004). 

2.7. The Interferon regulatory factor 8 (IRF-8) 

Interferon regulatory factor-8, also known as IRF-8 and interferon consensus sequence 

binding protein (ICSBP), encoded by IRF-8 gene (located on long arm of chromosome 

16) (Figure 3), is a protein which in humans is a transcription factor of the interferon 

regulatory factor (IRF) family (Huang et al., 2007). Originally described as being 

induced by IFN-γ, IRF-8 expression is also elevated by IRF-α as well as IL-12 in NK 

and T cells (Lehtonen et al., 2003). IRF-8 deficient mice have enhanced susceptibility 

to various pathogens and impaired production of interferons, as well as deregulated 

hematopoiesis that resembles chronic myelogenous leukemia (Holtschke et al., 1996). 

It was reported that IRF-8 is expressed predominantly in hematopoietic cells, such as 

cells of myeloid and lymphoid lineages, and its gene expression is upregulated by IFN-

γ. Because IFN-γ is a pivotal cytokine that is crucial for the clearance of not only virally 

infected cells but also cancerous cells, it can be presumed that IRF8 regulates tumor 

development. Of note, IRF-8 deficient mice exhibit marked expansion of granulocytes 

followed by a fatal blast crisis, which is quite similar to human CML (Holtschke et al., 

1996), a disease known to be caused by the constitutive kinase activity of the BCR-

ABL (breakpoint cluster region-Abelson murine leukemia) oncoprotein. Particularly 

worth noting is that the IRF-8 expression level decreases markedly in CML and acute 
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myelogenous leukemia cells from patients (Schmidt et al., 1998) and that a return to 

normal levels was observed in patients in remission following treatment with IFN-γ. 

IRF-8 –/– myeloid progenitor cells have defects in both differentiation and growth. IRF-

8 drives their differentiation toward macrophages whereas it inhibits granulocytic 

differentiation (Scheller et al., 1999, Tamura et al., 2000). Moreover, IRF-8 inhibits 

myeloid cell growth and promotes apoptosis (Tamura et al., 2000, Gabriele et al., 

1999). Thus, the loss of IRF-8 results in the accumulation of granulocytes, and then 

presumably an additional genetic hit or hits in the progenitor cells causes clonal 

expansion of undifferentiated cells (i.e. blast crisis). Concerning the target genes of IRF-

8, one report shows that some of these IRF-8 effects may be explained in part by an 

IRF8-mediated repression of bcl-2, a major antiapoptotic target of BCR/ABL, on a 

transcriptional and protein level (Burchert et al., 2004). The results of another group 

indicate that some of the myeloleukemia suppressor activities of IRF-8 are mediated 

through the regulation of promyelocytic leukemia (PML), which is a tumor suppressor 

that serves as a scaffold protein for nuclear bodies (Dror et al., 2007). In addition, IRF-

8 has been shown to inhibit the growth of p210 BCR/ABL transformed myeloid 

progenitor cells. IRF8 suppresses c-Myc expression at least in part by direct activation 

of B-lymphocycte induced maturation protein-1 (Blimp-1) and mitogenic Ets 

transcriptional suppresor (METS), which may explain the mechanism of growth arrest 

induced by IRF-8 (Tamura et al., 2000). The antagonistic role of IRF-8 against 

BCR/ABL is also supported by evidence that IRF-8 can ameliorate BCR/ABL-mediated 

murine myeloid leukemia in vivo (Hao et al., 2000). These data indicate that the loss of 

IRF-8 expression may be a major event leading to the development of human CML, and 

that the restoration of IRF-8 expression can antagonize the oncogenic activity of 

BCR/ABL. In addition to the effect of IRF-8 in hematopoietic tumors described above, 

this factor has also been shown to manifest antitumor activity even in solid tumors. IRF-

8 expression was found to be repressed by DNA methylation in human metastatic colon 

carcinoma cell lines and murine mammary carcinoma with lung metastasis in vivo 

(Yang et al., 2007). It has been further shown that the overexpression of IRF-8 

enhances apoptosis of cancer cells, whereas the disruption of IRF-8 function diminishes 

primary tumor cell sensitivity to apoptosis and can convert a poorly metastatic tumor to 
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a metastatic phenotype. Interferon regulatory factor 8 appears to exert its antileukemic 

activity not only by the direct control of cell growth, differentiation, and apoptosis but 

also by modulating antitumor immunity. Indeed, the coexpression of IRF-8 in 

BCR/ABL transformed BaF3 cells causes a CD8+ cytotoxic T-cell response to prevent 

the establishment of leukemia in vivo (Deng et al., 2001). Furthermore, human CML 

cells are sensitive to T cell-mediated immunity (Lim et al., 1997). Given the roles of 

IRF-8 in macrophages and DC, IRF-8 may also elicit antitumor immunity through its 

ability to support the differentiation and function of antigen-presenting cells. 

IRF-8 and IRF-4 show a high degree of homology. They are expressed primarily in 

lymphocytes, macrophages, B cells and DC (Eisenbeis et al., 1995, Politis et al., 

1992). These two proteins demonstrate only a weak DNA binding affinity, which can be 

increased by association with other transcription factors (Marecki et al., 1999, Tailor 

et al., 2006). Similar to IRF-8 and in contrast to its oncogenic activity in lymphoid 

cells, IRF-4 expression was shown to be down-regulated in patients with CML but 

restored in response to treatment with IFN-γ. Patients with higher IRF-4 expression had 

better responses to IFN-γ therapy (Schmidt et al., 2000). Despite many similarities in 

structure and function between IRF-4 and IRF-8, the described phenotype of IRF-4– 

deficient mice is of deficient B and T lymphocyte function (Mittrucker et al., 1997) 

and failure of development of certain dendritic cell subsets (Tamura et al., 2005), in 

contrast to the primarily myeloid phenotype seen in IRF-8-deficient animals. The 

deficiencies of IRF-4 and IRF-8 can cooperate in the development of both myeloid and 

lymphoid tumors. In B-cell development, IRF-4 and IRF-8 function redundantly at the 

pre-B cell development, IRF-4/8 double, but not single, deficiencies lead to blocking 

the transition from large, cycling pre-B cells to small, resting pre-B cells (Lu et al., 

2003).  IRF-4 and IRF-8 also have overlapping function in the myeloid system as the 

mice lacking both IRF-4 and IRF-8 develop, from a very early age, a much more 

aggressive CML-like disease than those lacking IRF-8 alone (Tsujimura et al., 2002). 
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            Figure 3: Schematic representation of IRF-8 gene. (Source: www.ncbi.net) 
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Material and Methods 

3.1. Study population   

Patients with Chronic Myeloid Leukemia were evaluated at the department of 

Hematology of Sheri-Kashmir Institute of Medical Sciences (SKIMS), Soura. Clinical 

details were obtained by going through the medical records of the cases. The diagnoses 

of CML were based on the standard clinico-hematological criteria and the presence of 

Philadelphia chromosome (BCR-ABL fusion gene). Controls were taken from healthy 

individuals of Kashmir valley from Department of Hematology, SKIMS, Soura. 

Generally, Patients coming for treatment of minor ailments at the SKIMS Hospital, with 

no evidence of cancer were selected as controls. 

3.1.1. Inclusion and Exclusion Criteria  

These parameters are important part of any human study and are determined prior to 

commencement of the study. Following exclusion and inclusion criteria were adopted 

for the study. 

3.1.1.1 Cases  

No restrictions were made amongst the patients for cancer stage, gender or age. 

Inclusion criteria  

 Subjects should be from Kashmir population. 

 CML proven cases by clinico-hematological and cytogenetic studies. 

 Complete clinical history  

Exclusion Criteria  

 Patients below the age of 15 years were not included. 

 Patients suffering from any chronic, debilitating disease and other blood 

disorders were not taken. 
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3.1.1.2 Controls  

Controls were matched to the cases by gender and age. 

Inclusion criteria   

 Subjects not suffering from CML. 

 Subjects should be from Kashmir population. 

 Absence of any other blood disorders 

3.2. Blood samples 

Blood was collected from CML patients enrolled at Department of Hematology, SKIMS 

Soura. Clinical details were obtained by going through the medical records of the cases. 

About two ml (2 ml) peripheral blood of CML patient and normal control was collected 

in an EDTA coated sterilized plastic vials and stored at -20°C for further use. Proper 

consent was taken from all the subjects. Demographic characteristics of the cases and 

controls recruited for Study are shown in table 1: 

Table 1: Demographic characteristics of the cases and controls recruited for study. 

                                                         Cases                                         Controls 

                                         (80)                                                (80) 

Mean Age(years)  SD 44.78 13.61 31.83  

Males   n (%) 

Mean Age  SD 

44 (55.0) 

47.31  

56 (70.0) 

31.33  

Females  n (%) 

Mean Age  SD 

36 (45.0) 

41.22  

24 (30.0) 

33.00  

n= number of individuals 
value represents ± SD 
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3.3. Chemicals used for the Study 

Chemicals/Enzymes      Source    

100bp Ladder      Sigma 

Acetic acid             Qualigens 

Agarose low EEO     Sisco Research Lab.Pvt.Ltd 

Ammonium chloride     D.D. Fine Chem.Pvt.Ltd 

Bromophenol blue         Himedia 

Chloroform      Qualigens 

dNTPs           Sigma 

EDTA-disodium     CDH 

Ethanol      Jiangsu Huaxi International Co.Ltd 

Ethidium bromide           Himedia 

HaeIII       Fermentas 

Isoamyl alcohol     Qualigens 

Isopropanol        Qualigens 

Magnesium chloride     Sisco Research Lab 

Oligonucleotides     Sigma 

Phenol       Qualigens 

Proteinase K      Sigma 

SDS       Sigma 

Sodium acetate       S.D. fine chem.pvt ltd 

Sodium chloride        Sisco Research Lab.Pvt.Ltd 

Sodium hydroxide        RANKIN 

Sucrose      Sisco Research Lab 

Taq DNA polymerase       GENETAQ
TM
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Tris – base          Himedia 

Tris-HCl      Himedia 

3.4. Reagents 

3.4.1. Reagents for DNA extraction 

Chloroform isoamyl alcohol (CIA) 

Chloroform      24.0 ml 

Isoamyl alcohol     1.0 ml 

Chloroform: isoamyl alcohol, in the ratio 24:1 was prepared by mixing 24 ml of 

Chloroform and 1 ml of isoamyl alcohol. The solution was stored at 4˚C in dark bottle. 

DNA storage buffer: 

0.5 M EDTA      0.01 ml 

1 M Tris      0.5 ml 

Final volume was made 50 ml with sterile distilled water. 

Lysis buffer 

1 M Tris      2.0 ml 

0.5M EDTA      400 µl 

10% SDS      30.0 ml 

Final volume of the solution was made 100ml with sterile distilled water. 

Lysis solution 

1 M Ammonium chloride    15.5 ml 

1M Potassium bicarbonate    1.0 ml 

0.5 M EDTA      200 µl 

Final volume was made 100ml with sterile distilled water. 
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Proteinase K 

Proteinase K      10 mg 

Proteinase k was dissolved in 1 ml of deionized water and stored at -20˚C in aliquots of 

1 ml each. 

SE Solution 

5 M Sodium chloride      3 ml 

0.5 M EDTA       8 ml 

Final volume was made 200ml with sterile distilled water.  pH was adjusted to 8. 

SDS (10%) 

SDS       10 g 

SDS was dissolved in 100 ml sterile distilled water. 

Sodium acetate (3M) 

Sodium acetate      40.83 g 

Sodium acetate was dissolved in 100ml sterile distilled water; pH of the solution was 

adjusted to 5.0 using acetic acid. 

Saturated phenol 

0.2% β- mercaptoethanol 

8-hydroxy quinoline 

0.1 M Tris chloride buffer    800 ml 

0.5 M Tris chloride buffer    1000 ml 

Phenol                  1000 ml 

The mixture obtained by adding equal volume of 0.5M Tris-Cl buffer and melted 

phenol was stirred for 15 min on magnetic stirrer. Two phases were allowed to separate. 

Upper aqueous phase was removed and equal volume of 0.1 M Tris-chloride buffer was 

added. The saturation with 0.1 M Tris-Cl buffer was repeated till phenol >7.8 pH was 
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obtained. A pinch of β-mercaptoethanol and 8-hydroxy quinoline was added. Phenol 

was stored at 4˚C in a dark bottle. 

3.4.2. Reagents for Agarose gel electrophoresis 

Agarose (1%)        

Agarose      1.0 g 

Buffer       100 ml 

EtBr       5.0 µl 

Agarose was dissolved in a buffer and heated till a clear solution is formed. EtBr was 

then added to the solution. 

Bromophenol blue 

Bromophenol blue     0.4 g 

Sucrose      20.0 g 

Bromophenol blue was dissolved in 100ml of distilled water. 

From the above stock solution 31.25ml was taken and sucrose was added. Final volume 

was made 50ml with distilled water. 

Ethidium bromide 

Ethidium bromide     10 mg 

Ethidium Bromide was dissolved in 1ml of distilled water. The solution was stored in a 

dark bottle at 4˚C. 

50x TAE (pH 8.0) 

Tris base      242 g 

0.5M EDTA      100 ml 

Glacial acetic acid     57.1 ml 

Final volume was made 1000ml with distilled water. 
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1x TAE (pH 8.0) 

50 x TAE      20 ml 

Final volume was made 1000ml with distilled water. 

3.4.3. Reagents for PCR 

Stock 

Deoxyribose nucleotide triphosphate (dNTP) 10mM each dATP, dGTP, dCTP and 

dTTP 

Taq polymerase (5U/ml) 

10x Taq buffer Primers: 100mM in sterile demonized water (Sigma)  

100bp DNA ladder (100µg/ml) 

3.5. Genetic Analysis 

For the analysis of mutation, DNA was extracted from whole blood and was followed 

by PCR amplification of desired fragment. These amplified products were digested by 

Hae III enzyme and further analyzed by nucleotide sequencing. 

3.5.1. DNA extraction by phenol-chloroform method 

Blood samples (2ml) were obtained from the patients in the EDTA coated plastic vials 

and genomic DNA was isolated by Phenol-chloroform method (Sambrook and Rusell, 

2001).  

1. First cells were lysed with 4ml of freshly prepared Lysis buffer (155mM NH4Cl, 

10 mM KHCO3 and 0.1 mM EDTA) with gentle mixing and kept at -20
o
C for 15 

minutes. 

2. The tubes were then centrifuged at 8000 rpm for 10 minute and then supernatant 

was discarded. 

3. The pellet was resuspended in 2 ml of SE, 100µg/ml Proteinase K and 100 ml of 

10% SDS. The solution was incubated at 37
o
C overnight. 

4. On the next day, equal volumes of Tris-saturated-phenol (pH 8) was added to 

the sample in the tube and mixed thoroughly by inverting the tube for 15-20 

minutes. 
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5. The tubes were then centrifuged at 6000 rpm for 10 minutes. The aqueous 

supernatant was transferred to fresh tubes and to it was added an equal volume 

of phenol-CIA (chloroform-isoamyl alcohol). 

6. The tubes were shaken gently for 15 minutes and then centrifuged at 7000 rpm 

for 10 minutes. 

7.  The supernatant formed was transferred to fresh tube and to it is added an equal 

volume of CIA.  

8. The tubes were again shaken gently for 15-20 minutes and then centrifuged at 

8000 rpm for 10 minutes. 

9. To the supernatant was added an equal volume of chilled ethanol and 0.1 ml of 

sodium acetate, the DNA precipitated immediately. 

10. After retrieving the DNA, it was washed thrice with 70% ethanol. DNA was 

then dissolved in 5 ml of DNA storage buffer and stored at 4
o
C for future use. 

3.5.2. Qualitative and Quantitative Analysis Genomic DNA 

Qualitative Analysis 

The quality of the genomic DNA was examined by gel electrophoresis using 0.8% 

agarose gel. Initially, 0.8g of agarose and 100ml of 1x TAE buffer were taken in conical 

flask and heated on the heating mantle for 5-10 min. After that 2µl of ethidium bromide 

(10mg/ml) were added and gel solution was poured into the tray and allowed to set for 

20 minutes. The gel was submerged in 1x TAE buffer. 2µl of each DNA sample was 

mixed with 1µl of 1x DNA loading dye (1x loading dye consists of 4.16 mg 

bromophenol blue, 4.16 mg xylene cyanol and 0.66g sucrose in 1ml water) and was 

loaded in the gel. Electric current was applied at 20 volt until DNA enters in to the gel 

and was raised to 50 volt for rest of the run. Run was stopped when the dye had 

travelled nearly two third of the gel. Gel was visualized by a Gel doc system 

(AlphaimagerTM 2200, Alpha Innotech Corporation) under UV light and picture was 

captured by using CCD camera system (Figure 4). 
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           Figure 4:  Representative photograph of the genomic DNA isolated from the human 

                         blood samples analyzed by 0.8% agarose gel electrophoresis 

 

 

Quantitative Analysis 

The quantity of the DNA was estimated by making appropriate dilutions to determine 

the optical density at 260nm and 280 nm by double beam spectrophotometer (Spectron 

2206) and the concentration was determined using equation 

DNA (µg/ml) = A260 x 50 x dilution factor 

 The ratio of A260/280nm was calculated and the DNA samples for which the ratio was 1.6-

1.9 was considered for the future use. The DNA was stored at 4
o
C for a short time but 

the vials were kept at -20
o
C for longer duration storage. 
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3.5.3. Genotyping of IRF-8 gene 

After Agarose gel electrophoresis it was found that concentration and purity of genomic 

DNA is desirable, the desired fragment of DNA i.e., IRF-8 (exon 7) was amplified by 

polymerase chain reaction (PCR). After standardizing all the parameters of PCR like 

varying annealing temperature, dNTP, primer and template concentration, fragment of 

interest was amplified. PCR was performed in total volume of 25 µl for restriction 

digestion and 50µl for direct sequencing. The PCR reactions were composed of 100 ng 

of genomic DNA, 0.2mM dNTPs, 0.4 pmoles/µl of each primer and 0.2 U/µl of Taq 

polymerase in 1x PCR buffer (Table 2). PCR tubes containing reaction mixture ware 

mixed and placed in a 96 well automated thermal cycler (Applied) for amplification. 

After placing the tubes within thermal cycler, different temperatures were set as given 

in the table 3. The primer pair designed and used for amplification includes 

Forward primer: 5´- GGCACCAAGCTGTATGGG -3´  

Reverse primer: 5´- AGAACTGGCTGGTGTCGAAG -3´  

Lyophilized primer stocks were diluted first to 100pg/µl concentration and then 

working was made 20pg/µl using miliQ water. Amplification and specificity of 

amplicon obtained in the PCR reaction was analyzed by 2% agarose gel electrophoresis. 

The gel was visualized on UV-illuminator and photographed on the Gel Doc System. 

The final PCR product of 271 bp was obtained and was digested by restriction enzyme 

HaeIII (Fermntas) for 4 h at 37 
0
C. Digested products were separated on a 3% agarose 

gel. HaeIII cuts the fragment of interest at 6 positions (5, 18, 26, 52, 173, and 216), 

giving 121bp and 55bp as major fragments. For further confirmation of results 

sequencing was commercially done using the services of SciGenomics Kerala. 50 μl of 

unpurified PCR product samples were send along with 50μl of 20μM Forward & 

Reverse primers for purification and sequencing. 
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Table 2: Volume of different Reagents used for 25µl Reaction 

 

Reagent Volume used 

10x PCR reaction buffer 2.5 µl 

MgCl2 2.2 µl 

dNTP mix 0.6 µl 

Forward Primer  0.3 µl 

Reverse Primer 0.3 µl 

Genomic DNA 3.0 µl 

Taq DNA polymerase  0.3 µl 

MilliQ water                            15.8 µl 

Total Volume 25 µl 

 

Table 3: PCR cycling parameters 

 

 

    

Steps Temperature 
o
C Time 

Initial Denaturation 

 

Denaturation 

 

Annealing  

 

Extension 

 

Final extension 

95 

 

95 

 

62.1 

 

72 

 

72 

              5 minutes 

 

       50 seconds 

 

       50 seconds      35 Cycles     

 

        50 seconds 

 

             10 minutes 
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3.5.4. Purification and DNA Sequencing  

The purification and sequencing was commercially done using the services of 

SciGenomics kerela. For purification and sequencing we send 50 µl of unpurified PCR 

product samples along with 50 µl of 20 µM Forward & Reverse primers.  

3.5.5. Statistical Analysis  

The χ
2
-test was used to examine the differences in the distribution of genotypes between 

cases and controls. OR with 95% CI were computed using unconditional logistic 

regression (GraphPad Prism 5) and adjusted for age and gender.  
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CML is a myeloproliferative disorder but definite mechanism leading to this 

carcinogenesis is yet to be understood completely. Only causative factor known to be 

associated with CML is exposure to radioactivity. Individual genotypic differences and 

also the level of expression of various signaling molecules are crucial in determining 

the susceptibility of developing the cancer. In this hospital based case-control study we 

evaluated the exon 7 region of IRF-8 gene for any nucleotide variation in the CML 

patients and healthy controls of the Kashmir valley. 

On analyzing the data it comes out that out of 80 CML patients registered, 44 were 

males and 36 were females and thus the male to female ratio comes out to be 1:1.12 

(Figure 5). Out of 80 cases, 30 (37.50%) were found in the age group of 30-40 years, 

17(21.25%) of cases were found in the age group of 40-50 years and 14(17.5%) were in 

the age group of 50-60 years (Figure 6).  

Of all the ten districts of the Kashmir division, highest number of CML cases turned out 

from the central district of Srinagar, with total no of 20 CML cases (25%) recruited for 

the study (Figure 7). We observed that the fruit consumption in most (65%) of the CML 

cases was very low.  Also the use of tobacco in the form of cigarette smoking and 

traditional  Hukka was seen in about 60% of cases (Table 4).  

A good proportion of the CML cases (63.75%) that were recruited for this study had a 

monthly income of less than 6000 INR (Table 4). 

Taking presence of Philadelphia chromosome (BCR-ABL fusion gene) into account it 

was found that 66 (82.5%) of cases were found positive, while as only 14(17.5%) of 

cases were negative (Figure 8).   

 

 

 

 

 

 



Chapter 4                                                                                                                 Results 
 

 33 
 

 

Table 4: Showing various demographic characteristics of CML cases. 

 

 

     

 

 

Demographic Features 
CML Cases 

n(80) 

Age (Years) 

30-40 

40-50 

50-60 

30 

17 

14 

Gender 
Male 

Female 

44 

26 

District 

Srinagar 

Budgam 

Baramulla 

Others 

20 

10 

8 

42 

Fruit Consumption 
Low 

Moderate 

52 

28 

Smoking 
Ever 

Never 

48 

32 

Economic status (INR) 
≤ 6000 

˃ 6000 

51 

29 

BCR-ABL fusion gene 
Present 

Absent 

66 

14 
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        Figure 5: Gender distribution of CML patients included in the study. 

 

 

         Figure 6: Age distribution of CML patients included in the study. 
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          Figure 7: District-wise distribution of CML patients included in the study. 

 

 

               Figure 8:  BCR-ABL status of CML patients included in the Study 
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4.1. Clinical features of CML patients of Study population 

  

The patients with CML were diagnosed in the Department of Hematology of Sheri-

Kashmir Institute of Medical Sciences (SKIMS), Soura. The diagnosis of CML was 

based on the standard clinico-hematological criteria and the presence of Philadelphia 

chromosome (BCR-ABL fusion gene). The number of patients with CML (n=80) 

comprised 44(55%) males and 36(45%) females with mean age of 44.7 years. The 

number healthy controls (n=80) consisted of 56(70%) males and 24(30%) females with 

mean age of 31.8 years.  

Clinical and Biochemical characteristics of Chronic Myeloid Leukemia patients who 

were genotyped for exon 7 region of IRF-8 gene are shown in Table 5.  

Table 5: Clinical characteristics of Study Subjects 

Variables CML patients 

Sex  

              Male 

              Female  

 

44 

36 

Hemoglobin(g/dl)  10.72.518 

 

TLC ×10
3
/ µl 19.3140.71 

Platelet × 10
3
/ µl 194.3139.3 

BCR-ABL (%age) 

 
67.8132.41 

n= number of individuals 
value represents ± SD 
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4.2. Genetic Analysis 

4.2.1. PCR Amplification of IRF-8 (exon 7) 

A single primer set was designed and used to amplify the IRF-8 (exon 7) which 

gave 271 bp size amplicon. The reaction conditions and PCR program which was used 

for amplification is described in methodology section. The results showed that all the 

genomic DNA samples were amplified successfully, producing specific amplicon of 

expected size. After amplification, 5µl of PCR products were visualized under UV 

exposure after the gel was stained with ethidium bromide as shown in Figure 9. 

 

                 

          Figure 9: Representative  photograph of the IRF-8 (exon7)  amplified by Polyme- 

          rase chain reaction.  Lane no. 1 represents negative control Lane no. 2 represents 

          50 bp ladder, Lane no. 3-10 represents 271 bp fragment of exon 7 of  IRF-8 gene 

           amplified by PCR. 

 

 

 

       Lane   1           2          3          4           5          6           7           8           9          10 

271bp 
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4.2.2. Restriction digestion 

The amplified product of exon 7 region of IRF-8 gene was subjected to 

restriction digestion by HaeIII enzyme. It cuts amplified product at 6 positions (5, 18, 

26, 52, 173 and 216) giving digested products of 13bp, 8bp, 26bp, 121bp, 43bp and 

55bp. The results showed only 121bp and 55bp restriction fragments on 3% agarose gel 

which was visualized under UV exposure after the gel was stained with ethidium 

bromide as shown in Figure 10. 

           Lane            1          2           3          4         5           6          7         8   

     

 Figure 10 : Representative photograph of the IRF-8 (exon7) restriction fragments.  

 Lane no. 1 represents 50 bp ladder, Lane no. 2-8 represents 121 bp and 55 bp frag- 

 ments each of  exon 7 of  IRF-8 gene restriction by HaeIII . 
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4.3. Sequence Analysis 

Sequencing of all the samples for any potential variation in the nucleotide sequence of 

the IRF-8 gene (exon 7) was done commercially using the services of SciGenomics 

kerela. Alignment of all the sequences pertained to DNA samples of various cases and 

controls was done with respect to control sequence. Sequencing results for IRF-8 

amplicon for potential mutation for cases and controls are respectively shown by 

chromatograms in Figure 11 and 12. These chromatograms indicate the presence of 

single G    A transition position 92 in amplified exon 7 of my gene of interest which 

might have an important role in the expression level of IRF-8 gene. The representative 

chromatograms of wild type T allele and the variant allele with G      A change are 

given in the Figure 13 and 14 respectively.   

 In CML cases, the allelic frequency for normal allele G was found to be 47.5% 

(76/160). The allelic frequency observed for G    A type was found to be 52.5% 

(84/160). An equal number of non malignant age and gender matched controls were 

screened for the any potential mutation for the same region. In controls, the allelic 

frequency observed for normal allele G was 91.25% (146/160). The allelic frequency in 

controls observed for G     A type was found to be 8.75% (14/160).  

Since the frequency observed for the variant allele (G    A) was higher in CML cases 

(52.5%) than in normal controls (8.75%) and was found to be statistically significant 

(OR= 11.52, 95% CI: (6.13-21.6); p = 0.001). The frequency of IRF-8 (exon 7) in CML 

patients and controls is summarized in Table 6. 
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                           Figure 11: Representative Chromatogram of direct sequencing for IRF-8 (exon 7) in CML patients.  
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                        Figure 12:  Representative Chromatogram of direct sequencing for IRF-8 (exon 7) in controls. 
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                                    Wild G  

 

Figure 13: Representive chromatogram of Direct sequencing for IRF-8 unaffected 

individuals.The IRF-8 of unaffected individuals contains a G nucleotide base  at position 92 in 

amplified exon 7. 

 

  

 

Figure 14:  Representive chromatogram of  Direct sequencing for IRF-8 affected  individuals .       

The IRF-8 of affected individuals contains a G       A sub- stitution at position 92 in amplfied 

exon 7. 

 

915 G        A 
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Table 6: Illustrating frequency of IRF-8 (exon 7) alleles in CML patients and controls. 

 

 

Polymorphism 

 

Cases 

n
s
 (%) 

160 

 

Control 

n
s
 (%) 

120 

 

 

OR (95% CI) 

 

 

p value 

irf-8 

G 76(47.5) 146(91.25) 1 - 

A 84(52.5) 14(8.75) 
11.52 (6.13-

21.6) 
0.001 

n
s
 = Number of Alleles 

p<0.05 (Data statistically significant) 
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Chronic myeloid leukemia (CML) is myeloproliferative disorder whose definite 

mechanism of development is yet unknown. It is associated with a characteristic 

Philadelphia chromosome leading to reciprocal translocation between chromosome 9 

and 22 resulting in juxtaposition of BCR-ABL gene (Faderl et al., 1999, Rowley et al., 

1973). Four major mechanisms have been implicated in the malignant transformation by 

BCR-ABL, namely altered adhesion to stroma cells and extracellular matrix (Gordon et 

al., 1987), constitutively active mitogenic signaling (Puil et al., 1994), reduced 

apoptosis (Bedi et al., 1994) and proteasome-mediated degradation of ABL inhibitory 

proteins (Dai et al., 1998). Only a limited number of studies have been so far conducted 

in which the role of other possible confounding factors like environment has been 

studied together with genetic analysis. IRF-8/ICSCP is expressed predominately in 

hematopoietic cells and is further increased upon treatment with interferon (Driggers et 

al., 1990, Weisz et al., 1992). Expression of IRF-8 can lead to the down-regulation of 

the anti-apoptotic protein Bcl-2 (Burchert et al., 2004). Originally described as being 

induced by IFN-γ, IRF-8 expression is also elevated by IRF-α as well as IL-12 in NK 

and T cells (Lehtonen et al., 2003). IRF-8 –/– myeloid progenitor cells have defects in 

both differentiation and growth. IRF-8 drives their differentiation toward macrophages 

whereas it inhibits granulocytic differentiation (Scheller et al., 1999, Tamura et al., 

2000). Moreover, IRF-8 inhibits myeloid cell growth and promotes apoptosis (Tamura 

et al., 2000, Gabriele et al., 1999).  These studies reveal that IRF-8 plays a pivotal role 

in regulation of leukemogenesis and functions as a tumor suppressor of certain myeloid 

malignancies. 
 
By direct sequencing of the exon 7 region of IRF-8 gene, a single base 

pair G      A transition was found at position 92 of the exon amlified. Only few studies 

have been conducted on CML in Kashmir and the cause of the high incidence rate is yet 

a mystery. Thus a hospital based case-control study was devised which was aimed to 

evaluate exon 7 region of the IRF-8 gene for any nucleotide variation in the CML 

patients and healthy controls of the Kashmir valley. 

The present study consists of eighty confirmed CML cases and also equal number of 

age, gender and district matched controls. Fifty five percent (44/80) of CML patients 

were men thus giving the male to female ratio to be 1:1.12. We did not find any 

significant difference in the mean age of the cases (44.7 years) and controls (43.6 
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years). We observed a higher representation of CML cases in the age group between 30 

and 40. Similar pattern of age at diagnosis was also observed in studies conducted by 

Mendizabal et al., 2010. 

The highest number of the CML patients in our study were from central part of Kashmir 

valley with district Srinagar accounting for 25% of the cases. The wide difference in the 

incidence rate of the CML across the different districts of the Kashmir valley may be 

suggestive of timely access to the only tertiary care centre owing to its easy availability 

and health consciousness, although, role of some environmental exposure of the local 

population may not be discarded.  

We assessed all the CML patients for the presence of Philadelphia chromosome (BCR-

ABL fusion gene) and observed that 66 (82.5%) of CML cases were positive. Our 

results are in agreement with other studies which have reported high prevalence of 

Philadelphia chromosome in CML patients (Kurzrock et al., 2003, Goldman et al., 

2003).  

Restriction results showed wild conditions with no mutation at any of the 6 position 

where HaeIII cuts, which was confirmed by the sequencing results as well. Further 

sequencing results showed interesting single G     A substitution at  position 92 of the 

exon amplified. In CML cases, the allelic frequency for normal allele (G) was found to 

be 47.5% (76/160) and the allelic frequency observed for G    A type was found to be 

52.5% (84/160). The allelic frequency observed in controls for normal allele (G) was 

91.25% (146/160). The frequencies analyzed for G     A allele was 8.75% (14/160). 

Since the frequency observed for G      A allele was higher in CML cases (52.5%) than 

in normal controls (8.75%) and it was found to be statistically significant (OR= 11.52, 

95%CI: (6.13-21.6); p = 0.001). Sequencing results further showed occasional deletion 

at the same position where transition was seen. IRF-8 is a critical regulator of 

myelopoiesis, which when deleted in mice results in a syndrome highly similar to 

human chronic myelogenous leukemia (Seung-Hee et al., 2010). In human patients 

with CML and acute myeloid leukemia, IRF-8 expression is dramatically decreased 

(Schmidt et al., 1998). This study may be augmented by the fact that any aberrations in 

the gene of interest which might be having significant effect in expression pattern or 

folding phenomenon would ultimately result in CML.  
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