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        The development of cleaner technologies is a major emphasis in green chemistry. 

Among the several features of Green Chemistry, the reduction/replacement of volatile 

organic components (VOC) from the reaction medium is of greatest concern as these have 

been heavily implicated in causing changes to the climate on the global level like formation 

of smog as well as being identified as a source of ozone depletion (1). Because of these 

deleterious effects of VOC, search for neoteric non-volatile and less polluting solvents that 

are greener towards environment is on demand. Ionic liquids offer a class of solvents that 

have been used as reaction media for various chemical transformations over conventional 

solvents because of their eco-green nature. Ionic liquids are organic salts with melting point 

below 100
0
C (2) while room temperature ionic liquids (RTILS) are salts having melting 

temperature at or around 25
0
C and consists of ions where couloumbic forces are dominant in 

addition to hydrogen bonding,             interactions, van-der Waals interactions and 

dispersive forces which play an important role for these to act as reaction solvents. Owing to 

the highly attractive and advantageous characteristic features of ionic liquids like low vapour 

pressure, low toxicity, wide range of solubility and miscibility, wide electrochemical 

window, high thermal and chemical stabilities, high recycling potential etc. have attracted 

chemists for exploiting them in diverse research area viz., in catalysis, chemical synthesis, 

reaction media, separations and extractions, biochemistry and other fields of fundamental as 

well as applied research (3,4,5,6,7). 

1.1. History  

The roots of ionic liquids go back to one hundred years and are firmly planted in traditional 

high temperature molten salts. These molten salts were used as reaction solvents due to 

highly interesting properties like wide liquidus range, wide electrochemical window, thermal 

and chemical stability, greater electrical conductivity and non-volatility. Moreover the 

availability of these salts on cheaper rates has compelled chemists to use them as solvents. 
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But the high operating temperature of the molten salts cause incompatibilities for reactions; 

besides at the industrial level these salts incur high energy costs to maintain their operating 

temperature, thus discouraging their use as reaction solvents. Thus search for newer type of 

solvents which could avoid the deleterious  effects of molten salts finally lead to discovery of 

ionic liquids as non-aqueous solvents. It was in the mid 19
th

 century Prof. Jerry Atwood of 

the University of Missouri made the first documented observation of the ionic liquid as a red 

oil which formed during Friedel-Crafts reaction of aromatic substrates with incipient 

electrophile chloromethane in presence of a Lewis acid catalyst like AlCl3 (8). The red oil 

was later identified through spectroscopic techniques like NMR as a salt containing a cation 

presumed to be the reaction intermediate in the Friedel-Crafts reaction, named as sigma 

complex, and anion was heptachlorodialuminate (9). But actual discovery of the ionic liquids 

dates back to 1914 when scientists tried the synthesis of ethylammoniumnitrate (10), which 

was a liquid at room temperature containing a small amount of water (11). Later on in 1948 

Hurley and Weir at the Rice Institute in Texas developed the first ionic liquid with 

chloroaluminate ions as bath solutions for electroplating the aluminium (12) and after that in 

1970 groups of Osteryoung and Wilkes rediscovered them successfully by synthesising the 

room temperature chloroaluminate melts (13). The development of these room temperature 

ionic melts was focussed for electrochemical application purposes. Subsequently Seddon and 

Huxley groups used these chloroaluminate melts for electrochemical and spectroscopic 

investigation of transition metal complexes(14,15). Owing to their air and moisture instability 

and acidic nature, these  ionic melts, could not be fully exploited as reaction media or in 

catalysis, synthesis etc. Thus search for moisture and air stable conducting liquids resulted in 

2001 in the discovery of ionic liquids which were neutral, air and moisture stable and have 

been used for wide applications as solvents, catalysis, immobilising agents( 16,17) etc. These 

modern day ionic liquids are referred  to as second generation ionic liquids and include 



Chapter 1                                                                                                                                      Introduction 
 

  3 
 

quaternary ammonium, phosphonium, imidazolium, pyrrolidinium cations with weakly 

coordinating anions like PF6
-
, Cl

-
, Br

-
, I

-
,BF4

-
, ClO4

-
, CH3COO

-
 etc.(18,19) 

1.2. COMPOSITION 

The general strategy of designing room temperature ionic liquids (RTILs) is to destabilize the 

crystalline phase of an ionic substance with respect to its melt. This is achieved by taking a 

combination of large size, diffuse charged and unsymmetrical ions. While the large size and 

diffuse charge in such combinations lead to weak columbic interactions, the low symmetry 

hampers their efficient packing in the crystal. In addition to molecular dissymmetry and 

charge delocalization, size mismatch of ions, side chain elongation and fluorination of 

hydrocarbon chain continue to be popular methods for inventing new RTILs. Usually a 

combination of large size unsymmetrical organic cation and a weakly coordinating 

inorganic/organic anion leads to a RTIL. The cations in RTILs are usually organic such as, 

quaternary ammonium cations, heterocyclic aromatic cations, pyrrolidinium cations, 

derivatives of natural products and some more esoteric cations and among anions 

hexafluorophosphate,tetrafluoroborate,trifluoromethanesulfonate,tris(trifluoromethylsulfonyl)

methide, bis(trifluoromethylsulfonyl)imide, dicyanamide are common ones (3, 4, 7, 20, 21, 

22, 23, 24, 25, 26). The enormous choice of cations and anions available and the strong 

dependence of physicochemical aspects of RTILs on the nature of constituents allows 

researchers to tailor the properties of RTILs as per the requirements. RTIL of desired 

physical properties can be synthesized by a careful selection of suitable cation-anion 

combination, with fine-tuning facilitated by subtle variations in molecular structure. This 

feature of RTILs has earned them the name of “designer solvents”. Because of some potential 

advantages like high air and water stability, low toxicity, appreciable conductivity and 

structural organization, imidazolium based RTILs are more oftenly used especially for 

electrochemical applications (7, 27) 
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1.3. SYNTHESIS 

Conventionally a two step procedure is used in the synthesis of RTILs (28, 29) as presented 

in Scheme 1.1. The first step is usually a quaternization reaction, wherein alkylation of 

heteroatom in an organic moiety is performed to produce salt of desired organic cation. In the 

second step the anion (usually a halide) of the salt synthesized in step first is substituted by 

the anion of choice through anion exchange reaction. A variety of synthetic procedures are 

available in the literature for the synthesis of RTILs and often the purity of final product 

happens to be a matter of concern about these procedures. Impurities even in the lowest 

concentration regime have drastic and undesired effects on the physicochemical 

characteristics of RTILs, especially those of electrochemical concern. Gordon and co-workers 

(30) recommended a three pronged approach viz., (i) purification of starting materials, (ii) 

control of conditions for quaternization and metathesis reactions and (iii) purification of the 

synthesized ionic liquids for research grade purity. The conventional synthesis and 

purification procedures for RTILs are time consuming and often give low yields. Low yields, 

waste generation, complicated workup procedures and non-green aspects of synthesis and 

purification processes for RTILs are current obstacles in the path of their generalized use. 

Hence many groups have extensively investigated these issues and subsequently non-

conventional approaches like use of microwaves (31, 32) and ultrasound (33, 34, 35) have 

been tested for the synthesis and purification of RTILs. The use of these non-conventional 

methods was demonstrated to lead to better yield and purity, fast conversions and easy 

workup of synthetic and purification steps for RTILs. Various approaches for purification of 

RTILs have been a subject matter of many publications (36,37,38,39). Making the RTIL 

synthetic procedures greener, with maximum purity and stability of the synthesized product 

and designing new choices of cation-anion combinations, besides the structural modifications 

in the cation-anion skeleton to achieve desired properties in a low cost RTIL, continue to be 
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an area of immense interest for synthetic chemists. Synthesis of RTILs from bio-renewable 

natural products is currently a new area of research in this regard (40, 41). 

 

Scheme 1.1. General reaction scheme for synthesis of Ionic liquids 

 

1.4. STRUCTURAL ASPECT 

Knowing and understanding the structure-property relationship of ionic liquids, helps us in 

designing of characteristic ionic liquids besides in optimising their physico-chemical 

properties. Physical studies like IR (43,44,45), Raman (46,47,48), Neutron scattering and X-

Ray studies (49,50) suggested that ionic liquids possess structural organization which is 

outcome of the interplay of columbic forces, hydrogen bonding, vander-Wall’s interaction 

and many more (51,52,53). There are various factors responsible for low melting behaviour 

of these ionic liquids, large size of ions resulting in diffused charge layer thereby resulting in 
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lowering of lattice energy (42) and also the highly asymmetrical nature of constituents i.e. 

cations and anions, preventing the efficient packing and strong charge ordering between its 

components resulting in wide liquidus range and low melting nature (54). Recent studies on 

the structure of imidazolium based ionic liquids revealed the formation of extended network 

of cations and anions connected together through hydrogen bonding, with one imidazolium 

cation surrounded by three anions and vice versa, shown in figure 1.1. 

 

 

 Fig. 1.1.  A 3-D simplified schematic view of the arrangements of 1,3-

dialkylimidazolium cations showing the channels in which the ‘‘spherical’’anions are 

accommodated  

 

                                     

This type of molecular arrangement generates channels in which the anions are generally 

accommodated as chains and depends on the anion geometry, internal arrangement along the 

imidazolium columns. This type of arrangement of cations and anions resulted in formation 

of hydrophobic and hydrophilic domains in the ionic liquid, thus exhibits a high degree of  

spatial heterogeneity which is due to the interplay between electrostatic interaction and van 

der Waals interaction. This nano-phase segregation of imidazolium based ionic liquids helps 

in solvation of large number of macromolecules, ions, molecules and stabilisation of  
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nanomaterials to greater extent (55,56,57,58,59,60). The structural aspects of ionic liquids 

have been extensively investigated theoretically by simulations. Studies based on united atom 

model revealed the long range structure in case of imidazolium based ionic liquids (61,62). 

Moreover course grain model (63) showed the aggregation of side chains only while 

homogeneous distribution of head groups. 

1.5. Physico-chemical properties 

The studies involving physico-chemical properties of ionic liquids are limited in comparison 

to those of conventional solvents. Structure and composition of ionic liquids open up a new 

window for modifying their properties which can be exploited for various applications. It is 

because of the tunable physico-chemical properties of the ionic liquids that justifies the name 

as ‘Designer solvents’.  

1.5.1. Polarity and solvation 

Ionic liquids have been the object of intensive study owing to their application in reaction 

solvents, electrochemistry and material sciences (64). Also they have proved as solvents of 

choice for organic reactions and catalysis processes as they ensure enhancement in reactivity, 

selectivity and catalyst recovery (65). Moreover the broad variation in solubility and 

miscibility properties enables these solvents to dissolve diverse ionic and covalent 

compounds, thus are considered eco-green alternatives to conventional solvents. This ability 

to dissolve various compounds is an important feature of ionic liquids based on the polarity 

and coordination ability of their ions (66,67). As solvents, RTILs have been investigated for 

their polarity aspects making use of macroscopic properties (68,69,70) and empirical 

parameters (71,72). While dielectric constant measurements show RTILs as solvents of 

moderate polarity, use of solvatochrome probes establish that their polarity values match with 

solvents  like acetonitrile and dimethyl formamide (73). An excellent review about the RTIL 
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solvation ability and polarity in this regard has been published by Chiappe et al. (74). 

Measured polarity of RTILs is not always a direct measure of their hydrophilicity and in 

many cases RTILs of same polarity exhibit different hydrophilicities. Polarity of RTILs is 

known to correlate to the size and charge density of constiuent ions. Increase in ion size that 

leads to spreading of charge decreases the polarity of RTILs. RTILs can act both as hydrogen 

bond donors and acceptors; while the basicity depends on the anion, hydrogen bond acidity is 

more a property of the cation although affected by the anion present. Solvation dynamics in 

RTILs has been found to be multimodal occurring over a wide range of time scales, from 

femto to nanoseconds (75-77). 

1.5.2. Melting point and decomposition temperature 

 Low melting and high decomposition temperatures of ionic liquids are the most remarkable 

feature which decides their often use as reaction media and in synthesis. The wide liquidus 

range of these solvents enables them to be used as reaction solvents, in catalysis and 

electrochemistry etc. over a wide temperature range. Also due to the high decomposition 

temperatures, the use of ionic liquids as thermal storage fluids and in solar thermal electric 

power systems is highly advantageous (78-82). The quite low melting point of ionic liquids is 

on account of a subtle balance between cation and anion symmetry, flexibility of alkyl chains 

in cations, diffused charge on the ions, increasing length of alkyl chain and increasing size of 

the anion (83,84). Physical studies like DSC/DTA showed that [BMIM][Cl] has a melting 

point of 314.1k. Investigations by Scurto et al (85,86) revealed that pressuring simple organic 

salts with compressed CO2 can lead to remarkably high melting depressions especially in 

fluorinated anions because of the strong interaction of  CO2 with the anions (87). Also nano 

scale confinement (88) of ionic liquids is responsible for such decrease as studied by 

Kanakabu et al. Many theoretical studies have shown the relevance of melting and 

decomposition temperature of ionic liquids to its structure. Trohalaki and Pachter (89) and 
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Varneck et al (90) predicted melting points of imidazolium ionic liquids using quantitative 

structure-property relation(QSPR) with almost a good accuracy. Neural network approach 

used by Carreva and Aires-de-Sousa for pyridinium bromide ions with moderate success and 

later on (91) recursive neural network (92) was used by Bini et al to same above type of ionic 

liquids with slight deviations. But very good agreement to experimental results in melting 

temperature determination of ionic liquids have been achieved using molecular dynamics 

simulations as studied by Naoto and co-workers (93). Thermo gravimetric analysis(TGA) 

have shown that the large thermal stability of ionic liquids  is mainly due to nature of the 

anion. For example for 1-alkyl-3-methylimidazoliumtetrafluoroborate, the value is 676.15k 

for butyl chain and 633.15k for octadecyl chains and for common anions the order of onset 

values is Tf2N BF4>PF6>halides (94). Large onsets for decomposition temperatures were 

also reported for pyridinium or tetraalkylphosphonium based ionic liquids (95, 96). Moreover 

many theoretical studies have revealed cation and anion effects on decomposition 

temperatures with a good agreement to experimental studies (97). 

1.5.3. Vapour pressure 

Ionic liquids don’t exert measurable vapour pressure at ambient temperature, hence perceived 

as potential replacements for volatile organic counter parts. Therefore the low volatility of 

ionic liquids, which arises from strong couloumbic interactions between the constituent  

cations and anions, has become the hallmark property that singles them out for development 

of green chemistry.  Investigations by Rebelo et al (98)  noted that no reliable experimental 

data on the vapour pressure and their dependence on temperature existed for these ionic 

liquids and predicted that it should be possible to distil ionic liquids having [NTf2]
-
 anions 

and imidazolium cations containing long alkyl chain lengths at temperatures between their 

estimated boiling and decomposition temperatutes and subsequently carried out distillations 

of [C10mim][ NTf2]
-
 and [C12mim] [NTf2]

- 
 at 70

o
C under reduced pressure. Later on studies 
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by MacFarlane and co-workers on tetraalkylphosphonium and tetraalkylammonium based 

ionic liquids have revealed that these exhibited high degree of volatility (99). They also 

demonstrated that equi-molar binary mixtures of ionic liquids can be distilled. But in general, 

the vapour pressures of ionic liquids, notably the widely used imidazolium based one’s with 

short cationic alkyl chains, are negligible at ambient temperatures and pressures. Thus many 

ionic liquids show little or no evidence of distillation below their thermal decomposition 

temperature. 

 

1.5.4. Transport properties 

Transport properties of ionic liquids viz. viscosity, electrical conductivity, thermal 

conductivity, self diffusion coefficient, are the most important and relevant one’s for 

chemical process design and development (100). These properties can be tailored or designed 

by altering the constituents of ionic liquids for obtaining the desired ionic liquids which can 

be then used for areas of research especially in reaction media.  

1.5.4.1. Viscosity 

Viscosity is a measure of a liquid’s resistance to flow. Liquids with lower viscosity flow 

more readily and vice versa. The commonly used physical unit for viscosity is centipoise(cP). 

In general ionic liquids are more viscous than molecular solvents, and at room temperature 

have viscosity lying in the range of 10-500cP (101). The large viscosity of ionic liquids could 

be disadvantageous for some industrial applications or their use in reaction solvents but on 

the other hand it would be favourable for using in lubrication purposes. Nevertheless, 

viscosity of ionic liquids can be tuned through adequate combination of cations and anions 

leading to optimum range of viscosities for various applications. The viscosity of ionic 
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liquids generally increases with increasing size of cation and particularly with increasing 

alkyl chain lengths. Also ionic liquids with weakly coordinating anions like [BF4]
-
,[PF6]

-
 and 

[NTf2]
-
 have lower viscosities than those with strongly coordinating anions such as [NO3]

-
. 

For example the room temperature viscosities of [C6mim][ [BF4]
-
 and [C6mim][ [NO3]

-
 are 

314 and 840cP respectively (102). Moreover, viscosities of ionic liquids expectedly decrease 

with increase in temperature. Impurities like water and halide ions have dramatic effect on 

the ionic liquid viscosities (103,104). Water can be absorbed by ionic liquids because of their 

hygroscopic nature and the halide ions typically occur in ionic liquids in metathesis step 

when the anion exchange of an organic halide with an inorganic salt occurs. These problems 

can be minimised by extraction of ionic liquid into an organic solvent and washing the 

solution with small amount of deionised water followed by drying in a rotary evaporator. 

Impact of pressure on viscosity of ionic liquids is seriously demanding because of relevance 

of viscosity for industrial purposes, and thus leads to development of various predictive 

models for its determination. Gardas and Coutinho developed a group contribution using 

Orrich-Erbar-type approach revealed a large deviation but large enough for advocating 

industrial purposes (105,106). The latter group contribution model based on the Vogel-

Tammann-Fulcher equation (107) 

                                                                   
 

    
                                                        (1) 

where η0, B and T0 are constants, better explains the variations of η0 with temperature. 

Besides, Hole theory (108) has been successfully used (109) to analyze the RTIL viscosity 

and its tuning through structural variations. It has been shown that viscosity of RTILs can be 

modeled by assuming that they behave like an ideal gas whose motion is restricted by the 

availability of sites for the ions to move into. Hence for an RTIL,   

                                                               
        

      
                                                              (2) 
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where η is the coefficient of viscosity, m is the geometric mean of the constituent 

ion molecular mass,  is the average speed of the molecule (= 8kT/π.m)
1/2

, σ the collision 

diameter (4πR
2
) and P(r≥ R) is the probability of finding a hole of radius r, greater than the 

radius R, of the RTIL whose value can be evaluated through, 

                                                          
  

     
            

                                               (3) 

where a is given by  

  
   

  
 

 γ being the surface tension. Good correlation between the η calculated on the basis of Hole 

theory and that measured experimentally has been reported. As evident from the above 

treatment, RTIL viscosity can be decreased by decreasing the surface tension, increasing the 

free volume or by decreasing the ionic radius. This is the reason for low viscosity of RTILs 

with fluorinated anions. Various groups have extensively studied the impact of cation, anion, 

their size, symmetry and charge delocalization on the η values of RTILs in detail (110-113). 

Viscosity of RTILs has been demonstrated to be temperature sensitive (114,115) and cases 

obeys an Arrhenius type relationship, Guzman-Andrade (GA) law, 

                                                                   
  

  
                                                               (4) 

where Ea is the activation energy for viscous flow 

1.5.4.2. Conductivity and diffusion 

 Ionic liquids by definition exhibit ionic conductivity of the order of Siemens per metre(Sm
-1

) 

or for low conductivities, milli siemens per centimetre(mScm
-1

), which is a measure of the 

liquid’s ability to conduct an electric current. The intrinsic ionic conductivity of ionic liquids 

depends on the availability of the ions to become charge carriers and on the ionic mobility. 

The ionic mobility can be reduced by ion-ion interaction that leads to the formation of ion-
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pairs and ion aggregates which are neutral (116,117). Also the ionic mobility correlates well 

with the diffusion rates which in turn depends on the viscosity of the ionic liquids depicted in 

Vogel-Tamman-Fulcher equation (118). Studies involving diffusion and conductivity 

behaviour of ionic liquids is highly demanding for the effective use of these neoteric solvents 

for various applications like electrochemistry, reaction solvents, synthesis etc. These 

transport properties of ionic liquids, being dependent on their chemical structure, could be 

tuned through the modification of cations and anions to achieve the desired properties. Many 

attempts have been made in this regard and Stokes-Einstein and Nernst-Einstein equations 

(119) show relevance of ionic diffusivity on electrical conductivity of ionic liquids. Therefore 

electrical conductivity of ionic liquids lying in the range of 0.1-20mScm
-1

 (115).Besides 

influence of parameters like the diffusion rates, viscosity, chemical structure, ion aggregation 

and size and ionic mobility on ionic conductivity (111,112, 120-123), temperature also has 

profound effect on the conductivity as shown in Arrhenius type equation below 

                                                                 
  

  
                                                             (5) 

where Ea is the activation energy for the conduction and σ0 is a constant.  

1.5.5. Electrochemical potential window 

The electrochemical potential window is the voltage range over which a material is neither 

oxidised nor reduced at an electrode and is therefore electrochemically inert. Ionic liquids 

have wide electrochemical window because of inherent robustness of its ions to redox 

reaction and which can be tuned by varying the composition of these solvents (5,7,115). It 

has been investigated that imidazolium based ionic liquids have this window in the range of 

2.0-6.0V (7,115), the size of windows are influenced by presence of electro-active impurities 

such as halide ions and the choice of working electrode. It is because of these characteristic 
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properties which make ionic liquids as potential electrolytes for batteries, solar cells, fuel 

cells and also as potential solvents for electrochemical investigations (5). 

1.5.6. Surface tension 

Interfacial properties of ionic liquids are very important for many industrial applications such 

as control of mass transfer efficiency for gas-liquid or liquid-liquid extraction operations or 

for multiphasic homogenous catalysis. Also these properties can control the reaction kinetics 

of chemical reactions, thus determining solvent’s ability to act for such purposes. There are 

scarce reports about surface tension measurements available in the literature. The available 

data reported is based on imidazolium ionic liquids. So it is the need of hour to investigate 

fully the interfacial properties of these solvents for use in various applications. The first 

studies on surface tension have been published by Law and Watson (124) that revealed it 

decreases linearly with temperature and also showed that surface tension decreases with 

increasing alkyl chain lengths in imidazolium ionic liquids. Surface tension of ionic liquids is 

lower than those of water and molten inorganic salts have also been reported (125). Surface 

tension of ionic liquids is highly influenced by impurities especially hydrophilic one’s (126). 

The effects of water content on the surface tension value are controversial and ambiguous. 

Some authors reported a decrease and further increase with increasing water content while 

others reported a linear increase with increasing water content which reveals the dependence 

of surface tension on the nature and type of ionic liquids (127). Many theoretical studies have 

been done in order to develop new predictive methods for surface tension determination. 

Gardas and Coutinho (128) developed QSP approach to predict surface tension of ionic 

liquids by using parachor (129) concept and correlation of surface tension with molar volume 

(130). Also molecular dynamic simulation of the surface tension showing decreasing trend 

with ion size asymmetry (131). Temperature effects have also been reported through these 

simulations by Hegger et al.(132). 
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1.5.7. Recycling 

One of eco-friendly aspects of using ionic liquids as solvents is their high potential of 

recycling, which reduces not only hazardous waste but also their cost. Owing to these 

features ionic liquids have been used as biphasic catalysts, solvent media and in synthesis. 

The recycling power of ionic liquids was reported by Anderson and co-workers in rhodium 

catalysed hydroformylation (67) reaction in which the products formed a separate layer 

leaving the solid mixture of ionic solvent and catalyst, which was used again and again with 

reproducible results. 
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Aims and Objectives of the study 

   Solvent is the key component in chemical transformations by playing an active role in the 

kinetic aspects of the reaction. It controls the interaction between the reactants through 

intermolecular forces and heat transfer and forms a solvate shell around the solute. Those 

types of interactions are of paramount importance in achieving conversion and selectivity 

(133). As concern about the environmental impact of chemical transformation mounts, room 

temperature ionic liquids (RTILS) were being advocated as reaction media for their many 

remarkably advantageous features like low volatility, high thermal stability, high solvating 

potential, recycling nature (3,4, 134) etc. Moreover the highly structured nature and totally 

ionic nature of these RTILS have proven to enhance the reaction rates and stereo-selectivity 

(4, 134-136). The latter two are important features of RTILS that are yet to be explored fully 

from kinetic point of view. Chemical transformations like Diels-Alder reaction and 

Nucleophillic substitution reaction are expected to be good indicators of these two aspects of 

RTILS as solvents. Therefore a complete understanding of their role as solvents for chemical 

transformations will lead to good control over the design of ideal RTILS for set goals. 

   Diels-Alder reaction is one of the important reaction in organic synthesis and chemical 

industry (137, 138). The two concerns for chemists in Diels-Alder reaction are the rate 

enhancement and stereo-selectivity. Internal pressure, enforced hydrophobicity and hydrogen 

bonding capability are such parameters used to achieve the selected target (139). Therefore 

RTILS make the chemists convenient choice as solvents for kinetic investigation of above 

reaction owing to their structured nature. Many chemists like Seddon and co-workers (140), 

Tiwari et al (141, 142) etc have reported the rate enhancements of Diels-Alder reaction. Also 

Nematollahi et al have published his work related to electrochemically induced Diels-Alder 

reaction in RTILS (143). Similarly Nucleophillic Substitution reaction is of utmost practical 

use for transformations in medicinal and agricultural chemistry (144). But there are meagre 
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reports related to kinetic investigation of nucleophillic substitution reaction in RTILS and 

also authors have failed to give the genuine explanations for these kinetic benefits (145,146). 

Therefore keeping in view the scarcity of literature related to kinetic investigations in RTILS 

and also little understanding of how these RTILS affect the reactivity in the above mentioned 

classes of reactions i.e., Diels-Alder reactions and Nucleophillic Substitution reaction, this 

piece of work was carried out in different kinds of N-Alkylimidazolium based RTILS like 

[BMIM][Cl], [BMIM][BF4], [BMIM][PF6] and [BMIM][CH3COO] to see the solvent/salt 

effects on rate kinetics of above reactions. 
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Diels-Alder reaction in N-alkyl imidazolium based Ionic 
Liquids: A kinetic investigation using BMIM][BF4]-Water 

and [BMIM][Cl] –Water Solvent systems 
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Introduction  

Owing to their remarkable physicochemical properties (1-4) room temperature ionic liquids 

(RTILS) are being advocated as green solvents for chemical processes. These neoteric 

solvents possess insignificant vapour pressure, are non-flammable, have wide liquidus range 

and possess excellent potential of specifically solvating varied natured compounds. 

Additionally the physicochemical properties of RTILs can be tuned as per the requirement. 

Very recently many RTILs have been found to exhibit significant catalytic activity for a 

variety of industrially and synthetically important chemical reactions (5). In view of all these 

potentialities of RTILs, synthetic chemists have started showing great interest towards 

exploration of the impact of variedly constituted RTILs on the kinetics of diverse type of 

solvent sensitive chemical transformations. 

Diels–Alder reaction is an important class of synthetically important reactions that has been 

found to show strong dependence on the solvent characteristics (6). The Diels-Alder reaction 

is one of the important C-C bond forming reactions employed for the synthesis of natural 

products and bio-active molecules with fine control over stereo-selectivity of the products 

(7). Owing to the remarkable importance of the Diels-Alder reaction in organic synthesis and 

chemical industry (8), activities aimed at developing newer methods to improve the yield and 

selectivity are always in great demand. Diels-Alder reaction is basically the [4π+2π] 

concerted cycloaddition reaction between a diene (4π) and a dienophile (2π) which is 

governed by Woodward-Hoffmann’s rules i.e. thermally allowed reaction (9). However 

Saucer and Sustmann and Houk and co-workers (10, 11) have reported that this reaction 

could occur by different mechanism instead of the concerted one. Initial mechanistic studies 

which established the formation of isopolar activated complexes during the progress of Diels-

Alder reaction implied a weak solvent effect on its kinetics (10). However, the experimental 

reports related to rate enhancements of the Diels-Alder reaction in water have opened up new 
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means for tuning the kinetics of such reactions through solvent variations. The much higher 

rate constant of Diels-Alder reaction in water ascribed to hydrophobic interactions, was first 

of all reported by Rideout and Breslow (12), who carried out the reaction between 

cyclopentadiene and methylvinyl ketone and reported 730 fold increase of rate constant in 

water than in 2,2,4-trimethylpentane. The report is marked as a turning point in organic 

chemistry because in addition to economical and environmental advantages of water the 

report was first to establish the surprising beneficial effects on the reaction rates of chemical 

transformations (12-19). Grieco and co-workers have also reported the advantageous role of 

water on the Diels-Alder reaction during the synthesis of quassinoids (20, 21). They have also 

reported the usefulness of water in rate enhancement of Diels-Alder reaction of diene 

carboxylates with varying dienophiles which include ammonium diene carboxylates, 

monosodium diene phosphonate and dienylammonium chloride (22, 23). There are numerous 

reports wherein addition of salts to aqueous solution of Diels-Alder reactant mixtures has 

been reported to strongly influence the mechanistic and kinetic aspects of the Diels-Alder 

reaction (12, 24-26). In these reports it has been reported that kinetics of the reaction is 

strongly sensitive to the nature and concentration of the additive salt. Different aqueous salt 

solution when used to analyse role of anions on the reaction rates by employing family of 

sodium salts like NaCl, NaBr, NaBF4,NaClO4,NaPF6 and NaAsF6 were found to accelerate 

the reaction rates and increase of rate constant dependent on size of anions. However 

decrease in reaction rates have been reported in case of guanidinium salts. There have been 

reports highlighting the impact of salt solutions on the selectivity of the Diels-Alder reaction 

(27, 28). Thus while salts such as LiCl, NaCl, NaBr, CaCl2 were reported to enhance the 

selectivity i.e. N/X ratio the salts like LiClO4 and GnCl4 have been found to decrease the 

selectivity with former being more effective. 
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     In view of their eco-green features, structured nature and salt like behaviour in aqueous 

solution, exploration of the impact of RTILs as solvent or as salts on the mechanistic and 

kinetic aspects of Diels-Alder reaction seems very attractive. Both rate and stereo-selectivity 

enhancements have been achieved while using ionic melts like [EtNH4][NO3],  AlCl3: MCl, 

(MCl being N-1-butylpyridinium chloride or 1-ethyl-3-methyl-1H-imidazolium chloride) as 

solvent for the said reactions (29). The observed impact on the rate and stereo-selectivity of 

the explored reactions has been ascribed to the high cohesive energy density, hydrophobic 

effect, Lewis acidity of these salts/salt mixtures (30, 31). Moisture-stable ionic liquids and 

their solutions have also been investigated for their impact on the kinetics of the Diels-Alder 

reaction (32), and the results explained in light of micro-viscosity and polarity parameters 

like electronic transition energy ET
N
, hydrogen bond donor ability; acidity (α), hydrogen bond 

acceptor ability; basicity (β) and polarizability (π*) (33, 34, 35, 36, 37).  

In view of the reported salt sensitive behaviour of Diels-Alder reaction in aqueous phase and 

interesting properties of RTIL + water mixtures absence of reports related to impact of such 

mixtures on the kinetics of Diels-Alder reaction seems quite surprising. In light of above 

mentioned facts we carried out detailed kinetic investigations on the Diels-alder reaction 

between cyclopentadiene and benzoquinone in differently concentrated binary mixtures of 

imidazolium based ionic liquids in water.  
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2.1. Experimental Section 

2.1.1. Materials and Methods 

All the chemicals required for kinetic studies were of high purity spectroscopic grade. 

Acetonitrile (GR grade, 99.9%) and MeOH (GR grade, 99.9%) were purchased from Merck, 

India and purified following reported standard methods (38). 

Synthesis of Cyclopentadiene: Fresh samples of cyclopentadiene were synthesized through 

cracking of its dimer dicyclopentadiene, following reported literature procedure (39). Briefly 

200 ml of liquid paraffin were placed in a 500ml, three necked round bottom flask fitted with 

a large (30cm) Vigreux column, a dropping funnel and a thermometer dipping into the 

paraffin oil. A distillation head carrying a thermometer and a double surface condenser was 

attached. The liquid paraffin was heated to about 200-240
0
C and dicyclopentadiene was 

added portion wise from the dropping funnel and the cyclopentadiene fraction having boiling 

point 40
0
C-42

0
C, which distils over was collected in an ice cooled receiver, protected from 

moisture. The dicyclopentadiene is added slowly to ensure complete breakdown of the dimer; 

the temperature at the top of still-head rises above 42
0
C when addition is too rapid. The 

addition of dicyclopentadiene (300ml) was continued until 230g of cyclopentadiene were 

obtained. Since the diene dimerises readily at room temperature, it was used immediately or 

stored in the ice compartment of a refrigerator overnight. 

Synthesis of bezoquinone: Benzoquinone used as dienophile  was synthesised following the 

reported procedure (39). Briefly 3.3 g of H2Q were dissolved in 15 ml of 60% acetic acid, the 

mixture was cooled to about 0- 5
°
C in an ice bath. 4.2 g CrO3 was separately dissolved in 7 

mL of water and 3 mL of glacial acetic acid. The resulting solution was mixed to the chilled 

hydroquinone solution slowly with constant stirring and the temperature of bath was 

maintained below 5
°
C. Reaction mixture was stirred further for 70 minutes at the same 
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temperature. The product was filtered, washed with 2-3 mL ice cold water several times. 

Bright yellow crystals of BQ were obtained (yield ca. 60%). The crystals being light sensitive 

were stored in dark colored sample vials. 

Synthesis of Ionic Liquids: Electrochemical purity grade imidazolium based room RTILs 

viz. [BMIM][Cl] and [BMIM][BF4] were synthesized following a two step procedure (40) as 

reported earlier (41, 42). Briefly, in the first step 1-methylimidazole was refluxed with n-

butyl chloride for 90 hrs under argon atmosphere for the synthesis of 1-butyl-3-

methylimidazolium chloride as a white crystalline solid. In the next step the halide anion was 

exchanged with [BF4]
-
 on treatment with HBF4. The ILs was vacuum dried and stored in 

desiccators under inert atmosphere and were characterized through 
1
H-NMR, mass 

spectrometry and 
13

C-NMR spectroscopy. The water content of dried ILs was less than 50 

ppm, as analyzed by Karl Fischer titration. The chemical structure of RTILS used, diene and 

the dienophile in present study are presented in scheme 2.1. 

N N

C4H9
H3C

BF4

1-butyl-3-methyl imidazolium tetrafluoroborate    

N N

C4H9
H3C

Cl

1-butyl-3-methyl imidazolium chloride 

(a) 
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O

O

Benzoquinone                        (b)                       
Cyclopentadiene

Scheme 2.1. Structure of ionic liquids (a) and reactants (b) used for the Diels alder 

reaction. 

 

2.1.2. Kinetic measurements:  

For the kinetic measurements, to the RTIL-Water binary solvent systems (with RTIL 

concentration varying from 0.0-2.0 M), taken in quartz cuvette of path length 1cm, under a 

continuous  stirring appropriate amount of  benzoquinone and cyclopentadiene stock 

solutions were added so that their resulting concentrations in well mixed mixture were 0.1 

and 10 mM respectively. The progress of the reaction was monitored by following the decay 

of the absorbance peak of the dienophile i.e benzoquinone at λ=245.5 nm using a Schimadzu 

1650 PC Spectrophotometer. The temperature of cell was controlled and maintained at 25
0
C 

by using circulating water bath with an accuracy of ±0.1
0
C.  

     Surface tension measurements of various RTILS-Water solvent systems corresponding to 

different concentration (molarity) were made by the platinum ring detachment method with a 

Krüss-9 (Germany) tensiometer equipped with a thermo-stated vessel holder. Measurements 

were made after temperature equilibration at 25
0
C (±0.1%) by circulating water from a 

HAAKE GH thermostat through the vessel holder. The results were accurate within ±0.1% 

mNm
-1

 and three concordant readings were taken to ensure reproducibility. 
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      Density measurements of various RTIL-Water solvent mixtures were made at 25
0
C by 

using the Anton Paar DMA 4500M density meter. 

      Finally coefficients of viscosity of different solutions of RTIL-Water solvent systems 

were carried out using Anton Paar MCR102 rheometer. The viscosity measurements were 

made at 25
0
C using measuring system with specification (CP50-1, Angle = 1.006

o 
& diameter 

= 49.985mm). 

2.1.3. Computational analysis 

Structural optimizations were performed using the Gaussian 03 quantum chemistry package
 

(43). The initial geometries were optimized by DFT level of theory using Becke’s three 

parameter hybrid functional (B3LYP)
 
(44, 45) and the 6-31G (d, p) basis set. Frequency 

analysis was performed on the optimized structure at the same level of theory and no 

imaginary frequencies were found. 
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2.2. Results and Discussion 

The kinetic plots depicting variation of absorbance at  λ=245.5  (λmax of benzoquinone) 

versus time (sec) for the Diels-Alder reaction between cyclopentadiene (10 mM) and 

benzoquinone (0.1 mM)  (scheme 2.2) as recorded in variedly concentrated ionic liquid –

water solvent media viz. [BMIM][BF4] + Water and  [BMIM][Cl] + Water solvent systems 

are presented as Figure 2.1.  Since the concentration of the diene (cyclopentadiene) was kept 

about hundred times higher than the dienophile (benzoquinone), the recorded UV data were 

analysed in light of integral rate law corresponding to pseudo first order reactions;  

                                                       
 

 
   

  

  
                                                                  (2.1) 

where, ‘k’ is the pseudo Ist order rate constant, ‘t’ is time in seconds,’ ‘  ’ is absorbance at 

zero time and  ‘  ’ is the absorbance at time, t. The rate constants reported in the presented 

work as enlisted in Table 1, and plotted in Figure 2.2.a. are an average of results from three 

kinetic runs recorded under similar conditions. The results from different runs were observe 

to be reproducible within ±5%.  

O

O

+

O

O

 

(1)                                       (2)                                                    (3) 

Scheme 2.2. Diels –alder reaction between diene (1) and dienophile (2) to form product 

(3).                                   

The presented data (Table 2.1.; Figure 2.2.a.) clearly indicate that addition of the used RTILs 

decreases the magnitude of the rate constant for the investigated reaction with an extent 
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depending upon the nature and the concentration of the RTIL. It is evident that the addition of 

[BMIM][BF4] is more effective in decreasing the rate constant than its [BMIM][Cl] 

counterpart. Previously published reports suggest that a variety of factors like internal 

pressure, Lewis-acid catalysis, hydrogen bonding, hydrophobic hydration, aggregation etc. 

(12, 46-50) can be responsible for the observed impact of salt-water reaction media on the 

kinetics of Diels-Alder reactions. To know the exact cause responsible for the observed rate 

deceleration due to addition of RTILs in present case, extensive examination of variations in 

bulk (density, viscosity) and surface properties of the investigated solvent systems was 

undertaken. 
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Figure 2.1. Variation of absorbance  with time by changing concentration of ionic 

liquids  in RTILS-Water solvent media (a) [BMIM][BF4](b) [BMIM][Cl]. 

 

 



Chapter 2                                             Diels-Alder Reaction in RTILS-Water Solvent …… 

  

  36 

0.0 0.4 0.8 1.2 1.6 2.0

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026
(a)

k 
(s

-1
)

[RTIL] molL
-1

 [BMIM][BF
4
]

 [BMIM][Cl]

 

0.3 0.6 0.9 1.2 1.5 1.8

0.3

0.6

0.9

1.2

1.5

1.8

2.1 (b)


s

[RTIL] molL
-1

 [BMIM][BF
4
]

 [BMIM][Cl]

 

Figure 2.2. Variation of (a) rate constant and (b) specific viscosity with changing 

concentration of ionic liquids in RTIL-Water solvent mixtures 
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Figure 2.2 (b) depicts the variation in specific viscosity as a function of concentration of 

RTIL in the water. As clear from these plots addition of both RTILs increases the viscosity of 

water in a concentration dependent manner. Previous reports (51) have established that 

increase in the viscosity does retard the rate of intermolecular Diels-Alder reaction. On prima 

facie it can be suggested that the observed impact of RTILs on the kinetics of the investigated 

Diels–alder reaction is on account of the increase in the viscosity that reduces the 

translational diffusion motion and hence the rate of the reaction. Interestingly the slope of the 

linear fit equations for the data presented in figure 2.2 (b) suggest that specific capacity of 

[BMIM][Cl] to increase the relative viscosity of water is more than that of [BMIM][BF4], 

which implies that the former should be more effective in reducing the rate than the later 

which is not in agreement with our observations (See Figure 2.2.a.) in the present 

investigation. 

In addition to impact of transport characteristics, change in the structural organization of the 

solvent on addition of salt has been reported (52-54) to markedly influence the kinetics of 

Diels-alder reactions in Salt + water reaction media. To explore the same, we carried out 

density measurements of the RTIL+ water mixtures used as solvents in the present study. 

Figure 2.3 (a) depicts the variation in density as a function of RTIL concentration of the used 

solvent systems. The data was processed for estimation of excess volume in the investigated 

systems and the same are depicted in Figure 2.3 (b). As evident from the figure, while excess 

volume for water +   [BMIM][BF4] systems is positive for  water +   [BMIM][Cl] the excess 

volume is negative. The sign of the excess volume indicates that both RTILs mix non-ideally 

with water; while negative deviation (stronger interactions) is exhibited by water +   

[BMIM][Cl] system, positive deviations (weaker interactions) are displayed by water +   

[BMIM][BF4] system. In light of the published reported related to mechanistic aspects of 

Diels-alder reactions in salt + water systems our density plus viscosity data implies that 
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addition of [BMIM][BF4]   even if decreases the kinetics its deceleration effect on the 

kinetics should be lesser than  that of [BMIM][Cl], this is totally opposite to what we 

observed in our kinetic investigations. 
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Figure  2.3. Variation of density (a) and excess volume (b) with concentration of ionic 

liquid in RTIL-Water solvent media 
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 Variation in hydrophobic interactions on salt addition is another factor that has been reported 

(52-55) to be responsible for alteration in kinetic profile of Diels-Alder reactions. In these 

investigations it has been reported that variations in the extent of stabilisation of 

reactants/transition state on account of variations in  hydrophobic surface area of the 

transition state and/or change in the extent of the hydrophobicity of the solvent system in 

aqueous solution do markedly influence the kinetics of the Diels-Alder reaction. The resultant 

variations are quantified in terms of thermodynamic relation;  

                                                                              (2.2) 

where, 

                represents the variation in free energy of solubilisation of the reactants, 

which is a measure of change in solubility of the reactants on addition of salt. 

                = Change in Gibb’s energy of cavitation on addition of salt and 

                      = Change in Gibb’s energy of solvation of the reactants on addition of 

salt. 

To explore the actual reasons that are responsible for our observations related to dependence 

of kinetics on the composition of solvent system, we carried out surface tension 

measurements for the RTIL+ water systems used in our kinetic investigations.  Figure 2.4 

depicts the variation in surface tension of water with the addition of RTILs. As clear from the 

figure both the RTILs decrease the surface tension of water in a concentration dependent 

manner with [BMIM][BF4] being more effective than the [BMIM][Cl]. This is in agreement 

with the report published by Russo et al. (56). The data presented in Figure 2.4 when 

analysed in light of Gibb’s Adsorption Isotherm as shown in equation 3. (57) indicate that for 
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both the used RTILs viz. [BMIM][BF4] and [BMIM][Cl] surface excess is positive and more 

for the former than the later. 

   
 

  
 

  

    
                                                              (2.3) 

Where,      is the surface excess , ‘R’ is the gas constant, ‘T’ is the temperature, ‘γ 

‘ is the surface tension and ‘c’ is the concentration in mol/l. 

 

 Conventional ions are usually negatively adsorbed in water, and thereby exhibit negative 

surface excess in their aqueous solutions. The hydrophobic character of imidazolium based 

ionic liquids has been ascribed to the hydrocarbon chain and the imidazolium group of the 

cation. The higher hydrophobicity of [BMIM][BF4]  in comparison to [BMIM][Cl]  in the 

present case can be attributed to the larger anion size and diffuse nature of the negative 

charge of BF4
-
 that reduces its ability to hydrogen bonding and hence solubility in water (58). 

The observed decrease in surface tension of water with addition of RTIL which is similar to 

what has been reported earlier for Bu4NCl, implies that addition of RTILs to water will lead 

to decrease in the energy required to produce a solvent cavity into which hydrophobic solutes 

(reactants of the investigated Diels-Alder reaction) can go into and thereby increases their 

solubility. In view of the reported behaviour of Bu4NCl, it can be expected that both the 

RTILs will show a negative value for                       . To establish the same   quantum 

chemistry calculations were performed to obtain gas phase optimized geometries, electronic 

energies of RTIL constituents, reactants of the investigated Diels-Alder reaction and 

interaction energies among the RTIL cation with cyclopentadiene and benzoquinone. For this 

GAUSSIAN 03 set of codes (43) at the density functional theory level with details given 

elsewhere (44,45). Frequency analysis of the resultant geometries was performed at the same 

level of theory and basis set to check whether the obtained structures are the stable minimum 

energy structures and no imaginary frequencies were found.  The optimised geometries of 
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most stable conformations of imidazolium ion plus reactants are presented as Figure 2.5.1 

and 2.5.4.  While in case of bezoquinone the most stable conformation was one where the 

benzoquinone is localized near C-2 position of the imidazolium cation in case of 

cyclopentadiene, in the most stable conformation the cyclopentadine ring lies parallel to the 

imidazolium ring.  This can be ascribed to the strong electrostatic (hydrogen bonding) 

interactions between acidic C2-H (of imidazolium cation) and O (of benzoquinone) and - 

interactions among cyclopentadiene and imidazolium cation. While the interaction energy for 

the most stable conformation for bezoquinone plus imidazolium cation was found to be -

1.073 kJmol
-1

, in case of cyclopentadiene plus imidazlium cation the said value of said 

quantity was -1.221 kJmol
-1

 for the most stable conformation as tabulated in Table 2.2. These 

calculations clearly establish that the imidazolium cation shows a positive interaction with 

both the reactants which implies that                         for the present case will be 

definitely negative. In light of the reported ion association constants for [BMIM][BF4]  and 

[BMIM][Cl]  in water (59); the magnitude of                         for [BMIM][BF4]  is 

expected to be higher than that for [BMIM][Cl], nevertheless this magnitude will be small in 

comparison to                   in both the RTILs. The negative values for both 

                  and                        imply an increase in solubility of reactants (1 

and 2) with addition of RTILs, with the effect being more for [BMIM][BF4] than 

[BMIM][Cl]. The increase in the solubility on account of this salting in character of RTILs 

can therefore be responsible for the observed decrease in rate of the investigated Diels-Alder 

reaction. Above discussion implies that had the salting in behaviour of the used RTILs been 

the sole reason for the observed variation in kinetics then addition of [BMIM][BF4]  should 

be more effective for deceleration than  [BMIM][Cl] analogue which is in agreement with the 

observed trend.  
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Figure 2.4. Variation of surface tension as a function of concentration of ionic liquids in 

RTIL-Water solvent media. 
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Figure 2.5. Optimised geometries of stable conformations of imidazolium ion plus 

reactants at relatively different orientations (1, 2) Imidazolium ion+Benzoquinone (3, 4) 

Imidazolium ion + Cyclopentadiene 
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Table 2.1. Surface tension (γ), density (ρ) and coefficient of viscosity (η) of 

[BMIM][BF4]-Water and [BMIM][Cl]-Water solvent mixtures and the estimated value 

of rate constant (k) for Diels-Alder reaction between benzoquinone and cyclopentadiene 

in these mixtures, at 273.15 K. 

 

 

 

TABLE 2.2. Interaction energies of various conformations of imidazolium ion with 

benzoquinone and cyclopentadiene at side on and stacked orientation modes. 

 

System Relative Orientation Interaction energy (kJmol
-1

) 

Qu-Im(1) Side on  1.073 

Qu-Im(2) Stacked  0.620 

Cp-Im(3) Side on  0.595 

Cp-Im(4) Stacked  1.221 

 

Conc. of 

RTIL-Water 

solution 

(molL
-1

) 

Rate 

constant 

k (s
-1

)*10
-3

 

 Surface 

Tension 

γ (mNm
-1

) 

 Density 

ρ (gcm
-3

) 

Coefficient of 

viscosity 

η (Pa.s) 

                                 [BMIM][BF4] 

0.00      2.42 
 

     71.99 
 

0.99705  0.00100 

0.26      2.16 
 

  61.19 
 

1.00403  0.00102 

0.52      2.00 
 

  58.79 
 

1.01507  0.00113 

0.79      1.81 
 

  57.09 
 

1.02551 0.00122 

1.05      1.67 
 

  55.09 
 

1.0362 0.00136 

0.00153 1.31      1.49 
 

  53.99 
 

1.04603 

1.57      1.23 
 

  52.79 
 

1.05633 0.00170 

                             [BMIM][Cl] 

0.00 

0.30 

0.59 

0.89 

1.18 

1.47 

1.77 

2.42 

2.29 

2.19 

2.15 

2.10 

1.99 

1.91 

71.99 

64.29 

60.29 

58.19 

56.79 

55.79 

54.39 

0.99705 

0.99931 

1.00292 

1.00679 

1.01138 

1.01498 

1.01991 

     0.00100 

     0.00101 

     0.00117 

     0.00143 

     0.00155 

     0.00181 

     0.00207 
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Conclusion 

We conclude that the investigated RTILs viz. [BMIM][BF4]  and [BMIM][Cl] act as 

solubility modifiers which through the disordering they cause in the solvent (water),  and 

positive interactions with the reactants decrease the hydrophobic effect of reactants (1 and 2), 

that leads to an  increase in their water solubility (salting in) and decrease of their reactivity 

for the concerted Diels-Alder type reaction. The present investigation establishes that both 

[BMIM][BF4]  and [BMIM][Cl]  are potential chaotropic agents which can have remarkable 

impact on the structuring properties of proteins and nucleic acids. 
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Chapter 3 
Nucleophilic Substitution reaction in RTIL-Methanol  
solvent systems [BMIM][CH3COO], [BMIM][Cl] and 

[BMIM][PF6]: A kinetic investigation 
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Introduction 

Solvent is ubiquitous feature of chemistry that plays an important role in governing rates and 

selectivity of chemical reactions. On account of the solubility requirements for homogeneous 

reactions, organic compounds are the preferred solvents for majority of the industrially and 

synthetically important reactions. This has led to the usage of volatile organic compounds 

(VOCS) as solvents for chemical transformations. The undesirable impact of VOCS on the 

living organisms and the climate we live in (1) has initiated a tremendous research activity 

aimed at design of new synthetic methodologies and discovering more eco-friendly solvent 

systems that can ensure the replacement or minimization of potentially toxic VOCS (2, 3, 4).  

In search of eco-friendly solvents, ionic liquids (ILs) on account of their unusual and 

interesting physico-chemical properties (5) have emerged among front runners. It is due to 

their negligible vapour pressure, excellent solvating potential that makes them to solubilise a 

wide range of inorganic and organic materials and their high thermal stability and wide 

liquidus range that allows their usage over a wide range of temperatures, and other physico-

chemical properties which can be tailored as per requirement, that despite concerns over their 

unknown toxicities ILs are widely proposed as green solvents. It is in these contexts that 

since last few decades’ researchers have been paying enormous attention towards exploration 

of the potentialities of ILs as solvents/catalysts/cosolvents for a variety of industrially and 

synthetically important reactions.  

Most of the chemical reactions in synthesis involve incorporation of new functional groups or 

functional group exchanges. Among numerous reactions discovered so far in this context, the 

nucleophilic substitution reactions are considered a powerful method for inserting functional 

group into the carbon sekelton (6, 7). The nucleophilic substitution reactions are of 

considerable practical use for transformations in medicinal and agriculture chemistry (8). 

Hughes and Ingold broadly classified aliphatic nucleophilic substitution into two categories 
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which proceed by two different mechanisms namely (a) SN
1 

-follow Ist order kinetics and 

involves racemisation if the substrate is optically active and (b) SN
2
 -follow 2

nd
 order kinetics 

and proceeds with inversion of configuration (9). Besides being a useful synthetic strategy for 

many types of synthetically and industrially important intermediates/products, nucleophilic 

substitution reaction provides a familiar avenue for the examination of solvent effects on the 

chemical transformations (10, 11). In the past the effects of molecular solvents on the 

nucleophilic substitution reactions have been easily understood and explained in light of 

Hughes-Ingold model, according to which high polarity solvents accelerate the reaction in 

which the charge density is created, decelerate the reaction in which charge density is 

destroyed, and a negligible effect on the reaction that involve little or no charge density on 

going from reactants to the transition state (12, 13, 14, 15, 16). Application of the Hughes-

Ingold approach to a variety of chemical reactions with ionic liquids as solvents have 

achieved limited success (10,17,18,19,20,21). It has been reported that nucleophilic 

substitution reactions of neutral electrophile p-nitrobenzenesulfonate with a range of neutral 

(mono, di and tributylamine) and anionic (halides and other ions) nucleophiles in different 

ionic liquids can be explained in terms of Kamlet-Taft LSER approach (22, 23). Welton et al. 

in their investigations, the role of charged electrophile on SN
2
 reaction in ionic liquids, have 

found that the results can be better explained in light of the Kamlet-Taft description (24). 

Similarly the kinetic trends of esterfication reaction between methoxyacetic acid with benzyl 

alcohol in a range of ionic liquids and molecular solvents have also been explained by using 

the linear solvation energy relationship based on Kamlet-Taft scale (α, β and π*) and it has 

been reported that hydrogen bond basicity of the solvent is the dominant parameter in 

determining the rate of nucleophilic substitution reaction and best rates are achieved in the 

low basicity solvents (25). Welton et al. based on their investigations over the nucleophilic 

substitution reaction with charged nucleophile and neutral substrate in different ionic liquids 
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and molecular solvents, have concluded that there is no simple correlation of dielectric 

constant and rate constant, thus invalidating the Hughes-Ingold rule (26). In these studies the 

complex results have been analysed using the LSER approach, wherein the decrease in rate 

constants has been attributed to negative α values. The negative α values of solvent implies 

its hydrogen bonding to the nucleophile, that stabilizes it more than that of activated complex 

which is a less hydrogen bond acceptor than the nucleophile itself. The nucleofugality of the 

leaving group is also an important contributor to rates of SN
2
 reaction that can be subjected to 

solvent effects. Nucleophilic substitution reaction of NaN3 with a range of primary, secondary 

and tertiary halides and tosylates have been found to occur with a rate that increases in the 

order [C4C1im][NTf2]< [C6Pyr][NTf2]< [C4C1im][PF6]. The observed trend in the rate 

constants in the above mentioned ILs has been attributed to the ability of these ILs to form 

hydrogen bonds with the leaving groups (27). Nucleophilic conversion of alcohols to alkyl 

halides has also been attempted in 1:1 mixture of p-toloune sulphonic acid and [CnC1im][X] 

where n= 4 or 8; X= Br or I as halogenating mixture, and good conversion yields have been 

reported (28). In these attempts it has been found that more hydrophilic ionic liquids lead to a 

tremendous increase in rate constants of nucleophilic substitution reactions (29). Also use of 

RTILS as environmentally benign media for the cyanide displacements on the benzyl 

chloride, thus replacing phase transfer catalysed biphasic systems  has been investigated (30). 

The ability of ILs to accelerate the nucleophilicity of potassium salts of aromatic acids 

towards α-aryloxy synthesis was recently explored by Chen and co-workers (31).  In addition 

to the above cited reports numerous other nucleophilic substitution reactions are reported in 

literature wherein ILs have been reported to result in increase in rate constants and yields 

over conventional solvents that is attributed to the unique properties of these neoteric solvents 

(27,32). Recently Welton et al. reported a comprehensive investigation related to anion 

effects of imidazolium based ionic liquids on the the rate kinetics of nucleophilic substitution 
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reactions (33). The nucleophilic substitution reactions between methyl-p-

nitrobenzenesulfonate with halides in these studies have been found to react differently in 

different ILs because of change in the nucleophilicities of halide ions. It has been found that 

reactivity varies as Cl
-
 >Br

-
 >I

-
 in case of [BMIM][BF4] and Cl

-
 <Br

-
 <I

-
 in [BMIM][NTf2]. 

Motivated by the above cited reports about nucleophillic substitutions reactions in ILs we 

decided to investigate the impact of imidazolium based ILs on the kinetics of aliphatic 

nucleophilic substitution reaction at sulfonyl sulphur with neutral substrate and charged 

nucleophile. For the same we carried out detailed kinetic investigations on the nucleophilic 

substitution reaction of p-tolunesulfonyl chloride with sodium azide (NaN3) in RTIL plus 

methanol binary solvent systems. Kamlet-Taft model was used to analyse the increased rate 

in RTILS-Methanol solvent systems over methanol. 

3. 1. Experimental Section 

3. 1. 1. Materials 

The reactants for the chosen nucleophillic substitution reaction viz. sodium azide and p-

toluenesulfonyl chloride were obtained from Merck-Germany. Methanol was procured from 

Merck India, while spectroscopic grade room temperature ionic liquids viz. [BMIM][Cl], 

[BMIM][CH3COO] and [BMIM][PF6]  as used for the planned kinetic investigations were 

synthesised following reported methods. The materials required for synthesis viz. acetonitrile 

(GR grade, 99.9%), methanol (GR grade, 99.9%), ethylacetate, dichloromethane were 

purchased from Merck-India and were purified following the standard methods. While 

precursors 1-methyimidazole, 1-chlorobutane used for the synthesis were obtained from 

Spectrochem, India. Briefly in the first step 1-methylimidazole was refluxed with n-butyl 

chloride for 90 hours under inert gas atmosphere like argon for the synthesis of precursor 

compound 1-butyl-3-methylimidazolium chloride as a white crystalline solid. In the next step 
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halide ion i.e Cl
-
 was exchanged with PF6

-
 or CH3COO

-
 ion on treatment with HPF6 or 

CH3COONa to get [BMIM][PF6] or [BMIM][CH3COO]. The synthesised RTILS were dried 

and stored in dessicators under inert atmosphere and were characterised through 
1
H-NMR, 

mass spectrometry and 
13

C-NMR spectroscopy. The water content of these ionic liquids was 

restricted to 50ppm, as analysed by Karl Fischer titration. 

3. 1. 2. Kinetic procedure 

The selected aliphatic nucleophilic substitution reaction between p-tolounesulfonyl chloride 

and sodium azide was carried out under pseudo first order conditions using an excess of 

sodium azide (NaN3) by a factor of 10-100. All the experimental runs were monitored within 

1cm quartz cuvette using a UV-Visible spectrophotometer following the decrease of 

absorbance of p-tolunesulfonyl chloride at appropriate wavelength of 243-245nm. In a typical 

kinetic experimen, a stock solution of 0.1M of p-tolunesulfonyl chloride in methanol was 

prepared by adding exactly weighed 0.0381g to make a total solution of 2ml. Then 10  l from 

stock solution was taken by using micro pipette to prepare 0.33 mM solution of p-

tolounesulfonyl chloride in methanol. Also an exactly weighed 0.0195g of NaN3, were added 

to methanol as solvent to prepare its stock solution of 0.15M. Then 50  l from this stock were 

added to methanol taken in a cuvette to prepare 3ml solution of sodium azide of molarity 

2.5mM. Thus out of 3ml solution taken in cuvette, the concentration of p-tolounesulfonyl 

chloride (0.33mM) and sodium azide (2.5mM) were fixed in a typical experimental run. 

Similar experimental runs were carried out in different RTIL-Methanol binary mixtures using 

various RTILS viz. [BMIM][Cl], [BMIM][CH3COO] and [BMIM][PF6].  

The kinetic investigations were carried out by using Schimadzu 1650 PC UV-Visible 

Spectrophotometer equipped with thermostat for controlling the temperature with an accuracy 

of 0.1
0
C. All the experiments were carried out at a fixed temperature of 30

0
C. 
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3. 2. Results and discussion 

S Cl

o

o

H3C + NaN3
30OC

RTIL- Methnol
S

o

o

H3C N3
+ NaCl

(1)                                                  (2)                                                 (3)                                (4) 

Scheme 3.1. Nucleophilic Substitution reaction between p-tolounesulfonylchloride (1) 

and sodium azide (2) to form p-tolounesulfonyl azide (3) and sodium chloride (4) 

 

The kinetics of selected aliphatic nucleophilic substitution; the reaction between p-

tolunesulfonyl chloride  (1) and sodium azide (2) as presented in scheme 3.1.,  was 

investigated in methanol and RTIL plus methanol binary solvent systems in order to explore 

and understand the solvent dependence of its kinetics at microscopic level. The reaction is 

reported to follow first order kinetics with respect to each reactant and overall 2nd order 

kinetics. For the presented kinetic investigations the experiments were performed at 30 
0
C 

and in presence of excess of the sodium azide (nucleophile). Under these experimental 

conditions where in the effect of p-tolunesulfonyl chloride was isolated by taking the sodium 

azide in excess, the reaction is expected to follow pseudo-first order kinetics. Kinetic data 

recorded for the reaction in three types of RTIL-methanol solvent mixtures viz. 

[BMIM][CH3COO]-methanol, [BMIM][Cl]-methanol and [BMIM][PF6]-methanol which 

were variedly concentrated with respect to RTIL is presented in Figures 3.1.a,3.2.a & 3.3.a 

respectively. The kinetic data (absorbance vs. time) were fit to equation 3.1. 

                                                         
  

 
          )                                                        (3.1) 

Where, k is pseudo ist order rate constant    is absorbance at zero time’t=0’,    is the 

absorbance at time’t’.  The estimated values of k for the investigated nucleophillic 

substitution reaction in RTIL plus methanol as solvent system differently concentrated with 
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RTILs viz. [BMIM][CH3COO], BMIM][Cl] and [BMIM][PF6] are  tabulated as Table.3.1. 

and to visualize the trend the same are depicted in Figure 3.1.b, 3.2.b & 3.3.b respectively. 

The estimated values of rate constants from the above analysis as enlisted in Table 3.1., and 

plotted in Fig. 3.4 are an average of results from three kinetic runs recorded under similar 

conditions. The results from different runs were observed to be reproducible within ± 5%. As 

clear from these values the addition of imidazolium based RTILs to methanol increases the 

rate constant for the investigated nucleophilic substitution reaction with an extent that 

depends on the nature and concentration of the added RTIL. 
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Figure 3.1. Variation of  absorbance versus time(s) (a) and rate constant(s
-1

) versus 

conc. of [BMIM][CH3COO] (b)  in [BMIM][CH3COO]-Methanol solvent system. 
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Figure 3.2.  Variation of absorbance versus time(s) (a) and rate constant (s
-1

) versus 

conc. of [BMIM][Cl] (b) in [BMIM][Cl]-Methanol solvent system. 
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Figure 3.3. Variation of absorbance versus time(s) (a) and rate constant (s
-1

) versus 

conc.  of [BMIM][PF6] (b) in [BMIM][PF6]-Methanol solvent system. 
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Table 3.1. Rate constant k/s-1 for the reaction between sodium azide (NaN3) and p-

tolounesulfonyl chloride in RTIL-Methanol solvent media at 300C  

Concentration (molL-1) Rate constant ‘k * 10-4 ‘(s-1) at 300C 

[BMIM][CH3COO] 

0.000 

0.052 

0.156 

0.261 

0.362 

0.468 

0.520 

2.19 

2.34 

4.62 

8.24 

12.00 

24.10 

36.80 

[BMIM][Cl] 

0.000 

0.059 

0.170 

0.291 

0.410 

0.532 

0.590 

2.19 

3.85 

6.37 

6.91 

8.29 

9.83 

10.10 

[BMIM][PF6] 

0.000 

0.047 

0.142 

0.240 

0.330 

0.420 

0.470 

2.19 

4.60 

4.99 

5.64 

6.02 

7.02 

7.46 
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Figure  3. 4. Variation of rate constant as a function of conc. (molL
-1

) of ionic liquids in 

RTIL-Methanol solvent media. 
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Table 3.2.  Kamlet-Taft Parameters for the solvents used in this kinetic investigation 

 

 
Solvent                            α                                  β                                   π*                                                   Ref 

 
Methanol                       0.76                              0.61                          0.73                                (12,41) 
 
[BMIM][PF6]                  0.68                              0.21                           1.02                                (42)      
 
[BMIM][Cl]                     0.48                              0.94                          1.02                                 (42) 
 
[BMIM][CH3COO]         0.57                              1.18                           0.89                                 (43) 
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Figure 3.5. UV-Spectra of NaN3 with changing concentration of ionic liquids in RTIL-

Methanol solvent mixtures (a) [BMIM][CH3COO] (b) [BMIM][Cl] (c) [BMIM][PF6] 
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Figure 3.6. Variation of λmax with changing concentration of ionic liquids in RTIL-

Methanol solvent systems. 
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Mechanistically the aliphatic nucleophilc substitution reaction between p-tolunesulfonyl 

chloride and sodium azide is an SN
2
 reaction of type 1. i.e. a charged nucleophile (azide) 

reacting with neutral substrate(p-tolunesulfonyl chloride) (12). SN reaction at sulphur is 

facilitated by the presence of vacant d-orbitals which interact with the nucleophile to give rise 

to a reasonably stable transition state. In present case this implies that the activated complex 

Y
δ
-..R…X

δ-
 formed during the course of reaction has charge density scattered and thus lower 

than that of reactants. Hence formation of activated complex results in decrease in overall 

charge separation and hence the reaction is expected to be promoted by relatively less polar 

media. Therefore according to Hughes-Ingold rules, the rate of such reactions should 

decrease with increase in polarity of solvent. Assuming imidazolium based RTILs to behave 

as salts, this implies that with the increase in concentration (molL
-1

) of RTILs in RTIL-

methanol solvent media polarity of the solvent media would increase and hence the rate 

constant of the explored SN reaction is expected to show a decrease which is quite opposite 

to our observations. Present investigations hence is one of the examples wherein the observed 

results can`t be explained in light of Hughes-Ingold model, according to which the solvent-

solute interactions are solely electrostatic in nature. In past such observations which could not 

be explained in terms of single polarity parameter of solvent systems have been explained 

and analysed by using LSER model set by Kamlet-Taft which takes into account all specific 

interactions else than polarity that can contribute to solvent effects on kinetics of reactions.  

According to Kamlet-Taft approach the solvent systems can not only change the absolute 

reaction rate but also the relative nucleophilicities of nucleophiles and the resultant impact on 

the reaction kinetics can be quantified through equation developed by Kamlet-Taft 

(34,35,36,37) as presented in Eq.3.2 

                                                                                                           (3.2)                       
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Where,     , a, b and s are solvent independent coefficients characteristic of the process and 

indicator of its sensitivity to the accompanying solvent property; α, β and π
*
. While α is a 

quantitative scale of hydrogen bond-acidity of a solvent or its ability to donate a hydrogen 

bond; β is a scale of hydrogen bond basicity of the solvent or its ability to accept a hydrogen; 

and π
*
 is the solvent dipolarity/ polarizability, which is a scale of the ability of solvent to 

stabilise a charge or dipole. The values of these parameters as reported in literature for 

methanol and the imidazolium based ionic liquids used in the present study are presented in 

Table 3.2. (12, 38-43) 

 Solvatochromic studies on binary solvent mixtures of ionic liquids (44) in molecular solvents 

have established that addition of former to the later change the microscopic parameters viz. α, 

β and π
*
  in a concentration dependent manner with values moving in the direction of pure 

ionic liquids. In view of these reports it can be assumed that for the mixed solvent systems as 

used in present case the value of π
* 
and β should increase with increase in RTIL concentration 

with an extent dependent on the nature of RTIL. Since the Kamlet-Taft parameter α which 

gives the hydrogen bond acidity of the solvent is largely characteristic of cation of ionic 

liquid, the value of α is expected to decrease with increase in concentration of RTIL by an 

extent independent of the nature of RTIL. In view of the values for α, β and π
* 

as enlisted in 

table 3.2, it seems that while β values will change by greater extent in case of  

[BMIM][CH3COO] plus methanol the variations in π
* 

values with increase in concentration 

of RTIL will be more for  BMIM][Cl] and [BMIM][PF6]  plus methanol systems. While 

increase in π
* 

is expected
 
to decrease the k values, the observed increase in the said values 

with increase in concentration of explored RTILs and similar nature of the moiety 

(imidazolium cation) responsible for the expected variation in α implies that in present case 

variations in the β with change in composition is the dominating factor that affects the overall 

kinetics.  Increase in the β is expected to increase the basicity of the medium that in turn will 
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increase the nucleophilicity of the negatively charged azide anion. To establish the same UV-

visible spectra for azide in methanol in presence of changing concentrations of 

[BMIM][CH3COO], [BMIM][Cl], [BMIM][PF6] were recorded and the same are presented in 

Figure 3. 5. UV-spectrum of azide in methanol shows a sharp peak at around 200 nm in pure 

methanol, this has been attributed to the charge (electron) transfer to the polarized solvent 

(45). The solvent dependence of the position of this band is a measure of the solvent impact 

on the nucleophilicity of the azide ion.  As clear from the spectra depicted in Figure 3.5 with 

increase in concentration of RTILs, the band becomes more intense and is shifted towards 

higher wavelengths. The variation of  λmax with the increasing addition of RTILs as observed 

in the UV-visible spectra for azide in methanol in presence of changing concentrations of 

[BMIM][CH3COO], [BMIM][Cl], [BMIM][PF6] is depicted in Figure 3.6. As clear from 

these figures increase in concentration of the RTIL shifts the λmax of the charge transfer band 

of azide ion to higher wavelengths with the shift being more for [BMIM][CH3COO]. This 

observed shift in the λmax of azide anion with addttion of RTIL is a clear evidence for increase 

in the nucleophilicity of the azide anion (45). In light of the above cited factors, observations 

and expected variations in α, β and π
* 

with increase in concentration of RTIL the k values for 

the investigated nucleophillic substitution reaction are expected to increase in the order 

[BMIM][CH3COO]>> [BMIM][Cl]> [BMIM][PF6] a trend that matches our observations. 

Thus highest rate achieved in [BMIM][CH3COO]-Methanol solvent systems is because of the 

large β value which reflects the highly basic medium.  

Conclusion 

The impact of imidazloium based room temperature ionic liquids on the reaction kinetics of 

nucleophilic substitution reaction between the p-tolunesulfonyl chloride and sodium azide  in 

methanol was investigated. It was observed that addition of RTILs increase the rate kinetics 

in order [BMIM][CH3COO]>> [BMIM][Cl]> [BMIM][PF6] . The experimental results 
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demonstrated that a simple Hughes-Ingold polarity rule is inadequate to describe the system, 

and can be explained only in light of multi parameter Kamlet-Taft equation. For the 

investigated nucleophillic substitution reaction it was found that β value that represents the 

hydrogen bond basicity of the solvent is the dominant factor that determines the overall 

impact on the kinetics of the selected nucleophilic substitution reaction. 
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