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                                                     ABSTRACT 

      This thesis is divided into six chapters. In the Ist chapter we present a brief survey of related    work 

done in the area of multiobjective mathematical programming, optimal control and game theory. 

 

      Chapter Two: In this chapter sufficient optimality criteria are derived for a control problem under 

generalized invexity. A Mond-Weir type dual to the control problem is proposed and various duality 

theorems are validated under generalized invexity assumptions on functionals appearing in the 

problems. It is pointed out that these results can be applied to the control problem with free boundary 

conditions and have linkage with results for nonlinear programming problems in the presence of 

inequality and equality constraints already established in the literature. 

 

 

    Chapter Three: In this chapter a mixed type dual to the control problem in order to unify Wolfe and   

Mond-Weir type dual control problem is presented in various duality results are validated and the 

generalized invexity assumptions. It is pointed out that our results can be extended to the control 

problems with free boundary conditions. The duality results for nonlinear programming problems 

already existing in the literature are deduced as special cases of our results. 

 

 

      Chapter Four: In this chapter two types of duals are considered for a class of variational problems 

involving higher order derivative. The duality results are derived without any use of optimality 

conditions. One set of results is based on Mond-Weir type dual that has the same objective functional 

as the primal problem but different constraints. The second set of results is based on a dual of an 

auxiliary primal with single objective function. Under various convexity and generalized convexity 

assumptions, duality relationships between primal and its various duals are established. Problems with 

natural boundary values are considered and the analogues of our results in nonlinear programming are 

also indicated. 
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       Chapter Five: In this chapter a certain constrained dynamic game is shown to be equivalent to a pair 

of symmetric dual variational problems which have more general formulation than those already 

existing in the literature. Various duality results are proved under convexity and generalized convexity 

assumptions on the appropriate functional. The dynamic game is also viewed as equivalent to a pair of 

dual variational problems without the condition of fixed points. It is also indicated that our equivalent 

formulation of a pair of symmetric dual variational problems as dynamic generalization of those already 

studied in the literature. 

 

 

       Chapter Six: In this chapter a  mixed type second-order dual to a variational problem is formulated 

as a unification of Wolfe and Mond-Weir type dual problems already treated in the literature and 

various duality results are validated under generalized second order invexity. Problems with natural 

boundary values are formulated and it also is pointed out that our duality results can be regarded as 

dynamic generalizations of those of (static) nonlinear programming. 
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Chapter 1 

                       In this chapter we present a brief survey of related work done in the fields of 

multiobjective mathematical programming, optimal control and game theory followed by a precise 

summary of our own findings in the subsequent chapters of this thesis. 

1.1.1 Mathematical Programming Problem 

                      Many problems of practical importance can be transformed into different forms of 

minimization or maximization problems no matter whether such problems are from the field of 

engineering, science, business or finance. These problems share the characteristics of requirements of 

finding the most advantageous solution that offers certain optimal criteria under several limitations. 

Many of these problems concentrate primarily on optimizing the gain or the quality of performance: for 

instance the problem of optimal control (discrete or continuous), structural design, mechanical design, 

electrical network, water resource management, stochastic resource allocation, location facilities, etc., 

can be cast into optimization problems. Finally one can say that nothing at all takes place in the 

Universe in which some rule of the maximum or minimum does not appear. 

 Most of the optimization problems are concerned with more than a single objective function. 

Real life problems generally require the optimizing of multiple objectives at the same time. These 

objectives are often inter-conflicting. When objectives are conflicting, this implies that an objective 

cannot be improved without affecting the optimality of the other objectives. A possible solution to 

multiple criteria optimization should provide balance in objectives. These solutions may be suboptimal 

with respect to single objective programming problem. In fact, they are called trade-off solutions that 

are regarded as the best solution. Multiple criteria optimization is most often applied to deterministic 

problem in which the number of feasible alternatives is large.  

               Optimality criteria play a very significant role in determining the solution of the problem as the 

classical calculus suggests. Fritz-John [48] was the first to derive necessary optimality conditions for 

constrained single objective optimization problem using Lagrange multiplier rule. Later Kuhn and Tucker 

[52] established necessary optimality conditions for the existence of optimal solution under certain 

constraint qualification in 1951. It was revealed after wards that W.Karush [50] had presented way back 

in 1939 without imposing any constraint qualification; thus the Kuhn-tucker conditions are known as 

Karush-Kuhn-Tucker optimality conditions. Abadie [1] established a regularity condition that enabled 

him to derive Karush-Kuhn-Tucker conditions from Fritz John optimality conditions. Subsequently, 

Mangasarian and Fromovitz [55] generalized Fritz-John optimality conditions to treat equality and 

inequality constraints. Sufficiency of these conditions under convexity and generalized convexity were 

extensively treated by many authors notably, Mangasarian [53] and Martos [56]. 
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1.1.2 Duality 

 

Duality in nonlinear programming problems originated with duality results of quadratic 

programming, initially studied by Dannis [22]. Dual of convex primal program was given by Dorn [25] 

and Mangasarian [55].   

Mond and Weir [67] modified the Wolfe dual moving a part of objective function of Wolfe dual 

to the constraints and thus introducing Mond-Weir dual programming problem. The resulting pair of 

dual programming was nonconvex program and was found that there was no involution between primal 

and dual that is, the dual of the dual was not primal in general. In the literature of mathematical 

programming, a primal-dual pair of problem is called symmetric if the dual of the dual is primal 

problem. In the sense, a linear problem and its dual is symmetric. However, the majority of the 

formulation, in nonlinear programming does not possess this property. The first symmetric dual 

formulation in nonlinear programming was proposed by Dantzig, Eisenberg and Cottle [23] which 

subsumed the duality formulation of linear programming and certain duality formations in quadratic 

programming. Making use of the Fritz John optimality conditions, they proved weak and strong duality 

theorems for their pair of symmetric dual programming problems under differentiability conditions. 

These ideas were further extended to single and multiple objective variational problems.  

Kuhn and Tucker [52] were the first to incorporate some interesting results concerning 

multiobjective optimization in 1951 .Since then, research in this area has made remarkable progress 

both theoretically and practically. Some of the earliest attempts to obtain conditions for efficiency were 

carried out by Kuhn and Tucker [52], Arrow et al [3]. Their research has been inherited by Da Cunha and 

Polak [21], Neustadt [69], Ritter [70-72], Smale [76], Aubin [4], Husain et al. [36-40] and others. Duality, 

which plays an important role in traditional mathematical programming, has been extended to 

multiobjective optimization since the late 1970’s. Isermann [44-47] developed multiobjective duality in 

linear case while results for nonlinear cases have been given by Schonfeld [74], Tanino and Sawaragi 

[78], Mazzoleni [57], Corley [16], Nakayama [68] and others.  

Concept of mixed type multiobjective duality seems to be quite interesting and useful from 

practical as well as from algorithmic point of view. The computational advantage of mixed type dual 

formulations involves the flexibility of the choice of constraints to be put in the Lagrange function can 

be exploited to develop certain efficient solution procedures for solving mathematical programming 

problems. 

  The main contribution of this thesis is to study duality and mixed type duality for  control 

problems,  multiobjective duality and second order duality for variational problems and an equivalence 
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of constrained dynamic games to a pair of symmetric dual variational problem which have more general 

formulations than those already existing in the literature. as mixed type duality in mathematical 

programming is interesting fro theoretical as well as computational view. Mixed type duality for control 

problems is also presented in this research. The linkage between control problems including variational 

problems and the corresponding nonlinear programming problems is incorporated in these problems. 

  

1.2    PRE-REQUISITES 

1.2.1  Notations 

In this section, we shall incorporate major symbols which are used throughout the research 

work reported in this thesis. 

           nR = n-dimensional Euclidean space, 

nR = The non-negative orthant in nR , 

            AT= Transpose of the matrix A,   

Let f  be a numerical function defined on an open set  in nR , then   f x denotes the gradient of 

f  at x , that is,  
   

1 2
, . . . ,

T

f x f x
f x

x x

  
   

  
 

Let  be a real valued twice continuously differentiable function defined on an open set 

contained in n mR R . Then ( , )x x y  and ( , )y x y denote the gradient (column) vector of   with 

respect to x and y respectively i.e., 

 
 

1 2

,

, , ,. . . ,

T

x n

x y

x y
x x x

  


   
   

   
 

            
 

1 2

,

, , ,. . . ,

T

y m

x y

x y
y y y

  


   
   

   
 

Further 
2 ( , )xx x y and 

2 ( , )yy x y denote respectively the  n n and matrices of second 

order partial derivative i.e.,  

 
 

2
2

,

,xx i j

x y

x y
x x
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2
2

,

,xy i j

x y

x y
x x




 
   

 
  

The symbols  2 ,yy x y and  2 ,xy x y are similarly defined.  

1.2.2    Definitions 

Definition 1.1: Let nX R be an open and convex set and :f X R be differentiable. Then we 

define f to be 

(i )      Convex, if for all 1 2, ,x x X  

       1 2 1 2 2f x f x x x f x   
 

(ii) Strictly convex, if for all 1 2, x x X and 1 2x x  

       1 2 1 2 2f x f x x x f x     

(iii)  Quasi convex, if for all 1 2, ,x x X  

       1 2 1 2 2 0f x f x x x f x      

(iv)       Pseudo convex, if for all 1 2, ,x x X  

       1 2 2 1 20x x f x f x f x      

(v) Strictly pseudoconvex, if for all 1 2, ,x x X and 1 2x x   

       1 2 2 1 20x x f x f x f x      

(vi) Invex, if there exists a vector function : n n nR R R   such that for all 1 2, ,x x X
 

                      1 2 1 2 2,
T

f x f x x x f x    

(vii) Pseudoinvex, if there exists a vector function : n n nR R R   such that for all 1 2, ,x x X

   

                            1 2 2 1 2, 0T x x f x f x f x      

(viii)  Quasiinvex, if there exists a vector function : n n nR R R   such that for all 1 2, ,x x X

   

                                   1 2 1 2 2, 0Tf x f x x x f x    . 
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             2 2

1 2 2 1 2 2 1 2 2

1
0

2

T T Tx x f x x x f x p f x f x p f x p           

Clearly, a differentiable convex, pseudoconvex, quasiconvex function is invex, 

pseudoinvex or quasi invex respectively with    1 2 1 2,T x x x x   . Further we define f  to be  

concave, strictly concave pseudoconcave, quasiconcave, strictly pseudo convex on X          

according as –f  is convex, strictly convex, quasi convex, pseudoconvex, strictly pseudoconvex. 

In the following definitions we shall use D and 2D for customary symbols 
d

dt
and

2

2

d

dt
. 

Definition 1.2: 

 (i)  Invexity: If there exists vector function  , , nt x u R   with 0   and     ,x t u t t I =

 , ,a b a real interval, such that for a scalar function  , ,t x x , the functional 

   Φ , ,
I

x t x x dt   satisfies 

          Φ -Φ , , , , ,
T

x x

I

u x t x x D t x x dt     is said to be invex in x and x  on I with respect 

to  . 

(ii) Pseudoinvexity,  is said to be pseudoinvex in x and x   with respect to   if 

      , , , , 0
TT

x x

I

t x x D t x x dt      

implies                                          Φ , Φ ,x u x x . 

(iii)  Quasi-invex, The functional is said to quasi-invex in  x and x   with respect to   if  

   Φ , Φ ,x u x x implies 

      , , , , 0
TT

x x

I

t x x D t x x dt     . 

Consider the multiobjective variational problem (VP). 

(VP):    Minimize      1 , , ,..., , ,p

I

f t x x f t x x dt  

             Subject to  

 , , 0 ,g t x x t I   
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Definition 1.3 (Efficient Solution): A feasible solution x is efficient for (VP) if there exist no other 

feasible x for (VP) such that for some  1,2,...,i P p  , 

                      , , , ,i i

I I

f t x x dt f t x x dt   

and  

                      , , , ,j j

I I

f t x x dt f t x x dt   for all j P , j i . 

Definition 1.4:   Let : nf R R be a convex function, then a subgradient of f at a point nx R

is a vector 
nR   satisfying 

      ,Tf y f x y x   for all ny R  

 

1.3  REVIEW OF THE RELATED WORK 

1.3.1  Duality in Mathematical Programming 

Nonlinear Programming 

Consider the following nonlinear programming problem (P): 

(P):     Minimize  f x  

 Subject to  

                             0,jh x   1,2, ,j m  

where : nf R R and : , 1,2, ,n

jh R R j m  are continuously differentiable. The following 

problem (WD) is the Wolfe type dual to the problem (P): 

(WD): Maximize    Tf x y h x  

            Subject to  

                                0,Tf x y h x    

                           0, my y R   

           Mangasarian [53] explained by means of an example that certain duality theorems may not be 

valid if the objective or the constraint function is a generalized convex function. This motivated Mond 

and Weir [66] to introduce a different dual for (P) which is given below:  
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(MWD): Maximize  f x  

                Subject to  

                           0Tf x y h x   . 

                          0Ty h x   

                       my R  

and they proved various duality theorems under pseudoconvexity of f and quasiconvexity of  Ty h x  

for all feasible solution of (P) and (MWD). 

     Later Weir and Mond [82] derived sufficiency of Fritz John optimality criteria under 

pseudoconvexity of the objective and quasiconvexity or semi-strict convexity of constraint functions. 

They formulated the following dual using Fritz John optimality conditions instead of Karush-Kuhn-

Tucker optimality conditions and proved various duality theorems-thus the requirement of constraint 

qualification is eliminated. 

(FrD): Maxmize  f x  

            Subject to  

       0Tf x h x    . 

 
  0T h x   

 
   , 0, , 0      

          Duality in Multiobjective Mathematical Programming  

Whenever we shall study multiobjective programming problem we shall follow the following 

conventions for vectors in nR  

 
, , 1,2, , .i ix y x y i n     

 
, , 1,2, , .i ix y x y i n     

 
, , 1,2, , , buti ix y x y i n x y      

 ,x y  is the negation of x y . 
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Consider the multiobjective programming problem: 

(VP):   V- Min          1 2, ,..., pF x f x f x f x  

            Subject to  

                       0 , 1,2,...,jh x j m   

where nX R is an open and convex set and if and jh  are differentiable functions where, 

: , 1,2, ,if X R i p  and : , 1,2, ,jh X R j m  . Here the symbol “V-Min” stands for vector 

minimization and minimality is taken in terms of either “efficient points” or “properly efficient points” 

given by Koopman [51] and Geoffrin [27] respectively. 

Definition 1.7 [27]: A feasible point x  for is said to be efficient solution of (VP), if there does  

not exist any feasible x for (VP) such that  

 
( ) ( )r rf x f x  for some r , 

           ( ) ( )i if x f x for all 1,2,..., ,i k i r  . 

Definition 1.2 [27]: A feasible point x  is said to be properly efficient solution of (VP), if it is an efficient 

solution of (VP) and if there exists a scalar 0M   such that for each i  and 0x X  satisfying 

( ) ( )i if x f x , we have 

 

   

   
i i

j j

f x f x
M

f x x





, 

for some j, satisfying ( ) ( )j jf x f x . 

 Geoffrion [27] considered the following single objective minimization problems for fixed 

pR : 

(VP): Minimize  
1

p

i i

i

f x


  

            Subject to 

                     0 , 1,2,...,jh x j m   

and proved the following lemma connecting (VP) and (VP). 
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lemma 1.1:  

 (i)  Let  0 , 1,2,...,i i p   , 
1

1
p

i

i




 be fixed. If x is optimal for ( )VP  , then x is properly 

efficient for (VP). 

(ii)  Let if and jh  be convex functions, Then x is properly efficient for (VP) iff x is optimal  

 

 

 

for are differentiable functions ( )VP  for some 0 , 
1

1
p

i

i




 . 

If if and jh  are differentiable convex functions then ( )VP  is a convex programming problem. 

Therefore in relation to ( )VP  consider the scalar maximization problem: 

(VD): Maximize         T T T Tf x y h x f x y h x     

             Subject to  

 
     0T Tf x y h x    

                         , 0,y    

where  1,1, ,1 pe R  and  : 0 , 1P TR e        

Now as ( )VD  is a dual program of ( )VP  , Weir [81] considered the following vector optimization 

problem in relation to (VP) as 

(DV):  Maximize    T Tf x y h x e   

            Subject to  

              0T Tw f x y h x    

             , 0,w y    

They termed (DV) as the dual of (VP) and proved various duality theorems between (VP) and (DV) under 

the assumption that f and h are convex functions. 
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 Further, for the purpose of weakening the convexity requirements on objective and constraint 

functions, Weir [81] introduced another dual program (DV1). 

 

 

 

(DV1):  Maximize  f x  

              Subject to  

         0T Tf x y h x    

                         0Ty h x   

                             , 0,y    

For these problems, various duality theorems are proved by assuming the function f  to be pseudo 

convex and 
Ty h to be quasiconvex for their feasible solutions. 

1.3.2   Symmetric Duality in Mathematical Programming     

Symmetric Duality in Differentiable Mathematical Programming     

Consider a function  ,f x y which is differentiable in mx R and
my R . Dantzig et al [23] 

introduced the following pair of problems:   

(SP):  Minimize     , ,T

yf x y y f x y   

          Subject to   

              , 0y f x y       

                                   
 , 0.x y 

 

(MSD):  Maximize    , ,T

xf x y x f x y   

    Subject to   

                         , 0x f x y      

                           , 0.x y   



21 

 

and proved the existence of a common optimal solution to the primal (SP) and (SD), when (i) an optimal 

solution of  ,x y to the primal (SP) exists (ii) f is convex in x  for each y , concave in  

 

y for each x and  

(iii) f , twice differentiable, has the property that at  ,x y its matrix of second partials with respect to

y is negative definite.  

 Mond [29] further gave the following formulation of symmetric dual programming problems: 

(MSP): Maximize     , ,T

yf x y y f x y   

             Subject to   

              , 0y f x y      

                               0.x    

 

(MSD): Maximize     , ,T

xf x y x f x y   

             Subject to   

 
 , 0x f x y      

 0.y   

 It may be remarked here that in [23], the constraints of both (SP) and (SD) include 0, 0x y  , 

but only 0x   is required in the primal and only 0y   in the dual. 

 Later Mond and Weir [67] gave the following pair of symmetric dual nonlinear programming 

problems which allows the weakening of the convexity-concavity assumptions to pseudoconvexity-

pseudoconcavity. 

(M-WSP):  Minimize   ,f x y  

                Subject to   

                      , 0y f x y      

                               , 0T

yy f x y  , 
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 0.x   

(M-WSD): Maximize   ,f x y  

                  Subject to   

 
 , 0x f x y      

 
 , 0T

yx f x y  , 

 0.y   

Symmetric Duality in Multiobjective Programming   

Mond and Weir [67] discussed symmetric duality in multiobjective programming by considering 

the following pair of programs: 

(PS):  Minimize       , ,T T

yf x y y f x y e   

           Subject to   

  
 , 0T

y f x y   ,   

                             0 ,x     

    
1

0, 1
p

p
i

i

where R I  



  
     

  
  

(DS): Maximize      , ,T T

xf x y x f x y e   

 Subject to   

              , 0T

x f x y   ,   

                             0 ,y     

where : ,n m pf R R R  and proved the symmetric duality theorem under the convexity – concavity 

assumptions on  ,f x y . Here the minimization is taken in the sense of proper efficiency as given by 

Geoffrion [27]. 

                  Further on the lines of scalar case Mond and Weir [66] also considered another pair of 

symmetric dual programs and proved symmetric duality results under pseudoconvexity-

pseudoconcavity: 
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(PS1):  Minimize  ,f x y  

 Subject to   

               2 , 0T f x y   ,  

 
 2 , 0T Ty f x y         

 0 ,x     

(DS1): Maximize      1, ,T Tf x y x f x y e   

            Subject to   

  
 1 , 0T f x y   ,   

  
 1 , 0T Tx f x y  , 

  0 ,y    . 

Later Chandra and Durga Prasad [10] introduced the following pair of multiobjective programs 

by associating a vector valued infinite game:  

(PS*): Minimize      , ,T T

yf x y y f x y e   

             Subject to   

  
 , 0T

y f x y   ,   

  0 ,x    . 

(DS*): Maximize      , ,T T

xf x y x f x y e   

             Subject to   

  
 , 0T

x f x y   ,   

  0 ,y     

Here it may be noted that not the same  is appearing in (PS*) and (DS*) and this creates certain 

difficulties which are also discussed in [10].     

1.3.3 Variational Problems  

Differentiable Variational Problems 
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       A variational problem can be considered as a particular case of an optimal control problem 

in which the control function is the derivative of a state function.  

         In [15] Courant and Hilbert, quoting an earlier work of Friedrichs [26], gave a dual 

relationship for a simple type of unconstrained variational problem. Subsequently, Hanson [29] pointed 

out that some of the duality results of mathematical programming have analogues in variational 

calculus. Exploring this relationship between mathematical programming and the classical calculus of 

variations, Mond and Hanson [64] formulated a constrained variational problem as a mathematical 

programming problem and using Valentine’s [79] optimality conditions for the same, presented its 

Wolfe type dual variational problem for validating various duality results under convexity. 

           Mathematically, a variational problem is of the form: 

(VP):  Minimize   , ,
I

f t x x dt  

      Subject to 

  
   ,x a x b                                                       

   , , 0, ,g t x x t I   , .nx C I R  

                       where  ,I a b is a real time interval, x  denotes derivative of x with respect to t , 

: n nf I R R R   and : n ng I R R R    are continuously differentiable functions with respect 

to each of their arguments;  , nC I R  is the space of continuously differentiable functions : nx I R , 

and is equipped with the norm x x Dx
 

  , where the differentiation operator D is given by 

   
t

a

u D x x t u s ds     except at discontinuities. 

  The following necessary conditions for the existence for (VP) are derived by Valentine [79]. 

Theorem 1.1: For every minimizing arc  x x t of the problem (VP), there exists a function of the 

form 

 
     , , , ,

T
H f t x x t g t x x  

 

          Such that 

           
x x

d
H H

dt


 

              , ,
T

t g t x x =0 
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     , 0 , , 0 ,t t t I     

 

hold throughout I (except at corners of x  where 
x x

d
H H

dt
 , holds for unique right and left limits). 

Here  is constant and    is continuous except possibly for values of t    corresponding to corners of

x . Following is the Wolfe type dual variational problem [64] for validating various duality results under 

convexity: 

 

(WD): Maximize       , , , ,
T

i

f t u u y t g t u u dt                                             

 Subject to 

                             ,u a u b      

                              , , , , , , , , 0
T T

u u u uf t u u y t g t u u D f t u u y t g t u u      

                            0 ,y t t I                                                                                  

Later Bector, Chandra and Husain [6] studied Mond-Weir type duality for the problem of [64] for 

weakening its convexity requirement.  

(MWD): Maximize  , ,
i

f t u u dt  

      Subject to 

                             ,u a u b      

                , , , , , , , , 0
T T

u u u uf t u u y t g t u u D f t u u y t g t u u         

                             , , 0
T

u

I

y t g t u u dt                                           

                            0 ,y t t I                    

 1.3.4 Multiobjective Variational Problems 

                Many authors have studied optimality and duality for multiobjective variational problems. 

Bector and Husain [7] were probably the first to introduce multiobjective programming in calculus of 

variation. They considered the following multiobjective variational problem (VP): 
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(VP): Minimize            1 , , , , , ,
 
 
 
 

p

I I

f t x t x t dt f t x t x t dt  

  Subject to  

              ,x a x b                                                                                                    

                               , , 0 , ,g t x t x t t I          

                            , nx C I R   

where, : , 1,2, ,i n nf I R R R i P p     , : ,n n mg I R R R   are assumed to be 

continuously differentiable functions, for each ,t I i P  ,  iB t is an n n  positive semidefinite 

symmetric matrix with  iB  continuous on I . 

Bector and Husain [7] constructed Wolfe type dual and  Mond-Weir type dual and proved various 

duality theorems under convexity and generalized convexity of functionals. 

(WD): Maximize       1 , , , ,
T

i

f t u u y t g t u u dt




  

                                      , , , , , ,
Tp

i

f t u u y t g t u u dt


 


  

 Subject to 

                                ,u a u b  
 

                             0 ,
T TT T

u u u uf y t g D f y t g t I                    

                          
  0 ,y t t I                 

                          0 , 1Te      where    1,1,...,1
T

e  and .kR  

The following Mond-Weir type dual to the problem (VP): 

(M-WD): Maximize    1 , , , . . . , , ,p

I I

f t u u dt f t u u dt
 
 
 
   

  Subject to 

                                     ,u a u b    ,                                                                                       
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                        0,
T TT T

u u u uf y t g D f y t g t I            

                                     
1

, , 0
T

y t g t u u dt  ,                             

                                    0 ,y t t I  ,                                                                                                       

                                  0  .                                

1.3.5  Symmetric Duality for Variational Problems 

                 Mond and Hanson [65] and Bector, Chandra and Husain [6] extended symmetric 

duality to Variational problems.  In [65] they investigated Wolfe type duality symmetric duality for the 

variational problems (VP). Later [6] Bector, Chandra and Husain studied Mond-Weir type symmetric 

dual variational problems in order to weaken the convexity-concavity assumptions. Smart and Mond 

[61] applied invexity for Variational problems introduced by Mond, Chandra and Husain [63] to 

symmetric dual Variational problems without non-negativity constraints of Mond and Hanson [64], but 

subjecting invexity to an additional condition. 

        Mond and Hanson [65] studied symmetric duality for the following variational problem under 

convexity / concavity assumptions: 

(Primal): Minimize       , , , , , , , ,

b
T

y

a

f t x x y y y t f t x x y y  

                                                       , , , ,y

d
y t f t x x y y dt

dt


 


 

  Subject to                  

 

   

   

,

,

x a x b

y a y b

 

 

 

 
 

    , , , , , , , , ,y y

d
f t x x y y f t x x y y t I

dt
   

 
  0,x t t I   

(Dual): Maximize           , , , , , , , , , , , ,

b
T

x x

a

d
f t u u v v u t f t u u v v u t f t u u v v dt

dt


  


  

                                                     

 Subject to  
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,

,

u a u b

v a v b

 

 

 

 
 

                , , , , , , , , ,x x

d
f t u u v v f t u u v v t I

dt
   

   0,v t t I 
 

 

                   Let  ,I a b  be the real interval, : nx I R and : my I R , x  and x  denote derivatives 

of x and y  respectively with respect to t  and  , , , ,f t x x y y  is a continuously differentiable scalar 

function. They needed f  to be convex in x  and x  for each y  and y  and concave in  y  and y  for 

each  x  and x .  

                   If the constraints   0x t   and   0,y t t I   are removed from the above problem primal 

and dual problems respectively, we get the pair considered by Smart and Mond [61], wherein weak 

duality theorem is proved assuming the functional 
b

a

f dt  to be invex in x  and x and  
b

a

f dt  to be 

invex in y  and y .   

Subsequently, Bector, Chandra and Husain [6] presented a pair of Mond-Weir type symmetric 

dual variational problems in order to relax convexity-concavity to pseudoconvexity-pseudoconcavity. 

The following are the primal and dual problems formulated in [6]: 

 

Problem I (Primal) = P 

            Minimize  , , , ,

b

a

f t x x y y dt  

 Subject to  

              
   

   

,

,

x a x b

y a y b

 

 

 

 
 

                          , , , , , , , , 0y yf t x x y y Df t x x y y   

                        , , , , , , , , 0

b
T

y y

a

y t f t x x y y Df t x x y y dt   

                               0x t   
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Problem II (Dual) = D 

           Maximize  , , , ,

b

a

f t x x y y dt  

 Subject to  

                 
   

   

,

,

x a x b

y a y b

 

 

 

 
 

                  
   , , , , , , , , 0x xf t x x y y Df t x x y y 

 

                        , , , , , , , , 0

b
T

x x

a

x t f t x x y y Df t x x y y dt   

                               0,y t t I  . 

The usual duality results are derived for above pair of Mond-Weir problems under 

pseudoconvexity and pseudoconcavity. The close relationship between the duality results for the pair in 

[6] and those of its counterpart is pointed out. 

1.4 Control Problems 

                Optimal control models are very prominent amongst constrained optimization models because 

of their occurrences in a variety of popular contexts, notably, advertising investment, production and 

inventory, epidemic, control of a rocket etc. The planning of a river system, where it is required to make 

the best use of the water, can also be modelled as an optimal control problem. Optimal control models 

are also potentially applicable to economic planning, and to the world models of the ‘Limits to Growth’ 

kind.   

  

   1.4.1 Control Problem and Related Preliminaries 

 

                A control problem is to transfer the state vector from an initial state x(a)= to a final state x(b) 

=  so as to minimize a functional, subject to constraints on the control and state variables. 

               A control problem can be stated formally as,  

Problem (CP) (Primal): 

b

a
UuXx

dtuxtfMinimize ,),,(
,
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    subject to 

     x (a) =, x (b) =,   (1.1) 

     h (t, x, u) = x , t  I,    (1.2) 

     g (t, x, u)  0, t  I,    (1.3)                            f is 

as before, g: IRn  Rm
 Rp and h: I Rn 

 Rm  Rn are continuously differentiable functions with respect 

to each of its arguments. 

                The set X is the space of continuously differentiable state functions x: I Rn such that x (a) =, 

x (b) = , equipped with the norm ||x|| = ||x|| + ||Dx||, and u is the space of piecewise continuous 

control functions u:IRm has the uniform norm ||.||, and the differential equation (1.2) for x with the 

initial conditions expressed as  ,,))(),(,()()(  

t

a

Itdssusxshaxtx

 

may be written as Dx =H(x, u), 

where the map : XU  C(I,Rn), C(I,Rn)    being the space of continuous functions from IRn, defined by  

H(x, u)(t)=h(t, x(t),u(t)). 

 

1.5 A Brief Account of Games 

                       The theory of games started in 20th century but the mathematical treatment of games took  

fire in 1944 when John Von Neumann and Morgenstern  80  published their well known book, “ The 

Theory of Games and economic behaviour the Neumann’s approach uses the 

minmax principle which involves the fundamental idea of the minimization of the maximum loss. Many 

of the competitive problems can be handled by this game theory. However, not all the competitive 

problems can be analyzed with the help of game theory. 

                     A competitive situation is called a game if it has the following properties. 

(i) There are finite numbers of competitors called players. 

(ii) A list of finite or infinite number of possible courses of action is available to each 

player. The list need not be the same for each player. 

(iii) A play is played when each player choose one of his courses of action. The choices 

are assumed to be made simultaneously so that no player knows his opponent’s choice 

until he has decided his own course of action. 
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(iii) Every play i.e., combination of courses of action is associated with an outcome 

known as pay-off (generally many or some other quantitative measures for satisfactions) 

this determines a set of games, one to each player. Here a loss is considered a negative 

game. Thus after each play of the game, one player pays to others an amount determined 

by the courses of action chosen. 

 

               The competition between firms, the conflict between management and labour, the fight to get 

bills through Congress, the power of judiciary, war and peace negotiations between countries, and so 

on, all provide examples of games in action. There are also psychological games played on a personal 

level, where the weapons are words, and the pay-offs are good or bad feelings. 

                 There are biological games, the competition between is species, where natural selection can 

be modeled as a game played between genes. There is a connection between game 

theory and mathematical areas of logic and computer science. One may view theoretical statistics as a 

two person game in which nature takes the roll of one of the players. 

 

                  We denote the strategy set or action space of player i by Ai, i=1… n. Suppose the player I 

chooses 1 1a A  . Player two chooses 2 2a A  etc. and player n chooses n na A  . Then we denote the 

payoff to the player j for 1 2j , ,...,n  by  1 2i nf a ,a ,...,a and call it payoff function for the player j. The 

strategic form of a game is defined then by three objects. 

 

i. The set,  1 2N , ,...,n ,  of players, 

ii. The sequence, 1 2 nA ,A ,...,A of strategy sets of the players, and 

iii. The sequence    1 1 2 1 2n n nf a ,a ,...,a ,..., f a ,a ,...,a  of real-valued payoff functions of the players. 

              A game in strategic form is said to be zero-sum if the sum of the payoffs to the players is zero no 

matter what actions are chosen by the players. That is, the game is zero-sum if 

 1 1 2

1

0
n

n

j

f a ,a ,...,a ,


  for all 1 1 2 2 n na A ,a A ,...,a A    
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             A two-person game is a game in which the gain of one player after a play equals net 

loss of his opponent. The basic assumptions in a two-person zero-sum game are: 

1. There are exactly two players with precisely opposite interests. 

2. The number of strategies selected by a player is finite. The list may not be common. 

3. For each specific strategy selected by a player, there results a payoff. 

4. The amount won by one of the player is exactly equal to the amount lost by the other. 

              Dynamic game theory is related to the modeling of large scale systems which have individual 

decision makers. Application of these games lies in a variety of context such as environmental 

problems, resource problems, aerospace problems and energy managements.      
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Chapter -2 

SUFFICIENCY AND DUALITY IN CONTROL PROBLEMS WITH GENERALIZED 

INVEXITY 

2.1 Introduction  

Optimal control models are very prominent amongst constrained optimization models because of their 

occurrences in a variety of popular contexts, notably, advertising investment, production and inventory, 

epidemic, control of a rocket etc. The planning of a river system, where it is required to make the best use 

of the water, can also be modelled as an optimal control problem. Optimal control models are also 

potentially applicable to economic planning, and to the world models of the ‘Limits to Growth’ kind.   

Necessary optimality conditions for existence of extremal solution for a variational problem in the 

presence of inequality and equality constraints were obtained by Valentine [79]. Using Valentine’s 

results, Berkovitz [54] obtained corresponding Fritz John type necessary optimality conditions for a 

control problem. Mond and Hanson [9] pointed out that if the optimal solution for the problem is normal, 

then the   Fritz John type optimality conditions reduce to Karush-Kuhn-Tucker conditions. Using these 

Karush- Kuhn – Tucker optimality conditions, Mond and Hanson [9] presented Wolfe type dual and 

established weak, strong and converse duality theorems under convexity conditions. Abraham and Buie 

[48] studied duality for continuous programming and optimal control from a unified point of view. Later 

Mond and Smart [10] proved that for invex functions, the necessary conditions of Berkovitz [54] together 

with normality conditions are sufficient for optimality and also derived some duality results under 

invexity. 

 In this chapter, it is shown that for generalized invexity assumptions on functionals, the 

necessary conditions [54] in the control problems are also sufficient. As an application of Berkovitz’s 

[54] optimality conditions with normality, a Mond-Weir [65] type dual to the control problem is 

constructed and under generalized invexity of functionals, various duality results are derived. It is 

indicated that these duality results are applicable to the control problem with free boundary conditions 

and also related to those for nonlinear programming problems already existing in the literature. 

2.2 Control Problem and Related Preliminaries 

 

 Let R
n
 denotes an n-dimensional Euclidean space, I = [a, b] be a real interval and f:IR

n
 R

m
  

R be a continuously differentiable with respect to each of its arguments. For the function f (t, x, u), where 

x:IR
n
 is differentiable with its derivative x  and u: I R

m
 is the smooth function, denote the partial 

derivatives of f by ft, fx and fu, where 

,,...,,,...,,:
11

T

mu

T

nxt
u

f

u

f
f

x

f

x

f
f

t

f
f 






































.),...,( ),...,( 1

1 T

m

Tn uuuandxxx   

 For an m-dimensional vector function g (t, x, u), the gradient with respect to x is 

,

,...,

,....,

1

1

1















































n

p

n

n

p

x

x

g

x

g

x

g

x

g

g  an np matrix of first order derivatives. 
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 Here u(t) is the control variable and x(t) is the state variable, u is related to x via the state 

equation x = h(t,x,u). Gradients with respect to u are defined analogously. 

 A control problem is to transfer the state vector from an initial state x(a)= to a final state x(b) = 

 so as to minimize a functional, subject to constraints on the control and state variables. 

A control problem can be stated formally as,  

Problem (CP) (Primal): 

b

a
UuXx

dtuxtfMinimize ,),,(
,

 

    subject to 

     x(a) = , x (b) = ,     (2.1) 

     h(t,x,u) = x , t  I,      (2.2) 

     g(t,x,u)  0, t  I,      (2.3) 

          (i)     f is as before, g:IR
n
  R

m
 R

p
 and h: I R

n 
 R

m
  R

n
 are continuously differentiable 

functions with respect to each of its arguments. 

          (ii)     X is the space of continuously differentiable state functions x: I R
n
 such that x(a) = , x 

(b) = , equipped with the norm ||x|| = ||x|| + ||Dx||, and u is the space of piecewise continuous control 

functions u:IR
m
 has the uniform norm ||.||, and  

The differential equation (2.2) for x with the initial conditions expressed as  

,,))(),(,()()(  

t

a

Itdssusxshaxtx

 

may be written as Dx =H(x,u), where the map : XU  

C(I,R
n
), C(I,R

n
)    being the space of continuous functions from IR

n
, defined by H(x,u)(t)=h(t,x(t),u(t)). 

Following Craven [7], the control problem can be expressed as, 

(ECP): u)F(x,   Minimize
Uu,Xx 

 

  subject to  Dx = H(x,u),G(x,u)  S, 

Where G is function from XU into C(I, R
p
) given by G(x,u) (t) = g(t,x(t), u(t)) from xX, uU, and tI; 

S is the convex cone of functions in C(I,R
p
) whose components are non-negative; thus S has interior 

points. 

Necessary optimality conditions for existence of extermal solution for a variational problem 

subject to both equality and inequality constraints were given by valentine [26]. Invoking 

Valentine’s [26] results, Berkovitz [54] obtained corresponding necessary optimality conditions 

for the above control problem (CP). Here we mention the Fritz John optimality conditions 

derived by Craven [7] in the form of the following proposition which will be required in the 

sequel.  
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Proposition 2.1 (Necessary optimality conditions). If )u,x(  XU an optimal solution of (CP) 

and the Fre
/
che

/
t derivatives  ),(),,( uxHuxHDQ ux   is surjective, then there exist 

Lagrange multipliers 0R, and piecewise smooth functions           : I R
p
  and  : IR

n
 

satisfying, for all tI,  

,0)(),,()(),,()(),,(0  tuxthtuxtgtuxtf x

T

x

T

x    

,0),,()(),,()(),,(0  uxthtuxtgtuxtf u

T

u

T

u    

,0),,()( uxtgt T  

         
  ,0, )(0 t

 

     
  .0,, )()(0 tt 

 

 

The above conditions will  become Karush-Kuhn-Tucker conditions if  0 >0. Therefore, if we 

assume that the optimal solutions )u,x( is normal, then without any loss of generality, we can set 

0 = 1. Thus from the above we have the Karush-Kuhn- Tucker type optimality conditions 

 ,,0)(),,()(),,()(),,( Ittuxthtuxtgtuxtf x

T

x

T

x      (2.4) 

,,0  ),,()(),,()(),,( Ituxthtuxtgtuxtf u

T

u

T

u       (2.5) 

 ,,0),,()( Ituxtgt T         (2.6) 

 .,0)( Itt           (2.7) 

Using these optimality conditions, Mond and Hanson [63] constructed following Wolfe  

type dual. Problem (CD) (Dual):              

   Maximize     

b

a

TT dtxuxthtuxtgtuxtf )),,()(),,()(),,( 

 

           subject to 

       Ittuxthtuxtgtuxtf x

T

x

T

x  ,0)(),,()(),,()(),,(   , 

      Ituxthtuxtgtuxtf u

T

u

T

u  ,0),,()(),,()(),,(  , 

     It,0)t(  . 

In [5], [CP] and (CD) are shown to be a dual pair if f, g and h are all convex in x and u. 

Subsequently, Mond and Smart [10] extended this duality by introducing the following invexity 

requirement.   

Definition 2.1(Invex) [10]: If there exists vector function 
nRxxt ),,( with  = 0 at t if x(t)= 

x (t), and there exists vector function 
mRuut ),,( such that for scalar function  ( , , , )t x x u , 

the functional 
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 ( , , ) ( , , , )

b

a

x x u t x x u dt    

satisfies  

( , , ) ( , , ) ( , , , ) ( , , , ) ( , , , )

Tb

T T

x x u

a

dn
x x u x x u t x x u t x x u t x x u dt

dt
     

  
      

   
  

then  is said to invex at  x, x  and u on I with respect to  and . 

In [10] Mond and Smart proved weak, strong and converse duality theorems under the 

invexity of 
b

a

dt f , 
b

a

T ,dt g for  (t)  R
p
 with (t)  0, t I and 

b

a

T hdt for any (t) R
n
,  tI. 

2.3 Generalized Invexity 

 

In this section, we extend the notion of invexity for a functional given in [10] to a large class of 

functionals, as these will be required for subsequent analysis. 

Definition 2.2 For a scalar function  , , ,t x x u the functional ( , , ) ( , , , )

b

a

x x u t x x u dt    is said to be 

pseudoinvex at x, x and u if there exist       vector function 
nRxxt ),,(  with =0 at t if )t(x)t(x   

and mRuut ),,(  such that for all    , , , , .x x u x x u  

       






















 

b

a

u

T

x

T

x

T dtuxxtuxxt
dt

d
uxxt 0,,,,,,,,,  


  

    .u,x,xu,x,x    

Definition 2.3 (Strictly Pseudoinvex): The functional  is said to be strictly   pseudoinvex,   if 

there exist vector functions 
nRxxt ),,( with  = 0 at t if x(t) = x (t) and 

mRuut ),,(  such 

that  

      















b

a
x

T

x

T uxxt
dt

d
uxxt ,,,,,, .

 


   



 0,,, dtuxxtu

T   

                                                                    .,,,, uxxuxx   . 

Definition 2.4 (Quasi-invex):  The functional  is said to be quasi-invex, if there exist vector 

functions 
nRxxt ),,(  with  = 0 at t if x (t) = x (t) and 

mRuut ),,(  such that  

        















b

a

x

T

x

T uxxt
dt

d
uxxtuxxuxx ,,,,,,(,,,,  


  

   .0,,,  dtuxxtu

T   
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2.4 Sufficiency of Optimality Conditions 

 It can be proved that for generalized invex functionals, the Karush-Kuhn-Tucker 

optimality conditions given in Section 2.2 are sufficient for optimality. 

 

Theorem 2.1 If there exists  ,,u,x  such that the conditions (2.4) – (2.7) hold with  u,x  

feasible for (CP) and  is pseudoinvex and   
b

T T

a

g h x dt    `is quasi-invex with 

respect to the same  and , then  u,x  is an optimal solution of (CP). 

Proof:Assume that  ux,  is not optimal for (CP).Then there exists ),(),( uxux  , i.e., (x, u) 

feasible for (CP), such that 
b

a

uxtf ),,( dt< 
b

a

dtuxtf ),,( . 

This, because of pseudoinvexity of  with respect to the same  and , it follows that  

   

b

a

u

T

x

T dtuxtfuxtf 0,,(),,(   

          Using (2.4) and (2.5), this yields 

 0 ( ) ( , , ) ( ) ( , , ) ( )

b

T T T

x x

a

t g t x u t h t x u t     
  

  ( ) ( , , ) ( ) ( , ,T T T T

u ut g t x u t h t x u dt    


 

 ( ) ( , , ) ( ) ( , , ) ( )

b b

T T T T

x x

a a

t g t x u t h t x u dt t dt    


  

   

   ( ) ( , , ) ( ) ( , ,

b

T T T

u u

a

t g t x u t h t x u dt     

 ( ) ( , , ) ( ) ( , , ) ( )

Tb

T T T

x x

a

d
t g t x u t h t x u dt t

dt


   
  

    
 

  

   ( ) ( , , ) ( ) ( , ,
t aT T T

u u t b
t g t x u t h t x u dt t   




    

(by integrating by parts )  

 ( ) ( , , ) ( ) ( , , ) ( )

Tb

T T T

x x

a

d
t g t x u t h t x u dt t

dt


   
  

    
 

  


b

a

fdt


b

a

fdt



38 

 

 ( ) ( , , ) ( ) ( , ,T T T

u ut g t x u t h t x u dt     

                            (using η =0 at t if  x(t) = x (t)) 

By quasi-invexty of  dtxhg

b

a

  )(  , this implies  

   

b

a

TT dtxuxthtuxtgt ),,()(),,()(   

   

b

a

TT dtxuxthtuxtgt ),,()(),,()(   

Using (2.6) and also   ,0),,()(  xuxtht T  the above inequality gives 

  ( ) ( , , ) ( ) ( , , ) 0.

b

T T

a

t g t x u t h t x u x dt         (2.8) 

Since (x,u) is feasible for (CP), g(t,x,u)  0, tI and h(t,x,u) – x  = 0. Hence for 0)t(  , t  T and   

(t)  R
n
, we have  

    .0),,()(),,()( 
b

a

TT dtxuxthtuxtgt        (2.9) 

Consequently (2.8) contradicts (2.9). Thus )u,x(  is, indeed, an optimal solution of the control problem 

(CP). 

2.5 Duality 

 We formulate the following dual (CD) to the primal problem (CP) in the spirit of Mond and Weir 

[65]. 

Problem (CD) (Dual):   Maximize   
b

a

dtuxtf ),,(  

    Subject to x(a) = ,  x(b) = ,    (2.10) 

 ,0)(),,()(),,()(),,(  tuxthtuxtgtuxtf x

T

x

T

x     t I ,              (2.11) 

 ,0),,()(),,()(),,(  uxthtuxtgtuxtf u

T

u

T

u    t I,                (2.12) 

       ,0),,(),,()( 

b

a

TT dtxuxthtuxtgt      (2.13) 

    .,0 Itt          (2.14) 
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Theorem 2.2(Weak Duality): Let ),( ux  and (x,u,,) be feasible solution for  (CP) and (CD) 

respectively. If for all feasible ),,,,,,( uxux  
b

a

f dt is pseudoinvex and   ))(( xhg TT  dt for 

    IttRt n  ,0,  and   nRt   is quasi-invex with respect to the same  and , then  

max (CP)  min (CD). 

Proof: Since ),( ux  is feasible for the problem (CP) and (x, u,,) feasible for the problem (CD), it 

implies that  

               

b

a

TT
b

a

TT
dtxuxthtuxtgtdtxuxthtuxtgt  ),,(),,(),,(),,(   

This, because of quasi-invexity of  









b

a

TT dtxhg ,)(
.

 implies 

           dtt
dt

d
dtuxthtuxtgtuxthtuxtgt

b

a

Tb

a

u

T

u

TT

x

T

x

TT

 







 )(),,(),,(),,(),,(0 




          dtuxthtuxtgtuxthtuxtgt

b

a

u

T

u

TT

x

T

x

TT

  ),,(),,(),,(),,(   

      ,)()( 




b

a

Tbt

at
dttt    

                              (By integration by parts) 

            dtuxthtuxtgttuxthtuxtgt

b

a

u

T

u

TT

x

T

x

TT

  ),,(),,(),,(),,(                                      

(as fixed boundary conditions give  = 0 at t = a and t =b) 

Using (2.11) and (2.12), we have  

   .0),,(),,(  dtuxtfuxtf

b

a

x

T

x

T   

By psudoinvexity 
b

a

fdt , this gives 

  

b

a

b

a

dtuxtfdtuxtf .),,(),,(  

That is,                               

                                         infimum (CP)  supremum (CD). 

Theorem 2.3 (Strong Duality): Under generalized invexity conditions of Theorem 2.2, if )u,x(  is an 

optimal solution of the problem (CP) and is also normal, then there exist piecewise smooth functions 



40 

 

pRI:   and 
nRI:   such that ),,u,x(   is an optimal solution of (CP) and the 

corresponding objective values are equal. 

Proof: Since )u,x(  is optimal solution for (CP) and is normal, by Proposition 2.1, there exist piecewise 

smooth functions 
pRI:   and 

nRI:   such          that the condition (2.4) – (2.7) are satisfied. 

Since   0),,( uxtgt
T

  and     0),,(  xuxtht
T  ,

     

b

a

TT
dtuxtgtuxtgt .0),,(),,(  Thus, this together with (2.4), (2.5) and (2.7) implies 

that ),,u,x(   is feasible for (CD) and the corresponding objective values are the same as it is evident 

from the formulation of the primal and dual problems. So by Theorem 2.2, ),,u,x(   is an optimal 

solution for (CD). 

Theorem 2.4 (Strict Converse Duality): Let ),( ux  be an optimal solution of (CP) and also normal. If 

  ˆ,ˆ,ˆ,ˆ ux  is an optimal solution; and 

b

a

f dt  is strictly pseudoinvex and   ˆ ˆ  

b

T T

a

g h x dt   is 

quasi-invex at  û,x̂  with respect to the same  and , then )u,x( =  û,x̂ , i.e.,  û,x̂  is an optimal 

solution of (CP). 

Proof: Assume that ( , ) ( , )x u x u
 

 .  

Since )u,x(  is an optimal of (CP) at which normality condition is met, and since conditions of Theorem 

2.1 are satisfied, then, by Theorem 2.3, there exist piecewise smooth 
pRI:   and nRI:   such that 

),,u,x(  is and optimal solution of (CD) and  

  

b

a

b

a

dtuxtfdtuxtf .)ˆ,ˆ,(),,(                                                                 (2.15) 

By the feasibility of ),( ux  for (CP) and   ˆ,ˆ,ˆ,ˆ ux  for (CD), it implies, 

        

b

a

TT
dtxuxthtuxtgt ,0),,(ˆ),,(ˆ   

and  

        

b

a

TT
dtxuxthtuxtgt .0ˆ)ˆ,ˆ,(ˆ)ˆ,ˆ,(ˆ   

Combining these inequalities we have  

               

b

a

TT
b

a

TT
dtuxthtuxtgtdtuxthtuxtgt )ˆ,ˆ,(ˆ)ˆ,ˆ,(ˆ),,(ˆ),,(ˆ   

Because of the quasi-invexity of   ˆ ˆ  

b

T T

a

g h x x dt   ? at ( ux ˆ,ˆ ), this yields  
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      ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 ( , , ) ( , , ) ( )

Tb
T TT

x x

a

d
t g t x u t h t x u t

dt


   

 
   

 
  

         ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , )
T TT

u ut g t x u t h t x u dt     

 

 

 
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , , ) ( ) ( , , ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , , ) ( ) ( , , ) ( )

b

T T T

x x

a

t
T T T T

u u
t a

t g t x u t h t x u t

t g t x u t h t x u dt t

   

    




  

  


 

      (by integration by parts) 

   ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 ( ) ( , , ) ( ) ( , , ) ( )

b

T T T

x x

a

t g t x u t h t x u t       

           ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , , ) ( ) ( , , )T T T

u ut g t x u t h t x u dt                             (2.16) 

Because ( ux ˆ,ˆ ) is feasible for (CD), we have that  

   I,   t,0)(ˆ)ˆ,ˆ,()(ˆ)ˆ,ˆ,(ˆ)ˆ,ˆ,(  tuxthtuxtgtuxtf xx

T

x    

    ,0)ˆ,ˆ,()(ˆ)ˆ,ˆ,()(ˆ)ˆ,ˆ,(  uxthtuxtgtuxtf uuu        It  

Using these equations in (2.16), we have  

   0 )ˆ,ˆ,()ˆ,ˆ,(  dtuxtfuxtf

b

a

u

T

x

T   

Thus, by strict pseudoinvexity of 
b

a

fdt  yield, 

 . )ˆ,ˆ,( ),,( dtuxtfdtuxtf

b

a

b

a

   

This contradicts (2.15). Hence )û,x̂( = )u,x( , i.e., )û,x̂( is an optimal solution of (CP). 

Now, we shall prove converse duality under the assumption that f, g and h are twice continuously 

differentiable. The problem (CD) may be written in minimization form as follows: 

 Minimize -   ,,,ux  

   Subject to 

  x(a)= ,     bx  

      ,,0)()(),(),(),(),(,1 Itthtgtfttttutxt x

T

x

T

x     
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      ,,0)(),(),(),(,2 Ithtgtftttutxt u

T

u

T

u    

with     tutxtff xx ,, ,      tutxtgg xx ,, ,     tutxthh xx ,, ,etc. 

Consider  (.)(.),(.),(.),(.),.,1  ux  as defining a mapping                                 

1

1 : BVUXQ  , where V is the space of piecewise smooth functions ,  is the space of 

differentiable functions   and 1B , is a Banach Space; and also consider  (.)(.),(.),(.),.,2  ux   as 

defining a mapping 2

2 : BVUXQ   ,where B2 is another Banach Space. In order to apply 

Proposition 2.1 or results of Valentine [79], some restrictions are needed on the equality constraints 

                         0(.)1   and  0(.)2   

It suffices if Freche
/
t derivatives  

 11111 ,,,  QQQQQ ux


 and  22222 ,,,  QQQQQ ux


 

have weak *closed range. Denote     tutxtff ,,  ,     tutxtff xx ,, ,etc. 

Theorem 2.5 (Converse Duality): Let ),,,( ux be an optimal solution of (CD). Assume that 

    (i)   the Freche
/
t derivative Q

1
and Q

2
 have weak closed range,      

   (ii)  Corresponding to (2.5), there exists a piecewise smooth Lagrange multiplier     β:I→R
n    

            with its derivative   Itt  ,0 and β(a)=0= β(b). 

    (iii)          

( ) ( ) ( ) 0 ( ) 0,

b

T

a

t M t t dt t      where (t) R
n+m

 and 

             



















uu

T

uu

T

xuxu

T

xu

T

xu

ux

T

ux

T

uxxx

T

xx

T

xx

htgtfhtgtf

htgtfhtgtf
tM

)()(,)()(

)()(,)()(
)(




,is a positive definite  and 

       (iv)   .,0)()(,0)()()( Ithtgtfthtgtf u

T

u

T

ux

T

x

T

x     

If the hypotheses of Theorem 2.2 are satisfied, ),( ux is an optimal solution of (CP) and the objective 

values of (CP) and (CD) are equal. 

Proof: Since ),,,( yx is an optimal solution of (CD), an application of Proposition 2.1 shows that 

there exist Lagrange multipliers R, piecewise smooth functions : I R
n
 with (a) = 0 =  (b) and its 

derivative 0)( t , tI,: IR
m
, and : IR

m
 and R such that 

   ux

T

ux

T

ux

T

xx

T

xx

T

xx

T

x htgtfthtgtftf )()()()()()(    

      Ithtgt x

T

x

T  ,0)()(                 (2.17) 

   uu

T

uu

T

uu

T

xu

T

xu

T

xu

T

u htgtfthtgtftf )()()()()()(    
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                          Itthtgt u

T

u

T  ,0)()(                             (2.18) 

                          Ittggtgt u

T

x

T  ,0)()()(  ,              (2.19) 

                   Itxhhttht u

T

x

T  ,0)()()()(   ,                (2.20) 

                0 )()()(  dtxhtgt

b

a

TT        (2.21) 

                       ,,0)()( Ittt T         (2.22) 

                                (,(t),)  0, t I,        (2.23) 

              (, (t), (t),  (t), )  0, t I.       (2.24) 

Using (2.11) and (2.12) in (2.17) and (2.18) respectively, we have 

    xx

T

xxxx

T

x

T

x

T htgtftthtgt )()()()()()()(     

    ,0)()()(  xu

T

xu

T

xx

T htgtft   tI                  (2.25) 

   xx

T

xxxx

TT

u

T

u

T htgtfthtgt )()()()()()(    

  ,0h)t(g)t(f)t( uu
T

uu
T

uu
T  tI          (2.26) 

Multiplying (2.19) and (2.20) by 
Tt)( respectively and then adding the resulting equations, we have 

     

b

a

u

T

u

TT

x

T

x

TT dthtgtthtgtt )()()()()()(   

  

b

a

b

a

TTT dtttdthtgt  )()( )()(   

                        





b

a

bt

at

T ttdttt |)()()()(  
b

a

T dttt )()(      

                                                                      (By integration by parts) 

Using (a) = 0 = (b), (2.21) and (2.22), this implies, 

     

b

a

u

T

u

TT

x

T

x

TT dthtgttthtgtt 0)()()()()()()(    

Equivalently, this can be written as,  

  
( ) ( ) ( )

( ), ( )  0.
( ) ( )

T Tb
T x x

T T
a u u

t g t h t
t t dt

t g t h

  
 

 

  
   


  (2.27)
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The equation (2.25) and (2.26) can be combined to be written in the following matrix form, 




















u

T

u

T

x

TT

htgt

thtt

)()(

)()()(
)(







 




















uu

T

uu

T

xu

T

ux

T

xu

xu

T

xuxx

T

xx

T

xx

htgthtgtf

htgthtgtf

)()(f ,)()(

)()(f     )()(

uu

xx




It

t

t









,0

)(

)(




        (2.28) Multiplying 

this by  Ttt )(),(  , and then integrating we obtain 

  dt
htgt

thtgt
tt

u

T

u

T

x

T

x

Tb

a

T
 

)()(

)()()(
)(),()(


















 







 

 

















 

uu

T

uu

T

xu

T

u

T

xu

xu

T

xuxx

T

xx

T

xx
b

a

T

htgthtgxtf

htgthtgtf
tt

)()(f ,)()(

)()(f  ,)()(
)(),(

uu

xx




 dt 

)(

)(









t

t




   (2.29) 

                                                                                                                                                                                                          

Using (2.27) in (2.29), we have 

   
)()(f ,)()(

)()(f  ,)()(
)(),(

uu

xu




















uu

T

uu

T

xu

T

xu

T

xu

xu

T

xu

T

xx

T

xx

T

xx
b

a

T

htgthtgtf

htgthtgtf
tt




 dt 

)(

)(









t

t




= 0 

    

In view of the hypothesis (iii), this implies 

   I t0, (t)  (t)  0)(),()(   ttt      (2.30) 

The relation (2.28) together with (2.27) yields 




















u

T

u

x

T

x

T

htgt

thtgt

)()(

)()()(
)(







 = 0, t  I 

Because of the hypothesis (iv), this gives 

  =             (2.31) 

If  = 0, then  = 0. Consequently using (2.30), (2.19) implies that (t) = 0, t I  

Thus (, (t), (t),  (t), ) = 0, tI. This contradicts the Fritz John condition (2.24). Hence  =  > 0. 

Using (2.30) and  > 0 in (2.19), we have
 

0),,( 


 t
uxtg , t I. Also from (2.20), we have 

 
.0),,( 



 t
xuxth


  

Thus, it shows that ),( ux is feasible for (CP) and the objective values of (CP) and (CD) are equal. In 

view of the hypotheses of Theorem (2.1), the optimality of ),( ux for (CP) follows. 

2.6 Control Problem with Free Boundary Conditions 
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 The results validated in the preceding sections may be applied to the control problems 

with free boundary conditions. If the ‘targets’ x(a) and x(b) are not restricted, we have  

Problem (CPF) (Primal): Minimize dt)u,x,t(f
b

a

  

   subject to 

     h(t,x,u)= x , tI, 

     g(t,x,u) 0, tI. 

The dual control problem now includes the transversality conditions       (t) = 0, t = a and t = b as the 

new constraints. This yields 

Problem CDF (Dual): Maximize 
b

a

dtuxtf ),,(  

   subject to 

     (a) = 0,  (b) = 0 

It,0)t()u,x,t(h)t()u,x,t(g)t()u,x,t(f x
T

x
T

x   ,   

Ituxthtuxtgtuxtf u

T

u

T

u  ,0  ),,()(),,()(),,(  ,   

                dttxuxthtuxtgt

b

a

TT  )(),,(()(),,()(  0   

          ,,0)( Itt T      

In order the prove to results, corresponding to Theorem 2.1 to Theorem 2.4, we will have the term 
bt

at

T t 

|)(  vanished by using (a) = 0 and  (b) = 0 instead of having x(a) =  and x(b) =  so that  = 

0 at t = a and t = b. 

                                      2.7 Mathematical Programming Problems 

 

 If f, g and h are independent of t (without any loss of generality ba = 1) then the problems (CP) and 

(CD) reduce to the static primal and dual of mathematical programming problems treated by Mond and 

Weir [65] under generalized convexity and also under invexity by Craven and Glover [6]. 

 Put ,









u

x
z  we have  

Problem (PS): Minimize f (z) 

   subject to h (z) = 0, g (z)  0. 

Problem (DS): Maximize f (z) 
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   subject to 

   ,0)()()(  zhzgzf z

T

z

T

z   

      ,0)()(  zhzg TT   

     .0  
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Chapter 3  

MIXED TYPE DUALITY FOR CONTROL PROBLEMS WITH GENERALIZED INVEXITY  

  3.1. Introduction 

                 Recently Husain et al  41  for relaxing invexity requirements in [10] for duality to 

hold constructed the following dual in the spirit of Mond and Weir [65]: 

Problem (CD) (Dual):   Maximize   
b

a

dtuxtf ),,(  

    subject to  

                                                           x(a) = ,  x(b) = ,    (3.1) 

 ,0)(),,()(),,()(),,(  tuxthtuxtgtuxtf x

T

x

T

x     t I ,              (3.2) 

            ,0),,()(),,()(),,(  uxthtuxtgtuxtf u

T

u

T

u    t I,                 (3.3) 

                       ,0),,(),,()( 

b

a

TT dtxuxthtuxtgt             (3.4) 

                                                      .,0 Itt                    (3.5) 

 
 

                        3.2. Mixed Type Duality 

 
We propose the following mixed type dual (Mix CD) to the control problem (CP) and establish usual 

duality results: 

(Mix CD): Maximize  
0 0

( , , ) ( ) ( , , ) ( ) ( , , )  dt

b

i i i j j

i I j Ja

f t x u t h t x u x t g t x u 
 

 
   

 
      

subject to 

                                         x(a) = ,   x(b) =             (3.6) 

                                  , , . , , , 0,
T T

x x xf t x u t h t x u t g t x u t         tI    (3.7) 

                  I    t,0)u,x,t(g)t()u,x,t(h)t()u,x,t(f u
T

u
T

u              (3.8) 

         ( ) ( , , ) ( ) ( , , )  dt 0

b

i i i j j

i I j Ja

t h t x u x t g t x u
 

 
 

 
   

 
  , = 1,2,…r            (3.9) 

     (t)  0,  t  I               (3.10) 
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where for N = {1,2,…,n}  and  K = (1,2,…,k), 

(i)       I  M,  = 0,1,2,…r 

and  II  = ,      and  NI
r









0

. 

(ii) J  k,   = 0, 1, 2,… r with   J   J =,     and 
0

J


 = K, and  

(iii) r = max (r1 , r2), where r1 is the number of disjoint subsets of M and r2 is the number of disjoint 

subsets of K. Then I
 
or J is empty for  

            > min(r1 , r2). 

Theorem 3.1 (Weak duality): Let )u,x( be feasible for (CP) and (x, u, , ) be feasible for (Mix CD). 

If for all feasible ( u,x , x, u, , ),  
0 0

 dt

b

i i i j j

i I j Ja

f h x g 
 

 
   

 
    

is pseudoinvex and     dt

b

i i i j j

i I j Ja

h x g
 

 
 

 
  

 
    

is quasi-invex with respect to the same  and , then 

inf (CP)   Sup (Mix CD). 

Proof: Since  ( , )x u be feasible for (CP) and (x, u,  ,) be feasible for 

 (Mix CD), we have 

  ( ) ( , , ) ( ) ( , , )  dt

b

i i i j j

i I j Ja

t h t x u x t g t x u
 

 
 

 
  

 
   

   ( ) ( , , ) ( ) ( , , )  dt

b

i i i j j

i I j Ja

t h t x u x t g t x u
 

 
 

 
   

 
  ,   = 1,2,…, r 

By quasi-invexity of    dt

b

i i i j j

i I j Ja

h x g
 

 
 

 
  

 
  ,  = 1, 2,…, r this inequality yields, 

 0   i( ) ( , , ) ( , , )  

b

T i i j j

x x

i I j J i Ia

d
t h t x u t g t x u

dt
  


   

  

    
      

   
    

   ( ) ( , , ) ( , , )  dtT i i j j

u u

i I j J

t h t x u t g t x u
 

  
 

 
   

 
   

    ( ) ( , , ) ( ) ( , , )  

b

T i i i j j

x x

i I j Ja

t h t x u t t g t x u
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    i

i I

( ) ( , , ) ( , , )  dt-

t b

T i i j j

u

i I j J
t a

t h t x u t g t x u
  

    



  


 
   

 
    

       (By integration by parts) 

   ( ) ( , , ) ( ) ( , , )  

b

T i i i j j

x x

i I j Ja

t h t x u t t g t x u
 

   
 

  
    

  
   

  ( ) ( , , ) ( , , )  dtT i i j j

i I j J

t h t x u t g t x u
 

  
 

 
   

 
   

      (using  = 0, at t = a and t = b) 

   
0 0\ \

( ) ( , , ) ( ) ( , , )  

b

T i i i j j

x

i N I j K Ja

t h t x u t t g t x u   
 

  
    

  
   

  
0 0\ \

( ) ( , , ) ( , , )  dtT i i j j

i N I j K J

t h t x u t g t x u  
 

 
   

 
   

Using (2.5) and (2.6), this implies  

    
0 0

( ) ( , , ) ( ) ( , , )  

b

T i i i j j

x

i I j Ja

t h t x u t t g t x u   
 

  
   

  
   

   
0 0

( ) ( , , ) ( , , )  dt 0T i i j j

i I j J

t h t x u t g t x u  
 

 
   

 
   

This, because of pseudo-invexity of  
0 0

( ) ( )  dt

b

i i i j j

i I j Ja

f t h x t g 
 

 
   

 
   yields, 

    
0 0

( , , ) ( ) ( , , ) ( , , )  dt

b

i i i j j

i I j Ja

f t x u t h t x u x t g t x u 
 

  
   

  
   

            

   
0 0

( , , ) ( ) ( , , ) ( , , )  dt

b

i i i j j

i I j Ja

f t x u t h t x u x t g t x u 
 

  
    

  
 

                       

 (3.11) 

Since  (t)
T   ,0x)u,x,t(h    and ,0),,()( uxtgt T  these respectively imply  

  




0Ii

iii x)u,x,t(h)t(  0 and  
0

( , , ) 0,j j

j J

t g t x u


  t  I 

Consequently (3.11) gives 
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0 0

( , , ) ( , , ) ( ) ( , , ) ( , , )  dt

b b

i i i j j

i I j Ja a

f t x u dt f t x u t h t x u x t g t x u 
 

  
    

  
    

That is, 

infimum  (CP)  Supremum (Mix CD). 

 

Theorem 3.2 (Strong Duality): If ),( ux is an optimal solution of (CP) and is normal, then there exist 

piecewise smooth 
nRI : and 

pRI:   such that  ),,u,x(   be feasible and the 

corresponding values of (CP) and (Mix CD) are equal.  

If, also  

0 0

( )

b

i i i j j

i I j Ja

f h x g 
 

  
   

  
  dt  

is pseudoinvex and   









 

b

a Ii Jj

jjiii gxhf
 

 )(  dt is quasi-invex with respect to the same  and 

, then ),,u,x(   is an optimal solution of (Mix CD). 

Proof: Since )u,x(  is an optimal solution to (CP) and is normal then from Proposition 2.1, there exist 

piecewise smooth 
nRI:  and 

pRI:   such that   

             
I    t,0),,()()(),,()(),,(  uxtgttuxthtuxtf T

x

T

x              (3.12) 

           I    t,0),,()(),,()(),,(  uxtgtuxthtuxtf T

u

T

u              (3.13) 

                          I    t,0),,()( uxtgt T                (3.14) 

                                         I    t,0)( t                (3.15) 

The relation (3.13) implies 



0

0),,()(
Jj

jj uxtgt  and 






Jj

jj uxtgt 0),,()( ,   

                                                                                                  =1,2,…, r.                           

Also   ,0),,()(  xuxtht T   implies   I  t,0),,()(
0


Ii

iii xuxtht   and   

  I  t,0),,()( 
 


Ii

iii xuxtht  .  

Consequently, 

   I  t,0),,()( 
 


Ii

iii xuxtht   and  






Jj

jj uxtgt 0),,()( ,  t I 

imply  
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           0dt  )u,x,t(g)t(x)u,x,t(h)t(
b

a Jj

jj

Ii

iii 











 

 

              (3.15) 

From the relations (3.11), (3.12), (3.14) and (3.15), it implies that ),,u,x(   is feasible for (Mix CD) 

and the corresponding objective values of (CP) and (Mix CD) are equal in view of 

   0),,()(
0





Ii

iii xuxtht  and ( ) ( , , ) 0, .j j

j J

t g t x u t I





   

If 

0 0

( )  dt

b

i i i j j

i I j Ja

f h x g 
 

 
   

 
  is pseudoinvex and ( )  dt

b

i i i j j

i I j Ja

h x g
 

 
 

 
  

 
    = 1, 2, … r is 

quasi-invex with respect to the same  and , then from Theorem 3.1, ),,u,x(   must be an optimal 

solution of  (Mix CD). 

Theorem 3.3 (Strict Converse duality): Let )u,x( be an optimal solution of (CP) and normality 

condition be satisfied at )u,x( . Let )ˆ,ˆ,û,x̂(   be an optimal solution of (Mix CD). If for all feasible 

)ˆ,ˆ,û,x̂(  ,  ˆˆˆ ( )  

b

i i i j j

i I j Ja

h x t g dt
 

 
 

 
  

 
   =1,2…r is quasi-invex and 

0 0

ˆˆˆ ( )( ) ( )  dt

b

i i i j j

i I j Ja

f t h x t g 
 

 
   

 
   is strictly pseudoinvex with respect to the same  and , then 

)ˆ,ˆ( ux  = )u,x( , i.e., )û,x̂(  is an optimal solution of (CP). 

Proof:  We assume that )û,x̂(    )u,x( and show that this assumption leads to a contradiction. Since 

)u,x(  is an optimal solution of (CP) and is normal, it follows by strong duality (Theorem 3.2) that there 

exist piecewise smooth 
nRI : and : kI R   such that ),,u,x(   is an optimal solution of 

(Mix CD) and  

   
0 0

ˆˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( ) ( , , ) ( , , )  dt

b b

i i i j j

i I j Ja a

f t x u dt f t x u t h t x u x t g t x u 
 

 
    

 
         (3.17) 

Also since ),( ux and )ˆ,ˆ,ˆ,ˆ( ux  are feasible for (CP) and (Mix CD), therefore,  

       for  = 1, 2, …, r 

   dt ),,()(ˆ),,()(ˆ   














 

b

a Ii Jj

ijiii uxtgtxuxtht
 

   

    ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( , , ) ( ) ( , , )  dt

b

i i i j j

i I j Ja

t h t x u x t g t x u
 

 
 

 
   

 
                       (3.18) 

This, because of quasi-invexity of   ˆˆˆ ( )  dt

b

i i i j j

i I j Ja

t h x g
 

 
 

 
  

 
  ,  = 1, 2, …, r is quasi-invex 

for all feasible )ˆ,ˆ,ˆ,ˆ,,( uxux  with respect to  and , therefore, (3.18) implies that for  = 1, 2, …, r,  
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i

Tb

a Ii Jj

j

x

ji

x

iT uxtgtuxtht 



 

ˆ
dt

d
)ˆ,ˆ,()(ˆ)ˆ,ˆ,()(ˆ

Ii

  
 






























  

    0dt )ˆ,ˆ,()(ˆˆ)ˆ,ˆ,()(ˆ 



















  

  


Ii Jj

jjiiiT uxtgtxuxtht   

     





















 

b

a Ii Jj

j

x

jiiiT uxtgttuxtht
 

 )ˆ,ˆ,()(ˆ)(ˆ)ˆ,ˆ,()(ˆ   

 

bt

at
IiIi Jj

j

u

ji

u

iT tuxtgtuxtht




 

 





















 

 )(ˆ-dt )ˆ,ˆ,()(ˆ)ˆ,ˆ,()(ˆ i  

(By integration by parts) 

   





















 

b

a Ii Jj

jjii

x

iT uxtgttuxtht
 

 )ˆ,ˆ,()(ˆ)(ˆ)ˆ,ˆ,()(ˆ   

0dt )ˆ,ˆ,()(ˆ)ˆ,ˆ,()(ˆ 



















  

  


Ii Jj

jji

u

iT uxtgtuxtht  

(Using  = 0 at  t = a, t = b) 

Or 

   





















 

b

a INi IKj

j

x

jii

x

iT uxtgttuxtht
0 0\ \

)ˆ,ˆ,()(ˆ)(ˆ)ˆ,ˆ,()(ˆ   

0dt )ˆ,ˆ,()(ˆ)ˆ,ˆ,()(ˆ

0 0\ \





















  

 INi IKj

j

u

ji

u

iT uxtgtuxtht   

Since )ˆ,ˆ,û,x̂(   is feasible for (Mix CD), therefore, by using (3.7) and (3.8) in the above inequality, 

we have 

  

 
0 0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( ) ( , , ) ( ) ( ) ( , , )

b

T i i i j j

x x x

i I j Ja

f t x u t h t x u t t g t x u   
 

  
    

  
   

0dt )ˆ,ˆ,()(ˆ)ˆ,ˆ,()(ˆ)ˆ,ˆ,(
0 0





















  

 Ii Jj

j

u

ji

u

i

u

T uxtgtuxthtuxtf   
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This, because of strict pseudo-invexity of   dtgtxhtf

b

a Ji Jj

jjiii

   














 0 0

)(ˆ)(ˆ   with respect to  

and, yields  

  
0 0

ˆˆ( , , ) ( ) ( , , ) ( ) ( , , )  dt

b

i i j j

i I j Ja

f t x u t h t x u x t g t x u 
 

 
   

 
   

   
0 0

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( )( ( , , ) ) ( ) ( , , )

b

i i j j

i I j Ja

f t x u t h t x u x t g t x u dt 
 

 
    

 
   

Since  




0Ii

iii 0x)u,x,t(hˆ   and

0

ˆ ˆ ˆ( ) ( , , )j j

j J

t g t x u


 , which are consequence of feasibility of 

)u,x( for (CP) and )ˆ,ˆ,û,x̂(   for (Mix CD), we have 

  dt )ˆ,ˆ,()(ˆˆ)ˆ,ˆ,()(ˆ)ˆ,ˆ,(),,(
0 0

    














 

b

a

b

a Ii Jj

jjiii uxtgtxuxthtuxtfdtuxtf    

This is a contradiction to (3.10). Hence )û,x̂( = ( , )x u , i.e., )û,x̂(  must be an optimal solution of (CP). 

We now write  

 ),,,u,x,t(11    

       ( ) ( ( , , ) ) ( ) ( , , )T T

x xf t h t x u t g t x u       

 ),,u,x,t(22   

     ( ) ( , , ) ( ) ( , , )T T

x xf t h t x u t g t x u       where fx = fx(t,x,u), fu=fu(t,x,u), gx=gx(t,x,u)  

and  hx = hx(t,x,u). 

 Consider ))(),(),(),t(u),t(x,t(1   as defining a mapping  

Q1: XUYZ  B, where Y is the space of piecewise smooth functions: I  R
k
, Z is the space of 

differentiable function : I  R
n
 and B is a banach space; X and U are already defined. Also consider 

))(),(),(u),(x,t(2  as defining a mapping Q2: XUY  Z  C where C is another banach 

space. In order to apply Proposition 2.1 to the problem (CD), some assumptions on 1() = 0 and 2() = 

0 are in order. For this it suffices to assume that Frechet derivatives.  

  ),,,(),,,,(),,,,(),,,,( 11111   uxQuxQuxQuxQQ ux  

  ),,,(),,,,(),,,,(),,,,( 22222   uxQuxQuxQuxQQ ux


 

have weak *closed range. For notational convenience, we shall write in the sequel 

)u,x,t(ff),u,x,t(hh),u,x,t(gg),u,x,t(ff xx  , )u,x,t(hh),u,x,t(gg xxxx  , etc.  
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Theorem 3.4 (Converse duality): Let f, g, and h be twice continuously differentiable and ),,u,x( 

be an optimal solution of (Mix CD). Let the Frechet derivatives 1Q  and 2Q  have weak closed range. 

Assume that  

(H1):  
b

a

T It,0)t(0dt)t()t(M()t(  

where 
mnRt )(  and  















uu

T

uu

T

uuxu

T

xu

T

xu

ux

T

ux

T

uxxx

T

xx

T

xx

gthtfgthtf

gthtfgthtf
tM

)()(,)()(

)()(,)()(
)(




  

(H2):  








 
 


Jj

j

x

j

Ii

ii

x

i ruxtgttuxtht ,...,2,1),,,()()(),,()(   

and 

 









 
 


Jj

j

Ii

ii

u

i ruxtgttuxtht ,...,2,1),,,()()(),,()(   are linearly independent, there 

exist corresponding to (3.8) a piecewise smooth Lagrange multiplier :IR
n
 with (t)0, t  I with (a) 

= 0=(b). 

 If, for all feasible ),,,,,( uxux ,   dtgtxhtf

b

a Ii Jj

jjiii

   














 0 0

)()(    is pseudoinvex 

and   dtgtxht

b

a Ii Jj

jjiii

   














 

 )()(
 

   is quasi-invex with respect to the same  and , then ),( ux  

is an optimal solution of (CP). 

Proof: Since ),,u,x(   is an optimal solution to (CP), therefore, by Proposition 2.1, there exist   R, 

  R,  = 1,2,, …, r, and piecewise smooth 
nRI:  and 

mRI:   such that   

 













  

 0 0Ii Jj

j
x

jii
x

i
x g)t()t(h)t(f   xx

T
xx

T
xx

T h)t(g)t(f)t(   

 ux
T

ux
T

ux
T h)t(g)t(f)t(   

 
1

( ) ( ) ( ) 0,    t I
r

i i i j i

x x

i I i J

t h t t g
 




   
  

  
     

  
                (3.19) 














 

 0 0

)()(
Ii Jj

j

u

ji

u

i

u gthtf   xu

T

xu

T

xu

T htgtft )()()(    

 uu

T

uu

T

uu

T htgtft )()()(    
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1

( ) ( ) 0,    t I
r

i i j i

u u

i I i J

t h t g
 




  
  

  
    

  
                 (3.20) 

                  0Ii   ,0)()()()(  i

u

Tii

x

Tii htthtxh               (3.21) 

     ( ) ( ) ( ) ( ) 0,    i I ,   1,2,...,rT i i T i i i

x xt h t t h h x                  (3.22) 

                                   o

ii

u

i

x

i Iitgtgtg  ,0                          (3.23) 

              0, , 1,2,..,
T Ti i i i

x ut g t g g t i J r                          (3.24) 

         ( ) ( ) 0,   1,2,...,r

b

i i i j j

i I j Ja

t h x t g dt
 

   
 

 
    

 
                 (3.25) 

                                                            ,    t,0)()( Itt T                       (3.26) 

                                                        Itr    t,0)(,...,, 1                 (3.27) 

                                         Ittt rr    t,0)(,...),(),(,                        (3.28) 

Multiplying (3.21) by I,  tand  Ii  ),t( 0
i   and summing over i  I0 and then integrating, we have  

 

   
0 0 0

( ) ( ) ( ) ( ) ( ) ( )

b b

i i i T i i i T i i

x u

i I i I i Ia a

t h x dt t t h t t t h dt      
  

   
      

   
      

   0)()( 





bt

at

ii tt   

Using  (a) = 0 = (b), we have 

 




b

a Ii

iii dtxht
0

)(   

                     



























 



b

a Ii Ii

i

u

iTii

x

iT httthtt  )()()()()(
0 0

   dt =0                       (3.29)                                          

Multiplying (3.22) by I,  tand  Ii  ),( 0 ti and summing over I  I and then integrating, we have  

   











































b

a Ii

i

u

iT

Ii

ii

x

iT httthtt dt )()()()()(


   

      

















b

a Ii

iii xht r1,2,...,   0,dt ))(( 



            (3.30) 

Similarly from (3.23) and (3.24) together with (3.26), it implies respectively 
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,0 )()()()()(
0 00










































   

 

dtgttgttdtgt

b

a Jj

b

a Jj

j

u

jT

Jj

j

x

jTjj           (3.31) 

and 

 ,0dt )()()()()( 























































  



b

a Jj

jj

b

a Jj

j

u

jT

Jj

j

x

jT gtdtgttgtt


   

        r,...,2,1              (3.32) 

Adding (3.29) to (3.31) and (3.30) to (3.32), we have  

       




































  

b

a Ii Jj

j

x

jii

x

iT

b

a Ii Jj

jjiii gtthttdtgtxht
0 00 0

)()()()()()(    

 0)()()(
0 0






















  

 

dtgthtt
Ii Jj

j

u

ji

u

iT                   (3.33) 

 

and 

        




































  

b

a Ii Jj

j

x

jii

x

iT

b

a Ii Jj

jjiii gtthttdtgtxht
  

  )()()()()()(   

 r1,2,...,  ,0)()()( 




















  

 


 

dtgthtt
Ii Jj

j

u

ji

u

iT
              (3.34) 

Using (3.25) in (3.34), we have  

   





















 

b

a Ii Jj

i

x

jii

x

iT gtthtt
 

 )()()()(   

  1,2,...r  ,0)()()( 



















  

 


 

dtgthtt
Ii Jj

j

u

ji

u

iT
 

This can be written as  

  
 

r1,2,..., 0,dt 
)()(

)()()(

)(),( 




















 

 


 

  






 

 

Ii Jj

i

u

ji

u

i

Ii Jj

i

x

jii

x

i

b

a

T

gtht

gttht

tt



           (3.35) 

Using (3.7) and (3.8) in (3.19) and (3.20) respectively 
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  I  t,0)()()(

)()()()()(
1

















  

 

ux

T

ux

T

ux

T

xx

T

xx

T

xx

T

Ii Jj

j

x

jii

x

i
r

htgtft

htgtftgttht




 




 

and 

   

  I  t,0)()()(

)()()()()(
1

















  

 

uu

T

uu

T

uu

T

xu

T

xu

T

xu

T

Ii Jj

j

u

ji

u

i
r

htgtft

htgtftgtht




 


 

Combining these relations, we have  

 
 

 
)()(

)()()(

1 




















 

 


 

 



 

 










Ii Jj

i

u

ji

u

i

Ii Jj

i

x

jii

x

i

r

gtht

gttht 

 

 

 


















ux

T

ux

T

uxxu

T

xu

T

xu

ux

T

ux

T

uxxx

T

xx

T

xx

htgtfhtgtf

htgtfhtgtf

)()(,)()(

)()(,)()(




 

     I   t, 0
)(

)(










t

t




                  (3.36) 

Pre-multiplying (3.36) by  T)t(),t(   and then using (3.35), we have  

   0dt  
)(

)(
)()(),( 









b

a

T

t

t
tMtt



 ,  

where    M(t) = 

















ux

T

ux

T

uxxu

T

xu

T

xu

ux

T

ux

T

uxxx

T

xx

T

xx

htgtfhtgtf

htgtfhtgtf

)()(,)()(

)()(,)()(




 

This, in view of (H1), yields  

 .,0
)(

)(
)( It

t

t
t 













  

That is,   

 (t) = 0 = (t),  t  I          (3.37) 

Using (3.21) in (3.22), we have  

  
 

 
)()(

)()()(

1 




















 

 


 

 



 

 










Ii Jj

j

u

ji

u

i

Ii Jj

j

x

jii

x

i

r

gtht

gttht 

= 0. 
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This, because of the hypothesis ( H2 ), gives 

  =,   = 1, 2, …, r            (3.38) 

If  = 0, then  = 0,  = 1, 2, …, r from (3.38),  = 0 from (3.23) and (3.24), consequently, (, , … , r, 

(t), (t), (t)) = 0, t  I but this contradicts (3.28). Hence   =  > 0,  = 1, 2, … , r. 

Using (3.37) in (3.21) and (3.22) along with  > 0,  (, 1, 2, …, r) and 0)( ti , t  I we have 

  0,0 Iixh ii    and r1,2,...,  ,  ,0  Iixh ii   

This implies     Itxuxth    t,0)(,,                                                          (3.39) 

Using (3.37) in (3.23) and (3.24) together with  > 0,  > 0,  = 1, 2, … r, we have  

   Ituxtg  ,0,,         (3.40) 

The relation (3.39) and (3.40) implies that,  ux,  is feasible for (CP). 

Using (3.37) with  > 0 in (3.33), we have 

     0 dt  ,,)()( 













  

 

b

a Ii Jj

jjiii

o o

uxtgtxht   

This accomplishes the equality of objective values of (CP) and (Mix CD), i.e., 

     dt  ,,)()(),,(),,(    














 

b

a Ii Jj

jjiii

b

a o o

uxtgtxhtuxtfdtuxtf  If, all feasible (x, u, 

, ), dt g)xh(f
b

a Ji

jj

Ii

iii

00

  
















 is pseudoinvex and    














 

b

a Ii Jj

jjii gh
 

 dt is quasi-invex 

with respect to the same  and , then from Theorem 3.1 ,  ux,  is an optimal solution of (CP). 

3.4. Control Problem with Free Boundary Conditions 

 The duality results established in the preceding section can be applied to the control 

problem with free boundary conditions. If the “targets” x(a) and x(b) are not restricted, we have  

Problem PF (Primal):    Maximize   
b

a

dt)u,x,t(f  

   subject to   

                                                           h (t, x, u) = x , t   I    

         g (t, x, u)  0, t  I    

This duality now includes the transversality (t) = 0, at t = a and t = b as new constraints. This implies  

Problem DF (Dual):  
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Maximize      









 

b

a Ii Jj

jjiii dtuxtgtxuxthtuxtf
0 0

),,()(),,()(),,(    

Subject to  

(a) = 0,  (b) = 0 

           I  t,0)(),,()(),,()(),,(  tuxtgtuxthtuxtf x

T

x

T

x    

I  t,0),,()(),,()(),,(  uxtgtuxthtuxtf u

T

u

T

u   

    0),,()(),,()( 













  

 

dtuxtgtxuxtht

b

a Ii Jj

jjii

 

   

     (t)  0, t  I 

3.5 Related Control Problems and Mathematical Programming 
 

 We now consider some special cases of (Mix CD). If I0 = N and J0 = K, then (Mix CD) becomes 

the following Wolfe type dual, considered by Mond and Smart [10] under invexity of  

  

b

a

T

b

a

b

a

dt g  and  )(,  dtxhfdt T   

 (WCD): Maximize        dtuxtgtxuxthtuxtf

b

a

TT   ),,()(),,()(),,(     

        subject to  

x (a) = ,   x(b) =  

  I  t,0)(),,()(),,()(),,(  tuxtgtuxthtuxtf x

T

x

T

x    

I  t,0),,()(),,()(),,(  uxtgtuxthtuxtf u

T

u

T

u       

   (t)  0,  t  I 

If  I0 =  and J0 = , then (Mix CD) becomes following Mond – Weir type dual recently considered by 

Husain et al  41  in order to relax invexity requirement on suitable forms of functionals involved in the 

formulation of the dual: 

(M-WCD): Maximize   
b

a

dt)u,x,t(f  

      subject to   

                                    x a ,x b    
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I  t,0)()(),,()(),,(  thtuxtgtuxtf x

T

x

T

x    

                     
I  t,0)(),,()(),,(  u

T

u

T

u htuxtgtuxtf   

                    

    ,0),,()()( 













  

 

dtuxtgtxht

b

a Ii Jj

TT

 

   

                    (t)  0, t  I 

If f, g and h are independent of t (without any loss of generality, assume  b a = 1), then the 

control problems (CP) and Mix (CD) reduce to a pair of static primal and dual of mathematical 

programming, consider by Mond and Weir [65] the duality results of this 

Putting      









u

x
z , we have  

Problem (PS): Minimize   f(z) 

   Subject to  

     h(z) = 0 

     g(z)  0 

Problem (Mix DS): Maximize   
 


0 0

)()()(
Ii Jj

jjii zgzhzf   

   Subject to  

     0)()()(  zgzhzf z

T

z

T   

                                       

r.1,2,...,  ,0)()(  
 


 Ii Jj

j
j

jj zgzh      

                                                  0, where    R
k
  and   R

n
. 
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Chapter 4 

ON MULTIOBJECTIVE DUALITY FOR VARIATIONAL PROBLEMS 

          4.1 INTRODUCTION 

 

         Calculus of Variations is a powerful technique for the solution of various important 

problems appearing in dynamics of rigid bodies, optimization of orbits, theory of vibrations and 

many areas of science and engineering. The subject of calculus of variation primarily concerns 

with finding optimal value of a definite integral involving a certain function subject to fixed 

point boundary conditions. Mond and Hanson [58] were the first to represent the problem of 

calculus of variation as a mathematical programming in infinite dimensional space. Since that 

time many researches contributed to this subject extensively. For somewhat comprehensive list 

of references, one may consult Husain and Jabeen [38] and Husain and Rumana [39]. The 

treatment in [38] has been for the real valued objective function while in [39] for vector valued 

function.  

  In this chapter, we consider a vector valued function for the primal problem and its 

minimality in the Pareto sense. Both equality and inequality constraints are considered in the 

formulations. In establishing duality results we consider two types of dual problems to the 

primal problem. The first one has vector valued objective where as the second set of results are 

based on the duality relations between an auxiliary problems and its associated dual as defined 

in Mond and Hanson [58]. Duality theorems, unlike in case of classical mathematical 

programming, are not based on optimality criteria but on certain types of convexity and 

generalized convexity requirements. Finally multiobjective variational problems with natural 

boundary values rather than fixed end points are mentioned and the analogues of our results in 

nonlinear programming are pointed out. 

 

                                                      4.2. PRE-REQUISITES 

In the treatment of the following problem (VP), by minimality we mean Pareto minimality. Now consider 

the following multiobjective variational problem involving higher order derivatives. 

(VP)    Minimize   

   1 , , , , . . . , , , ,p

I I

f t x x x dt f t x x x dt
 
 
 
 

 



62 

 

    Subject to 

                                0x a x b                                                                              (4.1) 

                                0x a x b                                                                              (4.2) 

                              , , , 0 ,g t x x x t I                                                                 (4.3) 

                              , , , 0 ,h t x x x t I                                                                   (4.4) 

Where (i) for  ,I a b R   , : ,n n nf I R R R R   
 

: n n n mg I R R R R    and 

: n n n kh I R R R R     are continuously differentiable functions, and 

 

(ii) X designates the space of piecewise smooth function : nx I R  having its first and second 

order derivatives x and x respectively equipped with the norm. 

      
2x x Dx D x

  
    , 

where the differentiation operator D  is given by 

   
t

a

Dx x t s ds      

Thus 
d

D
dt

 except at discontinuities.          
 

We denote the set of feasible solutions of the problem (VP) by PK , i.e.,  

     

     

0 , , , , 0 ,

0 , , , , 0 ,
P

x a x b g t x x x t I
K x X

x a x b h t x x x t I

     
  

       

It is pointed out that the conventions for equalities and inequalities for vectors in R
n
 given in 

Mangasarian [51] will be used throughout the development of the theory. 

Definition 4.1: A feasible solution of the problem (VP) i.e., Px K  is said to be Pareto minimum if 

there exists no x̂  such that 

       

   

   

1

1

ˆ ˆ ˆ ˆ ˆ ˆ, , , , . . . , , , ,

, , , , . . . , , , ,

p

I I

p

I I

f t x x x dt f t x x x dt

f t x x x dt f t x x x dt

 
 
 

 
  
 

 

 

 

Pareto maximality can be defined in the same way except that the inequality in the above definition is 

reversed. 

In the subsequent analysis the following result plays a significant role. 
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PROPOSITION 4.1: Suppose there exists a 0 , pR   such that Let   Px t K  is an optimal 

solution of the problem, 

    P :                
 

 , , ,
P

T

x t K
I

Min f t x x x dt
                             

Then  x t  is an optimal solution of (MP) in the Pareto sense. 

Proof: Assume  x t is not a Pareto optimal of (MP). Then there exists an  ˆ
Px t K  such that  

                                      ˆ ˆ ˆ, , , , , ,i i

I I

f t x x x dt f t x x x dt   , 1,2,..., .i p  

                                       ˆ ˆ ˆ, , , , , , , .j j

I I

f t x x x dt f t x x x dt i j    

Hence 

                      

   ˆ ˆ ˆ, , , , , , .T T

I I

f t x x x dt f t x x x dt  
 

This contradicts the assumption that x minimizes  , , ,T

I

f t x x x dt  over PK . 

In the subsequent sections some duality results by introducing two types of duals to (VP) will be 

established. 

4.3 MOND-WEIR TYPE MULTIOBJECTIVE DUALITY 

               Consider the following Mond-Weir dual to (VP) 

(M-WD):   Maximize    1 , , , , . . . , , , ,p

I I

f t u u u dt f t u u u dt
 
 
 
   

                 Subject to 

                                     0u a u b                                                                               (4.5) 

                                     0u a u b  ,                                 (4.6)    

         

          
, , , , , , , , ,

, , , , , , , , ,

T TT

u u u

T TT

u u u

f t u u u y t g t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u





 

  
          

              2 , , , , , , , , , 0 ,
T TT

u u uD f t u u u y t g t u u u z t h t u u u t I            (4.7)          

                  
1

, , , , , , 0
T T

y t g t u u u z t h t u u u dt  ,                                                        (4.8) 

               0 , pR      ,   0 ,y t t I                                                                      (4.9)                                                                                                           
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Let KD be the set of the feasible solutions of (M-WD). 

 

Theorem 4.1: Suppose 

             (A1):   
  Px t K

 

             (A2):  
    , , , Du y t z t K 

 

            (A3):   ,.,.,.T

I

f t dt  is pseudo-convex 

              (A4):          
1

,.,.,. ,.,.,.
T T

y t g t z t h t dt is quasiconvex. 

Then     , , , , , , .T T

I I

f t x x x dt f t u u u dt    

Proof:   Since       0 ,y t t I    ,  , , , 0 ,g t x x x t I  and  , , , 0 ,h t x x x t I  , we have  

                                
1

, , , , , , 0
T T

y t g t x x x z t h t x x x dt                                  (4.10) 

Combining this inequality with (4.8) 

We have, 

 

       

        
1

, , , , , ,

, , , , , ,

T T

I

T T

y t g t x x x z t h t x x x dt

y t g t u u u z t h t u u u dt



 




 

By the hypothesis (A4), this yields 

 

          

          
          

0 , , , , , ,

, , , , , ,

, , , , , ,

T T T

u u

I

T T T

u u

T T T

u u

x u y t g t u u u z t h t u u u

x u y t g t u u u z t h t u u u

x u y t g t u u u z t h t u u u dt
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, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , ,

T T T

u u

I

t b
T T T

u u
t a

T T T

u u

I

t b
T T T

u u
t a

T T

u

x u y t g t u u u z t h t u u u dt

x u y t g t u u u z t h t u u u

x u D y t g t u u u z t h t u u u dt

x u y t g t u u u z t h t u u u

x u D y t g t u u u z









  

  

  

  

  





    
1

, , ,
T

ut h t u u u dt

 

(By integration by parts) 

          

        

          

          2

1

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

T T T

u u

I

T T

u u

t b
T T T

u u
t a

T T T

u u

x u y t g t u u u z t h t u u u

D y t g t u u u z t h t u u u dt

x u D y t g t u u u z t h t u u u

x u D y t g t u u u z t h t u u u dt





  


 


  

  





 

(By integration by parts) 

`Using (4.7), we have, 

                   

     

 2

0 , , , , , ,

, , ,

T T T

u u

I

T

u

x u f t u u u D f t u u u

D f t u u u dt

 



  




 

                 

        

   

       

0 , , , , , ,

, , ,

, , , , , ,

T TT T

u u

I

t b
T T

u
t a

t b
T TT T

u u
t a

x u f t u u u x u f t u u u dt

x u f t u u u

x u D f t u u u dt x u D f t u u u

 



 









   

 

   




 

       

   

, , , , , ,

, , , 0

T TT T

u u

I

T T

u

x u f t u u u x u f t u u u

x u D f t u u u dt

 



  

  


 

 

This by integration by parts using the boundary conditions, we have,  
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, , , , , ,

, , , 0

T TT T

u u

I

T T

u

x u f t u u u x u f t u u u

x u f t u u u dt

 



  

  


 

This, because of the hypothesis (A3) implies, 

                   

   , , , , , , .T T

I I

f t x x x dt f t u u u dt  
 

Theorem 4.2: Assume 

             (B1):  
  Px t K

 

             (B2):       , , , Du t y t z t K   

              (B3):           
1

,.,.,. ,.,.,.
T T

y t g t z t h t dt  is quasi-convex 

              (B4):    ,.,.,.T

I

f t dt is pseudoconvex 

               (B5):   

   , , , , , ,T T

I I

f t x x x dt f t u u u dt  
 

Then  x t is an optimal solution of (VP) and       , , ,u t y t z t is an optimal solution of the problem 

(M-WD). 

Proof:  Assume that x is not Pareto-optimal of (VP). Then there exists an   Px t K  such that 

                    

   ˆ ˆ ˆ, , , , , , , for alli i

I I

f t x x x dt f t x x x dt i 
 

  And                ˆ ˆ ˆ, , , , , ,j j

I I

f t x x x dt f t x x x dt    for some j, 1 j p   

Since
0 

, this implies, 

                       

   ˆ ˆ ˆ, , , , , ,T T

I I

f t x x x dt f t x x x dt  
 

By the hypothesis (B5), this inequality implies, 

                     

   ˆ ˆ ˆ, , , , , , .T T

I I

f t x x x dt f t u u u dt  
 

This contradicts the conclusion of Theorem 4.1 thus establishing the Pareto optimality of  x t for (VP). 

Similarly we can show that       , , ,u t y t z t  is Pareto optimal for (M-WD). 

We state the following theorem without proof as it is similar to Theorem 3.4 of [69]. 
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Theorem 4.3: Assume, 

             (C1):    Px t K  ;         , , , ;Du t y t z t K   

            (C2):      , , , , , , ;T T

I I

f t x x x dt f t u u u dt    

            (C3):           
1

,.,.,. ,.,.,.
T T

y t g t z t h t dt  is convex; 

             (C4):    ,.,.,.T

I

f t dt is quasiconvex. 

                          Then     , .x t u t t I   

4.4. WOLFE TYPE MULTIOBJECTIVE DUALITY 

               To establish duality results similar to the preceding ones but under  

different convexity and generalized convexity assumptions, we formulate the following Wolfe type dual 

to the problem ( )P  stated in the Preposition 4.1.   

We assume that  is known and 0  . 

   (WCD ):   Maximize:           , , , , , , , , ,
T TT

I

f t x x x y t g t x x x z t h t x x x dt     

             Subject to:  

                         ( ) 0 ( ), ( ) 0 ( )x a x b x a x b                                                           (4.11) 

             

          

          

, , , , , , , , ,

, , , , , , , , ,

T TT

u u u

T TT

u u u

f t u u u y t g t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u





 

  

 

                       2 , , , , , , , , , 0 ,
T TT

u u uD f t u u u y t g t u u u z t h t u u u t I              (4.12)                   

               0,y t t I                                                                                                          (4.13) 

 

In the following LP represents the set of feasible solutions of ( )P  and LD the set of feasible solutions of 

(WCD ). 

 

Theorem 4.4: Assume  

               (H1):     Px t L    ;         , , Du t y t z t L  
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               (H2):   ,.,.,.T

I

f t dt  and         
1

,.,.,. ,.,.,.
T T

y t g t z t h t dt are convex. 

Then,  

             

            , , , , , , , , , , , , .
T TT T

I I

f t x x x dt f t u u u y t g t u u u z t h t u u u dt    
 

Proof: By  the  convexity of  ,.,.,.T

I

f t dt ,   we   have                                   

       , , , , , , , , ,
TT T T

u

I I I

f t x x x dt f t u u u dt x u f t u u u    
        

       , , , , , ,
T TT T

u ux u f t u u u x u f t u u u dt     


                                                  (4.14) 

From the dual constraint (4.12), we have, 

            

          

          2

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , , 0

T T TT

u u u

I

T TT

u u u

T TT

u u u

x u f t u u u y t g t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u dt







  


  

   




 

This, by integrating by parts and using the boundary conditions as earlier, implies 

   

            

            

            

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , , 0

T T TT

u u u

I

T T TT

u u u

T T TT

u u u

x u f t u u u y t g t u u u z t h t u u u

x u f t u u u y t g t u u u z t h t u u u

x u f t u u u y t g t u u u z t h t u u u dt







  


   

    




                 

Using this, in (4.14) we have 

  

   

          

          

          

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

T T

I I

T T T

u u

I

T T T

u u

T T T

u u

f t x x x dt f t u u u dt

x u y t g t u u u z t h t u u u

x u y t g t u u u z t h t u u u

x u y t g t u u u z t h t u u u dt

 

  


  

  


 



 

   By the hypothesis (H2), this implies 

      

            

        

, , , , , , , , , , , ,

, , , , , , ,

T TT T

I I I

T T

I

f t x x x dt f t u u u dt y t g t u u u z t h t u u u dt

y t g t x x x z t h t x x x dt

   

 

  


   

Since Px L  , this implies   
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            , , , , , , , , , , , , .
T TT T

I I

f t x x x dt f t u u u y t g t u u u z t h t u u u dt    
 

This proves the theorem.           

The following theorem gives a situation in which a Pareto optimal solution of (VP) exists. 

Theorem 4.5: Suppose 

   (F1):     Px t L ,        , , ;Du t y t z t L  

   (F2):   ,.,.,. ;T

I

f t dt  and        ,.,.,. ,.,.,.
T T

I

y t g t z t h t dt are convex, 

   (F3):             , , , , , , , , , , , ,
T TT T

I I

f t x x x dt f t u u u y t g t u u u z t h t u u u dt      

Then  x t  and       , ,y t z t u t are optimal solutions of ( )P


 and (WCD
). Hence  x t is a Pareto 

optimal solution of (VP). 

The last part of the conclusion follows from Proposition 4.1. 

 Proof: Suppose  x t does not minimize (P) then there exist,   Px t L  such that 

 

        , , , , , ,T T

I I

f t x t x t x t dt f t x x x dt     
 

  

         , , , , , , , , ,
T TT

I

f t u u u y t g t u u u z t h t u u u dt  
 

This contradicts the conclusion of Theorem 4.1. Hence  x t minimizes( )P


. 

We can similarly prove that       , ,y t z t u t maximizes (WCD
). 

Theorem 4.6: Assume   

  (G1):     Px t L   ,         , , ;Dy t z t u t L  

 (G2):             , , , , , , , , , , , ,
T TT T

I I

f t x x x dt f t u u u y t g t u u u z t h t u u u dt       

(G3):           
1

,.,.,. ,.,.,. ,.,.,.
T TT f t y t g t z t h t dt    is convex 

  Then  

                  , , , 0 ,
T

I

y t g t x x x dt t I   

Proof: By hypotheses (G2) and (G3), we have 
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            , , , , , , , , , , , ,
T TT T

I I

f t x x x dt f t u u u y t g t u u u z t h t u u u dt    
   

          

            

            

     

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , ,

T TT

I

T T TT

u u u

I

T T TT

u u u

T TT

u u

f t x x x y t g t x x x z t h t x x x dt

x u f t u u u y t g t u u u z t h t u u u

x u f t u u u y t g t u u u z t h t u u u

x u f t u u u y t g t u u









  

   


   

  





      , , ,
T

uu z t h t u u u dt


 

          

            

            

     

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , ,

T TT

I

T T TT

u u u

I

t b
T T TT

u u u
t a

T TT

u u

f t x x x y t g t x x x z t h t x x x dt

x u f t u u u y t g t u u u z t h t u u u

x u f t u u u y t g t u u u z t h t u u u

x u D f t u u u y t g t u u













  

   


   

  





      

            

            

         

, , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , ,

T

u

I

t b
T T TT

u u u
t a

T T TT

u u u

I

T T TT

u u

u z t h t u u u dt

x u f t u u u y t g t u u u z t h t u u u

x u D f t u u u y t g t u u u z t h t u u u dt

x u f t u u u y t g t u u u z t














   

   

   





  , , ,uh t u u u dt
  

 

                                                   (Integrating by parts) 

 

          

            

            

     

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , ,

T TT

I

T T TT

u u u

I

T T TT

u u u

T TT

u u

f t x x x y t g t x x x z t h t x x x dt

x u f t u u u y t g t u u u z t h t u u u

x u D f t u u u y t g t u u u z t hu t u u u dt

x u D f t u u u y t g t u u









  

   


   


  





      

            2

, , ,

. , , , , , , , , ,

t b
T

u
t a

T T TT

u u u

I

u z t h t u u u

x u D f t u u u y t g t u u u z t h t u u u dt







   

 

(Using boundary conditions and Integrating by parts) 
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       2

, , , , , , , , ,

, , , , , , , , ,

, , , , , , , , ,

, , , , , ,

T TT

I

T T TT

u u u

I

T TT

u u u

T TT

u u

f t x x x y t g t x x x z t h t x x x dt

x u f t u u u y t g t u u u z t h t u u u

D f t u u u y t g t u u u z t hu t u u u

D f t u u u y t g t u u u z t h









  

   


  

  





  , , ,u t u u u dt
  

          , , , , , , , , ,
T TT

I

f t x x x y t g t x x x z t h t x x x dt  
 

                                                    (Using (4.13)) 

This implies  

        , , , , , , 0
T T

I

y t g t x x x z t h t x x x dt                     (4.15) 

But since    0 , , , , 0y t g t x x x   and  , , , 0 ,h t x x x t I  yield, 

        , , , , , , 0
T T

I

y t g t x x x z t h t x x x dt     ……. (4.16) 

Combining (4.15) and (4.16), we have 

  

        , , , , , , 0
T T

I

y t g t x x x z t h t x x x dt 
 

This, because of  , , , 0 , ,h t x x x t I   gives 

 

   , , , 0.
T

I

y t g t x x x dt 
 

This, together with    , , , 0, ,
T

y t g t x x x t I 

 

implies    , , , 0,
T

y t g t x x x t I 

 

Theorem 4.7: Suppose 

 (R1):        , , Dy t z t u t L  and   Pu t L ; 

 (R2):    , , , 0 ,
T

y t g t u u u t I  ; 

 (R3):  ,.,.,.T

I

f t dt and          ,.,.,. ,.,.,.
T T

I

y t g t z t h t dt  are convex; 

Then  u t is an optimal solution of ( )P


 and hence of (VP). 

Proof:  If  u t is the only feasible solution of( )P


, the conclusion is self evident. So, assume that  x t

is another feasible solution of ( )P


.Then by the hypotheses (R1) and (R3), we have  
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, , , , , ,

, , , , , ,

, , ,

T T

u

I I

TT T T

u u

I

T T

u

f t x x x dt f t u u u dt

x u f t u u u x u f t u u u

x u f t u u u dt

 

 





   


 


 



 

        Now integrating by parts, we have, 

     

     

         

         

, , , , , ,

, , , , , ,

, , , , , ,

TT T

u

I I

t b
T TT T

u u
t a

I

t b
T TT T

u u
t a

I

f t u u u dt x u f t u u u dt

x u f t u u u x u D f t u u u dt

x u f t u u u x u D f t u u u dt

 

 

 









  


   


   

 




   

       

      

    

, , , , , ,

, , ,

TT T

u

I I

T T

u

I

f t u u u dt x u D f t u u u dt

x u D f t u u u dt

 



  

 

 


 

                                     (Using boundary conditions (4.11) 

     

        

  2

, , , , , , , , ,

, , ,

TT T T

u

I I

T

u

f t u u u dt x u f t u u u D f t u u u

D f t u u u dt

  



   





 

 

       

  

         

        

        2

, , ,

, , , , , ,

, , , , , ,

, , , , , ,

T

I

T T T

u u

I

T T

u u

T T

u u

f t u u u dt

x u y t g t u u u z t h t u u u

D y t g t u u u z t hu t u u u

D y t g t u u u z t h t u u u dt



  


 

 






 

    This, by integrating by parts and using boundary conditions, as earlier, we get 

      

 

          

          

          

, , ,

, , , , , ,

, , , , , ,

, , , , , ,

T

I

T T T

u u

I

T T T

u u

T T T

u u

f t u u u dt

x u y t g t u u u z t h t u u u

x u y t g t u u u z t h t u u u

x u y t g t u u u z t h t u u u dt
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, , ,

, , , , , ,

, , , , , ,

T

I

T T

I

T T

I

f t u u u dt

y t g t u u u z t h t u u u dt

y t g t x x x z t h t x x x dt



  
 

  
 






 

         

 , , ,T

I

f t u u u dt
 

         (Using hypothesis (A1), (A2) and
px L ). 

           Thus implies that u minimizes  , , ,T

I

f t x x x dt over
pL . 

   Remark: In Theorem 4.7, we assume that a part of feasible solution of ( WCDλ)  

is a feasible solution of (Pλ). It is a natural question if there is any set of some appropriate conditions 

under which this assumption is true. The following theorem gives one such set of conditions. 

Theorem 4.8: Assume 

            (Q1):     px t L  and       , , Dy t z t u t L ; 

             (Q2):  ,.,.,.g t and  ,.,.,.h t are differentiable convex functions; 

             (Q3):                , , , , , , 0
I

g t u t u t u t h t u t u t u t dt   

            (Q4):         , , , , , ,
T T

u ux u g t u u u x u g t u u u    

                          , , , 0 ,
T

ux u g t u u u t I     

            (Q5):         , , , , , ,
T T

u ux u h t u u u x u h t u u u  
 

                  
   , , , 0 ,

T

ux u h t u u u t I     

                  Then pu L . 

         Proof: By the convexity of  ,.,.,.g t and  ,.,.,.h t , we have 

         

           

   

, , , , , , , , , , , ,

, , , 0

T T

u u

T

u

g t x x x g t u u u x u g t u u u x u g t u u u

x u g t u u u

    

  
                    (4.17) 

     

           

   

, , , , , , , , , , , ,

, , , 0

T T

u u

T

u

h t x x x h t u u u x u h t u u u x u h t u u u

x u h t u u u

    

  
                         (4.18) 
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    Using (4.13) and (4.14) together with the hypotheses (Q1), (Q2) and (Q3), we have 

                      , , , 0 ,g t u u u t I                                                                           (4.19) 

                              and 

                      , , , 0 ,h t u u u t I                                                                                 (4.20) 

      By (4.15) and (4.16), we have 

                  , , , , , , 0 ,g t u t u t u t h t u t u t u t t I                             (4.21) 

       The hypothesis (Q2) with (4.17) implies 

     
             , , , , , , 0 ,g t u t u t u t h t u t u t u t t I                            (4.22) 

       But  , , , 0 ,g t u u u t I  . Hence by (4.22) we have 

             , , , 0 ,h t u u u t I    .                                                                                      (4.23) 

       The inequalities (4.20) and (4.21) imply 

             , , , 0 ,h t u u u t I   .                                                                                       (4.24) 

       The relations (4.19) and (4.24) imply that   pu t L
 

 

4.5. Variational problems with natural boundary values 

 

              It is possible to construct variational problems with natural boundary values rather than the 

problem with fixed end point considered in the preceding sections. The problems of Section4.2 can be 

formulated as follows: 

 

 ' '( ) : ( , , , ) ,...., ( , , , )
N

I I

VP Maximize f t x x x dt f t x x x dt 
 

Subject to 

 

  ( , , , ) 0,

( , , , ) 0,

g t x x x t I

h t x x x t I

 

 

 

 

   : ( , , , ) ,..........., ( , , , )
N

I

M WD Maximize f t u u u dt f t u u u dt   
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2

( , , , ) ( ) ( , , , ) ( ) ( , , , ))

( , , , ) ( ) ( , , , ) ( ) ( , , , ))

( , , , ) ( ) ( , , , ) ( ) ( , , , )) 0, ,

, ,

T T

u u

T T T

u u u

T T T

u u u

T

f t u u u y t gu t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u t I

y t g t u







 

   

   

      
1

, , , , 0

0, ( ) 0, .

( , , , ) ( ) ( , , , ) ( ) ( , , , ) 0, ,

( , , , ) ( ) ( , , , ) ( ) ( , , , ) 0, ,

T

T T T

u u u

T T T

u u u

u u z t h t u u u dt

y t t I

f t u u u y t g t u u u z t h t u u u at t a t b

f t u u u y t g t u u u z t h t u u u at t a t b







 

  

    

    

 

 

The proof of the theorems of Section 4.3 for (
N

VP ) and  
N

M WD  can easily be recoursed for 

their proofs with slight modification. The problems of the Section 4.4 can be written with natural 

boundary values as follows: 

 

For given0 pR  . 

( ) : ( , , , )T

N
I

P Minimize f t x x x dt



 

Subject to ( , , , ) 0, .

( , , , ) 0, .

g t x x x t I

h t x x x t I

 

 

 

 

 ( ) : ( , , , ) ( ) ( , , , ) ( ) ( , , , )T T T

N
I

WCD Maximize f t u u u y t g t u u u z t h t u u u dt


    

 

 

 2

( , , , ) ( ) ( , , , ) ( ) ( , , , ))

( , , , ) ( ) ( , , , ) ( ) ( , , , ))

( , , , ) ( ) ( , , , ) ( ) ( , , , )) 0, ,

( , , , )

T T

u u

T T T

u u u

T T T

u u u

T

u

f t u u u y t gu t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u

D f t u u u y t g t u u u z t h t u u u t I

f t u u u









 

   

   

 ( ) ( , , , ) ( ) ( , , , ) 0, ,

( , , , ) ( ) ( , , , ) ( ) ( , , , ) 0, ,

0, ( ) 0, .

T T

u u

T T T

u u u

y t g t u u u z t h t u u u at t a t b

f t u u u y t g t u u u z t h t u u u at t a t b

y t t I





   

    

  
 

 4.6. Multiobjective nonlinear programming pair of Mond-Weir type Multiobjective. 

When all the functions in the problems 
N

VP ,( )
N

WCD


,
 
( )

N
P
  

are independent of t. For simplicity 

b-a =1 and the pairs of dual problems reduce to the following problems: 

 

1 2

0
( ) : ( ( ), ( ),...... ( ))

( ) 0, ( ) 0 .

pVP Minimize f u f u f u

Subject to

g x h x   
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1 2

0

0

( ) : ( ( ), ( ),...... ( ))

( ) ( ) ( ) 0,

( ) ( ) 0.

0, , 0.

( ) : ( )

( ) 0, ( ) 0 .

p

T T T

u u u

T T

p

T

M WP Maximize f u f u f u

Subject to

f u y g u z h u

y g u z h u

For given R y

VP Maximize f u

Subject to

g u h u





 





  

 

  

 

 

 

0
( ) : ( ) ( ) ( )

( ) ( ) ( ) 0,

( ) ( ) 0. 0.

T T T

T T T

u u u

T T

WCD Maximize f u y g u z h u

Subject to

f u y g u z h u

y g u z h u y






 

  

  

 

 

Theorems 4.1-4.3 for the  pair of Mond-Weir type dual problems 
0 0

( ) ( )VP and M WP and Theorems 4.4-

4.8 for the pair of Wolf type dual problems 
0

( )VP


and 
0

( )WCD


  are simple to be validated, albeit 

validations of these theorems are not explicitly mentioned in the literature. 
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Chapter 5  

CONSTRAINED DYNAMIC GAME AND SYMMETRIC DUALITY FOR VARIATIONAL 

PROBLEMS 

 

5.1 Introduction 
 

The applications of game –theoretic ideas are quite extensive and lie at the root of almost every human 

activity. So the search for elegant methods for solving a general strategic game is very natural. Dantzig 

[23] studied equivalence of the programming problem and the game problem, and Charnes [11] 

established that every matrix game is equivalent to linear programming. The results in [23] and [11] yield 

that every two- person, zero-sum can be solved by simplex method of linear programming. The measure 

advantage of linear programming techniques is that it provides solution to a mixed strategy game of any 

size. Motivated with this observation, in the recent past many researchers were interested in studying 

equivalence between a scalar valued game and a certain mathematical programming problem. Cottle [18] 

was the first to establish the equivalence between an unconstrained game having a non-linear Convex-

Concave payoff function and the corresponding symmetric dual programming problems. Since then 

several authors notably, Chandra et al [14 ], Corley [16], and Prasad and Sreenivas [ 25].Later Mond et al 

[61] extended the result of Kawaguchi and Maruyama [50] to the nonlinear setting and proved that a 

constrained game is proved that a Constrained game is equivalent to a pair of Symmetric dual nonlinear 

programming problems, which appearing similar those of Mond-Weir [65].  

The dynamic games are basically concerned with the modeling of large scale systems which have 

independent decision makers with individual payoff (or reward) functions. Applications of dynamic 

games can be experienced in solving some important problems relating to environment resources, 

aerospace and energy management. So their domain of applications is naturally wider than those of static 

games. The purpose of this research is to extend the results of Mond et al [61] to the dynamic setting 

involving variational problems and show that such a constrained game is equal to pair of symmetric dual  

variational problems which are similar to that of Bector et al [4] but contain certain additional constraints. 

It is pointed out that results of this research can be considered as the dynamic generalization of those of 

[61]. 

 

 

5.2 Problem Formulation and Motivation 

 

Consider the time independent nonlinear game G (X, Y, F), where, 

                                                            

                                                         

and           

where, 

(i)                                 and 

                                with           
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are twice continuously differentiable with respect to each of their arguments, 

        and       . The functions   and   are differentiable with their derivatives    and   . Each 

of these spaces X and Y is equipped with the following norm: 

                       ,  

where differentiation operator   is given by 

                              
 

 
 

in which     
    except at discontinuities.  

  (ii)   and   represent the strategy spaces of players A and B respectively and  

    (iii)         represents the pay-off to the player B from the player A when player A selects strategy x 

and the player B selects strategy Y.  In analogy with Cottle [2], it is assumed that the player A is the 

minimizing player and the player B is the maximizing player. The player A wishes to solve 

 min max ,
x X y Y

F x y
 

 and the player B wishes to solve  max min ,
y Yx X

F x y


. In the spirit of Cottle [18], both 

 min max ,
x X y Y

F x y
 

will be reduced to certain nonlinear variational problems and the symmetric duality 

in the subsequent section. These symmetric dual nonlinear variational problems will also be related to 

the non-linear time dependent constrained game in the spirit of Shreevivas  [25]. 

Fix        and consider  max ,
y Y

F x y


 i.e. 

(CP1):  Maximize                
 

 
                      

           Subject to    

                                      

                                       

                                                        

                                         

where                 is continuously differentiable and possesses fourth order derivatives 

with respect to each of its arguments. 

It can be shown on the lines of Mangasarian [55] involving the analysis in [64] that    is optimal to (CP1) 

if and only if  

                                               t T  y           

                                                                                                                    

                                                     t T  y           
  

                                                                                                             

                        

                                                                                                                                     

                                   ≤ 0,                                                                                          
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where    and     denote the gradients of    with respect to    and    ; and    and     denote the 

gradient of   with respect to   and   . 

Using the above conditions,  min max ,
x X y Y

F x y
 

is equivalent to the following variational 

problems: 

(CP2)  Maximize       
 

 
                     

               Subject to    

                                      

                                       

                                              t T  y         

                                                                                                            

                                                     t T  y         
  

                                                                                      

                                                     , 

                                                             . 

                                                       . 

Similarly  max min ,
y Yx X

F x y


 will be reduced to the following variational problem: 

(CD2):  Maximize    
 

 
                        

               Subject to    

                                      

                                       

                                      t T           

                                                                                          

                                              t T             

                                                                                   

                                                  

                                                    , 

                                              

where    and     denote the gradients of   with respect to    and   , and    and     denote the 

gradient of   with respect to   and    respectively. 

 

In view of the formulation of symmetric dual variational problems by Mond and Hanson [61] 

and Bector, et al [4], we shall drop the constraints                            from (CP2) 

and                          from (CD2), as these will automatically be satisfied. Thus the 
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two problems (CP2) and (CD2) corresponding to  min max ,
x X y Y

F x y
 

and  max min ,
y Yx X

F x y


  can be 

constructed in the following forms. 

 

(NVP):    Minimize                  
 

 
 

 

                 Subject to  

                                                                                                    (5.1)   

 

                                     t T  y         

                                                                                                    (5.2)       

                       
 

 
                      t T  y         

  

                                                                                                  (5.3) 

 

                        
 

 
                                                                                        (5.4)  

                                                                                                                           

    (5.5) 

 

(NVD):      Maximize                   
 

 
  

                Subject   to 

                                                                                                    (5.6) 

 

                                      t T           

                                                                                                       (5.7) 

                                               t T            
 

 
 

                                                          
                                           (5.8) 

                                      
 

 
                                                                            (5.9) 

                                                                                                     (5.10) 

 

In the subsequent section, it will be shown with above problems constitute a pair of  

 

symmetric dual variational problems. 

 

5.3 Symmetric Duality 

 
It is easy to see that if the dual (NVD) is recast in the form of the problem (NVP), its dual is primal 

(NVP).We shall prove the following duality theorems. 

Theorem 5.1 (Weak Duality).  Let             be feasible to the problem (NVP) and              be feasible 

for (NVD). For all feasible solutions ( , , , , , )x y u v  , let       ,.,., , ,.,.

b

T

a

f t y y t p t dt be 
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pseudoconvex for each ( , )y y   and        , , ,.,. ,.,.

b

T

a

f t x x t q t dt be pseudoconcave for each

( , )x x . Then 

                  
 

 

                 
 

 

 

If, in the above, the equality holds, then           is optimal to the problem (NVP) and             is optimal 

to the problem (NVD). 

Proof: From (5.2) and (5.3) we obtain  

                      
 
                     t T  y        

  

                                                                                               

This implies,  

                       
 
                     t T  y        

  

 
 

                                                                           .                   

This, by integration by parts, yields, 

              
 
                     t   q

y
         

 

 
  

                            
 
                                           

                          
                                         

   
   

This, by using fixed point conditions (5.1) and (5.6), we have 

                          
 
                     t   q

y
         

 

 
     

                                  
 
                                             

By pseudo-concavity of                     t   q
y
          

 

 
 in   and     for each   and   , this 

implies, 

                                       t   q
y
         

 

 
   

                                             t   q
y
           

 

 
 

Since                      
 

 
       

 

 
                this implies 

                                      
 

 
                    

 

 
                                  (5.11) 

The relations (5.7) and (5.8) imply, 
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As earlier, this becomes, 

                                              
 

 

 

                                                                         

This, because of pseudo-convexity of                               
 

 
   for each y and   , implies, 

                                         
 

 
                                        

 

 
  

This, in view of       
 

 
                       

 

 
                     

                          
 

 
                    

 

 
                                              (5.12) 

Combining (5.11) and (5.12), we have 

                                  
 

 
                    

 

 
 . 

For derivation of optimality conditions required in Theorem 5.2, the following result will be used: 

y yt y y y y y x y x

d
f f f y f y f x f x

dt
    

 

Implying 

, , , ,

, .

y y y y y y y y y y y y y x

y y x y x y y x

d d d d d d d
f f f f f f f f f

y dt dt y dt dt y dt x dt dt

d d d
f f f f f

x dt dt x dt

   
    

   

 
  

   

Theorem 5.2: (Strong duality) Assume that 

(A1):            is an optimal solution of (NP). 

(A2):           and                     are linearly independent. 

(A3):             

(A4):                                              
 

 
 

               D                            

                                                                ,     .  

and  

(A5):     
                            ,               ,     . 
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Then there exists        ,     such            is feasible for (ND). If, in addition, the Theorem 5.1 

holds, then             is an optimal solution of (ND). 

Proof: If             minimize (NVP), there exists a function of the form  

                          
 
                             

                                             

Where                           piecewise smooth       
              

    ,      

      
              

   , such that       

                                                                           (5.13) 

                                                                            (5.14) 

                                                                             (5.15)        

                                                                       (5.16) 

                                           
 

 
                         (5.17) 

         
 

 
                                                                                        (5.18) 

                                          (5.19) 

                                   (5.20) 

                                       (5.21) 

                                                         (5.22) 

From (5.13), we have, 

                         
 
            

                   
 
                   

                                                                (5.23) 

From (5.14) we have,  

                                             

                   
 
                                     

     + D              
 
                      

                      
 
                                                       (5.24) 

From (5.15), we have 
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                                                         (5.25)                     

 Multiplying this by       and using (5.18) and (5.21), we have  

                 
 
                      

 
          

 
 

 

 

                                 
 
       

                
 
                        

 
                      

 

 

 

                                         

                
 
                      

 

 

 

                      
 
                                     , 

               
 
                      

 

 

 

                            
 
                                         

               
 
                      

 

 

   

             +                         
 

 
   

               
 
                      

 

 

   

                                      

                                    

This, in view of the hypothesis (A5), yields, 

              
 
                      

 

 
                                               (5.26) 

From (5.16) and (5.17) we have  

              
 
             

 

 
               

 
                      

 

 
      

By (5.26), this reduces to  

                     
 
             

 

 
                                                        (5.27) 

Multiplying (5.24) by            , and then using (5.26) and (5.27), we have, 
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   D              
 
                                 

                  
 
                                        

This in view of hypothesis (A4) implies, 

                           = 0,                                   (5.28) 

Using (5.28) in (5.24), we have  

                                                    

which because of linear independence condition (A2 ) gives, 

                                                                            (5.29) 

Using              = 0,            implies 

                                                                                   (5.30) 

Let                     imples         Consequently (5.25) and (5.28) respectively yield        

and             

If             implies 

                                     ,             

By the hypothesis (A5), this implies            . From (5.30) we obtain 

Thus we get,                           contradicting (5.22) 

Hence        

                  
     

  
           

     

  
            

Multiplying (5.30) by   (t) and using         we have 

            
     

  
           

     

  
            

From the above analysis, it readily follows that      
    

  
  is feasible for (NCD). An application of 

Theorem 5.1 completes the validation of Theorem 5.2. 

The following is the converse duality (Theorem 5.3) whose proof follows by virtue of symmetry of the 

formulation of the primal and dual variational problems:  

Theorem 5.3: (Converse duality) Assume that 

(H1):            is an optimal solution of (NP). 

(H2):           and                     are linearly independent. 

(H3):             

(H4):                                            
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             D                            

                                                             ,     .  

and  

(H5):                                 ,                ,     . 

Then there exists        ,     such that            is feasible for (ND). If, in addition, the Theorem 5.1 

holds, then             is an optimal solution of (ND). 

Remarks 5.1: In view of the duality relationship between the variational problems (NVP) and (NVD) 

and method of their formulation we obtain the following results whose proof is simple:  

Theorem 5.4: For the constrained games         ,  min max ,
x X y Y

F x y
 

exists if and only if 

 max min ,
x Xy Y

F x y


, and when this happens, 

                                          min max , max min ,
x X x Xy Y y Y

F x y F x y
  

  

 

5.4  Dynamic Game Equivalent Variational Problems with Natural Boundary 

 

It is possible to formulate symmetric dual variational problems with natural boundary values 

rather than fixed end points. 

(P):   Minimize                  
 

 
 

         Subject to 

                                             t T  y         

                                                                                     )  

                            
 

 
                        t T  y         

  

                                                                                 

                        

                            
 

 
              

                                                             

                                                               
           

                                                                
   

(D) Maximize                  
 

 
 

         Subject to 

                                           t T pu         

                                                              p                       )  

                            
 

 
                       t T py         
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                                                                p                     

                        

                             
 

 
              

                                                            

                                                                  
           

                                                                  
   

If only one end point in fixed, say        and        in (VP) and (VD), then the 

corresponding boundary value condition (5.1) and (5.6) are deleted. It can be easily seen that 

(VP) and (VD) are still symmetric and the Theorems 5.1-5.2 remain valid. 

 

5.5 Static Game Equivalent Nonlinear Programming Problems 

 

If all functions in the problems (P) and (D) are independent of t, the problem reduces to the 

following problems considered by Mond et al [61] as static game equivalent nonlinear 

programming problems: 

(PS): Minimize        , 

 

         Subject to                         

                                                                              

                                             , 

                                                          

(ND): Maximize       , 

           Subject to                        , 

                                                    

                                         

                                    r                     

 

5.6 Conclusions 

 

In this exposition, the authors have discussed the equivalence between certain constrained 

dynamic game and a pair of symmetric dual variational problems which have more general 

formulations than those formulated by Mond and Hanson [63]. Usual duality results for the pair 

of variational problem are validated under appropriate generalized convexity assumptions. It is 

briefly indicated that dynamic game formulated in this research is equivalent to a pair of dual 

variational problems without the conditions of fixed points. When the functions occurring in the 
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formulations of the problems without fixed point do not depend explicitly on t, the authors’ 

result reduces to those of Chandra and Durga Prasad [13]. Further, the formulations of 

variational problems of this research can be revisited in setting of multiobjective dynamic 

games. 
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Chapter 6 

MIXED TYPE SECOND-ORDER DUALITY FOR VARIATIONAL PROBLEMS 

6.1 INTRODUCTION 

Duality in continuous programming problem has been investigated by many authors. Hanson [30] 

pointed out that some of the duality results in nonlinear programming have the analogues in calculus of 

variations. Exploring this relationship of mathematical programming and classical calculus of variation, 

Mond and Hanson [63] formulated a constrained variational problem in abstract space and using 

Valentine [26] optimality conditions for the same, constructed its Wolfe type dual variational problem for 

proving duality results under usual convexity conditions. Later Bector, Chandra and Husain [4] studied 

Mond-Weir type duality for the problem of Mond and Hanson [63] for relaxing its convexity requirement 

for duality to hold.  

In view of Mond’s [8] remarks that the second-order dual for a nonlinear programming problem gives a 

tighter bound and has computational advantage over a first order dual, it is natural to find its analogue in 

continuous programming. Motivated with this observation ,Chen [84] formulated Wolfe type second 

order dual problem to the classical variational problem and studied usual duality results under invexity-

like conditions on the function that appear  in the formulation of the problem along with some strange 

and hard relations. Recently Husain et al [42] presented Mond-Weir type second-order dual to the 

variational problems considered in [84] and establish various duality theorems under second-order 

generalized invexity conditions. In [42], the relationship between second-order duality results in calculus 

of variation and their counterparts in nonlinear programming is also pointed out. 

The concept of mixed type duality seems to be interesting and useful both from theoretical and 

algorithmic point of view. In this research, in sprit of Xu [85], a mixed second-order dual to the 

variational problem [84] to combine Wolfe type dual and Mond –Weir type dual problems is presented. 

A pair of mixed type dual variational problem with natural boundary values is formulated and the 

validation of its duality results in indicated. The formulation of natural boundary value problems is 

essential for seeing our results as having analogues in nonlinear programming and hence it is pointed out 

that our duality results can be viewed as dynamic generalizations of nonlinear programming already 

existing in the literature. 

6.2 DEFINITIONS AND RELATED PRE-REQUISITES 

Let  ,I a b be a real interval, : :n n n n mf I R R R and g I R R R      be twice 

continuously differentiable functions. In order to consider     , , ,f t x t x t where : nx I R is 

differentiable with derivative x , denoted by x xf and f  the partial derivative of f   with respect to 

   x t and x t , respectively, that is, 

                

1 1

2 2, ;x x

n n

f f

x x

f f

f fx x

f f

x x

    
    
   
    

     
   
   
    
   
      

denote by xxf the Hessian matrix of f with respect to x , that is, 
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2 2 2

1 1 1 2 1

2 2 2

2 1 2 2 2

2 2 2

1 2

n

n
xx

n n n n
n n

f f f

x x x x x x

f f f

f x x x x x x

f f f

x x x x x x 

   
 
      

   
       
 
 
 
    
        

 It is obvious that xxf is a symmetric n n matrix. Denote by xg the m n  Jacobian matrix with 

respect to x , that is, 

                  

1 1 1

1 2

2 2 2

1 2

1 2

n

n
x

m m m

n
m n

g g g

x x x

g g g

g x x x

g g g

x x x 

   
   
 
   

    
 
 
   
 
     

Similarly , ,x xx xx xf f f and g  can be defined. 

Denote by X, the space of piecewise smooth functions : nx I R , with the norm x x Dx
 

  , 

where the differentiation operator D  is given by 

               

   
t

a

u D x x t u s ds    
, 

where  is given boundary value; thus 
d

D
dt

  except at discontinuities. 

 We introduce the following definitions which are needed for duality results to hold. 

DEFINITION 6.1 (Second-order Invexity): If there exists a vector function  , , nt x x R  where 

: n n nI R R R    and with 0   at t = a and t = b, such that for the functional  , ,
I

t x x dt  

where : n nI R R R    satisfies 

              

       

        

1
, , , ,

2

, , , , ,

T

I I

TT T

x x

I

t x x dt t x x p t Gp t dt

t x x D t x x Gp t dt

 

    

 
  

 

  

 


 

where 
2

xx xx xxG D D     and  , np C I R , the space of continuous n -dimensional vector 

function. 
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 DEFINITION 6.2 (Second-order Pseudoinvex): If the functional  , ,
I

t x x dt  satisfies 

    

       

0

1
, , , , ,

2

TT T

x x

I

T

I I

D Gp t dt

t x x dt t x x p t Gp t dt

    

 

   

 
  

 



 
 

then   , ,
I

t x x dt  is said to be second-order pseudoinvex with respect to  .  

DEFINITION 6.3: (Strictly Second- order Pseudoinvex: If the functional  , ,
I

t x x dt  satisfies 

           

    

       

0,

1
, , , ,

2

TT T

x x

I

T

I I

D Gp t dt

t x x dt t x x p t Gp t dt

    

 

  

 
   

 



 
 

DEFINITION 6.4: (Second- order Quasi-invex):If the functional  , ,
I

t x x dt  satisfies 

        

       

    

1
, , , ,

2

0,

T

I I

TT T

x x

I

t x x dt t x x p t Gp t dt

D Gp t dt

 

    

 
   

 

  

 


 

then  the functional  , ,
I

t x x dt  is said to be  second-order quasi-invex with respect to  .  

 If   is independent of t , then the above definition reduces to those given in [86]. 

Consider the following constrained variational problem 

(VP):           Minimize  dtxxtf
I

 ,,  

              subject to 

                                  0x a x b                                                                                (6.1) 

                                 , , 0 ,g t x x t I                                                                           (6.2) 

  

where RRRIf nn : and  
mnn RRRIg :  are  continuously differentiable. 

The Fritz-John optimality conditions for the problem (VP) derived in [74] are given in the proposition 

below. 
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PROPOSITION 6.1 ([2] Fritz-John Conditions): If (VP) attains a local (or) global minimum at  

x x X   then there exist Lagrange multiplier  R    and piecewise smooth : my I R  such that 

                       , , , , , , , , 0, ,
T T

x x x xf t x x y t g t x x D f t x x y t g t x x t I      
 

 

                       
   , , 0,

T
y t g t x x t I 

, 

                       
  , 0,y t t I  

, 

                           , 0,y t t I   . 

The Fritz John necessary conditions for (VP), become the Karush-Kuhn-Tucker conditions if 1  . If 

1  , the solution x is said to be normal.  

Chen [84] presented the following Wolfe type dual to (VP) in the spirit of Mangasarian [56] and proved 

various duality results under somewhat strange invexity-like condition. 

 (WVD):   Maximize               
1

, , , , , , ,
2

T T

I

f t u u t g t u u p t H t u u t p t dt 
 

  
 
  

            Subject to  

                              
   buau  0                                                      

            
   

, , , , , , , ,

0 ,

T T

u u u uf t u u t g t u u D f t u u t g t u u

H t p t t I

   

  
 

         
   ,m nt R p t R  

  

where                        , , , ,
T

uu u
u

H f t u t u t y t g t u t u t   

                   

             
             2

2 , , , ,

, , , , .

T

uu u
u

T

uu u
u

D f t u t u t y t g t u t u t

D f t u t u t y t g t u t u t

 

 

 

It is remarked here that f and g are independent of t  then (WVD) becomes second-order dual problem 

studied by Mond [8]. Recently Husain et al [42] presented the following Mond-Weir dual with the view 

to weaken the second order invexity requirements and proved duality theorems connecting the problems 

(CP) and (CD) under generalized second order invexity hypothesis. 

(CD):         Maximize          
1

, ,
2

T

I

f t u u p t F t p t dt
 

 
 
  

              Subject to  

      buau  0                                                            
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                      0 ,
T T

u u u uf y t g D f y t g F t G t p t t I                       

           
1

, , 0 ,
2

T T

I

y t g t u u p t G t p t dt
 

  
 
                           

               0.y t                            

where      2

uu uu uuF t f Df D f     and           2T T T

u u u
u u u

G t y t g D y t g D y t g    

where D is defined as earlier. 

6.3. Mixed Type second order Duality 

In this section we construct a mixed type second-order dual model for the variational problem (VP): 

(Mix VD):         Maximize            
1

, , ( ) , , , , ,
2

i Ti

i II

f t u u y t g t u u p t H t u u y p t dt


  
  

  
  

            subject to  

       buau  0                                                                  (6.3)                                            

                                 , , , ,
T T

u u u uf t u u y t g t u u D f y t g                                  

    0 ,H t p t t I                                                                     (6.4) 

                        
1

( ) , , , 0
2

i Ti

i II

y t g t u u p t G t p t dt





  
  

  
  ,  1,2,...,r                   (6.5)    

  ,0ty   t I   ,  ( ) np t R                                                                  (6.6) 

                  

where  

(i)                  
0 0

( ) , , ( ) , ,i i i i

uu u uu u
u u

i I i I

H t f y t g t u u D f y t g t u u
 

 
     

 
   

                              
0

2 ( ) , ,i i

uu u
u

i I

D f y t g t u u


 
   

 
            

(ii)           2, ( ) , , ( ) , , ( ) , ,i i i i i i

u u u
u u u

i I i I i I

G t y t g t u u D y t g t u u D y t g t u u
  


  

      

and  

(iii)     {1,2,3,... }, 0,1,2,...,I M m r     with 
0

M I


  and I I    if   . 

We present the following duality theorems for the pair of dual problems (VP) and (Mix VD). 
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THEOREM 6.1. (Weak duality): Let   Xtx   be a feasible solution of (VP) and       , ,u t y t p t  

be feasible solution of (MixVD).If for all feasible       ( ), , ,x t u t y t p t
,

    
0

,.,. ( ) ,.,.i i

i II

f t y t g t dt


 
 

 
  be second-order pseudoinvex and   ( ) ,.,.i i

i I I

y t g t dt


  be 

second-order quasi-invex with respect to the same  :
nnn RRRI   satisfying  =0 at t = a and   t = 

b, then  

                  

           
1

, , , , ( ) , , , , ,
2

i Ti

i II I

f t x x dt f t u u y t g t u u p t H t u u y p t dt


  
   

  
 

 

PROOF:  The relations  , , 0 ,g t x x t I   and   0 ,y t   yield 

                              

   , , 0, 1,2,...i i

i II

y t g t u u dt r





  
  

  


 

This together with (6.5) implies 

          

           
1

, , ( ) , , ,
2

i Ti i i

i I i II I

y t g t x x dt y t g t u u p t G t p t dt
 


 

      
    

      
     ,  1,2,...r               

 

This, because of second-order quasi-invexity of    , , , 1,2,...i i

i II

y t g t dt r





  
   

  
 , gives 

                          0 ,
TT i i i i T

u u

i I i II

y t g D y t g G t p t dt
 

   
 

     
         

     
   

                 

       

   

,

, ,

T i i i i

u u

i I i II

t b

i i

u

i I
t a

y t g D y t g G t p t dt

y t g t u u

 



 



 






  
   

  



 



  

                                                           (by integration by parts) 

Using   , , 0
t b

t a
t u u




 ,we have, 

           , , , , , 0, 1,2,...T i i i i

u u

i I i II

y t g t u u D y t g t u u G t p t dt r
 

  
 

  
    

  
   

Hence, 

                        , , , , , 0T i i i i

u u

M I M II

y t g t u u D y t g t u u G t p t dt 
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By (6.4), this yields 

           

   
0 0

, , , , , , , ,

0

T i i i i

u u u u

i I i II

f t u u y t g t u u D f t u u y t g t u u

H t p t dt


 

   
        

   

 

 

 

    Integrating by parts, this gives, 

             

         

0 0

0

0

0 , , , , , , , ,

, , , ,

TT i i i i

u u u u

i I i II

t b

T T i i

u u

i I
t a

f t u u y t g t u u D f t u u y t g t u u

H t p t dt f t u u y t g t u u

 

 

 






    
          

    

 
    

 

 



 

Using 0  at t a and t b  in the above inequality, we obtain, 

             

   
0 0

0

, , , , , , , ,

0

TT i i i i

u u u u

i I i II

T

f t u u y t g t u u D f t u u y t g t u u

H t p t dt

 



 

   
        

   

 

 
 

This, in view of second order invexity of    
0

,.,. ( ) ,.,.i i

i II

f t y t g t dt


  
 

  
  with respect to  gives 

               
0 0

01
, , ( ) , , , , ( ) , , 6.7

2

i i Ti i

i I i II I

f t x x y t g t x x dt f t u u y t g t u u p t H t p t dt
 

      
      

      
  

 

Since   0,y t t I  and  , , 0 ,g t x x t I  yielding  
0

( ) , , 0,
ii

i I

y t g t x x t I


  , (6.7) gives

 

               

           
0

01
, , , , ( ) , ,

2

i Ti

i II I

f t x x dt f t u u y t g t u u p t H t p t dt


  
   

  
 

. 

THEOREM 6.2. (Strong Duality):  If x X is an optimal solution of (VP) and meets the normality 

condition, then there exists a piece wise smooth factor : my I R such that 

      , , 0 ,x t y t p t t I   is a feasible for (MixVD) and the two objective values are equal. 

Furthermore, if the hypothesis of Theorem 6.1 holds, then       , ,x t y t p t  is optimal for  

(Mix VD). 

PROOF: From Proposition 1 [74], there exists a piecewise smooth function : my I R  satisfying the 

following conditions: 
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             , , , , , , , ,
T T

x x x xf t x x y t g t x x D f t x x y t g t x x    

                                                   

    0,H t p t t I  

 

with   0p t 

 
                                                                     0,, xxtgty

T 
,
  Itty  ,0

 

The last relation implies, 

                    , , 0 , , , 1,2,...,i i i i

i I i I

y t g t x x y t g t x x r



 

                                                                                                         

         
1

, , , 0, 1,2,...
2

T Ti i

i II

y t g t x x p t G t p t dt r


 


  
   

  
 with   0p t                                                               

From the above relation it implies that       , , 0x t y t p t   is feasible for (MixVD). 

In view of    
0

, , 0, ,
Ti i

i I

y t g t x x t I


   and   0,p t t I   , we have,  

                  

           
0

1
, , , , ( ) , ,

2

i Ti

i II I

f t x x dt f t x x y t g t x x p t H t p t dt


  
   

  
 

 

Furthermore, for every feasible solution       , ,u t y t p t , from the condition we have, 

  

         

 

               

1
, , ( ) , ,

2

, ,

1
, , ( ) , ,

2

Ti i

i II

I

Ti i

i II

f t x x y t g t x x p t H t p t dt

f t x x dt

f t u t u t y t g t u t u t p t H t p t dt





  
  

  



  
   

  







 

So,       , ,x t y t p t is also an optimal solution of (Mix VD). 

The theorem given below is the Mangasarian  56  type converse duality theorem: 

THEOREM 6.3 ( Strict Converse duality): Let  x  be optimal solution of (VP) and normal. If  

 ˆ ˆ ˆ, ,u y p is an optimal solution to (Mix VD) and if    ,.,. ( ) ,.,.
ii

i II

f t y t g t dt


  
 

  
 is second order 

strict pseudoinvex  and    ˆ ( ) ,.,. , 1,2,...,i i

i I I

y t g t dt r





 is a second-order quasi-invex with 

respect to  ˆ, ,t x u  , then ˆx u i.e., û is an optimal solution of (VP).  
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Proof: We assume that    ˆ ,x t u t t I  and show that the contradiction occurs. Since x is an optimal 

solution of (VP) and normal, it follows from Theorem 6.2 that there exists piecewise smooth functions 

: my R R with         1 2 ,...,
T

my t y t y t y t such that       , ,x t y t p t is optimal for 

 (MixVD) and             
1

, , , , ( ) , ,
2

i Ti

i II I

f t x x dt f t x x y t g t x x p t H t p t dt


  
   

  
   

                          
1

ˆ ˆ ˆ ˆ ˆ, , ( ) , ,
2

i Ti

i II

f t u u y t g t u u p t H t p t dt


  
   

  
          (6.8) 

Since  x t is feasible for (VD) and       ˆ ˆ ˆ, ,u t y t p t is feasible for (Mix VD), we have 

                          

 ˆ ( ) , , 0, 1,2,...,i i

i I I

y t g t x x dt r





   

This, together with the feasibility       ˆ ˆ ˆ, ,u t y t p t  for the dual problem (Mix VD)

 

     

         
1

ˆ ˆ ˆ ˆ ˆ ˆ( ) , , ( ) , , ,
2

i Ti i i

i I i II I

y t g t x x dt y t g t u u p t G t p t dt
 


 

  
  

  
  

,  1,2,...r   

This, in view of second-order quasi-invexity of    ( ) ,.,. , 1,2,...i i

i I I

y t g t dt r





 gives 

       

    

         ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , , ( ) , , , 0.

TT i i i i T

u u
i I i II

y t g t u u D y t g t u u G t p t dt
 

   
 

   
     

   
 

 This, by integration by parts, gives,

 

          

         

 

ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 ( ) , , ( ) , , ,

ˆ ˆ ˆ( ) , ,

TT i i i i T

u u
i I i II

t b

T i i

u

i I
t a

y t g t u u D y t g t u u G t p t dt

y t g t u u

 



   



 






   
     

   



 



 

Using 0
t b

t a





 , this gives, 

       ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , , ( ) , , , 0T i i i i

u u
i I i II

y t g t u u D y t g t u u G t p t dt
 

 
 

   
     

   
 

 From (6.4) we have, 

       ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , , ( ) , , 0T i i i i

u u u u
i I i II

f y t g t u u D f y t g t u u H t p t dt
 

   
      

   
   

This inequality, by integration by parts, gives, 
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         ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) , , ( ) , , 0

TT i i i i T

u u u u
i I i II

f y t g t u u D f y t g t u u H t p t dt  
 

     
        

     
   

which in view of second-order strict pseudoinvexity of    
0

ˆ,.,. ( ) ,.,.
ii

i II

f t y t g t dt


  
 

  
  gives 

             
0 0

1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ( ) , , , , ( ) , ,

2

i i Ti i

i I i II I

f t x x y t g t x x dt f t u u y t g t u u p t H t p t dt
 

      
      

      
  

                                                                                                                                           

Using  
0

ˆ ( ) , , 0 ,i i

i I

y t g t x x t I


   this yields

 

            
0

01
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ( ) , ,

2

Ti i

i II I

f t x x dt f t u u y t g t u u p t H t p t dt


  
   

  
 

 

This contradicts the relation (6.7).Hence    ˆ ,x t u t t I  i.e  û t is optimal solution of (VP). 

6.4. SPECIAL CASES 

     If I is empty for each 1,2,...r , then    H t H t (MixVD) reduces to the following Wolfe 

type second-order dual variational problem treated by Chen[84]. 

     If I is empty, then (MixVD) reduces to the following Mond-weir type second-order dual variational 

problem recently treated by Husain et al [42] 

6.5. NATURAL BOUNDARY VALUES 

  In this section, we present dual variational problem with natural boundary values rather than fixed end 

points. 

(VP0):           Minimize    dtxxtf
I

 ,,  

               subject to 

               , , 0,g t x x t I   

(MixVD0):   Maximize            
0

01
, , ( ) , ,

2

i Ti

i II

f t u u y t g t u u p t H t p t dt


  
  

  
  

               subject to                                                         

         
        

   

, , , ,

0 ,

T T

u u u uf t u u y t g t u u D f y t g

H t p t t I

  

  

     

          

       
1

( ) , , , 0
2

i Ti

i II

y t g t u u p t G t p t dt
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0

, , , , 0
t bi i

u u t a
i I

f t u u y t g t u u





 
   

 
  

                      , , 0 , 1,2,...

t b

i i

u

i I
t a

y t g t u u









   

 

6.6 MIXED TYPE NONLINEAR PROGRAMMING PROBLEM 

 If all the functions are independent of t, then we have following pair of problems treated in Zhang and 

Mond [86] except that square root of a quadratic form is to be omitted from the expression of the 

problems. 

(VPo):                      Minimize       f x  

                          subject to 

                         0g x 
 

(Mix CDo):             Maximize          21

2

Ti i i i

i I i I

f u y g u p t f u y g u p
 

 
    

 
    

                        subject to  

                    

       2 0i i i i

i I i I

f u y g u f u y g u p
 

   
       
   

 
 

                     

     
1

0
2

i i T i i

i I i I

y g u p y u g u p
  

 
  

 
 

 

                   0y                         
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