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PREFACE 

Cost-effective sampling methods are of a major concern in statistics, 

especially when the measurement of the characteristic of interest is costly and / or 

time-consuming. In the early 1950’s in seeking to effectively estimate the yield of 

pasture in Australia, McIntyre proposed a sampling method which later came to be 

known as ranked set sampling (RSS). The notion of RSS provides an effective way 

to achieve observational economy under certain particular conditions. Although the 

method remained dormant for a long time, its value was rediscovered in the last 25 

years or so because of its cost-effective nature. There have been many new 

developments from the original idea of McIntyre, which made the method applicable 

in a much wider range of fields than originally intended. More and more 

applications of RSS have been cited in the literature.  

The basic premise for RSS is an infinite population under study and the 

assumption that a set of sampling units drawn from the population can be ranked 

by certain means rather cheaply without the actual measurement of the variable of 

interest, which is costly and / or time-consuming. This assumption may look rather 

restrictive at first sight, but it turns out that there are plenty of situations in 

practice where this is satisfied. 

The topic of this dissertation is ‘SOME ASPECTS of RANKED SET 

SAMPLING ‘. This dissertation is divided into five chapters with a comprehensive 

bibliography given at the end.                

Chapter-I presents a brief review of various types of sampling methods and 

the structural differences between ranked set samples and simple random samples are 

discussed. 

Chapter-II deals with the estimation of parameters of Generalized 

Geometric distribution using Ranked Set Sampling procedure. These estimates are 



 

 

compared with the ordered least squares estimates and it is shown that the relative 

precisions of estimators using Ranked set sampling are higher than those of the 

ordered least squares estimation.  

Chapter-III deals with estimation of the means of Bivariate Normal 

distribution using Moving Extreme Ranked Set Sampling with concomitant 

variable. The estimators obtained are compared to their counterparts based on simple 

random sampling thus showing that they are more efficient. The issue of robustness 

of the procedure is addressed and real trees data set has been used for illustration. 

Chapter-IV deals with estimation of Simple Linear Regression Model using 

L Ranked Set Sampling. It is shown that estimated regression model based on LRSS 

is highly efficient compared to the estimators based on Simple Random Sampling, 

Extreme Ranked Set Sampling and Ranked Set Sampling.  

Chapter-V In this chapter, a new RSS method i.e., Stratified Quartile 

Ranked Set Sampling (SQRSS) is compared with simple random sampling (SRS), 

stratified simple random sampling (SSRS) and stratified ranked set sampling (SRSS) 

methods. It is shown that the SQRSS estimators are unbiased of the population 

mean of symmetric distributions and that the SQRSS is more efficient than its 

counterparts using SRS, SSRS and SRSS based on the same number of measured 

units..  

Chapter-VI In this chapter some novel applications of Ranked Set 

sampling have been discussed. 
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1.1 Introduction  

“Sampling is not mere substitution of a partial coverage for a total coverage. 

Sampling is the science and art of controlling and measuring reliability of useful 

statistical information through the theory of probability”  

- Deming (1950) 

Our knowledge, our attitudes, and our actions are based to a very large extend 

on samples. A person‟s opinion of an institution that conducts thousands of 

transactions every day is often determined by the one or two encounters he has had 

with the institution in the course of several years. Travelers, who spend 10 days in a 

foreign country and then proceed to write a book telling the inhabitants how to revive 

their industries, reform their political system, balance the budget, and improve the 

food in their hotels, are a familiar figure of fun. But in a real sense, they differ from 

the political scientist who devotes 20 years to living and studying in the country only 

in that they base their conclusions on a much smaller sample of experience and are 

less likely to be aware of the extent of their ignorance. 

Sampling, or sample survey is a method of drawing an inference about the 

characteristic of a population or universe by observing only a part of population. Such 

methods are extensively used by government bodies throughout the world for 

assessing, among others, different characteristics of national economy as are required 

for taking decisions regarding the imposition of taxes, fixation of prices and minimum 

wages, etc and for the planning and projection of future economic structure. Thus, 

surveys are conducted for estimation of yield rates and acreages under different crops, 

estimation of value added by manufacture in the industries sector, estimation of 

number of unemployed persons in the labor forces, construction of cost of living 

indices for persons in different professions, and so on. 

The enumeration of population by sampling methods, proposed by Laplace in 

1783, came into widespread use only by the mid-thirties of this century. During the 

last few decades there has been tremendous development in the methods of analysis 

of and drawing inference from the data obtained through survey sampling. 
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1.2 Classical Types of Sampling Designs 

For achieving desired correct results from a sample survey, the execution of 

sample design is of utmost importance and hence proper selection of the sampling 

methods becomes imperative. The sampling techniques can be broadly classified into 

following categories; viz Probability and Non-Probability sampling, which are 

enumerated as follows:- 

1 - Probability Sampling  

a) Simple Random Sampling 

b) Stratified Sampling 

c) Systematic Sampling  

d) Cluster Sampling 

e) Multi – Stage Sampling 

f) Multi – phase Sampling 

g) Area Sampling 

2 - Non- Probability Sampling 

a) Convenience Sampling  

b) Quota Sampling 

c) Judgmental Sampling. 

Probability Sampling 

The Probability sampling is the scientific technique which draws sample from 

the population based on the application of probability methods, wherein each unit of 

the probability has some predefined probability of inclusion of an event into the 

drawn sample. 

The samples will therefore be selected in the following manner 

 Each unit is drawn on the basis of randomness  

 Each unit has the same chance of being selected. 

 Probability of selection of a unit is proportional to the sample size. 
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Thus the samples are drawn based on random procedure and not on any 

judgmental method. 

These sampling techniques are described below: 

a) Simple Random Sampling 

Simple random sampling (SRS) is the most basic form of probability sampling 

and the most commonly used sampling approach for collecting data from a population 

with the goal of making inferences about unknown features of the population. The 

observations in an SRS are mutually independent if the sampling is from an infinite 

population or with replacement from a finite population and they are dependent if 

sampling from a finite population without replacement. In either situation, however, 

there is a probabilistic guarantee that each measured observation in an SRS can be 

considered representative of the population. 

In a simple random sampling, the elements of the sample are drawn at random 

and such that each and every unit of the population has an equal chance of being 

selected. If we have a population of N elements we can select n sets of elements out of 

such a population (where n is fairly large), and the possible sets of n elements will be 

N
Cn, following the same probability of selection for every such set of elements. The 

basic aim is to achieve randomness in drawing the elements of a sample to ensure all 

possible samples to have the same chance of being selected. We can use either lottery 

system or the Random Number table system, both either with replacement of the 

drawn number or without replacement. 

In lottery system, all the elements of the population are allotted identical 

identification; say some type and size of paper with elements numbers written on 

each. After proper folding the papers in the same manner and thorough mixing of 

these papers, we can choose any paper at random without any bias either through the 

container system or taking out each paper blindly. When N is very large, this method 

becomes cumbersome and difficult to manage. In that case, we use the method of 

Random Number Tables. From the Random Number Tables, the numbers can be 

selected from the list, where numbers have already been arranged in Random order. 

We can select Numbers either through the rows or through columns. Various Random 

Number Tables in use are: 
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(i) Tippett‟s (1927) random number tables of 41,600 digits, 

(ii) Fisher and Yates‟ (1938)  random number tables of 15,000 digits, 

(iii) Kendall and Smiths (1939) table of random number of 100,000 digits, 

(iv) Random number tables of 1 million digits prepared by Rand Corporation 

(1955), 

(v) C.R. Rao, S.K. Mitra, A. Matthai, and K.G. Ramamurthy (1966), table of 

random numbers of 20,000 digits.  

Simple random sampling is most useful when the population of interest is 

relatively homogeneous. The main advantages of this design are: 

 It provides statistically unbiased estimates of the mean, proportions, and 

variability. 

 It is easy to understand and easy to implement. 

 Sample size calculations and data analysis are very straightforward 

b) Stratified Sampling:  

This design is useful for estimating a parameter when the target population is 

heterogeneous. In stratified sampling, the target population is separated into non-

overlapping strata, or subpopulations that are known or thought to be more 

homogeneous, so that there tends to be less variation among sampling units in the 

same stratum than among sampling units in different strata. Strata may be chosen on 

the basis of pre-existing information or professional judgment about the units of the 

population.  

In a sample survey the necessity of stratification is often dictated by 

administrative requirements or convenience. For a state wise survey, for instance, it is 

often convenient to draw samples independently from each district and carry out 

survey operations for each district to take care of the survey operations under its 

jurisdiction. Thus for administrative convenience, each district may be treated as a 

stratum. Since a stratified sample consists of units selected separately from each 

stratum, such a sample is expected to be a better representation for the population than 

a simple random sample selected from the whole universe. In practice, the population 



 
Chapter – 1              Sampling Designs 

5 
 

often consists of heterogeneous units (with respect to the character under study). For a 

socio – economic survey, for instance, people may live in rural areas, urban localities, 

ordinary domestic houses, hostels, hospitals, jails, etc. It is evident that the sampling 

problem will be different for these different sectors of the population and each such 

sector should be treated as a separate stratum. Again, administrators may require 

estimates for different strata separately along with the estimate for the population as a 

whole. This can be achieved through stratified sampling. 

 Advantages of this sampling design are: 

 It has potential for achieving greater precision in estimates of the mean and 

variance. 

 It allows computation of reliable estimates for population subgroups of special 

interest.  

 Greater precision can be obtained if the measurement of interest is strongly 

correlated with the variable used to make the strata. 

c) Systematic Sampling:  

A very simple form of sampling for its design and execution is used when the 

numbers of population are arranged in an order, the order corresponding to 

consecutive numbers. In this type of sampling, the first sample unit is selected at 

random and the remaining units are automatically selected on a definite sequence at 

equal spacing from one another. This design provides a practical, easy and convenient 

way often used in field surveys for designating sample locations and ensures uniform 

coverage of the population. 

d) Cluster Sampling 

Sometimes it is not possible to have a list of all the units of study in the 

population so that drawing a simple random sample is not feasible. However, a list of 

some bigger units each consisting of several smaller units (study units) may be 

available from which a sample may be drawn.  

In cluster sampling the population is first divided into a number of non-

overlapping clusters. A cluster is a collection of a number of smaller units which are 
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the ultimate objects of study and in respect of which survey results are to be 

computed. We shall often refer to these smaller units as elementary units. A simple 

random sample of clusters is selected and all the elementary units belonging to the 

selected clusters are surveyed. 

Cluster sampling is often used in agricultural surveys for determination of area 

under crops where a randomly selected point on a cadastral map determines a cluster 

of plots of a specified total size. In a survey on the industrial products, batches of 

products coming out from a production process within specified lengths of time may 

from clusters. 

e) Multi-stage Sampling:  

Use of cluster sampling technique under certain circumstances is cheaper, but 

it is less efficient than the individual sampling. Thus as a combination, we can use 

Multistage Sampling, in which we can select cluster samples and then studying only a 

sample of units in each cluster. This is called Two-stage Sampling. Similar concept 

can be extended to bring in Multistage sampling, where sampling units at each stage 

being done from each of the sampling units.  

f) Multi-phase Sampling: 

 This type of sampling is adopted when sampling units of the same type are the 

objects of different phases of observation. In this case all the units of a phase in a 

sample are studied with respect to the same characteristics. This concept can be 

extended to Multiphase sampling. In this case information collected during one phase 

is then used in the second or subsequent phases.  

g) Area Sampling: 

 When we use cluster sampling concept for the elementary units of population 

in a particular geographical area, it is called Area Sampling. In this case, we can study 

the community behavior index of a particular community living in a particular locality 

or part of the country, but selection of sample in each area should be random for 

enumerated elements. Thus the enumeration of elements is necessary only in the 

limited number of selected areas.  
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Non-Probability Sampling 

As against the Probability Sampling, the non-Probability Sampling is a 

procedure of selection of a sample without the use of randomization. It is based on 

convenience or judgment and hence is likely to be biased. The sampling variation in 

such a case is very uncertain and cannot be estimated.  

In this category we can have samplings done either on the convenience basis 

such as picking up names from the telephone directory or on the basis of quota such 

as quota of candidates under one category fixed for the interview. We can first sample 

out the total population based on categories as per quota list and then selection of 

these lists without any fixed procedure. We can also follow a judgmental method of 

non-probability sampling, when the sample elements are either picked up on previous 

experience basis or with no set rule procedure, but based on hunch. It is also called as 

opinion sampling. This is used only when there is better evidence or selection 

procedure in vogue.  

1.3  Ranked Set Sampling 

1.3.1  Introduction 

 Despite the assurance that there is a probabilistic guarantee that each measured 

observation in a simple random sample can be considered representative of the 

population, there remains a distinct possibility that a specific SRS might not provide a 

truly representative picture of the population. With this issue in mind, statisticians 

have developed a variety of ways to guard against obtaining such unrepresentative 

samples. Sampling designs such as stratified sampling, cluster sampling, etc., all 

provide additional structure on the sampling process to improve the likelihood that the 

collected sample data provide a good representation of the underlying population. A 

secondary goal in most data collection settings is to minimize the costs associated 

with obtaining the data, including both the cost of initially selecting the population 

units for measurement and in making the actual measurements. Ranked set sampling 

(RSS) is a relatively recent development that addresses both of these issues. It uses 

additional information from the population to provide more structure to the data 

collection process and increases the likelihood that the collected sample data will, in 

fact, provide a representative picture of the population. In addition, it is designed to 
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minimize the number of measured observations (i.e., the sample size) required to 

achieve the desired precision in making inferences about the population. Ranked set 

sampling has a potential to be used in environmental, ecological, biological, medical, 

social, agricultural sciences as well as business applications. 

 Ranked Set Sampling is an innovative sampling design originally developed 

by McIntyre (1952) for situations where taking the actual measurements for sample 

units is difficult (e.g., costly, destructive, time-consuming) but there are mechanisms 

readily available for either informally or formally ranking a set of sample units. The 

unique feature of ranked set sampling is that it combines simple random sampling 

with the field investigator‟s professional knowledge and judgment to pick places to 

collect samples. The use of ranked set sampling increases the chance that the collected 

samples will yield representative measurements; that is, measurements that span the 

range of low, medium, and high values in the population. This results in better 

estimates of the mean as well as improved performance of many statistical 

procedures. Moreover, ranked set sampling can be more cost-efficient than simple 

random sampling because fewer samples need to be collected and measured. 

 The use of professional judgment in the process of selecting sampling 

locations is a powerful incentive to use ranked set sampling. Professional judgment is 

typically applied by visually assessing some characteristic or feature of various 

potential sampling locations in the field, where the characteristic or feature is a good 

indicator of the relative amount of the variable of interest that is present.  

 In particular, McIntyre was interested specifically in improving the precision 

in estimation of average yield from larger plots of arable crops without a substantial 

increase in the number of fields from which detailed expensive and tedious 

measurements needed to be collected. The RSS approach, however, is applicable in 

any situation where minimizing sample size while retaining precision of our statistical 

inferences is important. For lots of cases such as the one McIntyre had, RSS can 

replace the use of SRS in these designs, to the benefit of sample estimates.  

1.3.2 Significance of Ranked Set Sampling 

Typically the most expensive and time consuming part of this process is 

laboratory analysis. For example, suppose we wish to estimate the mean bone density 
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of students at a university. The lab work is so costly that the budget is only enough to 

analyze samples from four students. Furthermore, in order to acknowledge the 

inherent uncertainty, we need to present this estimate with a confidence interval 

within which we expect the true population mean to lie with desired confidence. The 

simplest way to obtain our sample is to randomly select four students from the 

university‟s population, then take bone samples from them and measure their bone 

densities. While the arithmetic average of the four bone densities is an unbiased point 

estimate of the population mean, the associated confidence interval can be very large, 

reflecting the high degree of uncertainty with estimating a population mean from only 

four measurements. This is because we have no control over which individuals of the 

population enter the sample. The only way to overcome such a problem with simple 

random sampling is to increase the sample size which sometimes is not realistic and 

applicable. RSS was proposed to help improve efficiency in such cases without 

increasing sample size. In the last few years there has been an explosion of interest in 

and a tremendous amount of methodological development of ranked set sampling 

procedures. One reason for this increase is the recognition by statisticians of the need 

for more cost-effective sampling procedures, such as those that use a priori 

knowledge or can otherwise provide the needed information with a significant 

reduction in cost over the more traditional simple random sampling approaches. 

Nowhere is this need more evident than in the field of environmental monitoring and 

assessment. In the past, the assessment of most environmental problems was 

relatively straight forward. Many of the major environmental problems could be 

detected using the human senses (a river was burning because of chemical wastes 

being discharged directly into the river; the air in large cities could be seen and 

smelled etc). In the last forty years, our knowledge of anthropogenic pollution and our 

ability to measure minute quantities (parts per billion or trillion) of toxic chemicals in 

our environment has dramatically improved. Now we have identified hundreds of 

man-made toxic chemicals in our environment. The cost of measuring and monitoring 

these chemicals and assessing their environmental impact is extremely high. It 

requires sophisticated measurement and careful sampling of large potentially 

impacted areas. These measurements can range in cost from a few dollars to several 

thousand per sample. The large range and diversity of media from which samples 
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must be drawn create additional costs. Thus any sampling method which allows fewer 

observations to provide the same information (currently known as `Observational 

Economy') is particularly valuable in environmental applications. Ranked set 

sampling can provide observational economy under very special circumstances - 

namely, when sample units can be easily and inexpensively gathered and ranked 

among themselves, but are expensive to measure accurately. This situation arises very 

naturally in agriculture and forestry, where the earliest applications occurred. It is 

easy and cheap to judge fairly accurately by observation, for example, which of 

several trees contains the largest volume of wood, which the next largest, and so on 

down to the least. It is much more expensive to actually measure the amount of wood 

in each. The same type of circumstance arises in some environmental applications. 

For example, consider the problem of assessing the status of a hazardous waste site, 

(i.e., determining if a site has toxic chemicals in excess of a set standard). We often 

know a great deal about the sites from records, photos and physical characteristics. 

This knowledge will allow us to rank the areas from which we will sample in terms of 

high to low levels of toxic pollution. This would limit the number of expensive 

samples necessary to assess the status of the hazardous waste site (i.e., does it require 

clean up or not). 

The core idea of Ranked-set sampling is to create hypothetical stratified 

samples based on ranks. For example, we could randomly select two trees and judge 

by expert opinion which tree contains more volume of wood. The smaller of the two 

is selected for accurate measurement later. Next, select another two trees, this time 

select the larger one. Continue this procedure until 20 trees being selected and ranked; 

10 of them are selected for accurate measurements. As we can see from the above 

example, one main disadvantage of simple random sampling is when a sample of 

units is drawn at random from a population the units may not constitute as a 

representative sample of the population. For example, when we draw a random 

sample of 5 students from the population of all students of a university in order to 

estimate the average weight, it is possible with positive probability that all students in 

the sample are obese. 
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1.3.3 A historical note 

 Ranked set sampling was basically the idea first proposed by McIntyre in his 

effort to find a more efficient method to estimate the yield of pastures. Measuring 

yield of pasture plots requires mowing and weighing the hay which is a very time-

consuming process. But an experienced person can rank by eye inspection fairly 

accurately the yields of a small number of plots without actual measurement. 

McIntyre adopted the following process. A random sample of m pasture lots is ranked 

by visual inspection with respect to the amount of yield. From this sample, the lot 

with rank 1 is taken for cutting and weighing. Then again a random sample is taken 

and ranked. From the second sample, the lot with rank 2 is taken, and so on. When all 

the selected lots for ranks from 1 to m have been taken and measured, the cycle is 

repeated over again and again until a total of r cycles are completed. McIntyre 

illustrated the gain in efficiency by a computation involving five distributions. He 

observed that the relative efficiency, in not much less than (m+1)/2 for symmetric or 

moderately asymmetric distributions, and that the relative efficiency decreases with 

increase in the asymmetry of the underlying distribution but is always greater than 1. 

He also mentioned the problems of optimal allocation of measurements among the 

ranks and the problems of ranking errors and possible correlation among the units 

within a set, etc. Since only a fraction of the sampled units are quantified, the method 

presumes that the physical acquisition of units is cheap as compared with their 

quantification.  

 McIntyre‟s proposal remained buried in literature for over a decade until Halls 

and Dell (1966) conducted a field trial evaluating the applicability of RSS to the 

estimation of forage yields in a pine-hardwood forest. The term „Ranked Set 

Sampling‟ which is in current use, was coined by them. The first theoretical result for 

ranked set sampling was given by Takahasi and Wakimoto (1968). They proved that 

when ranking is perfect, the ranked set sample mean is an unbiased estimator of the 

population mean, and the variance of the ranked set sample mean is always smaller 

than the variance of the mean of a simple random sample of the same size. Dell and 

Clutter (1972) also obtained similar results but without restricting to the case of 

perfect ranking. They demonstrated that, for comparable sample sizes, the RSS 
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procedure results in more accurate parameter estimators than simple random 

sampling. Equivalently, RSS requires fewer measured observations than SRS to attain 

the same level of precision. The improvement in precision comes about because RSS 

adds structure to the data, in the form of the sampler's ranking, that is absent in SRS. 

This added structure is similar to stratifying the population prior to taking a SRS. 

Whereas stratified SRS uses auxiliary information from the entire population, 

however, RSS uses auxiliary information from only the units in the initial sample; it 

does not require the availability of auxiliary information for all units in the 

population. 

 Dell and Clutter (1972) and David and Levine (1972) were the first to give 

some theoretical results on imperfect ranking. Stokes (1976) (1977) considered the 

use of concomitant variables in RSS. Till then the attention had been focused mainly 

on the non-parametric estimation of population mean. Stokes (1980a) considered the 

estimation of population variance and the estimation of correlation coefficient of a 

Bivariate Normal population based on RSS. Many procedures were yet to be 

investigated and developed. 

 The middle of 1980‟s was a turning point in the development of the theory and 

methodology of RSS. Since then, many variations of the ranked set sampling have 

been proposed and various statistical procedures for non-parametric and parametric 

estimation have been investigated and a sound theoretical foundation has been laid. 

 Several researchers have studied ranked set sampling, but a complete review 

of applications and theoretical framework on RSS is available in Patil et al. (1994a), 

Kaur et al. (1995), and Johnson et al. (1996). Patil et al. (1993a) studied the RSS 

method when sampling is from a finite population. They gave explicit expressions for 

the variance and relative precision of RSS estimators for several set sizes when the 

population follows a linear or quadratic trend. Patil et al. (1993b) studied the relative 

precision of ranked set sampling estimators with the regression estimator when the 

ranking is done on the basis of an auxiliary variable. The same authors (1994a) 

classified various papers on RSS into three groups: (i) theory, (ii) methods, and (iii) 

applications. They reviewed various aspects of RSS in a single unified notation. For 

additional applications of RSS and its multivariate considerations see Johnson et al. 
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(1993), Patil et al. (1994c), Patil et al. (1994b), and Gore et al. (1993). Some of these 

references also discuss the problems in implementing RSS. A comprehensive 

bibliography on RSS up to 1999 was provided by Patil et al. (1999). The field of RSS 

has been in its florescence period in the past few years and many new developments 

in RSS have been made. A few are mentioned as follows. The Fisher information 

theory of RSS has been established; Chen (2000a) and Bai and Chen (2003). A host of 

new RSS schemes such as the adaptive RSS and multi-layer RSS using either 

variables of interest or concomitant variables have been devised, Al-Saleh and Zheng 

(2002), Chen (2002) and Chen and Shen (2003). Optimal RSS designs have been 

developed for various problems such as estimation of parameters in parametric 

families, estimation of quantiles and distribution-free tests, see Chen and Bai (2000), 

Chen (2001a) and Ozturk and Wolfe (2000a, b, c, 2001). The issues with cost in RSS 

have been reasonably handled; see Nahhas et al. (2002) and Wang et al. (2004). The 

RSS has been considered for many more statistical procedures such as density 

estimation, quantile estimation, U-statistics, M-statistics, variance estimation and rank 

regression etc., Chen (1999, 2000b), Presnell and Bohn (1999), Zhao and Chen 

(2002), MacEachern et al. (2002) and Ozturk (2002). Special RSS schemes have been 

applied to the designs for treatment comparisons, Ozturk and MacEachern (2004) and 

Chen et al. (2006a). A comprehensive coverage of RSS which includes the most 

recent developments of RSS was given in a monograph by Chen et al. (2004).  

 Several variations of ranked set sampling method have been proposed and 

developed by researchers to come up with more efficient estimators of a population 

mean. A few references are given as follows. Samawi et al. (1996) introduced 

Extreme Ranked Set Sampling and obtained an unbiased estimator of the mean which 

outperforms the usual mean of a simple random sample of the same size for 

symmetric distributions. Muttlak (1997) suggested Median Ranked Set Sampling to 

increase the efficiency and to reduce ranking errors over ranked set sampling method 

and proved its better performance in estimating the mean of a variable of interest for 

some symmetric distributions. Hossain and Muttlak (1999) introduced Paired Ranked 

Set Sampling, Al-Saleh and Al-Kadiri (2000) introduced Double Ranked Set 

Sampling, Hossain and Muttlak (2001) introduced Selected Ranked Set Sampling and 

Al-Saleh and Al-Omari (2002) introduced Multistage Ranked Set Sampling. Muttlak 
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(2003a) proposed Percentile Ranked Set Sampling and Muttlak (2003b) proposed the 

use of Quartile Ranked Set Sampling (RSS) for estimating the population mean.  

Jemain and Al-Omari (2006) suggested Double Quartile Ranked Set Sampling 

(DQRSS) for estimating the population mean. Two-stage Median Ranked Set 

Sampling was developed by Jemain et al. (2007a). Al-Nasser (2007) introduced L-

Ranked Set Sampling Design as a generalization of some of the above mentioned 

ranked set type sampling methods and proved the optimal property of his proposed 

estimators for symmetric family of distributions. Al-Nasser and Radaideh (2008) used 

L Ranked-Set Sampling (LRSS) to estimate a simple linear regression model. They 

showed that the estimated regression model based on LRSS is highly efficient 

compared to the estimators based on simple random sampling, Extreme ranked set 

sampling and ranked set sampling. Balanced Group Ranked Set Sampling was 

developed by Jemain et al. (2009). In addition, various modifications of RSS have 

been suggested for the estimation of population ratio. Samawi and Muttlak (2001), for 

example, used Median Ranked Set Sampling to estimate the population ratio. Samawi 

and Tawalbeh (2002) introduced Double Median Ranked Set Sampling (DMRSS) 

method for estimating the population mean and ratio. More recently, Stratified 

Percentile Ranked Set Sampling (SPRSS) method has been suggested for estimating 

the population mean by Al-Omari et al. (2011). They compared the SPRSS method 

with the Simple Random Sampling (SRS), Stratified Simple Random Sampling 

(SSRS) and Stratified Ranked Set Sampling (SRSS). It was shown that SPRSS 

estimator is an unbiased estimator of the population mean of symmetric distributions 

and is more efficient than its counterparts using SRS, SSRS and SRSS based on the 

same number of measured units. Stratified Quartile Ranked Set Sampling (SQRSS) 

has been given by Syam et al. (2012) and it has been shown that the SQRSS 

estimators are unbiased of the population mean of symmetric distributions.  

1.3.4  Description of Ranked Set Sampling 

The original method of getting a Ranked set sample as obtained by McIntyre 

is described as follows. First, a simple random sample of size m is drawn from the 

population and the m sampling units are ranked with respect to the variable of interest, 

say height (X), by judgment without actual measurement. Then the unit with rank 1 is 
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identified and measured for X. The remaining units of the sample are discarded. Next, 

another simple random sample of size m is drawn and the units of the sample are 

ranked by judgment, the unit with rank 2 is measured for X and the remaining units 

are discarded. The process is continued until a sample of size m is obtained and 

ranked and the unit with rank m (highest rank) is taken for measurement of X. This 

whole process is called a cycle. The cycle is then repeated r times and it yields a 

ranked set sample of size n=rm.  

The essence of RSS is conceptually similar to the classical stratified sampling. 

RSS can be considered as post-stratifying the sampling units according to their ranks 

in the sample.  

For the General RSS scheme we select m random sets each of size m from the 

target population. In practice, m usually takes values such as 2, 3, or 4. Each set is 

then ranked by convenient (cheap) method in context of the variable of interest.  

In Matrix notation, we have  

 ( )   ( )  …  ( )  

 ( )   ( )  …  ( )  

… … … … 

 ( )   ( )  …  ( )  

  After ranking, only the diagonal units are selected and actually measured. This 

constitutes the ranked set sample. That is, we have only measures X(1)1, X(2)2, ….,  

 ( ) , by obtaining the unit with the smallest rank from the first row, the second 

smallest rank from the second row and so on until the largest unit from the m
th

 row. 

This represents one cycle of RSS. We can repeat the whole procedure r times to get a 

RSS of size n = rm. It is to be noted here that RSS requires m
2 

units to be taken, but 

only m of them are actually measured. 

 The ranks which the units in a set receive may not necessarily tally with the 

numerical orders of their latent X values. If the ranks do tally with the numerical 

orders, the ranking is said to be perfect, otherwise it is said to be imperfect. When 

ranking is perfect, the ranks are put in parentheses, else they are put in brackets. Thus 
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X (m) and X[m] is the generic notation for measurements with rank m when ranking in 

perfect and imperfect, respectively. 

1.3.5 Important Mathematical Results 

  For a simple random sample of size n, i.e., x1, x2,… xn, from a population with 

mean µ and variance σ
2 

the traditional non-parametric estimator of µ is given by  

 ̅    
 

 
∑  

 

   

 

With the variance 

 ( ̅   )  
  

 
 

Now with RSS, for n=rm we have the following, 

 ̅    
 

  
∑∑ ( )  
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 ( ̅   )  
  

 
 

 

   
∑( ( )   )

 

 

   

 

Where  ( ) is the mean of the ith ranked set, and is given by  ( )  
 

 
∑   ( ) 
 
   . 

We can see a variance reduction factor of 
 

   
∑ ( ( )   )

  
    in the expression for 

 ( ̅   ) above, associated with  ̅   . As the rankings become more accurate, the term 

∑ ( ( )   )
  

    becomes larger, and the overall variance of  ̅    decreases. 

Takahasi and Wakimoto (1968) were the first to study the mathematical theory of 

RSS in detail and they also defined Relative Precision (RP) as 

   
 ( ̅   ) 

 ( ̅   ) 
 

 They also showed that 
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 Under the equal allocation of each order statistic, RSS will always result in as 

precise an estimate as SRS, if not better. 

1.3.6  Balanced Ranked Set Sampling 

 In a balanced RSS, the number of measurements made on each ranked statistic 

is the same for all the ranks. A balanced ranked set sampling produces a data set as 

follows: 

X[1]1 X[1]2 … X[1]m 

X[2]1 X[2]2 … X[2]m 

… … … … 

X[m]1 X[m]2 … X[m]m 

 Here all the X[k]i‟s are mutually independent and the X[k]i‟s in the same row 

are identically distributed. The measured observations X[1]1, X[2]2 …, X[m]m constitute 

a balanced ranked set sample of size m, where the descriptor „balanced‟ refers to the 

fact that we have collected one judgment order statistic for each of the ranks 1,2,…, 

m. 

1.3.7 Unbalanced Ranked Set Sampling 

  An alternative to balanced RSS is unbalanced RSS. Instead of having all of the 

ranks represented equally in the subsample, one could measure the variable of interest 

on certain ranks more frequently than on others. 

 An unbalanced RSS is one in which the ranked order statistics are not 

quantified the same number of times. An unbalanced ranked set sample is given as 

follows: 

X[1]1 X[1]2 …  [ ]   

X[2]1 X[2]2 …  [ ]   

… … … … 

X[m]1 X[m]2 …  [ ]   

 Here all the X[k]i‟s are independent and the X[k]i‟s with the same j are also 

identically distributed. 
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  There are situations where measuring differing numbers of the various 

judgment order statistics (unbalanced RSS) can lead to improved RSS procedures. 

The choice of set size remains important for this unbalanced RSS setting but the 

concept of a cycle is no longer necessary, since we do not need to have the same 

measurement counts for every judgment order statistic.  

  Just as with balanced RSS, the measured units in an unbalanced RSS are 

mutually independent, but now the numbers of measured units in each of the ranks are 

not necessarily equal. Balanced RSS corresponds to the special case where m1 = 

m2=… = mk.  

  There are a number of factors to consider when deciding whether to use 

balanced or unbalanced RSS, mostly related to the type of inferences of interest and 

what is known about the shape of the underlying distribution. There has been a 

substantial amount of research on the best way to allocate observations to the 

judgment order statistics in unbalanced RSS. The optimal allocation depends on the 

parameter being estimated and the statistical inference being performed. Stokes 

(1995) and Bhoj (1997) were the first to demonstrate the optimality of unbalanced 

RSS for estimation of a location parameter within the context of a parametric family 

and Kaur et al. (1997) obtained corresponding results for positively skewed 

distributions. Ozturk and Wolfe (2000a) provided the optimal allocation for a variety 

of nonparametric test procedures. Wolfe (2004) described an RSS procedure where 

the measured subsample consisted of ranked units judged to be the medians of their 

respective sets. Such a method is ideal for estimating the population median (although 

other parameters might be difficult to estimate once the data are collected this way). 

Chen et al. (2006b) described how Neyman allocation is optimal for obtaining an 

unbalanced RSS when one is interested in estimation of a population proportion.  

 Early RSS research assumed that the ordering assigned by the researcher 

corresponded perfectly to how the items would have been ordered if the researcher 

had used the actual value of the variable of interest to rank them. In this situation, the 

judgment order statistics are the true order statistics. Dell and Clutter (1972) 

considered the more realistic scenario in which the rankings are not perfect. It is easy 

to imagine that visual judgment can lead to imperfect rankings, particularly among 
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units with ranks in the middle of the ordered set. These items may be so similar in 

attributes that the researcher has difficulty ordering them. MacEachern et al. (2004) 

developed a method that allows the researcher to assign probabilities to the ranks 

instead of forcing him or her to assign a single distinct rank to each item. When using 

an auxiliary variable to estimate a ranking based on the variable of interest, imperfect 

rankings can occur when the two variables are not perfectly correlated. 

 Regardless of whether or not the rankings are perfect,  ̂
   

 is an unbiased 

estimator for the population mean so long as the errors are not related to the ranking 

procedure (Dell and Clutter, 1972). The more accurate the rankings, the more precise 

this estimator will be. The performance of the RSS estimator vis-a-vis SRS can be 

evaluated by examining the relative precision of the estimators. Nahhas et al. (2002) 

showed that the relative precision of RSS (i.e., the ratio of the variance of the mean 

estimator under RSS to the variance of the mean estimator under SRS) improves as 

the rankings become more accurate.  

 For a given number of quantified observations, the precision of the RSS 

estimator for the mean, proportion, or total is at least as good as that of the SRS 

estimator. A SRS is equivalent to a RSS when the ranks are assigned randomly. Thus, 

as long as the ranking of the initial sample is better than a random ranking, a RSS 

provides an estimator with less variability than the estimator from a SRS of the same 

size. 

 The advantages of RSS will be maximized, therefore, when the researcher 

chooses a ranking method where 

(1) the rankings are perfect or close to perfect, and  

(2) the cost of collecting and ranking the initial observations is significantly lower 

than that of quantifying the selected observations.  

Amarjot et al. (1996) developed a cost model for comparing RSS to stratified 

simple random sampling. Nahhas et al. (2002) provided a method for 

determining the optimal set size taking into account the various costs 

associated with RSS. Wang et al. (2004) evaluated the cost-effectiveness of 

quantifying multiple units from the same set. 
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1.4  Some Variations of Ranked Set Sampling 

 There are a number of variations of ranked set sampling method proposed and 

developed by researchers. Some of them are described below. 

1.4.1  Extreme Ranked set Sampling (ERSS) 

 The extreme ranked set sampling (ERSS) procedure was introduced by 

Samawi et al (1996a). In this procedure, we select m random samples of size m units 

from the population and rank the units within each sample with respect to a variable 

of interest by visual inspection. If the sample size m is even (ERSS-Even), select from 

m/2 samples the smallest unit and from the remaining m/2 samples the largest unit for 

actual measurement. If the sample size is odd, select from (m-1) samples the smallest 

unit, from the other (m-1) samples the largest unit and for the remaining sample, we 

have two options. Either select the median of the sample for actual measurement 

(ERSS-odd-Median) or take the average of the measures of the smallest and the 

largest units (ERSS-odd-both). The cycle may be repeated r times to get rm units. 

These rm units form the ERSS data. 

 We can see that the ERSS in practical applications can be performed with 

fewer errors in ranking the units since all we have to do is find the largest or the 

smallest of the sample and measure it. The ERSS method is very easy to apply in the 

field and will save time in performing the ranking of the units with respect to the 

variable of interest. In addition, this method will reduce the errors in ranking and 

hence increase the efficiency of the ERSS when compared to RSS. 

1.4.2  Median Ranked Set Sampling (MRSS) 

 Muttlak (1997) proposed median ranked set sampling (MRSS) method which 

consists of selecting m random samples each of size m units from the population and 

rank the units within each sample with respect to the variable of interest. If the sample 

size m is odd, then from each sample select for measurement the ((m+1)/2)th smallest 

rank (the median of the sample). If the sample size m is even, then select for 

measurement the (m/2)th smallest rank from the first m/2 samples, and the 

((m+2)/2)th smallest rank from the second m/2 samples. The cycle can be repeated r 

times if needed to obtain a sample of size rm. 
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1.4.3  Paired Ranked Set Sampling (PRSS) 

 Hossain and Muttlak (1999) gave the Paired ranked set sampling (PRSS). In 

this method two sets of m random elements are required to obtain a sample of size 

two. At first m elements are selected randomly and ordered, the mth smallest element 

of the set is considered for measurement, where 1  k  m is pre-determined, 

Similarly, second set of size m elements is again selected randomly and ordered, and 

the (m – k+1)
th

 smallest of the set is measured. The procedure can be repeated r times 

to obtain a sample of size 2r. Note that in the usual RSS method the sample size is 

required to be a multiple of m and in the PRSS method it is required to be a multiple 

of 2 and does not depend on the choice of the set size m. 

1.4.4  Double Ranked Set Sampling (DRSS) 

 The double ranked set sampling (DRSS) procedure was given by Al-Saleh and 

Al -Kadiri (2000). It can be described as the following: Identify m
3
 units from the 

target population and divide these units randomly into m sets each of size m
2
. The 

procedure of ranked set sampling is applied on each m
2
 units to obtain m ranked set 

sampling each of size m, then again apply the ranked set sampling procedure on the m 

ranked set sampling sets obtained in the first stage to obtain a DRSS of size m . 

1.4.5  Moving Extremes Ranked Set Sampling (MERSS) 

 Al-Odat and Al-Saleh (2001) introduced the concept of varied set size RSS, 

which is coined here as Moving Extremes Ranked Set Sampling (MERSS). They 

investigated this modification non-parametrically and found that the procedure can be 

more efficient and applicable than the simple random sampling technique (SRS). 

The procedure of MERSS is described as follows: 

Step 1:  Select m random samples of size m from the population.  

Step 2:  Identify the maximum of each set by eye or by some other relatively 

inexpensive method, without actual measurement of the characteristic of 

interest. Measure accurately the selected unit. 

Step 3:  Again select m random samples of size m from the population and identify 

the minimum in these. Measure it accurately.  
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These 2m units constitute a MERSS of size n=2m 

Repeat the above steps r time until the desired sample size, k = 2rm is obtained. 

This sample is called Moving Extremes Ranked Set Sample (MERSS). 

1.4.6  Selected Ranked Set Sampling (SRSS) 

 Hossain and Muttlak (2001) considered the situation where, instead of 

selecting m random sets of size m elements each as in the RSS, only k sets of m>k 

elements are selected, and instead of measuring the ith smallest order statistic of the 

ith set, mi
th

 smallest order statistic of the mi
th

 set is considered for measurement the 

values of            (              )  are required to be 

determined beforehand. 

1.4.7  Percentile Ranked Set Sampling (PRSS) 

 Percentile ranked set sampling (PRSS) was given by Muttlak (2003a). In this 

procedure, select m random samples of size m units from the population and rank the 

units within each sample with respect to a variable of interest. If the sample size is 

even, select for measurement from the first m/2 samples the ( p(m +1))th smallest 

ranked unit and from the second m/2 samples the (q(m+1))th smallest ranked unit, 

where 0  p  1 and q = 1 – p . If the sample size is odd, select from the first (m-1)/2 

samples the (p (m +1)) th smallest ranked unit and from the other (m-1)/2 samples the 

(q (m +1)) th smallest ranked unit and select from the remaining sample the median 

for that sample for actual measurement. The cycle may be repeated r times if needed 

to get rm units. These rm units form the PRSS data. Note that we will always take the 

nearest integer of p (m + 1)th and q(m + 1)th. 

1.4.8 Quartile Ranked Set Sampling (QRSS) 

 Quartile Ranked Set sampling method was given by Muttlak (2003b). In this 

method, m units are selected from the population and we rank the units within each 

sample with respect to a variable of interest. If the sample size is even, select for 

measurement from the first m/2 samples the q1 (m+1)th smallest ranked unit and from 

the second m/2 samples, the q3(m+1)th smallest ranked unit. If the sample size is odd, 

select from the first (m – 1)/2 samples the q1(m+1)th  smallest rank and for the last 
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(m-1)/2 samples the q3(m+1)th smallest rank, and from the remaining sample the 

median for that sample for actual measurement. The cycle can be repeated r times if 

needed to get a sample of size rm units. Note that we always take the nearest integer 

of q1(m+1)th and q3(m+1)th where q1=0.25 and q3=0.75. 

1.4.9  Double Quartile Ranked Set Samples (DQRSS) 

The Double Quartile Ranked Set Sampling (DQRSS) procedure was given by 

Jemain & Al-Omari (2006) can be described as follows. Select m
3
 units from the 

population and divide them into m
2
 samples each of size m. If the sample size is even, 

select from the first m
2
/2 sample the [q1(m+1)]th smallest rank, from the second m

2
/2 

samples the [q3 (m+1)] th smallest rank. If the sample size is odd, select from the first 

m(m–1)/2 samples the [q1(m+1)) th smallest rank, the median from the next m 

samples and the [q3(m+1)] the smallest rank from the second m(m–1)/2 samples. This 

step yield m sets each of size m. Apply the QRSS procedure on the m sets obtained 

earlier to get a DQRSS sample of size m. The whole cycle may be repeated r times to 

obtain a sample of size rm from DQRSS.  

1.4.10 Two-stage ranked set sampling (TSRSS) 

The TSRSS procedure was given by Jemain et al. (2007) and it can be 

summarized as the followings. First, randomly select m
3
 = 27k

3
 (k = 1, 2,...) units 

from the target population and divide these units randomly into m
2
 = 9k

2
 sets each of 

size m. Then, allocate these 9k
2
 sets into three groups, each of 3k

2
 sets. From each set 

in the first group select the smallest rank unit, from each set in the second group select 

the median rank unit, and from each set in the third group select the largest rank unit. 

This step yields k sets in each group. Finally, without doing any actual quantification, 

from the k sets in the first group select the smallest rank unit, from the k sets in the 

second group select the median rank unit, and from the k sets in the third group select 

the largest rank unit. This step yields one set of size m = 3k. If the procedure is 

repeated r times, a sample of size rm is obtained. 

1.4.11  Multistage ranked set sampling 

 This method was given by Al-Saleh & Al-Omari (2002). The MSRSS 

procedure is described as follows: 
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Step 1:  Randomly selected m
r+1

 sample units from the target population, where r is 

the number of stages and m is the set size. 

Step 2:  Allocate the m 
r+1

 selected units randomly into m 
r−1

 sets, each of size m
2
. 

Step3:  For each set in Step (2), ranked set sampling procedure is applied; to obtain 

a (judgment) ranked set of size m. This step yields m 
r−1

 (judgment) ranked 

sets, of size m each. 

Step 4:  Without doing any actual quantification on these ranked sets, repeat Step (3) 

on the m
r−1

 ranked set to obtain m
r−2 

second stage (judgment) ranked sets, 

each of size m. 

Step 5: The process is continued using Step (3), without doing any actual 

quantification, until we end up with one rth stage (judgment) ranked set of 

size m. 

Step 6:  Finally, the m identified elements in Step (5) are now quantified for the 

variable of interest 

1.4.12 L Ranked Set Sampling (LRSS) 

 Al-Nasser (2007) suggested a robust RSS procedure, based on the idea of L 

statistic, which will is referred as L ranked set sampling (LRSS). The main idea of 

this procedure is to discard the data in the tails of a data set (trimming), or replace 

data in the tails of a data set with the next most extreme data value (winsorizing). In 

order to plan LRSS design, m random samples should be selected each of size m, 

where m is typically small to reduce ranking error. For the sake of convenience it is 

assumed that the judgment ranking is as good as actual ranking. LRSS has the 

following steps: 

Step 1:  Select m random samples each of size m units 

Step 2:  Rank the units within each sample with respect to a variable of interest by a 

visual inspection or any other cost-effective method.  

Step 3:  Select the LRSS coefficient, k = [mp], such that 0 ≤ p < 0.5, where [x] is the 

largest integer value less than or equal to x. 
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Step 4:  For each of the first k ranked samples, select the unit with rank k + 1 for 

actual measurement. 

Step 5:  For each of the last k ranked samples, select the unit with rank m − k for 

actual measurement. 

Step 6:  For j = k+1, k + 2,……, m − k − 1, the unit with rank j in the jth ranked 

sample is selected for actual measurement. 

Step 7:  The cycle may be repeated r times to obtain the desired sample size n=rm.  

1.4.13 Balanced Group Ranked Set Sampling (BGRSS) 

Jemain et al. (2009) proposed the Balanced groups ranked set samples method 

(BGRSS) for estimating the population mean with samples of size m=3k where 

(k=1,2,…). It was found that the BGRSS produced unbiased estimators with smaller 

variance than commonly used simple random sampling for symmetric distribution. 

The balanced groups of ranked set sampling can be described as follows: 

Step 1:  Randomly select m=3k, (k=1, 2,..) sets each of size m from the target 

population, and rank the units within each set with respect to the variable of 

interest. 

Step 2:  Allocate the 3k selected sets randomly into three groups, each of size k sets. 

Step 3:  For each group in step (2), select for measurement the lowest ranked unit 

from each set in the first group, and the median unit from each set in the 

second group, and the largest ranked unit from each set in the third group. 

By this way we have a measured sample of size m=3k units in one cycle. The 

Steps 1-3 can be repeated r times to increase the sample size to 3rk out of 9 r k
2
 units. 

Indeed, the BGRSS method is easy to be applied since we only need to 

identify and measure the lowest rank units of the first k sets and the medians of the 

second k sets and the largest rank units from the last k sets. Here, k is any positive 

integer. However, for practical purposes, k should be small in order to have a small 

sample size, so that the ranking is easy and errors in ranking are reduced. 
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1.4.14 Percentile double ranked set sampling (PDRSS) 

 This method was proposed and explored by Al-Omari & Jaber (2008). To 

obtain a sample of size m based on PDRSS method, the following steps are required 

to be carried out: 

Step 1:  Randomly select m
3
 units from the target population and divide them into m 

samples each of size m
2
. 

Step 2:  Apply the RSS method on the m sets; this step yields m ranked set samples 

each of size m. 

Step 3:  Without doing any actual quantifications on the m sets obtained in Step 2, 

apply the PRSS method described above. Repeat the process r times to obtain 

a set of size rm from initial m
3
r units. 

 Note that if the sample size m ≤ 3, the percentile double ranked set sampling 

will be reduced to the usual ranked set sampling procedure. However, we will always 

take the nearest integer of the (p(m +1))th and (q(m +1))th, where q =1- p and 0≤ p≤1. 

1.4.15 Stratified Percentile Ranked Set Sampling (SPRSS) 

 This procedure is given by Al-Omari et al. (2011). In the classical stratified 

sampling method, the population of N units is divided into L non overlapping 

subpopulations each of N1, N2, ..., NL units, respectively, such that N1 +N2 +...+NL = 

N. These subpopulations are called strata. Then the samples are drawn independently 

from each strata, producing samples sizes denoted by n1, n2,...,nL, such that the total 

sample size is   ∑   
 
   . 

 If a simple random sample is taken from each stratum, the whole procedure is 

known as stratified simple random sampling (SSRS). If the percentile ranked set 

sampling is used to select the sample units from each stratum, then the whole 

procedure is called a stratified percentile ranked set sampling (SPRSS). 

1.4.16 Stratified Quartile Ranked Set Samples (SQRSS) 

 Syam et al. (2012) introduced and explored the method of Stratified Quartile 

Ranked Set Sampling (SQRSS). In stratified sampling method, the population of N 

units is divided into L non overlapping subpopulations each of N1, N2, ..., NL units, 
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respectively, such that N1 +N2 +...+NL = N . These subpopulations are called strata. 

Then the samples are drawn independently from each strata, producing samples sizes 

denoted by n1, n2,...,nL, such that the total sample size is   ∑   
 
   . If a simple 

random sample is taken from each stratum, the whole procedure is known as stratified 

simple random sampling (SSRS). If the quartile ranked set sampling method is used to 

select the sample units from each stratum then the whole procedure is called a 

stratified quartile ranked set sampling (SQRSS). 
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ESTIMATION OF THE PARAMETERS OF THE 

GENERALIZED GEOMETRIC DISTRIBUTION 

USING RANKED SET SAMPLING 
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2.1  Introduction 

In statistics as we quantify observations, we use a mathematical 

approach to account for and explain the observations generated by a 

phenomenon. Distributions are fitted to observed data to find a pattern which 

may lead the investigator to see whether some generating model can be set up 

for the process.  

The discrete probability distributions form a basic and promising field 

of study in the domain of statistics and have many important applications in a 

wide variety of disciplines, such as biological and medical, social, physical 

sciences quality control, engineering and so-on. The field of discrete 

distributions has been found to have a huge potential for wider exploration. 

Since last twenty years or so, a vast amount of literature has appeared in this 

field. A large number of discrete distributions have been evolved, many 

authors obtained different generalizations of some classical distributions, 

either by compounding two or more discrete/continuous distributions or by 

dropping some assumptions in classical distributions. At present there exists 

large number of generalizations of basic distributions in statistical li terature. A 

good account of these distributions is available in Patil and Joshi (1968), 

Johnson Kotz (1969) and Johnson Kotz and Kemp (1992).  The usefulness of a 

distribution to a greater extent rests on its structural properties and the basic 

assumptions inherent in the very derivation of the distribution. These 

properties considerably help very much in recognizing the empirical situations 

where the distributions may be applied successfully.  

Some of the distributions and their properties discussed below. 

2.1.1 Binomial Distribution (BD) 

  The Binomial distribution is one of the oldest distributions derived by 

James Bernoulli in 1713. 

  A random variable X is said to have Binomial Distribution with 

parameters n and p if its probability mass function (p.m.f) is given by 
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n ranges over the set of positive integers and p satisfies 0  p  1, q = 1  p . 

The probabilities are terms of binomial expansion of (q + p)
n
 hence the name 

binomial distribution. When n = 1, binomial distribution reduces to Bernoulli 

distribution, whose p.m.f is given as: 

 (   )                     

                                      

2.1.2 Geometric Series Distribution (GSD) 

 In the binomial distribution we consider a fixed number of Bernoullian 

trials and the probability of a number of successes with probability of success 

at a trial being p and that of failure being q, p+q=1. The concept is extended 

by considering an infinite sequence of such trials and getting interested in the 

probability “when does the first success occur?”   

  Let X be a random variable representing the number of trials after 

which the first success occurs. Now for any positive integer x≥0, 

  (   )    [first x trials are failures & (x+1)th trial is a success]. 

 (   )   (   )  2
                               

                                         
    

                                      and 0 < p < 1                                                                    

  The random variable X with p. m. f given above is said to follow a 

geometric distribution with parameter p. The reason is, for x=0, 1, 2,…, p(x) 

gives different terms of a geometric series. This may also be called the 

distribution of discrete waiting time (in terms of no. of failures) till the first 

success. 

  On the other hand if X is taken as the no. of trials required for first 

success, then 

 ,   -        ,   x=0,1,2,…. 

All these forms are used frequently in literature.  
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2.1.3 The ‘Memoryless’ property of Geometric Distribution 

  Given that there is no success up to the first r number of trials, the 

conditional probability of having a success at the (r+1)th trial is independent 

of r (the no. of trials resulting in failures). This property is called 

„Memoryless‟ property. It implies that the system forgets its previous history 

regarding the number of past failures.  

  The conditional probability of a success at the (r+1)
th

 trial given that 

there are no successes up to the rth trial, (i.e., all r trials are failures), is given 

by: 

                        ,(     )    -  
 ,     -

 ,   -
 

   

  
   

which is not only independent of r but is the probability of success at any trial. 

Significance of this property 

  Suppose a machine works (or fails) according to the geometric 

distribution. Suppose each trial corresponds to a period of one month. The lack 

of memory property implies that the chance of machine failure during the 1st 

or 2nd or 3rd… month of operation is same as that of failing in hundredth, 

thousandth or any month of operation. In other words, this property implies 

that the machine (with geometric distribution) forgets its age while failing and 

the chance of failing at any age remains the same. This is a unique property of 

geometric distribution among discrete distributions.   

2.2 Generalized Geometric Series Distribution (GGSD) 

The Generalized Geometric Series Distribution (GGSD) was obtained 

by Mishra (1982) using the lattice path analysis. This distribution has two 

parameters   and   and its pmf is given by: 

   (   )   
 

    
0
    

 
1   (   )                                 

                                    0                           (2.2.1) 
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  This distribution reduces to the geometric series distribution with 

parameter , if  = 1 and to Bernoulli distribution at  = 0.   

Also, the GGSD is a member of Lagrangian distribution, i.e. 

 ( )   ( )  ∑
  

  
 ,

 

   

    

      
( ( ))   ( )   - 

and can be obtained by taking  ( )  (      ) and  ( )  (       ).  

  Sometimes we find discrete distribution for the values of random 

variable x=1,2,….Such cases are called zero truncated distributions. The zero 

truncated GGSD is given by 

 (   )   
 

    
0
    

 
1     (   )                               

                                                                         (2.2.2) 

                     

2.2.1  Size Biased Generalized Geometric Series Distribution (SBGGSD)  

The p.m.f of size-biased generalized geometric series distribution (SBGGSD) 

is given by  

 (   )  (    ) 0
  

   
1     (   )                               

                                                                                

      |  |    

2.2.2    Moments of Generalized Geometric Series Distribution 

 The first four moments about origin of GGSD are as follows: 

(2.2.2.1) 

 

2

2

32
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The central moments of the GGSD are: 

                                         (2.2.2.2) 

 

                                                (2.2.2.3) 

  The moments about origin of the zero truncated GGSD (2.2.2) may be 

obtained by just dividing the corresponding moments of GGSD (2.2.1) by , 

we get: 

            

                       (2.2.2.4) 

          

2.3 Some Other Generalizations of Geometric Distribution 

2.3.1      Generalized Geometric Series Distribution I (GGSD-I)  

To find GGSD-I Singh (1989) used the second form of the Lagrange‟s 

expansion, i.e. 

   

                         

 

where f(z) and g(z) are positive continuous functions  

The probability mass function of GGSD-I is given by  

                             

 

 

where  0 <  < 1, || < 1 and  x = 0,1,2 … 
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2.3.2 Size-Biased Generalized Geometric Series Distribution-I (SBGGSD-I) 

The probability mass function of GGSD-I is given by  

 

 

where   0 <  < 1, || < 1 and  x = 0,1,2 … 

The size-biased version of GGSD-I is given by the p.m.f:     

 

 

0 <  < 1, || < 1 and x = 0,1,2 … 

The SBGGSD-I reduces to Size Biased Geometric Series Distribution 

(SBGSD) when  = 1. 

2.3.3    Generalized Geometric Series Distribution – II (GGSD-II) 

The probability function of a two parameter generalized geometric distribution 

with parameters b and q 

                      

          

r = 1, 2, …; b > 0, q > 0 

where   

               

 

 

2.3.4    Generalized Geometric Series Distribution-III (GGSD-III) 

 The probability function of GGSD-III defined by Tripathi and Gupta (1987) is 

given by 
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where   C = p1 with  

 

 

2.4 Estimation of Generalized Geometric Series Distribution by Method 

of Moments 

 Suppose a random sample of size n is taken from GGSD model (2.2.1). Let the 

observed frequencies be n0, n1,…nk  where k is the largest value of x in sample such 

that .Let the first two sample moments for GGSD model be denoted as 

            

                    

2.4.1      First Two Moment Method (TMM) 

By using elimination between the expression (2.2.2.1) and (2.2.2.2) and 

replacing   
   and    

  by respective sample moments, we get from (2.2.2.1) 

                (2.4.1.1) 

                                                               

Also                                                 

 

which gives quadratic equation in  as  

 

The admissible roots of  is given by 

   
(2.4.1.2) 
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2.4.2    Zero frequency and first moment method (ZFFM) 

Let P0 be the probability of the zero class in GGSD            (2.2.1) 

 

We equate P0 to the corresponding sample proportion of zeros to get 

 

which gives  

In addition we have 

 

replacing   
  by corresponding sample moments m1 and after simplification we get the 

estimate of  as 

                                                                   

                                (2.4.2.1) 

 

2.4.3 First two moments and Ratio of first two frequencies (MORA) 

 Let P1 be the probability of the “one” class and P0 be the probability of “zero” 

class in GGSD (2.2.1).  The ration of “one” class to the “zero” class is given by  

 

 

Squaring this term, we get 

 

which gives                                              
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Substituting the value of (1  )
3
 in (2.2.2.2) we have 

 

 

which gives         

on combining (2.2.2.3) and (2.2.2.4)we have 

 

 

Applying log, we get  

                             (2.4.3.1) 

Also ration of first two moments gives 

 

 

which on simplification gives  

                       (2.4.3.2) 

 

using relation (2.4.3.2)in  (2.4.3.1)on simplification, we have  

 

 

replacing the first two sample moments to their corresponding population moments, 

we have 

 

 

We solve f() iteratively to obtain,    the MORA estimator of parameter . The 

estimate of  can be obtained by using (2.4.2.1). 
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2.5 Maximum Likelihood Estimation  

The likelihood function of GGSD based on the random sample x1, … , xn is 

given by 

 

 

 

 

The two likelihood equation are obtained as 

                                                               (2.5.1) 

                                  

       (2.5.2) 

 

from (2.5.1)we have 

                                                                  

                                   (2.5.3) 

 

when substituted in (2.5.2)gives 

                                                                  

 

 

The equation can be solved for  applying some iteration technique. The 

estimate of  when substituted in (2.5.3) gives an estimate of . 

 

2.6 Bayesian Estimation of Parameters 

Mishra (1982) defined GGSD as 
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The likelihood function is obtained as 

 

yyny )1(K   

 

where   

 

and  

 

Since 0 <  < 1, it is assumed that prior information of  is given by a beta 

distribution with density function 

 

 

 

 

The posterior distribution of  is defined as 

  

 

 

 

 

 

 

The Bayes estimator for parametric function () 

 

 

 

  




















 




n

i

xxnx iii
xi

xi
xL

1

)1(
   xi

1

1

1
,/














 




 i1     x

1

1

1 i
n

i i

x

x
K









n

i

ixy
1

),(

)1(
),;(

11

baB
bag

ba  





10,0,  ba

 





dbagxL

bagxL
y





),;(),/(

),;(),/(

 











1

0

11)1(

11)1(

)1()1(

)1()1(










d

y
bayny

bayny

 











1

0

1)1(1

1)1(1

)1(

)1(










d

y
bynay

bynya

 
 bynayB

y
bynya








)1(,

)1( 1)1(1








 
1

0

*

)()(  dy

 bynayB

dbynya











)1(,

)1()(

)(

1)1(

1

0

1

*











 
Chapter – 2             Estimation of Parameters of the Generalized Geometric Distribution ……….. 

 

39 

 

If we take () =  then Bayes estimator  is  

 

 

 

 

 

 

Which is also identical to MLE of GGSD if a = b = 0  

2.7 A Quick Method for Estimating Generalized Geometric Series 

Distribution 

 A quick method for estimating the parameters of generalized geometric series 

distribution (GGSD) was given by Hassan, Mishra and Jan (2002) for the case when 

non-zero frequencies are found only up to a finite number of values of the variable. In 

such cases only one parameter  is estimated which is based on the mean of the 

observed distribution, the parameter  being obtain just by counting the number of 

non-zero frequency classes. The estimator is simple and quick in practice.  

 Let t 1 be the highest observed value having non-zero frequency. From the 

condition of GGSD (2.2.1) 

 

we may have 1 + t    t = 0, which gives minimum value of , say 0 as 

 

 

Substituting this value of  in the expression for the mean of GGSD (2.2.2.1) and 

replacing   
  by sample mean  ̅ we get the estimate of     ̂   as 

 

 

which is same if  in replaced by 0 in maximum likelihood estimator of   (2.5.3) 
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The value of 0 is obtained directly from the non-zero frequency classes and 

may be treated as predetermined as n in case of binomial distribution. 

2.8  Estimation of Parameters µ and σ Based on Ranked Set Sampling 

The estimation of location and scale parameters, based on an ordered 

sample, has been discussed by Lloyd (1952). Downton (1954) obtained least 

squares estimates explicitly for a class of two-parameter distributions having the 

form    *(   )  +  . More specifically, consider the generalized geometric random 

variable  , with pdf as follows: 

                   ( )         .
   

 
  /

   

              (   )         (2.8.1) 

                          , otherwise 

Where       √ (   )   (   )√(   )   ⁄  

The rectangular distribution (    )  and the right triangular 

distribution  (   )  are special cases of the above distribution.  

It can be shown that   ( )    and    ( )     2
. 

Downton derived the least squares estimates of µ and σ based on the 

ordered observations   ( )   ( )      ( ) . He gave all the intermediate 

computations but did not write the explicit formulae for the estimates. Instead, 

the explicit formulae for the estimates and their variance-covariance matrices are 

given for special cases of   = 2 and  =1. 

Bhoj and Ahsanullah (1996) derived the estimates of   and   for the 

random variable X whose pdf is given in (2.8.1) for any   based on ranked set 

observations. The variances and covariance of the estimates are also given. 

They are compared with those of ordered least squares estimates given by 

Downton for special values of  . 

Ranked set sampling procedure is used for the joint estimation of population 

mean µ and standard deviation σ of the two-parameter distribution given in (2.8.1) by 

using least squares methods. For this, we first measure accurately a ranked set 

sample of m observations, i.e., x(11), x(22),…, x(mm). These m observations are then 
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used to estimate µ and   of the generalized geometric distribution whose pdf is given 

in (2.8.1). Since each set is an independent sample and only one element in each set is 

quantified, all quantified elements are independent. Further, x (ii) is an i
th

 ordered 

observation in the i
th

 set.  

We define     (  )    ( (  )    )    

Let  ( (  ))   ( )  and     ( (  ))        . Considering the pdf of the i
th

 

order statistic from the generalized geometric distribution, it can be shown that 

   (   )√
   

 
  {

      )      

(    )(     )
 

 

   
}                                                               (     ) 

And 

              
(   ) (   )

 
[
 (     )      

(    )(     )
 {

 (     )      

(    )(     )
}

 

]           (     ) 

where  

 ( )   (   ) (     ) 

 

and 

(    )( )  (    )*(   )   + *(     )   +  

 

In terms of original x‟s we have 

 ( (  ))                   ( (  ))      
 

 

Let  

   ( (  )  (  )    (  )) 

   (       ) 

   (          ) 

and       ( )  ∑   
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where  is a m  m diagonal matrix with dii as the (i,i)th element, i = 1, 2, ... , m.  

Then 

 ( )        

        

where 

   (
           
            

)        (   ) 

 

The minimum variance linear unbiased estimators (MVLUE) of  can be 

obtained by using least squares theorem of Gauss and Markov. Let  ̃denote the 

MVLUE of , then 

 ̃  (      )         

and the variance-covariance matrix of  ̃ is given by (      )      2
. 

On simplification, we have 

                                                             ̃  ∑   (  )                                               (     ) 

                                                              ̃  ∑   (  )                                              (     ) 

Where 

                                                                
 

 
(
  

   
 

    

   
)                                       (     ) 

                                                              
 

 
(
    

   
 

  

   
)                                          (     ) 

      ∑
  

 

   
         

 

   

   ∑
 

   
       

 

   

    ∑
  

   
  

 

   

 

and 

         
  

The variances and covariances of  ̃ and  ̃ are given by 
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                                                    ( ̃)  
    

 
                                                            (     ) 

                                                    ( ̃)  
    

 
                                                            (     ) 

And 

                                                  (  ̃  ̃)  
    

 
                                                           (      ) 

The variances and covariance of these estimators are compared with those 

of ordered least squares estimators given by Downton for two values of  ,  = 1 

and   = 2. 

2.8.1. Right Triangular Distribution  

We get the following pdf of the right triangular distribution by substituting 

  = 2 in (2.8.1). 

 ( )  {
 

  
0
   

 
  √ 1                  √        √   

                                                                                    
 

Downton gave the expressions for  ̂,  ̂, var( ̂), var( ̂), and cov( ̂, ̂), where  ̂ and 

 ̂ are the MVLUE of µ and   based on m ordered statistics. The MVLUE estimators 

of , and   based on ranked set sampling are obtained by substituting       in 

(2.8.2) and (2.8.3) to compute i and dii, and then using these to calculate wi and vi 

in (2.8.6) and (2.8.7).  

To facilitate computations of the estimators  ̃ and  ̅, the coefficients wi and 

vi are given in Tables 2.1 and 2.2 for 2 ≤ m ≤ 15. Table 2.3 gives var( ̃)/ 
2
, 

var( ̃)/ 2
, and cov( ̃, ̃)/ 2

 for m = 2,3,.., 15, for comparing the precision of our 

estimators with those of Downton. It also gives the generalized variance of  ̂ and  ̂ 

and  ̃      ̃, where 

Gvar ( ̂, ̂) = var ( ̂) var ( ̂) — (cov ( ̂, ̂))
 2

 

and 

Gvar ( ̃, ̃) = var ( ̃) var ( ̃) — (cov ( ̃, ̃))
 2

. 
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Following are the three relative precisions for comparison purposes: 

    
   ( ̂)

   ( ̃)
                       

   ( ̂)

   ( ̃)
                           

    ( ̂  ̂)

    ( ̃  ̃)
 

  These are given in Table 2.3 for m = 2, 3… 15. It can be seen that the ranked 

set sampling estimator   ̃ is uniformly better than the ordered least square 

estimator ̂and the gain in precision is quite substantial. The gain in precision in 

terms of the generalized variance is even more dramatic for m ≥ 2. The ranked set 

estimator of  ,   ̃  is more efficient than σ ̂ for m ≥ 5. In this case, the gain in 

precision is not as great as the one attained in estimating µ. 

2.8.2. Rectangular Distribution 

The following pdf of the rectangular distribution centered at µ with 

variance  2
 is obtained by substituting   = 1 in (2.8.1). 

 ( )  {

 

 √  
                 √        √   

                                                          

 

The MVLUEs for µ and   given by Downton are based only on the largest and 

smallest observations with variances and covariance given by 

   ( ̂)  
   

(   )(   )
                 ( ̂)  

   

(   )(   )
    

And 

   ( ̂  ̂)    

To drive the estimators for µ and   based on ranked set sampling, the 

expressions for i and dii are obtained from (2.8.2) and (2.8.3), which are given by  

 

   √ {
  

   
  }                       

   (     )

(   ) (   )
           

Substituting these values in T1, T2 and T3 and simplifying, we obtain from 

(2.8.6), (2.8.7), (2.8.8), (2.8.9) and (2.8.10) 
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 ̃  ∑  
  (  )          ̃  

 

   

∑  
  (  )   

 

   

 

Where 

  
  

   

  (     )  
 

  
  

(   )(      )

 √  (     )*(   )     +
 

   ( ̃)  
   

 √  (   )*(   )     +
   

   ( ̃)  
   

(   )*(   )     +
   

   ( ̃  ̃)                             ∑
 

 

 

   

 

It is clear that var( ̃) < var( ̂) for all     since     . However var 

( ̃) <var ( ̂) when m > 5. Sm can be read from Table 2.4. 

The variances of RSS estimators are compared with those based on ordered 

least squares methods to assess the effectiveness of the ranked set sampling 

procedure. Table 2.4 gives the variances for both sets of estimators and the 

following two relative precisions: 

    
   ( ̂)

   ( ̃)
                  

   ( ̂)

   ( ̃)
 

(   )     

   
 

Since both sets of estimators have covariance zero, the generalized 

variances of these estimators are not given. Note that  ̃ is uniformly better than ̂, 

and  ̃ is better than  ̂ for m>5. The fact that ranked set sampling does not result in 

more efficient estimators of variance in small samples for both values of p is 

consistent with Stokes (1980b) results. 

2.8.3.  Comparison with Usual Ranked Set Estimator of   

The usual ranked set estimator of the population mean is compared with  ̃. 

Stokes proposed the estimator for population variance by using ranked set sample 
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data. However, that estimator is biased and therefore cannot be compared directly 

with the RSS estimators discussed in this article. 

The usual estimator of the population mean based on ranked set sampling is 

 ̅  ∑  (  )   ⁄ 
    with variance var ( ̅) = ( 2

/m
2
)∑  (  )

 
   .When p = 1,    ( ̅)  

    (m (m + 1)). 

The maximum relative efficiency of  ̅ with respect to the sample mean of a 

simple random sample is maximum when the underlying distribution is rectangular. 

The relative precision of  ̅ and  ̃ is given by: 

    
   ( ̅)

   ( ̃)
 

(   )  

  
 

Values of RP6 are displayed in Table 2.5 for various values of m and two 

values of p, p= 1 and p = 2. It is clear that  ̃ is better than  ̅ for m > 2. The gain in 

precision of  ̃ over  ̅ is greater for p = 1 than for p = 2. 
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Table 2.1: Coefficients for estimating  ̃ for right triangular distribution 

m/wi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 0.5000 0.5000              

3 0.3450 0.3060 0.3489             

4 0.2674 0.2297 0.2283 0.2745            

5 0.2201 0.1869 0.1784 0.1850 0.2296           

6 0.1878 0.1588 0.1492 0.1479 0.1570 0.1993          

7 0.1643 0.1388 0.1293 0.1258 0.1272 0.1373 0.1773         

8 0.1464 0.1236 0.1147 0.1105 0.1095 0.1122 0.1225 0.1606        

9 0.1321 0.1117 0.1034 0.0991 0.0971 0.0973 0.1008 0.1111 0.1474       

10 0.1206 0.1020 0.0944 0.0901 0.0878 0.0869 0.0879 0.0917 0.1019 0.1367      

11 0.1110 0.0940 0.0870 0.0829 0.0804 0.0791 0.0789 0.0803 0.0843 0.0943 0.1278     

12 0.1028 0.0873 0.0807 0.0768 0.0743 0.0728 0.0721 0.0724 0.0741 0.0782 0.0880 0.1203    

13 0.0959 0.0815 0.0754 0.0717 0.0693 0.0677 0.0667 0.0665 0.0671 0.0689 0.0730 0.0827 0.1138   

14 0.0898 0.0765 0.0708 0.0673 0.0649 0.0633 0.0622 0.0617 0.0617 0.0625 0.0645 0.0686 0.0780 0.1083  

15 0.0845 0.0721 0.0667 0.0634 0.0612 0.0596 0.0584 0.0577 0.0574 0.0577 0.0586 0.0606 0.0647 0.0740 0.1034 
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Table 2.2: Coefficients for estimating  ̃ for right triangular distribution 

m/vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 -0.8839 0.8839              

3 -0.5366 -0.1230 0.6595             

4 -0.3840 -0.1918 0.0249 0.5509            

5 -0.2989 -0.1823 -0.0799 0.0753 0.4857           

6 -0.2448 -0.1637 -0.1022 -0.0280 0.0970 0.4417          

7 -0.2074 -0.1463 -0.1042 -0.0598 0.0004 0.1075 0.4097         

8 -0.1799 -0.1314 -0.1001 -0.0701 -0.0342 0.0177 0.1129 0.3851        

9 -0.1590 -0.1190 -0.0945 -0.0723 -0.0481 -0.0172 0.0290 0.1155 0.3655       

10 -0.1424 -0.1086 -0.0886 -0.0714 -0.0537 -0.0329 -0.0054 0.0368 0.1167 0.3495      

11 -0.1290 -0.0998 -0.0830 -0.0691 -0.0554 -0.0403 -0.0219 0.0032 0.0423 0.1171 0.3360     

12 -0.1179 -0.0923 -0.0779 -0.0663 -0.0553 -0.0437 -0.0304 -0.0136 0.0096 0.0463 0.1170 0.3245    

13 -0.1086 -0.0858 -0.0733 -0.0634 -0.0543 -0.0450 -0.0348 -0.0227 -0.0072 0.0146 0.0493 0.1166 0.3145   

14 -0.1007 -0.0802 -0.0691 -0.0606 -0.0528 -0.0452 -0.0370 -0.0278 -0.0166 -0.0020 0.0186 0.0516 0.1159 0.3058  

15 -0.0938 -0.0753 -0.0654 -0.0578 -0.0511 -0.0447 -0.0380 0.0306 -0.0221 -0.0117 0.0021 0.0217 0.0534 0.1152 0.2980 
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Table 2.3: Variances, covariance, & relative precisions for right triangular distribution  

m    ( ̂)

  
 

   ( ̃)

  
 

   ( ̂)

  
 

   ( ̃)

  
 

   ( ̂  ̂)

  
 

   ( ̃  ̃)

  
 

    ( ̂  ̂)

  
 

    ( ̃  ̃)

  
 

RP1 RP2 RP3 

2 0.50000 0.34000 0.56250 1.06250 0.17678 -0.17677 0.25000 0.33000 1.47058 0.52941 0.75757 

3 0.31481 0.17168 0.24769 0.34052 0.12440 -0.09347 0.06250 0.04972 1.83376 0.72737 1.25698 

4 0.22273 0.10366 0.15057 0.16559 0.09482 -0.05818 0.02455 0.01378 2.14869 0.90927 1.78129 

5 0.16907 0.06943 0.10513 0.09727 0.07599 -0.03983 0.01200 0.00517 2.43521 1.08080 2.32236 

6 0.13452 0.04977 0.07938 0.06376 0.06304 -0.02903 0.00670 0.00233 2.70265 1.24501 2.87607 

7 0.11068 0.03744 0.06303 0.04491 0.05364 -0.02212 0.00410 0.00119 2.95615 1.40368 3.43963 

8 0.09340 0.02920 0.05185 0.03328 0.04652 -0.01743 0.00268 0.00067 3.19893 1.55801 4.01144 

9 0.08037 0.02341 0.04377 0.02562 0.04097 -0.01410 0.00184 0.00040 343307 1.70872 4.58977 

10 0.07024 0.01919 0.03770 0.02031 0.03652 -0.01165 0.00131 0.00025 3.66017 1.85651 5.17438 

11 0.06218 0.01602 0.03299 0.01648 0.03288 -0.00979 0.00097 0.00017 3.88124 2.00167 5.76357 

12 0.05563 0.01358 0.02924 0.01363 0.02986 -0.00834 0.00073 0.00012 4.09722 2.14470 6.35806 

13 0.05021 0.01165 0.02620 0.01146 0.02732 -0.00719 0.00057 0.00008 4.30866 2.28560 6.95515 

14 0.04568 0.01011 0.02368 0.00976 0.02515 -0.00627 0.00045 0.00006 4.51621 2.42498 7.55780 

15 0.04182 0.00886 0.02157 0.00842 0.02327 -0.00551 0.00036 0.00004 4.72021 2.56270 8.16273 
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Table 2.4: Variances and relative precisions for rectangular distribution 

n    ( ̂)

  
 

   ( ̃)

  
 

   ( ̂)

  
 

   ( ̃)

  
 

RP4 RP5 

2 0.50000 0.33333 0.50000 1.00000 1.50000 0.50000 

3 0.30000 0.16364 0.20000 0.30000 1.83333 0.66667 

4 0.20000 0.09600 0.11111 0.13793 2.08333 0.80555 

5 0.14286 0.06257 0.07143 0.07722 2.28333 0.92500 

6 0.10714 0.04373 0.05000 0.04854 2.45000 1.03000 

7 0.08333 0.03214 0.03704 0.03296 2.59285 1.12381 

8 0.06667 0.02453 0.02857 0.02364 2.71786 1.20867 

9 0.05455 0.01928 0.02273 0.01767 2.82897 1.28621 

10 0.04545 0.01552 0.01852 0.01364 2.92896 1.35762 

11 0.03846 0.01274 0.01538 0.01080 3.01988 1.42385 

12 0.03297 0.01062 0.01299 0.00874 3.10321 1.48561 

13 0.02857 0.00898 0.01111 0.00720 3.18013 1.54349 

14 0.02500 0.00769 0.00962 0.00602 3.25156 1.59795 

15 0.02206 0.00665 0.00840 0.00509 3.31823 1.64940 
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Table 2.5: Comparison of relative efficiencies of  ̃ and  ̅ 

 m RP6 

Rectangular distribution Right triangular distribution 

2 1.0000 1.0000 

3 1.0185 1.0033 

4 1.0417 1.0065 

5 1.0656 1.0091 

6 1.0089 1.0113 

7 1.1112 1.0129 

8 1.1324 1.0143 

9 1.1525 1.0155 

10 1.1716 1.0164 

11 1.1897 1.0172 

12 1.2068 1.0178 

13 1.2231 1.0184 

14 1.2387 1.0189 

15 1.2536 1.0193 

 



 

 

 

 

CHAPTER 3  
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3.1 Introduction 

Ranking using a concomitant variable first proposed by Stokes (1977) greatly 

broadened the range of the application of RSS. There are abundant practical 

situations where a concomitant variable correlated with the variable of interest is 

available and the measurement of the concomitant variable is cheap and easy.  

Stokes studied RSS with concomitant variables; she assumed that the variable 

of interest X has a linear relation with another variable Y. There are situations, 

when several attributes are to be studied simultaneously using a single combined 

study rather than separate studies, one for each characteristics. For example, in 

situations where quantifications entail destruction of units as in uprooting of plants. In this 

chapter, Moving Extreme Ranked Set Sampling (MERSS) with concomitant variable for 

the estimation of the means of the bivariate normal distribution, given by Al-Saleh and 

Al-Ananbeh (2007) has been studied.  

3.2  Moving Extreme Ranked Set Sampling with Concomitant Variable 

Assume that (X, Y) is a bivariate random vector such that variable Y is 

difficult to measure or to order by judgment, but the concomitant variable X, which is 

correlated with Y, is easier to measure or to order by judgment.  

The variable X may be used to acquire the rank of Y as follows: 

a. Select m units from the bivariate normal distribution using m  SRS of sizes 

1,2,…,m ,  respectively. Identify by judgment the maximum of each set 

with respect to the variable X. 

b. Repeat step a, but for the minimum. 

c. Repeat the above two steps r times, if necessary, until the desired sample 

size, n = 2rm, is obtained. 

d. Measure accurately the selected n judgment identified units for both 

variables. 

The set of the n pairs obtained using the above procedure, is called a Moving 

Extreme ranked set sample (MERSS) with concomitant variable. 
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Assume that a random vector (X, Y) follows a bivariate normal distribution 

denoted by    (         
     

    )  having joint density     (   )  where, 

              ,     
    

          . Let {(X(1:k), Y[1:k]), (X(k:k), Y[k:k]); k = 

1,2,…,m} be a MERSS from     (   ), based on the concomitant variable X. If 

judgment ranking is perfect then, X (i: k) and Y[i:k] are, respectively, the i
th 

smallest 

value of X from the k
th 

sample and the corresponding value of Y , where i =1 or k. 

Then following Stokes (1977), we have 

      
  

  
(    )    

Where X and  are independent and  has mean 0 and variance   
 (    )   is the 

correlation between X and Y and x, y, x, y are the means and standard deviations 

of the variable X and Y. 

Note that the pairs of this sample are independent but not identically 

distributed. Joint density of(X(k:k),Y[k:k]) and (X(1:k),Y[1:k]) is denoted by 

fk:k(x,y) and f1:k (x,y)  respectively: 

f k : k  (x , y )= f X ( k : k ) (x ) f Y | X  (y |x )
 

and    f 1 : k  (x , y )= f X ( 1 : k ) (x ) f Y | X  (y |x ) ,
 

Where fY|X (y |x) is the conditional density of Y given X, (see Yang, 1977 and 

Stokes, 1980a). 

Consider the following two estimators of µx and µy, respectively: 

 ̂      
  

 

  
 ∑ ( (   )   (   ))
 
     

 ̂      
  

 

  
 ∑ ( (   )   (   ))
 
     

Let  ̂    
  and  ̂    

 be the two corresponding estimators based on a bivariate SRS. 

Theorem 3.1: 

 ̂      
  and   ̂      

   are unbiased estimators of ,µx and µy, respectively 
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Proof:  

Since 

(
 (   )   
  

)
 

  (
 (   )   
  

) 

 it follows that 

 (
 (   )   (   )

 
)     

Hence  ̂      
  is an unbiased estimator of µx. 

Also, for i =1or k we have 

  ( ,   -)    ( ( ,   -   (   )))     (    
  

  
( (   )    ) 

Thus, 

 (∑
 ,   -   ,   -

  

 

   

)                   

Let  (   )  and 2
(i:k)be respectively, the mean and variance of the i

th 

standard normal order statistic of a SRS of size k . Let   (   ) and   (   )
 

 be, 

respectively, the mean and the variance of the i
th

order statistic of a SRS of size 

k from the distribution of X. 

Theorem 3. 2: 

              ( ̂      
 )  

  
 

   
∑ (   )

 

 

   

 

                                              ( ̂      
 )  

 

   
∑ [  

 (    )      
  (   )

 ] 
    

Proof: 

   (
 (   )    

  
)  

 

   
  (   )
    (   )

   (   )
    

  

and 

(
 (   )    

  
)   (   ) 
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i.e. 

 ( (   ))    (   )   (   )      

Therefore,  

   ( ̂      
 )  

  
 

   
∑ (   )

 

 

   

 

Also, 

   ( ,   -)   ,   ( ,   -| ,   -)]     , ( ,   -| ,   -)] 

   
 (    )      

  (   )
  

Therefore , 

   ( ̂      
 )  

 

   
∑[  

 (    )      
  (   )

 ]

 

   

 

The efficiency of  ̂      
 w.r.t.  ̂    

  is given by: 

   ( ̂      
   ̂    

 )   
   ( ̂    

 )

   ( ̂      
 )

  (∑ (   )
 

 

   

)

  

 

Theorem 3.3:     (    ̂      
   ̂    

 ) ≥1.  

Proof:  

For the order statistics of a SRS of size m from N(0,1),  ∑  (     )
  

       for  i  

=1 , . . . ,m, where  (     )
     ( (   )  (   )) ;in other words, the sum of the 

elements in a row or a column of the covariance matrix of the standard normal 

order statistics is 1 for any sample of size m (See Arnold et al.,1992, p. 91). Since 

 (     )
  >0 (Lehmann, 1966), it follows that  (   )

    and ∑  (   )
  

       

Hence, 

   ( ̂      
   ̂    

 ) ≥1   

Similarly, 

   ( ̂      
   ̂    

 )  {    [  
∑  (   )

  
   

 
]}

  

 

 {    {  (   ( ̂      
   ̂    

 ))
  
}}
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Tables 3.1 and 3.2, give eff ( ̂      
   ̂    

 ) and eff ( ̂      
   ̂    

 ), 

respectively, for various values of m. The two efficiencies are also presented 

graphically in Figures 3.1 and 3.2, with r standing for  . Based on Table 3.1, eff 

( ̂      
   ̂    

 ) is always larger than 1 and  is increasing in m . Based on Table 

3.2, we conclude the eff ( ̂      
   ̂    

 ), is always larger than 1 and is increasing in 

m for fixed    ; it is increasing in     for fixed m. Note that the efficiency is very 

close to 1 when     is small; thus for this method to be beneficial, it is necessary that 

the r elation between the two variables is fairly strong. 

3.2.1  Comparing MERSS and RSS 

For the purpose of comparing the MERSS procedure with the usual RSS 

procedure, if the bivariate sample is obtained using the balanced RSS with 

concomitant variable, then the efficiency of the procedure can be obtained using a 

result reported by Stokes (1977). The efficiency of the RSS estimator of µx w.r.t the 

SRS estimator is 

    (∑ (   )
 

 

   

)

  

 

In practice, when using RSS, m should not be large. For example, for m = 1, 

2,3,4,5, the values of    are 1, 1.46, 1.91, 2.35, and 2.77, respectively. The 

efficiency of the estimator of, µy with respect to the corresponding estimator based 

on a bivariate SRS is given by 

{    *     +}
  

 

Numerical values of the efficiency are given in Table 3.2 for 

m = 1,...,5. From a theoretical perspective, usual RSS with concomitant variable is 

significantly more efficient than MERSS. In choosing between the two procedures, 

the efficiency as well as the applicability should be taken into account. In practice, 

MERSS is easier to apply than RSS. Also the total number of sample points needed 

to be available to obtain a MERSS is much less than that needed to obtain a RSS of 

the same size. For example in order to obtain a MERSS of size 2m, we need to 

identify m (m –1) sample points; the number is 2m
2
 in the case of RSS. 
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3.3.  Robustness of the MERSS procedure 

It has been seen from previous sections, that if the underlying distribution is 

the bivariate normal, the MERSS is always preferable to bivariate SRS. One may ask 

about the suitability of this procedure if the bivariate normality assumption is not valid, 

i.e. is the favorable properties of the procedure robust against departure from normality. 

First of all, the unbiasedness of the estimators is established because the marginal 

distributions in the bivariate normal case are symmetric; thus, departure from symmetry 

may lead to biased estimators. For the study of robustness of the procedure, one 

possibility is to consider the model; 

       
  

  
(     )     

where    are independent of    . Assume that the marginal distributions of X and Y 

are symmetric about their means, see Stokes (1977). E (Zi) = 0 and Var (Zi) = 

  
 (    ) 

 . Furthermore, since    are independent of   , we have 

 ,   -      
  

  
( (   )    )     

All properties of the estimators derived in section 3.2 are valid under this model. 

Note that the bivariate normal random variables satisfy the assumption of the above 

model.  

3.4.  Application 

MERSS procedure has been illustrated using a real data set, which consists of 

the height X and the diameter Y of 1083 trees (Prodan1968). For this data set, 

regarded as a population, we have    = 0.715, µx = 21.6, µy = 22.6, x = 2.96, 

y = 5.62. 

Al-Hadhrami (2001) investigated the bivariate normality of the data and 

suggested removing the lowest 20 values of each variable to achieve marginal 

normality. Table 3.3 gives the efficiency of the MERSS estimators of µx and µy. 

Based on Table 3.3, the efficiency is always larger than 1 and is increasing in m. 
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3.5.  Conclusions 

MERSS is a very useful modification of RSS, which allows for an increase 

in the set size m without introducing ranking errors. MERSS uses only the two 

extremes values, maximum or minimum of sets of varied size, but RSS needs the 

ranking of all the elements of each set. MERSS has been used with concomitant 

variable to estimate the two means of the bivariate normal distribution. It appears that 

the use of MERSS with concomitant variable is highly beneficial when compared to 

SRS for estimating the population means. The estimators obtained are unbiased and 

more efficient than those obtained using SRS; in addition, their asymptotic efficiency 

is always greater than one. For the procedure to be used in practice, it is essential that 

the maximum and the minimum can be identified for one of the variables by 

judgment, whereas the other variable should be highly correlated with the first variable. 

 

Table 3.1: Efficiency of  ̂      
 w.r.t. ̂    

  

 m 1 2 3 4 5 6 7 8 9 10 

eff 1.00 1.19 1.34 1.46 1.57 1.67 1.76 1.83 1.91 1.98 

 

Table 3.2: Efficiency of  ̂      
 ( ̂    

 ) w.r.t  ̂    
  

 m   0.2 0.4 0.6 0.8 

1 1.00(1.00) 1.00(1.00) 1.00(1.00) 1.00(1.00) 

2 1.01(1.01) 1.03(1.05) 1.06(1.13) 1.11(1.26) 

3 1.01(1.02) 1.04(1.08) 1.10(1.21) 1.19(1.44) 

4 1.01(1.02) 1.05(1.10) 1.13(1.26) 1.25(1.58) 

5 1.02(1.03) 1.06(1.11) 1.15(1.30) 1.30(1.69) 

6 1.02 1.07 1.17 1.34 

7 1.02 1.07 1.18 1.38 

8 1.02 1.08 1.20 1.41 

9 1.02 1.08 1.21 1.44 

10 1.02 1.09 1.22 1.46 
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Table 3.3: Efficiency for trees data  ̂      
  ( ̂      

 ) w.r.t. ̂    
 ( ̂    

 ) 

m eff( ̂      
    ̂    

 ) eff( ̂      
    ̂    

 ) 

1 1.00 1.00 

2 1.19 1.11 

3 1.35 1.20 

4 1.45 1.25 

5 1.56 1.28 

6 1.64 1.33 

7 1.74 1.35 

8 1.76 1.37 

9 1.82 1.35 

10 1.81 1.32 

 

Figure 3.1: The efficiency of Table 3.1 

 

Figure 3.2: The efficiency of Table 3.2 
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4.1   Introduction  

Regression analysis is a conceptually simple method for investigating functional 

relationships among variables. The relationship is expressed in the form of an 

equation or model connecting the response variable (Y) and one (X) or more 

explanatory variables. The simple true relationship can be approximated by the 

regression model 

Y = α + βX +  

Where  is assumed to be random error, α, β are unknown regression 

parameters to be estimated from the data. 

In areas such as medical studies, quantitative genetics, and ecological and 

environmental studies, there are abundant situations where, in the context of 

regression, the measurement of the response variable is costly or time consuming but 

the measurement of the predictor variable can be obtained easily with relatively 

negligible cost. For example, in the assessment of the association between certain 

biomarkers and exposure level in cancer studies, the measurement of biomarkers 

involves expensive and time-consuming laboratory investigation but the measurement 

of exposure level can be easily obtained. Other examples can be found in animal 

growth studies where the ages of animals need to be determined but aging an animal 

is usually time consuming and costly, and sometimes there is even need to sacrifice 

the animal. However, variables on the physical size of an animal, which are costly 

related to age, can be collected easily and cheaply. Sampling strategies that can 

reduce cost and increase efficiency are highly desirable in these cases. 

 Many authors have used RSS technique in regression analysis. Patil et al. (1993b) 

compared the RSS sample and SRS sample in relation to the concomitant variable and 

the regression estimate. Yu and Lam (1997) proposed a regression-type estimator based 

on RSS. They demonstrated that this estimator is always more efficient than the 

regression estimator using SRS and is also more efficient than the estimator proposed by 

Patil et al. (1993b) unless the correlation coefficient is low ( < 0.4). Muttlak 

(1995) used RSS to estimate the parameters of the simple linear regression model 

treating the regressor X as a constant. Chen (2001b) did an extensive study on the 
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properties of regression type estimates. Chen and Wang (2004) studied the optimal 

RSS for the regression analysis. Samawi and Ababneh (2001) and earlier Samawi et al 

(1996a), showed that the extreme ranked set sampling (ERSS) performed better than RSS 

at estimating model parameters. 

The current study uses generalized ranked data procedure (LRSS) (Al-Nasser 

(2007)).  

4.2. Estimation of Mean using L Ranked Set Sampling (LRSS) 

Based on the LRSS scheme, explained in the estimator of the population mean 

when r=1 is defined as: 

 ̂     
 

 
(∑        

 

   

∑      

   

     

 ∑        

 

       

) 

and its variance is given by: 

     ̂      
 

  
(∑   (       )  

 

   

∑           

   

     

 ∑    (       )

 

       

) 

Al-Nasser proved that  ̂     is unbiased estimator of the population mean µ, 

and has smaller variance than  ̂    if the underlying distribution is symmetric. 

4.3  Bivariate L Ranked Set Sampling (LRSS) 

Al-Nasser and Radaideh (2008) used a modified bivariate LRSS to estimate 

parameter in the simple linear regression model. 

In order to have a Bivariate L ranked set sample, the following steps are 

performed: 

Step1:  Randomly draw m independent sets each containing m bivariate sample units.  

Step2:  Rank the units within each sample with respect to the X's by visual inspection or 

any other cost effective method. 

Step3:  Select LRSS coefficient, K = [mp] such that 0 ≤ p <0.5, and [X] the 

largest integer value less than or equal to X. 
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Step4:  For each of the first  (k + 1)  ranked s amples;  select  the  unit with rank 

k + 1 and measure the Y value that corresponding to x(k+1)i and 

denote it by y[k + 1]i. 

Step5: For j=k+2,……, m−k−1, the unit with rank j in the j
th 

ranked sample is 

selected and measures the y value that corresponds. 

Step6: The procedure continued until (m-k)
th  

unit selected from the 

each of the last (m – k)
th 

ranked samples, with respect to the first 

characteristic and measure the correspond y value. 

For example, if k = 1 and m = 5 then the selected ranked sample will be as given in 

Table. 4.1. 

Table 4.1: Selected Bivariate LRSS when m = 5 and k = 1. 

 
x(1)1,y[1]1 x(1)2,y[1]2 x(1)3,y[1]3 x(1)4,y[1]4 x(1)5,y[1]5 

x(2)1,y[2]1 x(2)2,y[2]2 x(2)3,y[2]3 x(2)4,y[2]4 x(2)5,y[2]5 

x(3)1,y[3]1 x(3)2,y[3]2 x(3)3,y[3]3 x(3)4,y[3]4 x(3)5,y[3]5 

x(4)1,y[4]1 x(4)2,y[4]2 x(4)3,y[4]3 x(4)4,y[4]4 x(4)5,y[4]5 

x(5)1,y[5]1 x(5)2,y[5]2 x(5)3,y[5]3 x(5)4,y[5]4 x(5)5,y[5]5 

 

4.4 Estimating Simple Linear Regression Parameters 

In completion of the sampling, let      
 and      

 
be, respectively, X with 

rank k and the corresponding value of Y obtained from the i
th

 set in the j
th 

cycle.  

Then, the regression equation based on bivariate LRSS can be modeled as: 

     [ ] 
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 {

 [   ]                                                                 

  [ ]                                    

 [   ]                                          
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where  [ ]  
 is the random error. Under the regular assumptions of simple linear 

regression model Draper and Smith (1981), the least square estimates of the regression 

parameters mentioned in (4.4.1) are given by: 

                                ̂     
∑ *∑ (     

    ̅) ( [ ] 
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Hereafter, the fitted model will be: 
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note that, the estimated residuals are given by  
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Theorem1: Assume that (4.4.1) is satisfied then: 
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Proof: Without loss of generality suppose that r= 1 then  ̂ given (4.4.2) can be 

rewritten as 

 ̂     
     

     
 ∑    
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Therefore;  ( ̂    )    

2- Now for the intercept estimator we have 
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Following Yu and Lam (1997) the LRSS regression estimator is given by 

 ̂           ̅   ̂  ̅    ̅  

Moreover, under model (4.4.1) and the above assumptions, then for fixed value of r 

we have     

( ̂   )
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The proof of these results are concluded directly using the ideas of RSS (Chen et al 

(2004). 

4.5.  Simulation Study 

To illustrate the performance of the LRSS estimator’s Monte Carlo simulation 

studies were conducted considering two cases inliers and outlier cases. The simulation 

plan has the following assumptions: 

 Generate 10000 random samples using SRS, RSS, ERSS and LRSS (with 

k=1, 2). 

 Set the number of cycles r = 5, 10, 20, and set size m = 5, 6, 7, 8. 

 
ˆ ˆ 
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 Initiate the strength of the association between the two variables by  = 0.1, 0.5 

and 0.9. 

 The intercept and the slope are initialed as α =0 and β = . 

 The error term is generated from (0, 1- ρ
2
) and the regressor from 

N(0 ,1) .  

 Also, an outlier case is considered, by generating an outlier (one 

observation). For this observation we generate the error term from N (0,5
2
). 

 The relative efficiency (RE) for the estimated model based on LRSS is 

computed according to the following expression:  

   
   ( ̂       )

   ( ̂        )
 

The results of the MSE for the SLR model for inliers case is given in Table.4.2 

– Table.4.4; and the results for outlier cases are given in Table 4.5 – Table 4.7. 

The simulation results indicate that estimation of the simple linear 

regression model using LRSS is more efficient than using the traditional 

sampling techniques; SRS, ERSS or RSS. Moreover, when the data contains 

outliers the LRSS is shown to be a robust technique, and as the value of K 

increases the RE increases. Moreover, the RE of regression estimators decreases 

as the set size or the cycle size increases. Also, for fixed r and m, the RE 

decreases whenever ρ increases. It seems that, for a moderate or large sample size, 

the RE is slightly different when using either RSS or ERSS. However, using 

LRSS is generally more efficient than using SRS, ERSS or RSS for regression 

analysis. 

4.6.  Illustration Using Real Data 

An illustration of the LRSS procedure in estimation using simple linear 

regression is discussed based on a real data set from Platt et al (1988). 

4.6.1  Real Data Set  

The original data were collected on seven variables about tree 

characteristics of which only two have been used here: X, the diameter in 
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centimeters at breast height and Y, the entire height in feet. The regression 

model is analyzed assuming that the population is consists of 375 trees. The 

summary statistics of the data are reported in Table.4.8. 

Based on the entire measurements a random sample of size 75 is drawn by 

using different sampling schemes, SRS, RSS, ERSS, and LRSS (k= 1, 2). In 

RSS, ERSS and LRSS procedure we use m sets each of size m, where m=5, and 

repeat this cycle fifteen times “i.e., r = 15” to achieve a sample of size 75. The 

summary statistics of the selected random samples is presented in Table.4.9. 

It can be noted that, the average of regressor varied from 17.3-28.5 and 

response from 42.7-79.3 depends on which sampling scheme is used. 

4.6.2  Data Analysis  

In order to form the regression model based on different sampling 

scheme, a visual inspection using scatter plot is used (Figure. 4.1). 

The scatter plots in Figure. 4.1 suggested that the relationship between 

both variables is not linear. Therefore, both variables are re-expressed by a natural 

logarithmic transformation. After here, the least square method is used for model 

fitting; the estimates of the regression parameters are given in Table. 4.10. 

The results suggest that the RSS, LRSS1 and LRSS2 perform well 

compared to the SRS and ERSS in regards MSE point of view. Also, it can be 

noted that using RSS the intercept and slope have the minimum standard error and 

the highest fitting measure (i.e., 93.2%). Moreover, the residual plot and the 

normality p-p plot Figure.4.2 suggest that the model reasonably fits the data using 

these methods. In conclusion, from the data analysis and simulation results; the 

LRSS produced a satisfactory estimation for simple linear regression compared to 

the SRS and the other ranked data sampling schemes. 
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Table 4.2: RE for Regression model with = 0.1 

 r m ERSS RSS LRSS1 LRSS2 

5 5 .562 .984 1.964 3.467 

 6 .486 .978 1.759 3.446 

7 .452 .974 1.612 3.001 

8 .413 .982 1.526 2.651 

10 5 .567 .981 1.959 3.438 

 6 .493 .988 1.772 3.441 

7 .458 .991 1.638 3.042 

8 .418 .990 1.538 2.659 

20 5 .573 .997 1.972 3.462 

 6 .497 .995 1.783 3.463 

7 .460 .994 1.642 3.042 

8 .421 .998 1.550 2.680 

 

Table 4.3: RE for Regression model with = 0.5 

 r m ERSS RSS LRSS1 LRSS2 

5 5 .659 .978 1.723 2.869 

 6 .601 .973 1.560 2.831 

7 .580 .983 1.470 2.536 

8 .550 .984 1.397 2.246 

10 5 .672 .989 1.732 2.874 

 6 .612 .988 1.581 2.854 

7 .588 .993 1.483 2.549 

8 .557 .992 1.409 2.266 

20 5 .675 .996 1.738 2.861 

 6 .618 .994 1.591 2.860 

7 .591 .995 1.487 2.547 

8 .559 .993 1.409 2.262 
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Table 4.4: RE for Regression model with = 0.9 

 r m ERSS RSS LRSS1 LRSS2 

5 5 .907 .990 1.179 1.465 

 6 .898 .989 1.137 1.464 

7 .893 .996 1.116 1.385 

8 .887 .995 1.097 1.317 

10 5 .913 .991 1.182 1.476 

 6 .903 .996 1.148 1.471 

7 .890 .995 1.117 1.389 

8 .885 .996 1.101 1.320 

20 5 .918 .998 1.188 1.471 

 6 .902 .999 1.149 1.470 

7 .895 .996 1.120 1.390 

8 .886 .997 1.102 1.319 

 

Table 4.5: RE for Regression model with = 0.1: outlier case 

r m ERSS RSS LRSS1 LRSS2 

5 5 0.474 0.980 3.537 6.668 

 6 0.404 0.987 2.992 6.205 

7 0.368 0.988 2.635 5.184 

8 0.330 0.979 2.361 4.286 

10 5 0.477 0.986 3.576 6.681 

 6 0.406 0.989 3.019 6.238 

7 0.372 0.996 2.663 5.210 

8 0.335 0.990 2.404 4.361 

20 5 0.483 0.996 3.594 6.709 

 6 0.411 0.996 3.056 6.297 

7 0.372 0.998 2.669 5.219 

8 0.335 0.996 2.404 4.359 
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Table 4.6: RE for Regression model with = 0.5: outlier case 

r m ERSS RSS LRSS1 LRSS2 

5 5 0.491 0.976 3.240 5.689 

 6 0.423 0.975 2.758 5.276 

7 0.389 0.977 2.43 1 4.396 

8 0.363 0.989 2.226 3.753 

10 5 0.498 0.989 3.263 5.694 

 6 0.434 0.995 2.794 5.300 

7 0.397 0.993 2.484 4.468 

8 0.365 0.996 2.250 3.760 

20 5 0.503 1.000 3.286 5.723 

 6 0.435 0.995 2.803 5.297 

7 0.398 0.992 2.475 4.440 

8 0.366 0.998 2.259 3.784 
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Table 4.7: RE for Regression model with = 0.9: outlier case 

 r m ERSS RSS LRSS1 LRSS2 

5 5 0.612 0.984 1.922 2.727 

 6 0.554 0.975 1.718 2.544 

7 0.542 0.993 1.616 2.270 

8 0.506 0.983 1.508 2.014 

10 5 0.618 0.998 1.928 2.724 

 6 0.565 0.993 1.748 2.567 

7 0.536 0.991 1.620 2.268 

8 0.513 0.997 1.537 2.050 

20 5 0.621 1.000 1.941 2.724 

 6 0.571 0.998 1.745 2.554 

7 0.538 0.995 1.614 2.267 

8 0.513 1.002 1.538 2.039 

 

 

Table 4.8: Summary Statistics for the Tree Data 

  Diameter(x) in cm Entire Height (y) in feet 

N 375 375 

Mean 21.8971 54.83 

Std. Deviation 17.63671 57.656 

Range 73.2 242 
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Table 4.9: Summary Statistics for the selected samples of size 75  

 
  Range Minimum Maximum Mean Std. 

Deviation 

SRS x 66.90 2.30 69.20 20.1227 17.79634 

y 219.00 4.00 223.00 48.8933 58.30896 

RSS x 66.90 2.30 69.20 21.4427 18.96384 

y 219.00 4.00 223.00 55.8400 64.10023 

LRSS1 x 48.70 4.20 52.90 18.5333 13.57199 

y 205.00 6.00 211.00 42.7600 44.77718 

LRSS2 x 41.40 5.10 46.50 17.3213 11.50245 

y 203.00 8.00 211.00 43.3467 48.53516 

ERSS x 66.90 2.30 69.20 28.4773 23.89840 

y 219.00 4.00 223.00 79.3200 79.59614 

 

 

Table 4.10: Regression Analysis of Tree data 

 
Method Constant Log(Diameter) Adj(R

2
) MSE 

SRS 0.556
*
 (0.130) 1.066

*
 (0.047) 0.875 0.134 

RSS 0.468
*
 (0.099) 1.120

*
 (0.035) 0.932 0.080 

ERSS 0.525
*
 (0.116) 1.112

*
 (0.38) 0.920 0.138 

LRSS1 0.531
*
 (0.124) 1.073

*
 (0.045) 0.885 0.080 

LRSS2 0.614
*
 (0.154) 1.063

*
 (0.057) 0.826 0.090 

Note: Standard Errors in parentheses;    * Statistically Significant at 1%. 
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Figure 4.1: Scatter Plot of Tree Data by Using Different Sampling Schemes 
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Figure 4.2: Residual Analysis using Different Sampling Scheme: “Response is Ln 

(Height)” 

 



 
Chapter – 5         Estimation of the Population Mean using Stratified Quartile Ranked Set Sampling  

 

74 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 
 
 

CHAPTER 5  

 

ESTIMATION OF THE 

POPULATION MEAN USING 

STRATIFIED QUARTILE 

RANKED SET SAMPLING  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Chapter – 5         Estimation of the Population Mean using Stratified Quartile Ranked Set Sampling  

 

75 

 

1   Introduction  

In stratified sampling method, the population of N units is divided into L non 

overlapping subpopulations each of N1 ,N2,,…NL units, respectively, and N1+N2+,…+ 

NL=N. These subpopulations are called strata. For full benefit from stratification, the 

size of the hth subpopulation, denoted by Nh for h=1,2,…,L , must be known. Then 

the samples are drawn independently from each stratum, producing samples sizes 

denoted by n1, n2,….,nL, such that the total sample size is    ∑   
 
   .  

If a simple random sample is taken from each stratum, the whole procedure is 

known as Stratified Simple Random Sampling (SSRS). On the other hand, in 

Stratified Ranked Set Sampling (SRSS) procedure, rather than selecting a simple 

random sample within each stratum, as is done in stratified simple random sampling , 

a ranked set sample is taken within each stratum. This sampling design combines the 

variance reduction that arises from stratifying the population with the increased 

precision RSS holds over SRS.  

The estimator for the population mean under stratified ranked set sampling is as 

follows: 

 ̅     ∑
  
 
(
 

  
∑   

  

   

)

 

   

 

where Xih is the measurement for the ith unit sampled from stratum h, Nh is the 

population size in stratum h, N is the total population size, and L is the total number of 

strata. This quantity is the weighted average of the ranked set sampling estimators for 

the mean of each stratum. Under this sampling design, one needs to stratify the 

elements of the population a priori. A source of information must be available that 

permits classification of each element of the population into a stratum (e.g., a previous 

Census). 

 Muttlak (2003b) suggested Quartile Ranked Set Sampling (1.4.8) to estimate the 

population mean and showed that QRSS reduces the errors in ranking when compared 

to RSS. The quartile ranked ret sampling method is carried out by selecting n random 

samples each of size n units from the population of interest and ranking the units in 
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each sample with respect to a variable of interest. If the sample size n is even, select 

for measurement from the first n/2 samples the q1(n+1)th smallest ranked unit and 

from the second n/2 samples the q3(n+1)th smallest ranked unit. If the sample size n is 

odd, select for measurement from the first (n-1)/2 samples the q1(n+1)th smallest 

ranked unit, from the last (n-1)/2 samples the q3(n+1)th smallest ranked unit and from 

the remaining sample the median ranked unit. The cycle can be repeated r times if 

needed to get a sample of size nr units. Note that we always take the nearest integer of 

q1(n+1)th and q3(n+1)th where q1=0.25 and q3=0.75. If the quartile ranked set 

sampling method is used to select the sample units from each stratum then the whole 

procedure is called a stratified quartile ranked set sampling (SQRSS), (Syam and 

Ibrahim (2012)). The following is an example of SQRSS method for even sample 

size. 

Suppose that we have two strata, i.e. L=2 and h=1,2. Let    (  (    )) and  

   (  (    )) be the (q1(nh+1))th and (q3(nh+1))th order statistics, respectively, of the 

ith sample in the hth stratum. Assume that from the first stratum we select a sample of 

size 6 and from the second stratum we want a sample of size 8. Then the process as 

shown below: 

Stratum 1: Select 6 samples each of size 6 as follows: 

X11(1), X11(2), X11(3), X11(4), X11(5), X11(6) 

X21(1), X21(2), X21(3), X21(4), X21(5), X21(6) 

X31(1), X31(2), X31(3), X31(4), X31(5), X31(6) 

X41(1), X41(2), X41(3), X41(4), X41(5), X41(6) 

X51(1), X51(2), X51(3), X51(4), X51(5), X51(6) 

X61(1), X61(2), X61(3), X61(4), X61(5), X61(6) 

For h=1, select the second order statistics,    (  (    ))     ( ) for i=1,2,3, and the 

5th order statistics     (  (    ))     ( )  for i =4,5,6.  

Thus, from the first stratum we have: X11(2), X21(2), X31(2), X41(5), X51(5), X61(5) 
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Stratum 2: In the second stratum select 8 samples each of size 8 as follows: 

X12(1), X12(2), X12(3), X12(4), X12(5), X12(6), X12(7), X12(8) 

X22(1), X22(2), X22(3), X22(4), X22(5), X22(6), X22(7), X22(8) 

X32(1), X32(2), X32(3), X32(4), X32(5), X32(6), X32(7), X32(8) 

X42(1), X42(2), X42(3), X42(4), X42(5), X42(6), X42(7), X42(8) 

X52(1), X52(2), X52(3), X52(4), X52(5), X52(6), X52(7), X52(8) 

X62(1), X62(2), X62(3), X62(4), X62(5), X62(6), X62(7), X62(8) 

X72(1), X72(2), X72(3), X72(4), X72(5), X72(6), X72(7), X72(8) 

X82(1), X82(2), X82(3), X82(4), X82(5), X82(6), X82(7), X82(8) 

 

For h=2, select    (  (    ))     ( )   for i=1,2,3,4 and    (  (    ))     ( )  for i 

=5,6,7,8. 

Then we have   X12(2), X22(2), X32(2), X42(2), X52(7), X62(7), X72(7), X82(7). 

Therefore, the SQRSS units are X11(2), X21(2), X31(2), X41(5), X51(5), X61(5), X12(2), X22(2), X32(2), 

X42(2), X52(7), X62(7), X72(7), X82(7). 

 The mean of these units is used as an estimator of the population mean. 

5.2  Estimation of Population Mean 

Let X1, X2,…,Xn be n independent random variables from a probability density 

function  f(x), with mean µ and variance σ
2
. The SRS estimator of the population 

mean based on a sample of size n is given by 

 ̅    
 

 
∑  

 

   

 

With the variance 

 ( ̅   )  
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The RSS estimator of population mean is given by  

 ̅    
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Where  ( ) is the mean of the ith order statistic X(i) for a sample of size n. 

The stratified quartile ranked set sampling estimator of the population mean when nh 

is even, is defined as  
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variance of SQRSS1 is given by 
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When the sample size nh is odd, the SQRSS estimator is defined as 
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Lemma:  ̅       and  ̅       are unbiased estimators of the mean of symmetric 

distributions 

Proof: 

If nh is even, we have 
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where   (  ) and   (  ) are the means of the order statistics corresponding to the first 

and third quartiles, respectively. Since the distribution is symmetric about µ, 

then    (  )   (  )      . Therefore, we have 
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where   (  ) is the mean of the first quartile for the first  (
    

 
)samples in the hth 

stratum,   (  ) is the mean of the third quartile for the last (
    

 
)samples in the hth 

stratum, and    is the mean for the stratum h. Since the distribution is symmetric 

about µ, then   (  )    (  )     . Therefore, 
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5.3 Simulation Study 

A simulation study is conducted to investigate the performance of SQRSS in 

estimating the population mean. Symmetric and asymmetric distributions are 

considered for n = 7, 12, 14, 15, 18 by assuming that the population is partitioned into 

two or three strata. Using 100000 replications, estimates of the means, variances and 

mean square errors are computed. For each distribution it is assumed that the 
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distribution of each stratum follows that distribution. When the underlying 

distribution is symmetric, the efficiency of SQRSS relative to SRS, SSRS, SRSS, is 

given by: 

   ( ̅       ̅    )  
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Respectively, and if the distribution is asymmetric the efficiency is defines as 
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where MSE is the mean square error (MSE) which is defined as  

   ( ̅)     ( ̅)  [    ( ̅)]  

Based on Tables 5.1-5.7, it is conclude that: 

1. A gain in efficiency is attained using SQRSS method for estimating the population 

mean of the variable of interest. For example, for n=18 with n1=4, n2=6, and n3=8, 

the efficiency of SQRSS1 with respect to SRSS is 1.9037 for estimating the mean 

of the uniform distribution. 

2. SQRSS is more efficient than SRSS, SSRS and SRS based on the same number of 

measured units. For example, when n=12, the efficiency value of SQRSS1 with 

respect to SRSS, SSRS and SRS are 3.0702, 4.4249 and 4.3212, respectively, for 

estimating the mean of the normal distribution. 

3. The suggested estimators are more efficient when the underlying distribution is 

symmetric as compared to some asymmetric distributions. 
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4. As the number of strata increases, the bias values decreases. For example, when 

n=18, for three strata the bias of SQRSS is 0.0008 while the bias is 0.0048 for two 

strata for estimating the mean of B (1, 2). 

 

Table 5.1: The efficiency of SQRSS1 relative to SRSS, SSRS and SRS for n = 14 

with n1= 8 and n2 = 6. 

    ( ̅        ̅    )    ( ̅        ̅    )    ( ̅        ̅   ) 

Uniform (0,1) 1.2951 1.1961 1.1765 

Normal (0,1) 1.5421 1.7392 1.7081 

Student T (3) 2.5941 3.0907 2.9233 

Geometric (0.5) 2.3171 1.8348 1.8045 

Exponential (1) 1.4827 2.9393 2.8866 

Gamma (1,2) 2.8220 2.8187 2.7522 

Beta (1,2) 2.0800 1.6000 1.4815 

Beta (5,2) 1.5714 1.4615 1.3846 

LogNormal(0,l) 2.4629 2.8177 2.7685 

Weibull (1,2) 2.4512 2.4762 2.4286 

 

 

Table 5.2: The efficiency of SQRSS2 relative to SRSS,SSRS and SRS for  n=7 with 

n1 = 4 and n2 = 3 

    ( ̅        ̅    )    ( ̅        ̅    )    ( ̅        ̅   ) 

Uniform (0,1) 1.4044 1.9680 1.9520 

Normal (0,1) 2.2923 1.3206 1.2979 

Student T (3) 3.2733 4.1918 4.0163 

Geometric (0.5) 3.1237 3.0990 3.0437 

Exponential (1) 4.6853 4.5361 4.4577 

Gamma (1,2) 4.5464 4.9583 4.8654 

Beta (1,2) 2.6986 1.1096 1.0959 

Beta (5,2) 1.2593 1.3704 1.3704 

LogNormal(0,l) 1.0519 4.1557 4.0867 

Weibull (1,2) 1.5090 1.2724 1.2480 
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Table 5.3: The efficiency of SQRSS1 relative to SRSS, SSRS and SRS for n = 12 

with n1 = 5 and n2 = 7 

    ( ̅        ̅    )    ( ̅        ̅    )    ( ̅        ̅   ) 

Uniform (0,1) 2.0526 1.9726 1.9452 

Normal (0,1) 3.0702 4.4249 4.3212 

Student T (3) 3.7740 2.3829 2.3589 

Geometric (0.5) 5.9230 5.5405 5.3883 

Exponential (1) 5.1000 7.2101 6.9916 

Gamma (1,2) 5.9486 5.5614 5.4599 

Beta (1,2) 1.5625 1.4688 1.4375 

Beta (5,2) 2.0000 1.6923 1.6154 

LogNormal(0,l) 6.2195 8.3230 8.1325 

Weibull (1,2) 1.8829 2.0674 2.0112 

 

 

Table 5.4: The efficiency of SQRSS1 relative to SRSS, SSRS and SRS for n = 18 

with n1 = 4, n2 = 6 and n3 = 8 

    ( ̅        ̅    )    ( ̅        ̅    )    ( ̅        ̅   ) 

Uniform (0,1) 1.9037 3.0625 2.8750 

Normal (0,1) 2.4148 4.5581 4.3023 

Student T (3) 3.0018 3.1649 2.9785 

Geometric (0.5) 2.6504 3.0281 2.8414 

Exponential (1) 4.4286 6.3913 6.0217 

Gamma (1,2) 2.1230 3.4107 3.2293 

Beta (1,2) 2.0000 3.4178 3.5317 

Beta (5,2) 1.5346 3.8884 3.6292 

LogNormal(0,l) 1.8972 3.1877 3.0023 

Weibull (1,2) 1.9744 3.0625 3.0513 
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Table 5.5: The efficiency of SQRSS2 relative to SRSS, SSRS and SRS for n = 15 

with n1 = 3, n2 = 5 and n3 = 7 

    ( ̅        ̅    )    ( ̅        ̅    )    ( ̅        ̅   ) 

Uniform (0,1) 1.1053 3.1579 2.9474 

Normal (0,1) 1.2982 4.9792 4.6250 

Student T (3) 2.5238 3.1970 3.0256 

Geometric (0.5) 2.7542 6.2294 5.7835 

Exponential (1) 3.3857 4.9247 4.5479 

Gamma (1,2) 1.8189 3.6919 3.4249 

Beta (1,2) 2.6345 5.7726 5.3396 

Beta (5,2) 1.3050 3.8128 3.6009 

LogNormal(0,l) 4.1032 5.4317 4.8524 

Weibull (1,2) 2.8636 4.5294 4.2059 

 

 

Table 5.6 :The bias values of SQRSSl for n =12, 14, 18 

 n = 14 n  = 12 n = 18 n = 18 

 n1 = 8 , n2 =6 n1 = 5 , n2 = 7 n1 =10 , n2 = 8 n1 = 4 , n2 = 6, n3 = 8 

Geometric (0.5) 0.0168 0.0168 0.0086 0.0061 

Exponential (1) 0.0308 0.0308 0.0297 0.0059 

Gamma (1,2) 0.0599 0.0761 0.1124 0.0312 

Beta (1,2) 0.0052 0.0052 0.0048 0.0008 

Beta (5,2) 0.0347 0.0372 0.0253 0.0092 

LogNormal(0,l) 0.0799 0.0852 0.0644 0.0158 

Weibull (1,2) 0.0385 0.0458 0.0349 0.0118 
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Table 5.7: The bias values of SQRSS2 for n =7, 15 

 n = 7 n = 18 

 n1 = 4 , n2 = 3 n1 = 3 , n2 = 5, n3 = 7 

Geometric (0.5) 0.0170 0.0085 

Exponential (1) 0.0309 0.0062 

Gamma (1,2) 0.0899 0.0369 

Beta (1,2) 0.0054 0.0009 

Beta (5,2) 0.0705 0.0094 

LogNormal(0,l) 0.0974 0.0118 

Weibull (1,2) 0.0770 0.0122 

 

   



 

 

 

 

 

 

CHAPTER 6  

 

APPLICATIONS 

  



 
Chapter – 6                               Applications   

 

87 

 

6.1 Introduction 

The variety of RSS variants has tremendously enlarged the territory of the 

application of RSS from its original colony of agriculture and ecological studies to a 

vast and much diversified continent including the areas of clinical trials and genetic 

studies. This will be illustrated by the examples of application presented in the next 

section. 

All the RSS variants share the same basic features and properties. These RSS 

schemes bear the similarity to stratified sampling. Samples ascertained through the 

RSS schemes contain more information than simple random samples of the same size, 

which explains why RSS is more efficient than simple random sampling as has been 

demonstrated by many particular statistical problems. 

6.2  Case Studies 

6.2.1  Forage Yields 

Although McIntyre’s original proposal of estimating pasture yields by 

“unbiased selective sampling using ranked sets” was made in 1952, no applications 

were apparently reported until fourteen years later. Halls and Dell in 1966 applied 

McIntyre’s method, coining it “ranked set sampling” for estimating the weights of 

browse and herbage in a pine-hardwood forest of east Texas. These authors 

discovered RSS to be considerably more efficient than SRS. 

Sets of three closely grouped quadrats were formed on a 300-acre tract. At 

select locations, metal frames of 3.1 square feet were placed at three randomly 

selected points within a circle of 13 foot radius as seen in figure 6.2.1. Quadrats were 

then ranked as lowest, intermediate and highest according to the perceived weight of 

browse and, separately, of herbage. Then, after clipping and drying, the separate 

weights of browse and herbage were determined for each quadrat. This was repeated 

for 126 sets for estimating browse and 124 sets for estimating herbage. 

In order to simulate the SRS estimator for the mean weight of browse, one quadrat 

was randomly selected from each set without considering its rank. Since actual values 

were known for each quadrat, the RSS estimator was obtained by randomly choosing 

the ranks to be quantified for each set, resulting in 37 lowest ranks, 46 intermediate 
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ranks and 43 highest ranks. Halls and Dell also examined McIntyre’s suggestion that 

unequal allocation might further improve the efficiency of estimation. Since the 

standard deviations for the order statistics were 7, 13 and 27.7 for the low, 

intermediate and high yield, respectively (ratio of 1:2:4), they selected 14 quadrats in 

the low group, 40 in the intermediate group and 72 in the high group. Note that 

perfect ranking was obtained for both RSS protocols because the actual values already 

known for each quadrat. 

Results of these three sampling protocols are reported in Table 6.2.1. As 

expected under perfect ranking, precision due to RSS with approximately equal 

allocation increased, more than doubling for browse estimates. Furthermore, when 

allocation was proportional to the order statistic standard deviation, the precision 

increased still further, thus supporting McIntyre’s contention. 

 

 

 

 

 

 

 

Figure 6.2.1: Within each circle, quadrats are randomly placed, followed by ranking 

and analysis of one appropriate quadrat. (not to scale) 

Another very valuable aspect of this study was that two observers independently 

ranked the quadrats, one a professional range man and the other a woods worker. 

There was practically no difference in the ranking results between the two observers. 
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6.2.2  Seedling counts 

The effectiveness of RSS for improving the sampling precision of seedling 

counts was studied by Evans (1967) in an area in central Louisiana that was seeded to 

Longleaf Pine (Pinuspalustris mill). After dividing the target area into 24 blocks, each 

block was then subdivided into 25 one-milacre plot. All 600 plots were initially 

measured to characterize the population, which is summarized in Table 6.2.2a. The 

population mean and standard deviation were calculated to be 1.675 and 1.36, 

respectively. 

For the RSS protocol, three plots were randomly selected from each of the 24 

blocks (sets), resulting in 72 identified plots. The three plots within each set were then 

visually ranked. One cycle consisted of selecting the lowest ranked plot from the first 

set. The second lowest from the second set and the highest ranked plot from the third 

set. Repeating the cycle eight times yielded 24 selected plots in the ranked set sample 

(m =3, r = 8). This whole procedure was repeated twice so that three separate field 

trials were performed, as summarized in Table 6.2.2b. Evans also computed the 

means and standard deviations of each rank using all 72 identified plots for each of 

the three field trials. These results are reproduced in the Table 6.2.2c for comparison 

to the RSS results in Table 6.2.2b. 

In order to compare RSS to SRS, Evans resampled the 24 blocks (sets) 80 

times to obtain two empirical distributions of the mean, one based on the RSS 

estimator and the other based on the SRS estimator, which is actually a stratified 

random sample estimator. The results of this “bootstrapping” exercise are reproduced 

in Table 6.2.2d where we see a significant reduction in the variance due to RSS. 

6.2.3.  Shrub Phytomass in Forest Stands  

The performance of RSS for estimating shrub Phytomass (all vegetation 

between one and five meters high) was evaluated by Martin et al. (1980) at a forested 

site in Virginia. They investigated four major vegetation types along a decreasing 

moisture gradient: mixed hardwood, mixed oak, mixed oak and pine, and mixed pine. 

For each vegetation type, a 20m by 20m area was subjectively located which was 

further divided into 16 plots of equal size (5m by 5m). 
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For the RSS procedure, four sets of four plots were randomly selected from 

the 16 plots in each vegetation type. The plots in each set were then ranked by visual 

inspection, followed by quantifying the smallest ranked plot from the first set, the 

second smallest ranked plot from the second set and so on in the usual manner for 

RSS. This was repeated for each of the four vegetation types. For the SRS procedure, 

four out of the 16 plots in each vegetation type was randomly selected without 

replacement, followed by quantification of each selected plot. Again, this is actually a 

stratified random sample since each vegetation type is a separate stratum. Shrub 

Phytomass was also determined for all 64 plots to obtain a grand mean and variance 

for comparison. Their results are reproduced in Table 6.2.3 where we see a substantial 

increase in precision of the mean estimator associated with RSS. 

6.2.4.  Herbage Mass 

In order to compare RSS with SRS for estimating herbage mass in pure grass 

swards and both herbage mass and clover content in mixed grass-clover swards, 

Cobby et al. (1985) conducted four experiments at Hurley (UK). Besides comparison 

of RSS to SRS, their objective was to assess the effects of the following factors on 

RSS: (i) imperfect ranking within sets, (ii) greater variation between sets than within 

sets, and (iii) asymmetric distribution of the quantified values. 

The first two experiments were conducted by randomly selecting 15 locations, 

followed by randomly selecting three quadrats at each location and have several 

observers rank the quadrats within each set. For the last two experiments, 45 quadrats 

were drawn at random from the entire target area. This allowed an assessment of the 

effects of both spatial variation and ranking errors within sets. 

Their results are reproduced in Table 6.2.4, where RP of both the worst and 

best observers are compared to the RP under perfect ranking, and the between and 

within set variances are presented for assessing spatial variation. These authors 

determined the main adverse factor to be within set clustering, and they recommend 

spacing quadrats within sets as far apart as possible when local spatial autocorrelation 

exists. With this in mind, they recommend RSS over SRS for sampling grass and 

grass-clover swards.  
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6.2.5.  PCB Contamination Levels 

Before being lead to believe that RSS is only for vegetation studies, let us 

consider estimating PCB concentrations in soil. Patil et al. (1994a) used 

measurements of this contaminant collected at a Pennsylvania site along the gas 

pipeline of the Texas Eastern Company. Table 6.2.5.1 provides the summary statistics 

of PCB values in two sampling grids (A and C) within this site. Since the distribution 

of these data was highly skewed, they examined the effects of unequal as well as 

equal allocation of samples. More specifically, they examined the following schemes: 

a) Equal allocation of samples using all possible choices of sample units of each 

set size, 

b) Equal allocation of samples for a particular sample, and  

c) Unequal allocation of samples. 

Considering set sizes 2, 3, and 4, the relative savings (RS) were computed as 

[
   (   )    (   )

   (   )
] taking into consideration all possible choices of sample units for 

each set size for both the grids under the equal allocation scheme. The results are 

given in Table 6.2.5.2, where it is evident that RS increases with set size but that the 

magnitude of RS is higher for grid C than for grid A. Note that the data for grid C is 

much less skewed than grid A, as seen in Table 6.2.5.1. 

For comparing the performance of the RSS protocol relative to that of SRS 

with unequal allocation of samples, these authors considered two different 

proportional allocations for each set-size in order to decide the sample size for each 

rank. This has been done to show the impact of proportional allocation on the 

magnitude of relative savings accrued due to RSS over SRS. The results are given in 

Table 6.2.5.3, where the magnitudes of relative savings are seen to be quite 

substantial for each set size for both the grids. 

While unequal allocation of samples into ranks can substantially increase RS 

when the underlying population follows a skewed distribution, this procedure does 

require some prior knowledge of the underlying distribution. For this purpose one 

may either take advantage of prior surveys of similar nature or conduct a pilot study. 
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This same problem also arises in determining the optimum sample size under 

Neyman’s allocation scheme for stratified random sampling. Recent work by Kaur et 

al. (1994) has addressed the issue of optimum allocation when some knowledge about 

the underlying distribution is available, and they have devised a rule-of-thumb for 

allocating sample units based on skewness. 

6.2.6 Application in population genetics. 

 In the second stage of RSS, if only the units with the smallest rank or the 

largest rank are chosen for full measurement, the RSS scheme is referred to as the 

extreme RSS.  The extreme RSS has recently found important applications in genetics 

for quantitative trait loci (QTL) mapping. 

A QTL is a gene which affects a quantitative trait of concern such as obesity, 

cholesterol level, etc. Suppose that a candidate QTL has two alleles, say Q and q, 

which form three possible genotypes QQ, Qq and qq. Let Q be the allele which causes 

larger values of the quantitative trait, if the candidate QTL is indeed a QTL. It is 

usually the case that the frequency of the Q allele is small. As a consequence of this 

fact, even a large random sample from the population will include only a few of 

individuals whose genotype at the QTL contains the Q allele. This makes the usual t-

test, which compares the mean trait values between different genotypes of the QTL, 

infeasible. One approach adopted for detecting QTL using population data is to 

truncate the population at a certain quantile of the distribution of Y and take a random 

sample from the truncated portion and a random sample from the whole population. 

Then the two samples are genotyped and compared on the number of Q-alleles. If a 

significant difference exists, the candidate QTL is claimed as a true QTL, see Slatkin 

(1999) and Xu et al. (1999). In the implementation of the truncation approach, a large 

number of individuals have to be screened before a sample can be taken from the 

truncated portion. This causes tremendous practical difficulties, which hinders the 

application of the truncation approach in most of practical situations. 

The extreme RSS provides an alternative to the truncation approach. In the 

extreme RSS, individuals are taken in sets. The individuals within each set are ranked 

according to their trait values, and the one with the largest trait value is put into an 

upper sample and the one with the smallest trait value is put into a lower sample. The 

two samples obtained this way are then genotyped and compared. This extreme RSS 
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approach has been applied for linkage disequilibrium mapping of QTL recently by 

Chen et al. (2005). It turns out that the extreme RSS approach can achieve comparable 

powers to that of the truncation approach but avoids all practical difficulties of the 

truncation approach. The extreme RSS has also been applied to a sib-pair regression 

model where extremely concordant and/or discordant sib-pairs are selected by the 

extreme RSS; see Zheng et al. (2006). The extreme RSS approach can be applied to 

many other genetic problems such as the TDT test (Spielman et al. 1993) and the 

gamete competition model (Sinsheimer et al. 2000), etc. The properties of the extreme 

RSS in those problems are yet to be investigated. 

6.2.7 Application in regression analysis.  

 A new application of RSS discussed in this section concerns with the 

following linear regression model: 

                                   
         

Here it is assumed that the response variable Y is expensive to measure but the 

predictor variable X can be measured cheaply. The RSS can be carried out by ranking 

with respect to the predictor variable. The interest is now on the estimation of the 

regression coefficients. By considering optimality criteria such as D-optimality or A-

optimality based on the asymptotic variances and covariances of the estimated 

regression coefficients obtained from RSS samples, optimal unbalanced RSS schemes 

can be obtained to improve the efficiency of the estimation of the regression 

coefficients.  

An application of the above approach to a lung cancer study is given in Chen 

and Wang (2004). In that study, the effect of smoking on lung cancer is investigated 

through three bio-markers: the polyphenol DNA adducts in blood mononuclear cells, 

the micro nuclei (MI)which are chromosomal fragments or whole chromosomes 

excluded from the nucleus at mitosis, and the sister chromatid exchanges (SCE) 

which involve the reciprocal exchange of genetic material during cell replication. The 

purpose of the study is to determine the relationship between the three bio-markers 

and smoking level through three separate quadratic regression models. In this 

problem, the measurement of the three markers is very expensive but the smoking 

level of people can be easily obtained and is available from a large number of people. 
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By using an A-optimal RSS scheme with set size 10, the relative efficiencies, 

measured by the ratios of the sums of variances of the estimated regression 

coefficients, are at least 2. 

Another application of the optimal regression approach to a fishery study is 

given in Chen et al. (2004, Chapter 6). In the fishery study, one is interested in 

describing the growth of a special fish species Tenualosa ilisha in Bangladesh through 

a regression relationship between the age of a fish and its weight. Determining the age 

of a fish is an extremely time-consuming process. First, one of its otoliths is removed, 

cleaned and sent in a plastic bag to a lab. Then the otolith is embedded onto a 

microscope slide with thermoplastic cement and polished with wet and dry sandpaper 

until its mid-plane is reached. Finally, the polished otolith is viewed under immersion 

oil on a video screen attached to a microscope and the daily rings are counted along 

the longitudinal axis towards the posterior of the otolith. On the other hand, the 

weight of a fish can be easily obtained without any cost. It was demonstrated that, by 

using an optimal RSS scheme with set size 10, a relative efficiency 1.4 compared with 

simple random sampling in terms of the integrated mean square error of the regression 

function can be achieved. 

In practical regression problems, the situation where the response variable is 

expensive to measure but the predictor variable can be easily and cheaply measured is 

abundant. The approach developed in Chen and Wang (2004) has a great potential in 

applications. 

6.2.7 Application in treatment comparisons. 

Another novel application of RSS is in treatment comparison experiments 

including many clinical trials. In RSS many more sampling units are sampled and 

discarded than those eventually fully measured. This might not be desirable in the 

situation where sampling units are not easy to obtain, which is especially the case in 

clinical trials. Ozturk and MacEachern (2004) and Chen et al. (2006a) separately 

considered an RSS approach which generates ranked set samples for each treatment 

but without discarding any sampling units. Chen (2007) elaborated on this approach 

in the following setting of Chen et al. (2006a). Assume that the responses of the 

experimental units to treatments are correlated with a common concomitant variable. 
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Let Y and Z be the responses to treatments 1 and 2 respectively and X the 

concomitant variable. The assumption formulates that 

                    , 

                    , 

        

where      s are i.i.d. with mean zero and variance   
         and are independent 

from the       Let the set size k in RSS be even. A special case of the RSS schemes 

considered by Chen et al. (2006a) is as follows. The RSS is carried out two sets at a 

time. That is, each time two random sets of experimental units are taken and ranked 

separately according to the values of X. For the first ranked set, units with odd ranks 

are assigned to treatment 1 and units with even ranks are assigned to treatment 2. For 

the second ranked set, units with odd ranks are assigned to treatment 2 and units with 

even ranks are assigned to treatment 1. This process produces two correlated general 

RSS samples, each for each treatment. It does not discard any experimental units. It is 

shown in Chen et al. (2006a) that this method of treatment assignment is much more 

efficient than a simple random assignment. 

Chen (2007) applied the above method to a retrospective study of a well 

known clinical trial called ACTG 320. The ACTG 320 clinical was a randomized 

double-blind multi center clinical trial comparing the effects of the three-drug 

combination of IDV+ZDV+3TC and the two-drug combination of ZDV+3TC on an 

AIDS-defining event. The background and more details on ACTG 320 can be found 

in Hammer et al. (1997) and Marschner et al. (1999).The effect of the drug 

combinations on a patient was measured by the HIV-1 RNA changes from the 

baseline HIV-1 RNA level of the patient. In the retrospective study, the response 

variable is taken as the measured HIV-1 RNA change at week 24. In the original 

study, a total of 1,080 patients were initially involved but only 639 patients remained 

on their initial treatments at week 24. The data of these 639 patients is used in the 

retrospective study. The data shows that the change in HIV-1 RNA level at week 24 is 

correlated with the pre-entry HIV-1 RNA level in both treatments. We take Y1 and Y2 

as the RNA changes in log10 scale with the treatment of two-drug combination and 
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with the treatment of three-drug combination respectively, and take the concomitant 

variable X as the pre-entry HIV-1 RNA level. 

In the retrospective application, The RSS protocol with k = 4 is applied. The 

details of the protocol are as follows. The patients are considered in groups of size 4. 

For each group, the pre-entry HIV-1 RNA levels of the four patients are ranked. For 

one group, the two patients with their pre-entry HIV-1 RNA levels ranked 1 and 3 are 

assigned to the treatment of two-drug combination, and the other two patients are 

assigned to the treatment of three-drug combination. For another group, the two 

patients with their pre-entry HIV-1 RNA levels ranked 2 and 4 are assigned to the 

treatment of two-drug combination, and the other two patients are assigned to the 

treatment of three-drug combination. This protocol does not incur any additional cost 

other than those needed by the simple random assignment. 

From the original data, the following parameter values are computed: 

            = 0.4195,     
 = 0 . 028 2 ,     =2 . 46 58 ,   

 = 0.1320, 

  = 4.9448,    
 = 0.3685,      = 0.61,      = 0.43. 

From these values, we obtain 

                       ,          ,  
         , 

                   ,          ,  
           

These values are taken as if they are the true parameter values in the retrospective 

study. The pre-entry HIV-1 RNA level is assumed to be normally distributed. The 

relative efficiency of the general RSS protocol relative to the simple random 

assignment is computed theoretically.  It is also simulated by a simulation study with 

5,000 repetitions. The theoretical value of the relative efficiency is 1.21. The 

simulated approximation is 1.22 which is quite in line with the theoretical value. This 

relative efficiency implies that the precision achievable by including 639 patients in 

the trial with the RSS assignment could only be achieved by a simple random 

assignment with 781 patients. 

The theoretical value of the relative efficiency is given by      
        

 , where 

     
     

    
  (  

    
 )  
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Here,  (     )denotes the covariance of the rth and the sth order statistics of a simple 

random sample of size 4 from the standard normal distribution. The numerical values 

of  (     ) can be found in Krishnaiah and Sen (1984). The meaning of  ̅ is that  ̅    , 

if       ,  ̅     , otherwise.  It should be noted that the relative efficiency is 

affected by the correlation of the concomitant variable X with the response variables 

in the two treatments through   and   . In fact,        (      )         It is clear 

from the expression of       
 that both the magnitude and the signs of      and      

affect the relative efficiency. The relative efficiency is larger when the two correlation 

coefficients have the same sign than when they have opposite signs. 

6.3 Discussion 

The variety of the variants of RSS developed has broadened the range of 

application to a large extent than its earlier forms. RSS is still an active area of 

research. Below are discussed some further directions for the research of RSS. 

(i) The cost issue of RSS. Without taking into account the cost involved in taking 

sampling units and ranking, which is assumed negligible, the larger the set size, the 

more efficient the RSS is compared to simple random sampling. However, in many 

practical problems where RSS has a potential application, the cost of taking sampling 

units and ranking, though much less than the full measurement, is not negligible, or 

the availability of sampling units is limited. In such cases, the cost issue arises. One 

needs to devise a sampling scheme such that the scheme is as efficient as possible, 

say, in terms of the accuracy of estimation for certain parameters, subject to a fixed 

cost, or such that the scheme is as less costly as possible subject to a required 

accuracy of estimation. There are multiple questions to be asked. Is RSS still more 

beneficial than SRS by a proper choice of the set size? If RSS is still beneficial, what 

is the optimal set size when the costs of taking sampling units, ranking and making 

the full measurement are given? If the original RSS which takes only one full 

measurement in a ranked set is not beneficial, is a general RSS scheme which takes 
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more than one full measurement in a ranked set beneficial? If yes, how many and 

what ranks? Nahhas et al. (2002) and Wang et al. (2004) addressed some aspects of 

the cost issue. But more research is needed on this issue. 

(ii) Design with observational data. RSS can be used as a tool for design with 

observational data. The special case of polynomial regression has been addressed by 

Chen and Wang (2004). The more general case with multiple covariates is yet to be 

investigated. 

(iii) RSS as data reduction tools. In the context of data reduction, one is faced with the 

problems caused by huge data sets. A data set could be so huge that it is even 

infeasible to compute the quantiles of the data set by the modern computers. In data 

reduction, one tries to discard the part of the data with less information, or 

equivalently retain the part of the data with more information. The part of the data 

retained can be viewed as a sample from the original data. RSS can play a role here. 

More research is needed in this regard especially when data involves many variables. 

 

 

Table 6.2.1 Summary statistics for browse and herbage estimates 

 Browse Herbage 

Mean 
Variance of 

mean 
Mean 

Variance of 

mean 

Unranked: random perfect 

ranking 
14.9 4.55 7.3 1.00 

Perfect ranking: Near equal 

allocation  
13.2 2.18 7.0 0.73 

Perfect ranking : 

Proportional allocation 
12.9 1.91 7.2 0.58 

(Source: Halls and Dell. 1966)  
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Table 6.2.2: Data from Longleaf Pine Seedling Counts 

(a) The frequency distribution of seedling counts in the 600 milacre plots. 

Seedling counts 0 1 2 3 4 5 6 7 8 9 

Frequency 110 201 157 75 33 17 3 3 0 1 

 

 

(c) Means and standard deviations of all seedlings for all ranks of three field trails 

and ranked set sampling 

Trial Means  Mean Standard Deviations 

 L M H  L M H 

1 0.750 1.500 2.625 1.625 0.532 0.750 1.173 

2 0.917 1.625 2.833 1.792 0.881 1.013 1.880 

3 0.750 1.708 3.125 1.861 0.520 0.955 0.927 

 

 

(d) Test of significance of ranked-set versus random sampling. 

Method of sampling 
Number 

applications 

Degree of 

freedom 
Mean 

Sum of 

squares 
Variance F 

Random 80 79 1.709 7.572 0.0958 3.91** 

Ranked-set 80 79 1.647 1.939 0.0245  

** Significant at the 0.01 level of probability (Source: Evans, 1967) 

(b) Means and variances of three ranked set sample trails. (mr = 24) 

Trail Mean Variance 

1 1.49 0.043 

2 1.62 0.056 

3 1.71 0.024 
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Table 6.2.3: RSS and SRS results for 16 measured plots across all vegetation types. 

Sampling Method 
Mean Phytomass 

(kg/ha) 

Variance of the 

Mean (X 10
6
) 

Coefficient of 

Variation of the 

Mean (%) 

All 64 Plots 2536 0.15 15 

SRS 1976 4.54 108 

RSS 2356 2.73 70 

(Source: Martin et al. 1980) 

 

 

Table 6.2.4: Relative precisions (RP) ± s.e. of the worst and the best observers, and under 

perfect ranking; and the between and the within set variances while 

estimating herbage mass (grass and mixture) and clover contents. 

Experiments 
Relative Precisions (R P) Variances 

Worst Best Perfect Between Within 

1 (Grass) 1.11 ± 0.09 1.23 ± 0.14 1.31 ± 0.17 0.24 0.31 

2 (Mixture) 1.11 ± 0.09 1.27 ± 0.10 1.40 ± 0.16 0.07 0.09 

3 (Grass)   1.66 ± 0.17 0.00 1.58 

4 (Mixture) 1.36 ± 0.14 1.51 ± 0.15 1.55 ± 0.16 0.11 0.66 

2 (Clover) 1.15 ± 0.12 1.34 ± 0.15 1.44 ± 0.16 16.3 34.4 

4 (Clover) 1.36 ± 0.19 1.62 ± 0.18 1.72 ± 0.20 16.2 71.6 

(Source: Cobby et al. 1985)  
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Table 6.2.5.1: Descriptive statistics of PCB values in grids A and C 

Characteristics Grid 

 A C 

Number of observations 184 68 

Mean 200.9 600.2 

Standard Deviation 902.9 1585 

Coefficient of Variation 4.49 2.64 

Coefficient of skewness 9.27 4.64 

Coefficient of Kurtosis 99.69 20.88 

 

 

 

 

 

 

 

 

 

Table 6.2.5.2: Relative savings (RS) considering all possible combinations of each 

set size under perfect ranking situation with equal allocation. 

Set size (m) 

Grid 

A 

RS 

C 

RS 

2 4 9 

3 7 16 

4 10 22 
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Table 6.2.5.3: Values of the sample mean, X(m)u, relative precision, and relative savings under 

the perfect ranking protocol with unequal allocation of samples. 

Set Size 

m 

Grid 

A C 

Proportion of 

samples (exact No) 
 ̅(m)u RP RS 

Proportion of 

samples (exact No) 
 ̅(m)u RP RS 

2 

2 

1:10 (8 , 84) 

1:15 (6 , 86) 

205.9 

203.1 

1.724 

1.818 

42 

45 

1:10 (3 , 31) 

1:15 (2 , 32) 

535.2 

520.4 

2.041 

2.174 

51 

54 

3 

3 

1:4:20 (2 , 10 ,48) 

1:4:25 (2 , 8 ,50) 

203.6 

201.1 

2.174 

2.326 

54 

57 

1:1.7:1.5 (5 , 8 , 8) 

1:2:7 (2 , 4 , 15) 

560.1 

615.2 

1.471 

1.923 

32 

48 

4 

4 

1:3:5:16 (2,5,9,28) 

1:3:9:27 (2,2,10,30) 

247.1 

226.1 

1.695 

1.316 

41 

24 

1:2:3:4 (2, 3, 5, 6) 

1:1:3:5 (2, 2, 4, 8) 

576.6 

802.4 

2.083 

1.449 

52 

31 
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