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Chapter 1
General Introduction

Chaotic behaviour is ubiquitous in nature and plays an itambrrole in most fields of
science. In classical physics, chaos is characterized pgregnsitivity of the time evo-
lution of a system from initial conditions. Quantum mecltandoes not permit a similar
definition owing in part to the uncertainty principle and irpto the Schrodinger equa-
tion, which preserves the overlap between quantum statas.flndamental disconnect
poses a serious challenge to quantum-classical correspoa@nd has motivated a long-
standing search for quantum signatures of classical chaos.

In classical mechanics, the state of a physical system fgggeby a set of dynam-
ical variables, for example, the position and momentum obiatpparticle, whose val-
ues define a point in phase space. Regular motion is assbevite periodic orbits in
phase space, whereas chaos is characterized by complexydapérajectories that di-
verge exponentially as a function of initial separation.isTtiescription of states and
time evolution is fundamentally incompatible with quantamachanics, where conjugate
observables such as position and momentum cannot take defeled values at the
same time. However, it is still possible to represent a quargtate in phase space in
the form of a delocalized quasi-probability distributiohege evolution is governed by
the Schrodinger equation. This suggests an experiment ichvame prepares an initial
minimum uncertainty state centred on a point in phase spatgects it to a desired evo-
lution, measures the quantum state at successive poiriteénaind observes the degree
to which the dynamically evolving quantum phase spaceibigton reflects the classical
phase space structures. Experiments of this type can bdasadwvith classical waves,



but are very challenging for true quantum systems becausieeabverhead involved in
state preparation, control and reconstruction.

The point of concern here in this dissertation, is how to gmuantum chaos in quan-
tum many-body systems like atomic nuclei. The appropriatelehto study chaos in
these systems is the random matrix theory and the reasonddelfimg the systems in
this manner is that as excitation energy increases, the inady level density grows
exponentially by pure combinatorial reasons and this dlbeaaviour is not changed
qualitatively by the interaction between the particles.other-words, the manifestation
of chaos in nuclei are described in terms of Wigner-Dysodoammatrix theory for level
and strength fluctuations, i.e., in terms of Gaussian odhagensemble of random ma-
trices and its extensions [1, 2, 3]. The assumption that deneere as per Wigner, “ the
Hamiltonian which governs the behaviour of a complicatesteay is a random symmet-
ric matrix, with no special properties except for its symnuoatature”. Going beyond this
as established by Bohigas and Berry [4, 5, 6] and summarig@ditbhuler in the abstract
of the colloquium he gave in memory of French at the univgmsitRochester in 2004;
“ Classical dynamical systems can be separated into tweedasntegrable and chaotic.
For quantum systems this distinction manifests itself, egpectral statistics. Roughly
speaking integrability leads to Poisson distribution fog energies while chaos implies
Wigner-Dyson statistics of levels, which are characterigr the ensemble of random
matrices. The onset of chaotic behaviour for a rather bréeskof systems can be un-
derstood as a delocalization of quantum numbers that dieaizethe original integrable

system.....".

It is now a well established fact that neutron resonanceisgan heavy and medium
heavy nuclei follow GOE, regular rotational levels are Boig excite@* levels in even-
even nuclei obey intermediate statistics. However, a mereal random matrix theory
that describes not only the fluctuations, but also specteiages or global (smoothed
with respect to energy) quantities such as level densgiagle-particle orbit occupation
probabilities, Gamow-Teller matrix elements etc. is basecembedded Gaussian or-
thogonal ensemble of one plus two-body interactions [EG®E)] where the two-body
interaction is treated as random, subjected to some synasetBy treating the two-
body interaction to be random in nuclear shell model spabesembedded ensembles
provide the basis for statistical nuclear spectroscopyji} applications in nuclear as-
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trophysics. Statistical nuclear spectroscopy theory le& @applied sucessfully to level
densities [8, 9, 10, 11] and occupancies [12, 13]. In addjtsupplementing statistical
spectroscopy theory with empirical data for low-lying Ieyegives a good method for
calculating nuclear structure inputs for nuclear astreptaf processes [14, 15].

Quantum mechanical study of classically chaotic systertieisubject matter of quan-
tum chaos [16, 17]. A major challenge of quantum chaos is éntily quantum sig-
natures of classical chaos. Various signatures have beetifidd, such as the spectral
properties of the generating Hamiltonian [4], phase spaagigsg [18], hypersensitivity
to perturbation [19], and fidelity decay [20], which indiegiresence of chaos in under-
lying classical system. Recent studies have shown thahglet@ent in chaotic systems
can also be a good indicator of the regular to chaotic tremsih its classical counter-
part [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] . A stafithe connections
between chaos and entanglement is interesting becausedipdéenomena are prima fa-
cie uniquely classical and quantum, respectively. Thiselnidely an important reason
to study entanglement in chaotic systems. Moreover, poesefichaos has also been
identified in some realistic model of quantum computers §%,

The transition strengtl®(£;, Ey) from the initial state]£; > at energy|E; > to a
final state|E; > is defined ask(E;, E;) = | < Ef|O|E; > | = < Ej|Of|E; > <
Ef|O|EZ- > whereO is the transition or excitation operator. Depending upanrthture
of O, the two states involved may be in the same space, as e.dye@l¢ctromagnetic
transitions likeE,, M, etc. between states of the sa&,T'); or they may be in two
spaces with different particle number, as for a one-nudlaasfer reaction in which the
initial state is in a nucleus with A nucleons and the finalestabne with( A+1) nucleons,
for example the beta decay operator. In either case, thegskréunction is a function of
both the initial and final state. The transition strength ssimiefined as follows. Given
K = 070, the transition strength sum is given by the expectationevad K >, and
can be written in terms of the expectation value density

Ix(E)  pr(E)

<K>P= <00> =l[dp(E)™" I(E) _ p(E)

Y < Eo|K|Ea >

ack

The chaos and complexity measures like number of principadponents and localiza-
tion length in wave-functions and transition strengthritisitions are used to study chaos
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in atomic nuclei. However, these measures are of consibenaportance for the rea-
son that transition strengths are observables while waegifins are not. The nuclear
shell model has proven to be a very valuable tool and is antg$tboratory for under-
standing various aspects of chaos in atomic nuclei [2, 3638739, 40]. It has been
established from the study of embedded Gaussian orthogasamble of random matri-
ces, the strength sum generated by a transition operatogaxt an eigenstate vary with
the excitation energy as the ratio of two Gaussians and émsml result when compared
to the exact-shell model calculations of Gamow-Tellerrgite sums in nuclei, a good
agreement is is obtained in the chaotic domain of the specand strong deviations are
observed as nuclear motion approaches a regular regimeRdidther, from the study of
the shell model results, the electric quadrupdle), magnetic dipolé\/;) and occupa-
tion numbers when calculated using different valence spand compared to the EGOE
predictions, the transition strength sums emerge as a negvdi statistics capable of
distinguishing between regular and chaotic motion [42]adidlition to this, established
is the fact that the EGOE and not GOE provides the reasonaisierigtion of the shell-
model strength sums in the chaotic domain and in order tgeaat this result the study
of behaviour of strength sums had been studied in order tosctnansitions generated by
means of a family of Hamiltoniang (\) = (1) + AV/(2), built from the realistic one-
and two-body interactions [42]. Comparison of the preditsiof EGOE of one-plus two
body interactions, in the Gaussian domain for the compleitl chaos measures number
of principal components and localization length in trapsistrengths from an eigenstate
with energy E with the shell model calculations had been ddorbe quite consistent with
the E, and M, transition strengths from the shell model example of 2pkHilsnucleus
167/ [43].

This dissertation is organized as follows:

In chapter 2, we describe the random matrix theory, a venyaldé tool to study quan-
tum chaos in atomic nuclei. The motivation behind the inacitbn of RMT in nuclear
structure can be thought of as two-fold. Firstly, as is wsthblished from the empirical
evidences that the nuclear models are inadequate at higtigaten energies for probing
the individual nuclear energy levels because of the redsatritie many-body level den-
sity increases exponentially with the increase in exatagnergy and it becomes next to
impossible on part of the nuclear models to provide the iddizl description of nuclear
energy levels. So, the choice left is to resort to some $talsapproach, that is RMT.
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Second reason that can be cited about the introduction of RMue to the overwhelming
success of Bohr’'s compound nucleus around 1940'’s and trst tpuderive information
about level and strength fluctuations about compound nuasanances. The chaos and
complexity measures in wave-function and transition gjtlerdistributions like number
of principal components and localization length alongavitie transition strength sums
are described in chapter 3. The re-derivation of the forsxidanumber of principal com-
ponents and information entropy is also described in theten&, supplemented by the
already obtained results and comparison of random masidtsewith the shell model re-
sults is also described. In chapter 4, laws of statisticelear spectroscopy along with the
moments of distribution, the level density formula is déssd. The different polynomial
density expansions like Edgeworth, Gram-Charlier and SbrRischer expansion shall
also be discussed along with their domain of validity in eaclstatistical spectroscopy in
chapter 4. In this chapter 4 the distribution of eigen-valaed transition strengths shall
be also covered. Finally, the last chapter 5 gives the sugofadhe titled work.



Chapter 2

Random Matrix Theory

2.1 Introduction

The subject of Random Matrix Theory (RMT) has matured intcnalependent field with
far-reaching applications in many branches of Physics aath®matics. A large num-
ber of Physicists and Mathematicians have been fascinatettbat has led to major
advances in this area. Paraphrasing, J. Freeman Dyson, RElfaw kind of statistical
mechanics where the realisation of the system is not refelrsstead of having an ensem-
ble of states of a system, we have in RMT an ensemble of Hamaltg and ergodicity
is the equivalence of spectral averaging and the averagiegtbis ensemble. RMT has
been applied to a huge number of fields like multivariateéstias, combinatorics, graph
theory, number theory, biology, genomics, wireless comications [44] and of course
physics [45]. Figure below shows the diverse applicatidnmsiedom matrix theory. The
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Figure 2.1: Representation of wide range applicability MR
basic idea of RMT is to presume that the unobtainable Hamdtomatrix of a system
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under inspection is one of some ensemble of possible Hamalanatrices. Now, instead
of trying to find the specific Hamiltonian in question, onedséis the properties of this en-
semble of matrices, hoping that these properties will beséimee as, or at least close to,
the properties of the specific but unknown Hamiltonian maifithe system in question.
It is clear that the success of the RMT approach lies in thet ihoice of ensemble of
matrices-right meaning that the ensemble be chosen in sugy dhat the Hamiltonian
matrix of the system in question, and those of similar systdme in a sense the most
probable ones in the ensemble. The first to approach a prabléms way was Wigner,
and it is his Gaussian ensembles that form the entry pointMd.Rrhis tool has been
particularly successsful in three areas: first in descgitenel correlations on the scale of
average level spacing; second in providing the generatingtions for the combinatorial
factorials of planar diagrams; and third as an exactly sé/anodel with intimate rela-
tionship to the theory of integrable systems. One of thers¢veasons for the success of
RMT is its universality, i.e., eigenvalue correlations be scale of average level spacing
do not depend on the probability distribution, a propertyolhs at the very foundation
of RMT. Thus, it suggests that in RMT eigenvalue correlagishould be a rule rather
than the suggestion. Hence, the most important reasonudyisig RMT is that the pre-
dictions made by it do occur in systems like nuclear energgi$e zeros of Riemann Zeta
function () and the sound waves in quartz crystals. Another importdatplayed by the
RMT is that the large N limit of its partition function is a gemrating function for planar
diagrams which have played an important role in quantum fiedry. For example, they
are the leading contributions to Quantum Chromodynamitsaiarge number of colors,
and they are dual to triangulation of a random surface arsldiaribes two dimensional
guantum gravity.

In addition, random matrix theory has attracted a great ofeaitention because of the
mathematical challenges it poses. The subject matter dbrammatrix theory is highly
non-trivial, but with sufficient effort, most of the problenthat arise in this field can be
answered in detail. Nowadays, RMT is considered by the pey@mmunity as some
sort of new statistical mechanics that can be successfplyiedd to describe generic
statistical properties of very different systems, likenaito nuclei, complex atoms and
molecules, disordered systems, one-dimensional integafgrmion systems, QCD and
quantum gravity. A comprehensive review of the most impurtancepts and develop-
ments of RMT in quantum physics was given recently by Guhalg#5].
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The random matrix approach does not aim at calculating iddal spectra and at com-
paring them with data. Rather, one determines the combir&uhpility distribution of
the eigenvalues and from here calculates certain speaiictléition measures such as
nearest-neighbour spacing distribution as averages beegrisemble. The random ma-
trix approach to spectral fluctuations and to other progedi complex systems has some
similarity to classical thermodynamics. There in cladsikarmodynamics one is inter-
ested in the generic description of systems in terms of fearpaters like specific heat,
magnetic susceptibility etc., but all these parametersystem-specific and in classical
thermodynamics they need not be determined from the systdarhiltonian and in this
respect RMT and classical thermodynamics are phenomenaldfeories that do not
refer to an underlying system-specific Hamiltonian. Rerablk RMT appeared only a
few years after the introduction of the nuclear shell modél 47]. In its simplest form
the shell model neglects completely the interaction betwaecleons, which are treated
as independent particles moving in an average potentias mbdel yields a reasonable
evaluation of the nuclear level density (the effect of th&deal interaction turns out to
be relatively small), but it is unable to explain many othtetistical properties of nuclear
spectra and transitions.

The subject of RMT has fascinated both Physicists and Madlierans since it was
first introduced in mathematical statistics by Wishart ir28948]. After a bit of a slow
start,the subject got a big boost when Wigner [49] introduitee concept of statistical
distribution of nuclear energy levels in 1950. However, &swn 1955 that Wigner [50]
introduced the ensembles of random matrices. In that vegpgmlae also introduced the
large-N expansion and came to realise that the leading caigribution to the expecta-
tion values of the moments of the random Hamiltonian is giverPlanar diagrams. In
1956, Wigner [51] derived the Wigner Surmise from the leyeang distribution of an
ensemble of Z 2 matrices after level repulsion was predicted by LandauSandrodin-
sky [52] and observed by Gurevich and Pevsner [53].

The idea of invariant random matrix ensembles was introdlilcd®hysics by Porter
and Rosenzweig [54] after it had appeared earlier in the emadlical literature. Rig-
orous analysis of spacing distributions was first given bydsa [55]. For the analysis
of the eigenvalue density Mehta [56] invented the orthogpoé/nomial method. The
mathematical foundations of random matrix theory was distedd in a series of beauti-



ful papers by Dyson [57, 58, 59, 60, 61]. Dyson introduceddlssification of random
matrix ensembles according to their invariance properieder time reversal [57, 61].
As we know that for a system there are only three possilslittesystem is not time re-
versal invariant, or a system is time reversal invarianhuhie square of the time reversal
invariance operator either equal to 1 or -1. The matrix el@sef the corresponding
random matrix elements are complex, real and self-dualegoi@n, respectively which
from a mathematical point of view exhaust the distinct reshmutative normed division
algebras, or in effect number systems. The corresponduagiant Guassain ensembles
of Hermitian random matrices, are known as the Guassiaanyrgnsemble (GUE), the
Guassian orthogonal ensemble (GOE) and the Guassain sstrogesemble, in that or-
der.

The philosophical foundations of RMT has also been laid dbwbyson [57]. In the
words of Dyson, "What is here required is a new kind of stet@tmechanics, in which
we renounce the exact knowledge not of the state of the sydyte of the system itself.
We picture a complex nucleus a “black box” in which a large benof particles are in-
teracting according to unknown laws. The problem then issfné in a mathematically
precise way an ensemble of systems in which all possible ¢duwderaction are equally
possible”. This was made more precise by Balian [62] whoiobtithe Guassian random
matrix ensembles from minimising the information entroplie second important result
deducted from the Dyson'’s papers [61, 62] was the estabéshof relation between ran-
dom matrix theory and the theory of exactly integrable systethe partition functions of
a random matrix ensemble and of a log-potential coulombasé dimension at three
special temperatures are equivalent, each with solwapildperties not shared for general
temperature. In addition to this Fokker-Plank operatoiictvlalso specifies the Brownian
evolution of the coulomb gas, was shown to have control dweevolution of eigenval-
ues of parameter-dependent extensions of the Guassiamlglese These results were
further confirmed by Sutherland [63] when he came to realiaé €alogero-Sutherland
quantum many body system, the Hamiltonian of which is coieséd from N independent
commuting operators, and so is integrable, is mathemBtiegluivalent to the Dyson’s
Brownian motion model. Detailed account of the realtiopgbetween random matrix
theory and integrable systems is discussed in the monogwapbrrester [64]. A review
of one-dimensional integrable systems that touches on nak@g and also which form
the subject matter of random matrix theory is given in theldopKorepin et. al [65]. A



10

third idea that made its appearance in Dyson’s paper [SAg®pplication of Shannon’s
information entropy to random matrix spectra.

The early development in the random matrix theory are wetirsarised in the first
edition of the monograph by Mehta [66] which has proven to erg influential book
containing many mathematical details and was quite usefuddveral years. A second
significant book in the field of random matrix theory is by Roiftl] which contains the
reprints of the important papers on the subject of randommixtéeory that were written
before 1965.

The field of disordered systems was born from the work of Asole[67] on the local-
isation of wavefunctions in one-dimensional disorderestays at the same time when
random matrix theory was in its infancy in nuclear physiciathe did is that he consid-
ered a one-dimensional lattice with random potential ah daitice point and concluded
that eigenfunctions of this system are exponentially iseal. His work had a stong im-
pact on both theoretical and experimental solid state pRyginother exciting application
of random matrix theory is the theory of small metallic geaby Gorkov and Eliasberg
[68] which comes within the domain of mesoscopic physicteAd rapid growth period,
RMT became a minor field until the early 1980. Nevertheldss,tasic ideas and con-
cepts as well as its mathematical formulation were developehe period 1950-1963.
Most of the references of the first historical period can hentbin [1]. Later, the theory
was consolidated as many experimental data were gathéed;ricsons cross-section
fluctuations [69] or the nuclear data ensemble [70]. Aroud8liwo developments took
place which lead to an exponential development of the theibigy adoption of Efetov s
supersymmetry method and the ensuing coalescence of RMibealdation theory [71],
and the link between RMT and the spectral fluctuation progegedf quantum systems with
a chaotic classical analog provided by the Bohigas-Gian8ohmidt conjecture (BGS)

[4].

2.1.1 Random Matrix Theory and Mathematics

The random matrix theory which was first formulated in mathBoal statistics, con-
tinued to develop in mathematics independently of the agreknts in physics. The
important results regarding the integration measure @friant random matrix ensembles
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were obtained by Hua [72] and his results of more than oned#eoéwork are sum-

marised in his book that appeared in 1959 but which remaiasgtly unknown. Very

few mathematicians worked on the integrals of random malw@ory. By evaluating a
unitary matrix integral, that is now known as the Harish-@a-ltzykson-Zuber inte-
gral [73, 74], an important result was obtained by Haris¢ta®@ira [73]. Zinn-Justin and
Zuber [75] reviewed this topic in the present special isséiso the work of Seelberg

[76] is well known, not in the least because Mehta devotedagpter of the second edi-
tion of his book [77] to this subject. Another noteworthy trdvution is the introduction

of zonal polynomials by James [78]. The book by Muirhead [in9]1982 ties together
the matrix integrals and zonal polynomials as they are aglem mathematical statistics.
Girkov has written a number of mathematical books (see,[803) relating to the the an-
alytic properties of the eigenvalue distribution of largadom matrices. Voiculescu [81]
used random matrices as a primary example of free non-coativeitandom variables
in operator algebras.

2.1.2 Random Matrix Theory and Quantum Field Theory

Few years before the discovery of universal conductanceufitions, random matrix the-
ory was applied to quantum field theory. From the work of 't IH¢82] it is clear that in
the limit of a large number of colors, the QCD partition fuoatis dominated by planar
diagrams and is also the case for the large N limit of [83] txlcinatorial factors were
calculated that enter in the largé. limit of QCD by means of random matrix theory. A
second innovative idea that appeared in this paper is tiheulation of the calculation of
the resolvent in random matrix theories as a Riemann-Hillm@blem and this approach
is being focussed much in mathematical literature [84].

RMT has made impact on several areas of quantum field theatiicd QCD, two-
dimensional gravity, the Euclidean Dirac spectrum and tiee3g-Witten [85] solution
of two dimensional supersymmetric gauge theories. An ingmdresult is the Eguchi-
Kawai [86] reduction that showed that in the limit of a largember of colors, certain
gluonic correlation functions of pure Yang-Mills theorynche reduced to an integral
over 4 unitary matrices. In two spatial dimensions this otidm results in an integral
over a single unitary matrix which can be evaluated in thgdaX limit. A unitary matrix
integral also occurs in the low-energy limit of QCD. Becaakthe spontaneous breaking
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of chiral symmetry, its low-energy degrees of freedom ase@oldstone modes which
are parameterized by a unitary matrix valued field [87]. Belbe Thouless energy for
this system the kinetic term of the effective Lagrangian bameglected and the low-
energy limit of the QCD partition function is given by the tary matrix integral [88]. In
this domain the eigenvalues of the Dirac operator are @igélaccording to a random
matrix theory with the additional involutive (chiral) synetny of the QCD Dirac operator
[89, 90]. The same symmetry is also found in two-sublattisemdlered systems where
hopping only occurs in between the sub-lattices [91]. Thyemyalue spectrum around
zero of these chiral ensembles was first derived in referi@&je An important difference
between two-sublattice systems and QCD is the topologyefahdom matrix (i.e. the
number of exact zeros) and the fermion determinant. In iwaladtice systems one is only
interested in quenched results at zero topology wherea€ib Qe fermion determinant
and its zero modes are essential. Also, in the case of thal @msembles we have three
different symmetry classes depending on the reality camteihe matrix elements. Most
of the work on chiral random matrix theory and its applicasi@o the Dirac spectrum in
QCD was done in the second half of the nineties [93]. There lhaen other attempts to
derive QCD from a matrix model. Perhaps the best known isrttieded QCD patrtition
function of Kazakov and Migdal [94] where the lattice guagédfis coupled to an adjoint
scalar field. The guage field can be integrated out by meankeoHarish-Chandra-
Itzykson-Zuber integral resulting in a partition functitor the adjoint scalar field. This
partition function can be evaluated by the saddle point oughn the large N-limit. It has
been shown that the so-called prepotential of N =2 superstnmtheory can be derived
from the large-N limit of a random matrix theory [95].

2.1.3 Random Matrix Theory In Nuclear Physics

The subject of statistical nuclear physics, as stresseddnch (1984), evolved around the
ideas introduced by Bohr’s (1936) compound nucleus, Bst{¥936) level density and
Wigner's (1955) treatment of spectral fluctuations. Randoatrices were introduced to
nuclear physics in 1960s by Wigner and the reason for intriogrthe random matrix the-
ory in nuclear physics was due to his quest to derive infolonabout level and strength
fluctuations in compound nucleus resonances. Intoductid®Mi in nuclear structure
was motivated by the fact that if we consider low-energyargif the excitation spectrum
of a nucleus the level density is small and description oftlest of the states can be pro-
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vided by nuclear models. However, due to rapid increasevet density with excitation
energy,

ot

p(E) ~ ﬁ x explar/ (E — A)) (2.1)
the number of levels is so high by the time one reaches thenefgir example, the neutron
threshold - 6M eV, the microscopic description of individual states by nacl@odels
becomes meaningless. Instead at such energies, nuclealspoolvide adequate descrip-
tion of special states like giant resonances, analoguessidtich have peculiar structure.
In the absence of a dynamical nuclear theory (the nucledrralbelel had only just been
discovered, and had not yet found a universal acceptanagheMocussed emphasis on
the statistical aspects of nuclear spectra as revealeduitnomescattering data. At first
sight, such a statistical approach to nuclear spectrose@yyseem bewildering. Indeed,
the spectrum of any nucleus (and, for that matter, of anyexasive dynamical system)
Is determined unambiguously by the underlying Hamiltonieaving seemingly no room
for statistical concepts. Nonetheless, such concepts mayuseful and perhaps even the
only tool available to deal with spectral properties of eys$ for which the spectrum is
sufficiently complex. The approach introduced by Wignefedd in a fundamental way
for that in standard statistical mechanics, one considersngemble of identical phys-
ical systems, all governed by the same Hamiltonian but miiein initial conditions,
and calculates thermodynamic functions by averaging dusreansemble. Wigner pro-
ceeded differently: he considered ensembles of dynanys&sis governed by different
Hamiltonians with some common symmetry property. This hetatistical approach fo-
cusses attention on the generic properties which are conon@hmost) all members of
the ensemble and which are determined by the underlyingafmedtal symmetries. The
application of the results obtained within this approacitbvidual physical systems is
justified provided there exists a suitable ergodic theorkatually, the approach taken by
Wigner was not quite as general as discussed above. The leleseoh Hamiltonian ma-
trices considered by Wigner are defined in terms of invagaequirements: With every
Hamiltonian matrix belonging to the ensemble, all matrigeserated by suitable unitary
transformations of Hilbert space are likewise members efahsemble. This postulate
guarantees that there is no preferred basis in Hilbert spdeay recent applications of
RMT use extensions of Wigners original approach and vidlaiteinvariance principle.
It is always assumed in the sequel that all conserved quantumbers like spin or par-
ity are utilized in such a way that the Hamiltonian matrix ®d@es block-diagonal, each
block being characterized by a fixed set of such quantum nrsnldée deal with only one
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such block in many cases, and this block has dimension N . &kgs Istates in Hilbert
space relating to this block are labelled by Greek indides i and»~ which run from

1 to N . Since Hilbert space is infinite-dimensional, the tilNi — oo is taken at some
later stage. Taking this limit, signals that we do not adsligggantum systems having a
complete set of commuting observables. Taking this linsbamphasises the generic
aspects of the random matrix approach. In as much as RMT asvaKimd of statistical
mechanics” bears some analogy to standard statisticalaned) the limitnV.-— oo is
akin to the thermodynamic limit. Before the introductionrahdom matrices by Wigner,
Bohr argued that nuclei are systems of great complexity. WdthBohr to argue this,
Is the experiments conducted by Fermi and his group in Rom®eatron scattering by
light nuclei which had revealed the existence of numerounaresonances. A similar
type of data was taken by Rainwater and his group at Couluibizersity which used
time of flight spectroscopy of slow neutrons to measure todaltron cross-section on a
number of heavy even-even nuclei. The cross-section veeutson energy,, shown in
figure for the target nucleus displays narrow resonancdswidth < 1 eV and spacing
of about 20 eV. As the target nucleti$Th has spin 0 and positive parity and the incident
slow neutrons carry zero angular momentum and has?p'ﬂ;n the all resonances have
spin/parity{L, which correspond to excited states of the compound nuéiélia with
an excitation energy slightly above the neutron separaim@igies of 4.786 (the neutron
threshold). The number of resonances observed in each eordpuaucleus was limited
by the resolution of the spectrometer and was never muctiegréean 200. Similarly
the data on proton resonances at the coulomb barrier irelighiclei were later taken
up by the Triangle University group [96]. Together theseadatm what has been called
the nuclear data ensemble (NDE) by [97] and [98]. This discpled to the compound
nucleus hypothesis by Bohr, that basically stated that xistesce of these sequences
of narrow resonances is incompatible with a pure indepenatmicle picture and there
must exist strong interactions between the nucleons inkglrucleus. Indeed, by assum-
ing an indeependent particle model with a nuclear radiusotia5 fm and a potential
well depth of several 10 MeV, one comes to the idea that sipgtéicle states have a
typical spacing of several keV and widths of the order of 10 ke larger, in complete
disagreement with the data. What Bohr proposed, in compoueteus model (fig. 2.3)
is that incident nucleon carries kinetic energy (as inéiddiy the billiard cue), collides
with the nucleons in the target, and shares its energy witliymacleons. In units of the
time for passage of nucleon through the nuclear interidgkiés the system a long time
until one of its constituents acquires sufficient energy eademitted from the system.
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Figure 2.2: The total neutron cross-section?$Th vs neutron energy,, in eV. From
neutron cross-section, 1964, as reproduced in Bohr anceMott, 1969, Vol. 1, p. 178.

Bohr’s concept of nucleus as a complex, strongly intergcsiystem was adopted by the
scientific community and survived until the discovery of leac shell model in 1949.
The introduction of random matrices by Wigner was certamigtivated by the Bohr's
idea. In order to explain the spirit of this approach, we ®attention on nuclear levels
with the same quantum numbers (total spin J, parjtgnd, at least, in light nuclei, total
isospin) and ask the following question: can we identifydkaeric spectral properties of
a system with strong interactions? Figure 2.4 shows sixtemeal! having the same total
number of levels. and spanning the same total energy infemd therefore having the
same average level spacing. The spectra of all the six sgsidfar in the way the spac-
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Figure 2.3: Bohr’s wooden toy model of the compound nucléusm Niels Bohr, Nature
137, 344 1936.

ings between the neighbouring levels are distributed. lk@icase of harmonic oscillator
potential shown on right side of the figure, the spacings betwthe levels is identical.
The spacing distribution differ more and more from deltaction as we move towards
the left.

The random matrix approach characterizes spectra by thetufition properties. The
distribution of spacings of nearest neighbors is the firgt@bvious measure for spectral
fluctuations. This is called as nearest-neighbour (NNSYidigion. the other fluctu-
ation measures such as the correlation between neareshggqaoetween next-nearest
spacings, etc. Remarkably, RMT appeared only a few yeags thke introduction of the
nuclear shell model. In its simplest form the shell modelleets completely the interac-
tion between nucleons, which are treated as independetntiparmoving in an average
potential. This model yields a reasonable clear level dgriie effect of the residual
interaction turns out to be relatively small), but it is uleato explain many other statis-
tical properties of nuclear spectra and transitions. Cuaricg slow neutron resonances,
independent-particle calculations give s-wave level spmcof about 1 MeV, and widths
of about 0.1 MeV. Clearly the non-interacting shell modetas appropriate to describe
these states, since the residual interaction plays antedsefre. Nowadays, it is widely
accepted that Bohr’s hypothesis is to a large extent theigdiysasis of RMT.

The knowledge of the nuclear interaction was rather limatetthat time and, therefore,
Wigner was compelled to use a stochastic approach. AcaptdilVigner, the Hamilto-
nian which governs the behavior of a complicated system earfresented by a random
matrix with no particular properties, except for the symmgiroperties of the system.
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Figure 2.4: Six spectra with 50 levels each and the same regahdpacing. Fom right to

left: The one-dimensional harmonic oscillator, a sequaricaeros of the Riemann zeta
function, a sequence of eigenvalues of the Sinai billiasg@uence of resonances seen
in neutron scattering oH®Er, a sequence of prime numbers, and a set of eigenvalues
obeying Poisson statistics. This figure is taken from frorhiBas and Giannoni 1984.

In fact, he went one step further, substituting the randortrimgepresenting the Hamil-
tonian by a whole ensemble of random matrices, all with timeessymmetry properties,
and applied ensemble averages to explain the statisticpépies of individual nuclei.

2.2 Ensembles Of Random Matrices

There are only relatively few simple theoretical probletnattphysicists can solve ex-
actly. As the complexity of systems under investigationagrone soon has to resort to
approximation and even these may not be able to deliver thétse As a last resort, one
then has to turn to a statistical approach to the problemrad.hBhere are in general two
ways of doing this. Firstly, there is the more conventiomal aormally intuitively more

acceptable bottom-up approach, whereby one constructistisal theory of a system
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taking into account all of it's detailed microscopic dynasi Then there is the other
more, ad-hoc top-down approach, where one ignores the soaé# detailed dynamics,
and builds the theoretical model from only a few broad plglsionsiderations. One can
then, after comparison between theoretical and experaheggults, try and infer details
of the unknown microscopic structure. The RMT approach fearmost applications, be
summed up as follows:

o first, define an ensemble of matrices;

e secondly, try to find, analytically or numerically, some &weristics of this theo-
retical ensemble;

¢ and finally, compare the obtained characteristics of ther#teal ensemble with
the experimental data.

A natural question to ask is: What are we going to learn by @nng the charac+-
teristics of some theoretical ensemble of matrices and uneagents from the real world?
This is unfortunately not a simple question to answer. Tihgeland diverse spectrum
of physical systems to which the level sequence predictddmandom matrix theory is
applicable, is remarkable. But it is this uncanny succeas fibses the largest, and as
of yet, unsolved mystery in RMT. Why does it work? There is fgeat no system that
has, to our knowledge, been approached from a fundamersiabfiproach that has led
to a RMT. The gap between the bottom-up approach and thedap-dpproach is still
largely a mystery. As we have just stated, the first step imahdom matrix approach to
a problem is by defining an ensemble of matrices, and it isisattiat we now turn to.

Following the idea of a top-down approach, one builds in tread physical consid-
erations of the systems that one wishes to investigate iggdakem into account when
constructing the ensemble of matrices. It should be coctgtduin such a manner that
the Hamiltonian matrix of the system under consideratiod, @ physically similar sys-
tems, should be in a sense more probable. Although there ang different sets of
physical considerations that over the years have led to rddfgyent ensembles of ran-
dom matrices, the first and probably most famous ensembles eamstructed mainly
by Wigner himself. These are known as the Gaussian orthdgihreaGaussian unitary
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and the Gaussian symplectic ensembles, GOE, GUE and GSEddr aVigners three
famous ensembles were built with three distinct physid¢absions in mind: the GOE for
systems with time-reversal invariance, the GUE for systentisout time reversal invari-
ance and the GSE for systems with time-reversal symmettysgecifically where there
is no rotational symmetry. In the next two sections we witt@uce and discuss these
three classical ensembles from where RMT for all intentsaumrgoses got started.

To get an initial feel for the basic ideas behind RMT, we wéldte the whole of the
next section to the Gaussian orthogonal ensemble, as itsigne respects the simplest,
as well as the most physically relevant, of the three ensesnblhe introduction of the
GOE and the discussion of the considerations that went tatoanstruction will also
serve as an introduction to the basic ideas behind RMT. Wighbiasic ideas under the
belt, the Gaussian Unitary and Symplectic ensembles walh the introduced in a more
compact manner in the section. The systems with which weld&N T are characterised
by their Hamiltonians which can be represented by Hermitiatrices. When there are
some exact quantum numbers corresponding to exact ingegfrahotion, like angular
momentum and parity.J), and if the basis states are labelled by these exact quantum
numbers, the Hamiltonian matrix splits into two blocks, anmatrix elements connecting
two blocks vanish. The underlying space-time symmetriesyet by the system put
important restrictions on the admissible matrix elemerifsthe Hamiltonian is time-
reversal invariant and invariant under rotations, the Himmian matrices can be chosen
real and symmetric. If the Hamiltonian is not time-reversaériant then, irrespective of
its behaviour under rotations, the Hamiltonian matricesamplex Hermitian. Finally,
if the system is time-reversal invariant but not invariander rotations, and if it has
half-odd integer total angular momentum, the matrices aaatgrnion real. The three
classical ensembles constructed by Wigner: the GOE, the &uEhe GSE were built
on the following considerations :

2.2.1 Independently Distributed Matrix Elements

The matrices in the ensemble are made up of matrix elemeaitand independently dis-
tributed of one another. This requirement was imposedstdelthe purpose of making,
the ensembles easier to handle analytically.
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2.2.2 Invariance Under Transformation Of Basis

In an ensemble, each element in it has associated with itl@apiiity. For ensembles
of matrices, this is called the joint probability density@tion, or j.p.d.f. for short. Itis

required that the j.p.d.f. for matrices in the ensembledhawithin a basis transformation
of each other be the same, in other words, invariant undesfibamation of basis. This
requirement was made due to the physical consideratiorthibadlynamics of a system
are not dependent on the choice of basis used to describe it.

2.2.3 Symmetry

Symmetry is the distinguishing point between the ensembllesy were constructed with
three distinct groups of systems in mind, the systems beiogpgd by the same broad
physical symmetries. The three groups, and the ensemialeséne built for them, are

e The GOE - Systems with time reversal invariance as well as integer, spith or
without rotational symmetry, or half integer spin with reb@mal symmetry.

e The GSE - Systems with time reversal invariance as well as half integen with
broken rotational symmetry.

e The GUE - Systems with broken time reversal invariance.

Itis important to first of all distinguish between systemghwime reversal symmetry, and
systems without it. For systems without it, the GUE is theligple ensemble. Systems
with time reversal symmetry are, however, split into twognalups, corresponding to the
GOE and the GSE. The GOE covers virtually all systems witle tieversal invariance, the
exception being systems that also have half integer spifbesicen rotational symmetry.

This subgroup of systems is then covered by the GSE.

2.3 Gaussian Orthogonal Ensemble

In the literature there are many different ways that GOE tioauced. The usual way is
to write down the joint probability density function for timeatrices in the ensemble. In
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GOE, we consider the real and symmetric Hamiltonian madri¢én a Hilbert space of
dimension N,withy, v = 1,2,.....N, the matrix elements obéf, = H,, = H;V. For
realistic systems Hilbert space is infinite dimensionalveaconsider the limitV — oo
in what follows. The ensemble is defined in terms of an intiégmaover matrix elements.
The volume element in matrix space

=[] dH),. (2.2)

p<v

is the product of the differentialé/,, of the independent matrix elements (i.e. of the
matrix elements not connected by symmetry). The ensemtkfised by the probability
density P(H) of the matrices H,

P(H)d[H] = Noenz T ) [ (2.3)

Here N, is a normalisation factor andl is a parameter which defines the average level
density.
N E?
E)=—/1—-—
PE) =10 AN
When GOE is applied to data, is determined by the empirical average level density
and the spectral fluctuation properties are then predictacparameter-free fashion. The
Gaussian weight factor in eq.(2.3) ensures the convergaitbe ensemble averages for
large values of the integration variables. Using the symyr@bperties of the matrices ,
. : 5 5 . L
we write the trace in the exponent®$, , 2H;, + >, H;,. The probability density in
ed.(2.3) takes the form

—-N
P NO | | Q.Tp{ml‘[z }dHMu X | | G.Tp{m}dl{pg (25)
po

p<o

(2.4)

The above equation is a product of terms each of which depamigisa single matrix el-
ement. Thus GOE has the properties of having uncorrelated<tan distributed random
variables with a zero mean value and a second moment given by

)2

H,H, = N((SM,(SW + 0,600p) (2.6)
In eq.(2.6) the overbar denotes the ensemble average. mgthre GOE by these proper-
ties is equivalent to the definition (2.3). As far as the forihth@ probability measure is
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concerned, it is fixed by symmetry while as the Guassian ffutr@hat equation seems
to be completely arbitrary. Rosenzweig and Porter (1960¢ Ilsaown that the distribu-
tion (2.3) is obtained when one assumes that the ensembithagonality invariant and
the matrix elements not connected by symmetry are statistindependent. R. Balian
(1968) has derived the distribution (2.3) from a maximunrepy principle. In GOE,
every state is connected to itself and to every other staterbgtrix element of H as all
the non-diagonal matrix elements have the same first ancdhdeaonoments, every state
is coupled to all other states with equal average strendtichwresults in level repulsion
between any pair of levels and in a complete mixing of statésilbert space. The impor-
tance of such coupling becomes more evident when we coresidere general ensemble
with probability density

N
2 2
P,(H) =Ny I I exp{ 4)\2H }dHW X I I ea:p{2 )\QH } (2.7)

p<o

where the positive integer ranges from 0 to 1. Fon=0, all non-diagonal elements
vanish, and the ensemble (2.7) consists of diagonal matvittd independent Guassian-
distributed diagonal elements. The shape of the averaggrapeis Guassian, there is
no level repulsion, and the spectral fluctuations are Pniaso Fora = 1, the ensem-
ble coincides with the GOE. For values @fbetween these two limits the shape of the
spectrum and the spectral fluctuations interpolate betwesse two limiting cases. Sig-
nificant mixing occurs between levels when the mean squaxmgimatrix elemenﬂ—ﬁy
with . # v is roughly equal to the square of the mean-level spacingthéocase of GOE,
the mean level spacing is= ’% at the centre of the semicircle which follows from

N EN?
pE)=—\[1= (ﬁ) (2.8)
showing that significant mixing occurs wheris of the order\/—lﬁ. Mixing sets in as soon
asa differs from zero. The ensemble defined by eq.(2.3) is chasenich a way that
it is invariant under orthogonal transformations,undeicivhieality and symmetry of the
matriceslH,,, is preserved. The matrices obtained from the orthogonastoamation of

a given matrix H also belong to the ensemble as a result oftwtere does not exist
any preferred direction in Hilbert space and the ensemlkrised as generic. Because
of the invariance under orthogonal transformations ands&iaa-cut-off, the ensemble

is referred to as Guassian orthogonal ensemble of randomcesat Instead owa—+1
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integration variableg?,, with 1 < v in eq. (2.3) we can use the N eigenvalugs of
the matrices H and théf(]\;—_l) generators of the orthogonal transformations O, which
diagonalises H. Then the volume element dH takes the form

dH = dO [[|E, - E.| ] dE, (2.9)

p<v P

The factor dO represents the Haar measure of the orthogomgb gn N dimensions. The
Haar measure is a unique invariant measure that can be adsmpvery compact group
and that is used to define integrals over that group [99]. @tieedactors depends only on
the eigenvalues, and the second depends only on the diggngahatrices which ensures
that the eigenvalues and the eigenvectors of the matrices bineorrelated random vari-
ables. The factof[,_, | £, — E, | originates from the volume element in matrix space
and reflects the orthogonal invariance of the ensemble. fabisr causes the probability
density to go to zero as the two eigenvalues approach eaehwlttich is a manifestation
of level repulsion, a basic feature of quantum mechanics.

2.3.1 Derivation of Probability distributions for a simple 2 x 2 GOE
matrix

The construction of Gaussian ensembles will be illustréee by considering real and
symmetric 2x 2 matrices with O(2) as their group of canonical transforamest. \What
we shall be seeking here is a probability density P(H) forttivee independent matrix
elementsd,;, Hy» andH,, hormalised as

/ dHydHydHisP(H) = 1. (2.10)

(e o]

The two requirements suffice to determine P(H). Firstly, R(idst be invariant under any
canonical, i.e. orthogonal transformation of the two-dasienal basis:

P(H)=P(H'),H = OHO" 0" =07 (2.11)

Secondly, the three independent matrix elements must benaetated. The function P(H)
must, therefore, be the product of three densities, onesfth element

P(H) = P11(H11)Po2(Ha) Pro(Hi2). (2.12)
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In order to exploit second and third equations, it sufficegdasider an infinitisemal

1 —-©
O:(@ . ) (2.13)

H =O0HOT (2.14)

Hy, H,\ [1 -© Hy, Hip 1 ©
H, H, | \6 1 Hy, Hy -0 1
Hil H{2 o 1 -6 H11 —le@ H11@+H12
Hij, Hy © 1 Hiy — H»p® Hi30 + Hy
Hi, Hi, _ Hyy — H120 — H190 + H»©? H10 + Hip — H150? — Hy0O
H{Q H£2 H11@ —+ H12 — H12@2 — HQQ@ H11@2 + le@ —+ H12C"‘) —+ H22

change of basis

. For which

gives

Neglecting®? terms, we get

Hy, = Hy —2H50 (2.15)
Hiy, = Hy+ (Hy — Hy)O (2.16)
Hjy = Ha+2H,0 (2.17)

Factorisation and invariance of P(H) yield

H12 dPll H12 dP22
2 —2 — (Hyy — Hpp)—2—
Py dHy, Py dHy )

HH%:HHU:HH%I—G

Since infinitisemal angl® is arbitrary, its coefficients in above equation must vanish

dP12 1
— (Hyy — Hyp)———1| = 0
Py iy LPndi, ), P12>

dPy 1 Hyy, dP Hiy dP
(Hn B H22) 12 _ o2 aln 19 2
dHyy Py Py dHyy Pyy dHy,
APy 1 Hiy 1 dP, Hi APy

— 2 — +2 = 0
dH12 P12 (Hll - H22) Pll dHll (Hll - H22)P22 dH22

(2 Hy dPy_ His dPy
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1 dPy 1 2 <1 Py 1 dP22> 0

HyydHyy Py (Hy — Hyy) \ Py dHyy  Pay dHo

This gives three independent differential equations, amesfich of the three indepen-
dent functionsP,;(H;;) since eachP; has its own exclusive argumeft;. From above
equation, we have

1 dPy 1 2 1 dPy 1 dPy
H12 dH12 P12 (Hll - H22) Pll dHll P22 dH22
1 dPy 1 2 1 dP;, 1 dPy
H12 dH12 P12 (H22 - Hll) Pll dHll P22 dH22
Y

This implies that

1 dPp 1

_— — = _A
H12 dHlQ P12
dP
y H” = —A'H»dHi, (2.18)
12
Integrating the above equation, we get
dP
/ 5o = A / HypdHiy
12
H2 1
logP, = —A’$ + logA
Py = Ale A H (2.19)
Similarly, we obtain
o2 ([ LdPn 1dPn)
(H22 _Hll) Pll dHll P22 dHQQ
- A

2 1 dP22 1 dPH
(H22 _Hll) P22 dH22 Pll dHll

PQQ dH22 Pll dHll ( 22 11)

1 dPy 1 dP11> Al
2
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1 dP22 A 1 dPll Al
— T Hy = — iy =
Py dHoy g Py dHy, +to

The above equation implies that

1 dPy A
— “Hy = -B
Prdily, 22
dP. Al
dHZ = —BdHy — - HypdHy, (2.20)

Integrating the above equation, we get

d Py / /
= —B | dHy — — | HypdH
/ i 22 2201192

lOgP22 = _BH22 — ZHQQ + lOgA“‘

Py = Ao BHn—fin’ (2.21)
Working along the similar lines, we get
Py = A" e~ B4 (2.22)

Hence the probability distribution is given by, for ax22 GOE matrix,

Al A o A 2
_ A A A”” H2%,—BHy—4-HZ,—BH11—4-HZ,

)

(H)
(H) = Ce_A/(%'F%"'%)—B(Hn—I—Hm)
(H)
(H)

i)

/
- CefAT (2H%2+H222+H%1) —B(H11+Hz2)

i)

H
H

e

— (e AU +HE+2H],)~B(Hi1+Ha) (2.23)

Of the three integration constants, B can be made to vanisppyopriately choosing
the zero of energy. The constant A fixes the unit of energy ams determined by the
normalisation. Hence the above equation reduces to

P(H) = Ce~ATr(H?) (2.24)
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Where Tr. stands for the trace of the matrix. Generalisatiothe above equations to
higher dimensions is discussed in the section 4.

2.3.2 GOE Fluctuation Measures
Porter-Thomas Distribution

We know that in GOE eigenvalues and eigenfunctions are veleded random variables.
For N — oo, the projections of the eigenfunctions onto an arbitrargtmein Hilbert
space have a Guassian distribution centered at zero. Bheréhe squareg? of such
projection have a2 with one degree of freedom. Let us introduce the variable

2
Y= % (2.25)

The resulting distribution is also known as Porter-Thomasitution and has the form

Pl) = zg=can(~5) (2.26)

The function is given in terms of the mean vallie= 2. That parameter is an input
parameter and is not predicted by random matrix theory. distsibution can be checked
experimentally. Transition prrobabilities of nucleardés/to a fixed final state and decay
widths to a fixed channel are proportional to squares of mateéments containing the
nuclear wavefunctions. These matrix elements can be repdogections of the wave-
functions onto a particular vector in Hilbert space. Howeitenay happen that the mean
valuel' undergoes a secular variation and this is the case withngamce, for doorway
states. Then it is necessary to unfold the fluctuations blyngctne intensities properly.

Nearest-neighbour Spacing distribution and Dyson-Mehta b A3 statistic

The two fluctuation measures most frequently employed irtyaimg the experimental
data are the nearest-neighbour spacing (NNS) distribamoirDyson-Mehta o5 statis-

tic. These are obtained in the limit N oo. Prior to using these measures for data analy-
sis, it is necessary to unfold the experimental data. Letyusave a look at why need of
unfolding arises i.e what is the the origin of unfolding. A<lear from the average level
densityp(E) of GOE that it is constant in every energy interval contagrfinite number
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of levels and same is true for average level spacing, “d” @&lithit N — oco. However, in
nuclei the situation is quite different as the level dengityws nearly exponentially with
energy and in many cases even a fairly short stretch of leN&tays this fact. The spac-
ing of the lowest-lying levels are consistently larger tttamse of the highest lying levels.
So, this fact distorts the spectral fluctuation measuresrarsd be taken into account prior
to comparing data with GOE predictions. This is done by uifg tha spectra. What
is done in unfolding is that actual spectrum is modified sun&t aiverage level spacing
is constant. GOE predictions relate to spectra consisfihgyels with identical quantum
numbers. Spectra obtained experimentally may be incomplet miss levels (especially
those with small spacing or very large widths )], or not beggue., may contain levels
with uncertain or incorrect quantum number assignmentss important to know that
how lack of completeness affects the compaison of data W@k @redictions.

Unfolding require knowledge of the average level dengitf) for the data at hand.
The situation is easy if a theoretical prediction for therage level density is available.
This is the case, for instance, in billiards (where a pointipl@ moving in two dimensions
is scattered elastically on some surface). Here the Wepliita gives the average level
density in closed form in terms of the area enclosed by thfaseirand length of the
boundaries of that surface. GivelF), the spectrum (or the spectra ) is subsequently
unfolded by mapping the eigenvaluEs onto new eigenvalues, by the prescription

Ey
€ :/ dEp(E) (2.27)
By construction, the new eigenvalues are dimensionleshavelan average level spacing
equal to unity. The, can be used to construct the NNS distribution andAhe We
observe the right hand side of above equation is the averhfjee staircase function
defined by

N(E) = /E dE'Y §(E' - E,) (2.28)
& w
The unfolded eigenvalues are the values of that function taken/gt. Usually, how-
ever, the exact form of the average level density is not knolfyrhowever, the data is
obtained by numerical simulation of an ensemble (diageaabn of matrices), the aver-
age level density is best found by numerically averaging twe ensemble. If, we, have
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to deal with an empirical spectrum of say, several tens @i\t is advantageous to use
the data to construct the staircase function rather thaleWieédensity (the representation
of the latter in the form of a histogram depends on the bin hwvittosen), and to fit a
low-order polynomial to that function. The unfolded eigalues are again given by the
values of the staircase function taken at the original eigle@sE),.

The nearest-neighbour spacing distribution (NNS), P(sedds on s, which is the ratio
of actual level spacing and the mean level spacing d. Howgverrite it in a closed form
is not possible. However, an excellent approximation dugvigner is known as the
Wigner’'s surmise

P(s) = gexp(—ﬂ32/4) (2.29)

The linear increase with s for small s is due to GOE level reipul Universality shows
that the Guassian cutoff factor defining the GOE and simpdgpawts for the fact that very
large spacings are unlikely to occur. The exact expressioi(§) was first derived by
Gaudin in 1961. P(s) is displayed in figure below. The NNStitistion describes the dis-

(L&

Py (s)

.4

10

Figure 2.5: The nearest-neighbor spacing (NNS) distraoutif the GOE (solid line)vs s,
the ratio of the actual level spacing and mean level spagiogcomparison, we also show
the NNS distributions for GUE (dashed line) and the GSE &iblihe). The parametet

is the Dyson index withlb=1,2, and 4 for GUE, GOE and GSE, respectively.

tribution of level spacings but does not contain informatout their correlations. Such
information is provided by another fluctuation measure, Aestatistics. The number
staircase function

N(E) = / : dE'Y §(E' - E,) (2.30)
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counts the number of eigenvalues below energy E. With istmgaenergy, it increases by
unity as E passes a (nondegenerate) eigenvalue and is stb@anstant. The number of
eigenvalues in the energy interyal,, Ey+ L] is given byn(Ey, L) = N(FEy+L)—N(Ep).
By the definition of mean level spacinigE), We haven(Ey, L) = ;. We use the fact
that for N — oo, d(E) is constant (independent of E) in any energy intereakaining

a finite number of levels. The number variait®(L) = n?(Ey, L) — (n(Eo, L))? is a
fluctuation measure that contains information about catieis between level spacings.
Suppose, for example, that actual GOE spectra can be cotestioy drawing spacings at
random from the NNS distribution. In this ca§%(L) is, for large L, proportional to (In
L). The slow growth indicates that large spacings and snpaitimgs do not follow each
other at random but almost alternate, and reflects the esi$fof GOE spectra. For the

three canonical ensembles, the number variance is showgurefbelow. The number

0.8

0.6 |

|
Pz-a: 0.4 |
0.2
0.0 }
0 2 3 4 5
L

Figure 2.6: The number variance vs the length L of the intdtvés in units of the mean
level spacing), for the three canonical ensembles. TopecUBOE; middle curve GUE,
GUE; bottom curve, GSE. The parameteis the Dyson index.

variance is seldom used in nuclear physics because it fligstdao strongly, so that is
why the A; statistic by Dyson and Mehta is used. The latter is defined by
Eo+L

1
Ag(L) = mingy < / dE'IN(E") — a — bE']? >, (2.31)

Ey

We integrate the ensemble average of the square of theatifferbetween the number
staircase function and the straight lie+ bE’) over an energy interval, divide by the
length of the interval, and minimize the result with resgedhe parameters a and b of the
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straight line. The angular brackets denote an average beenitial pointE,. It can be
shown thatA; can be written as an integral over the number variatifd.). Therefore,
Ay is much smoother thari? (L) and is better suited for data analysis. SimilaEtgL),
As(L) grows logarithmically with L. For large L,

1
As(L) ~ —{InL — 0.0687}. (2.32)

Similar to X2, the A; statistic reflects the stiffness of GOE spectra. Figurevbsloows
Az vs L for the GOE.
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Figure 2.7: The\; statistic for the Sinai billiard (open circles), the GOEdintion(solid
line), and the Poisson result (dashed line). From Bohigaal ¢t1984.

2.3.3 Properties of GOE
Universality

The form of GOE spectrum is because of the Guassian cut-aifffaHowever, this form
is quite unrealistic as hardly any real physical system ggssuch a spectrum. While
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as reality and symmetry of the matric&s, reflect time reversal invariance and are thus
a consequence of quantum theory, the Guassian cut-off jsattbbugh the arguments
of Rosenzweig and Porter (1960) and of Balian (1968) lendesplausibility to its use.
The Guassian cut-off is preferred from a practical point iefwbecause of ease with
which the Guassian integrals can be handled. But GOE isaistiag from physics point
of view only if it furnishes information that is independagitthe form of cut-off factor,
which is guaranteed by the universality of GOE. In the usdg@®E emphasis is not
on the overall shape of the spectrum but interest is rathdocal spectral fluctuation
measures nearest-neighbour spacing distribution or latioe between level spacings.
These measures are predicted in a parameter-free fashich mleans that all the local
spectral fluctuation properties are functions of a dimerisgs parameter s, which is the
ratio of actual level spacing and the mean level spacing. effeegy scale on which the
local spectral fluctuations properties chatracterisegntogs of the spectrum, is negligibly
small as compared to the length of the spectrum, in the limit N> oc. On that very
energy scale, the spectral fluctuations are universal isghse that they are functions of
s and have same form for both the GOE and all non-Guassiaff Gttors, as long as
the latter are orthogonally invariant and confine the speacto a finite singly piece of the
energy axis (Hackenbroich and Weidenmuller, 1995). NoasSian cutoffs modify the
overall shape of the spectrum but in principle, it is posstblfind a cutoff factor for any
given form of the spectrum such that the resulting randornrimensemble has an average
spectrum of that form, which leaves local spectral fluctraproperties unaffected. In
fact, the local spectral fluctuations, in the limitN oo separate from the global properties
and become universal.

Ergodicity

The question that arises, in case of GOE, is that how can weamrtheoretical pre-
dictions obtained from an ensemble of Hamiltonians, in ammedul way, with the data
taken from a physical system with a single Hamiltonian antdframm an ensemble of
Hamiltonians. The question is answered by the ergodicigperty of GOE. Spectral
fluctuation measures such as the mean level spacing or thediitfbution as running
averages, can be calculated from the spectral data of a gixggem and such running
average is denoted by angular brackets. We would like tatascehatO =< O > holds
true for all the members of the ensemble and for all obseegDIthat describe local spec-
tral properties. The above equation cannot be proved inrgebecause there is no way
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to evaluate< O > in the framework of GOE. However,a slightly weaker proofd8y et

al., 1981) is possible fofO— < O >)2. The proof is possible for the reason that all the
terms are ensemble averages. The above statement img@tdeitialmost all members
of the ensemble [ with the exception of a set of measure zaetdhrenmeasure defined in
the equationi[H] = [],., d[H],.] the running average of an observable O (calculated
for a single member of the ensemble) is equal to ensemblageearf the observable.
This property is referred to as ergodicity and the name derikom the similarity of the
statement with the ergodicity in the classical statistioaichanics which states that the
phase-space average and time average along a singledrgjact equal.

Information content of GOE Spectra

The eq.(2.5) shows that in GOE every state in Hilbert spaa®ugpled to every other
one by a Gaussian-distributed random-matrix element andehan GOE all states in
Hilbert space are completely mixed with each other. By chmgpthe parameters N and
A and drawing all independent matrix elements from the regulBaussian distribution
generates a random GOE matrix. Diagonalisation of thatimgtelds a GOE spectrum
and by construction that spectrum contains no informateyohd the input parameters
N and\. In particular, the spectral fluctuations are void of phgbkiaformation and if the
spectral fluctuation of an experiment agree with the GOEiptiedis and if there is no
further information on that system, then the spectral datasacannot be used to extract
any physical information on the system beyond the mean kdsesity. One arrives at
the same conclusion while asking the question that how maegep of spectral data
are needed to determine the underlying Hamiltonian. Cagniti GOE shows that all
N eigenvalues and all N orthonormal eigenfunctions are ee¢d determine th%“gﬁ
independent matrix elements of H. By comparing this withukeal dynamical approach
to physical systems where the Hamiltonian is given in terfresfew (say n) parameters.
Then n pieces of data suffice to determine the Hamiltonianfartder data can be used
to check the consistency of the underlying theory.
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Average level density

A central property of the GOE is the mean level dengit¥), a function of energy E. It
is defined as

=> §(E-E,) (2.33)

The delta function in the above equation can be written a8irthieof a Lorentzian curve
with vanishing width

5(E) = g%w Z E2 — (2.34)

The above equation indeed is a representation of DiracaDeiftction as shown below.
In order to qualify for a representation of Dirac-Delta ftion, it must satisfy the two
defining properties of Dirac-Delta function. In order to shihis, let us define a function

asF(e, F) = WE2+ =. Hence, the above equation becomés) = lim._,, F'(¢, E) We
havelim, .o F'(e, £) =0,ifE#0
and,
Y e N Y
2e [T 1
- 15% T /0 E? + €2d
_ 2elm
)
=1
In the last but one step, use has been made of the intﬁoﬁ?%li;i—”‘f2 L arctan(%).

Hence, it is a representation of Dirac-Delta function s éggation (2.33) can be written
as

: 1 :

Now using

ZEEE :TT<EiH> (2.36)
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Hence, the density of states becomes

p(E) = —%Im (Tr(E i H)) (2.37)

In the above eqn.(2.37) the limit — 0 has been omitted for simplification purpose.
Wherever we meet an expression of this kind, it is to be undedshat there is infinitise-
mal small positive imaginary part of E.

The density of states can alternatively be expressed irstefrthe quantum mechanical

Green’s function

G(QA?QBaE) = Zw qa wn QB

Glaa.qp. E) = Z¢ (44) 77— ¥n(a5) (2.38)

Where,, (¢) are the eigenfunctions of H to the eigenvalie Now, we have
S vilashtnan) = 8(0s = ax) = [ Slaa = )b(an — )y @.39)

Hence the above equation can be written as

Glavan B) = [ dlas =) p—prdtan — a)da (2.40)

G E) = < >
(qa,qB, E) qAIE HIqB

where in the above equation the delta functddq, — ¢) = |g4 > as the eigenfunction
of the position operatoy|gs >= qa|ga >. The Green’s function can thus be interpreted
as the matrix element of the operatdr — H)~! with the eigenfunctions of the posi-
tion operator as the basis functions. Thus, egn. (2.37)herdensity of states may be
alternatively be expressed as

o(E) = —~1m (TT(G)) (2.41)

™
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In egn. (2.37) the eigenvalues no longer enter explicitigtéad the average of the trace
of an operator inverse must be calculated

S= <Tr(

7 H) > (2.42)

This is done by expandingz — H)~! into its Taylor series

o 1 .
S=>" oy < TrH" > (2.43)
n=0

The series converges only |i| exceeds all eigenvalues of H in magnitude. For the
calculation of the average density of states, on the othed,hae need S in the range
of the eigenvalues, where the expansion diverges. The gold now reduced to the
calculation of the ensemble average of the tracE'afHere, we shall perform the average
for GUE. We know that the probability distribution for GUEg&/en by

P(Hu. ... Has) = (?) ; (%)N(M e:cp{ - A I(H ¢ <Hf>3nmJ}

T
(2.44)
Where (Hg)nm and (Hy),,, are the real and imaginary parts Ht,,,, respectively, we
obtain

< HopHpg, >= / HogHgoP(Hui, . .. ... JHyn)dHy ... .. dHyy = —  (2.45)

holding both fora = g anda # 5. The ensemble average of all other products of two
matrix elements vanish, H.sH,s >= 0, (o, ) # (0,77). From eqn. (2.45), we get for
the average of the trace &f?

N2
<TrH?> = Z < |Hups* > = 24 (2.46)
ap

The averages of the traces of all odd powers of H vaniisti/?"*+! = 0 as is clear from
symmetry considerations. First non-trivial case is n=4,

<TrH*> = < Y HeHp,H;Hso > (2.47)
a,B,7,0
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In the ensemble average only terms survive where matrixesiést/,,; and Hz, occur
1

pairwise. To this end we introduce the bracket notafibp 4., denoting that only terms
with (o, 8) = (6,~) are taken in the sums. Then there are four surviving ternesfjrst
one given by

[ 1 [ ]
(" Hap HoyHos Hi) = (3 HogHsaHosHsa) =O(N')  (2.48)
a,B,7,0 a,B,6

whereO(N?) denotes the number of terms in the sunvis Two further terms are given
by

< ;gHaBM75H5a> = <zﬁ: HaﬁHBvHvBHBa> =O(N?)  (2.49)
a,B,7y, B,y
and
< ZéHa5H57H75H50> = <ZHaﬁHﬁﬁHﬁaHaa>
()
— O(N) (2.50)

The case is left wher# 5 and Hg, occur twice within one term
1 1T 1
< > HapHg, vaH(Sa> = <Z | Hagl > N?) (2.51)
a,B,7,6

This shows that sums with interlacing brackets as well assigntaining the same matrix
element repeatedly are of lower order in N than the sums waithinterlacing brackets. In
the limit of large N therefore only the latter terms have tacbasidered. This facilitates
the calculation considerably. Introducing the abbregrati

M, = <TrH> > (2.52)
Equation (2.43) can be written as

SZE

n=0

(2.53)

2n+1
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To derive a recursion formula for th¥,,, we write
My = <) (H™)oa >

M, = <Y Hup(H" "o > (2.54)

In order that a given term survives the averaging, one of délaéofs of 7>*~! must be
identical withH,. As each of the (2n-1) factors can assume this role, we get

2n—2

My = 3 D0 < Hop(H")g, Ho(H" )50 >
k=0 «o,B,7,0
2n—2

M, = > > < Hog(H")psHpa(H" )0 > (2.55)
k=0 «a,0

Now, we use the fact that contributions of the types (2.49)@150) are negligible in the
limit of large N. Then the ensemble average in eqn.(2.55pfaes

2n—2
My =" < |Hagl* >< (H")gg >< (H" )00 >< (H#72)00 > (2.56)
k=0 o,p

Using equation (2.45) this may be written as

_ 1 k 2n—k—2
M, = ﬂZZ<(H)55><(H )aa >
k=0 «,8

2n—2
M, = ) <TrH"><(H"*?>

k=0

1 n—1
M, = — My M,y 2.57

n 2f12§% kiVIn—k—1 ( )

Where in the last step we took into account that only the s@aéehe even powers of H
survive the ensemble average. By means of the initial cromit

My =Tr(1) =N (2.58)

The eqn. (2.57) may be used to calculafg recursively. But an explicit knowledge of the
M, is not even needed here. We may instead directly enter tiiesien relation (2.57)
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into expression (2.53) for S

o0

1

n=0

1 = 1
= 5+ X gmin)

1 1 1 &
= E(N+Z EQnﬂKZoMan_k_l>

n=1

(2.59)

By changing the order of summation and subsequently sbiftie summation index, we
get

1 1
S = (Nt 52> Y M) (2.60)
E 2Ak=0n:k+lE
g — L(nvyd NS LYY
= E( + 57 2 2 T M ")
K=0n=0
1 I — 1 =1
- (N =N N —Mn)
S E( QAkZ:OE%H ’f§E2n
1 1,
S = E(N+ﬂs)

We have now end up with an equation which is quadratic and eagabily solved.

S

SE
5?2 —92ASE +2AN

S

S

N o1,
Y Vo
1

N Q2

+ 558
0
2AFE + AAZE? —SAN

2
2AN

AE(1 +4/1— @> (2.61)

However, we take only the term with the negative sign for #son that S» 0 as E
— oo (see equation(2.53)). Using equation (2.37) the averagsitgeof states is now
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immediately obtained as

A [2N _ 2 if|B| <« ¥2N
p(E)=4 =V TET<"4 (2.62)

0 if|E] > 2N

In the limit E— 0, the ensemble averaged density of states becomes congtatry) =
\/m . . . . . . o w2

~===. Itis a common practice to normalise this quantity to oneakyrtg A = 7. Then
the average density of states becomes

TEV2 -
o) = 1—{ZE2}° if|E| < &,

0 if|E| > 2 (269

This is the famous Wigner’s semicircle law.

2.3.4 Physical Considerations Built Into The GOE

As said before, the broad physical properties of the systemhich a RMT approach

is to be applied, is built into the ensemble of matrices. Nbuat tve have defined the
GOE, itis perhaps a good time to take a look at what physiaadiderations went into its

construction in the first place. As briefly discussed in thieiuction, the physical system
that Wigner was investigating when he first introduced theEG¥s that of energy levels
of heavy nuclei [100]. With this system in mind, let us noweaklook at what went into

the construction of the GOE.

Symmetry

The Hamiltonian operator in the Schroedinger equationdhatacterizes a quantum me-
chanical system is required to be Hermitian. For Hamiltogia matrix form, this implies
that the Hamiltonian matrix of the system has to be suchthat H', where thef op-
erator denotes the conjugate transpose of a matrix,Afes (A*)T with the operator
denoting the complex conjugate. A matrix that is its own ogage transpose is called a
Hermitian matrix. As is clear from the section (2) that someHer restriction has been
made while defining GOE, as the matrices in the ensemble drentyp Hermitian, but
also symmetrical. This restriction on the possible Hamikos allowed in the GOE stems
from a restriction on the physical systems under inspectiamely that these systems all
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exhibit time-reversal symmetry. To get an idea of why timeersal symmetry restricts
the Hamiltonian matrix of a system to being symmetrical, dynbe instructive to take a
brief look at the time reversal operator.

When the time reversal operator acts on a system, it, by tefinreverses linear and
angular momentum, but leaves position unchanged. Fromittuan be deduced [101]
that the time reversal operator be anti-unitary. Now, amn@amtary operator can always
be written as the product of a unitary operator and the coxgejugation operator. In
other words, for the anti-unitary time reversal operatovd,can write

T =YK, (2.64)

with Y being a unitary operator, arfd, denoting the complex conjugation operator. The
explicit form of the time-reversal operator depends on @Edthat is chosen to describe
the system at hand. Without going into much detail how theerities of the time reversal
operator constrains the Hamiltonian of a time reversalriavd system to being symmet-
rical, let us consider as an example the coordinate repiasemspecifically. In this basis
the time dependent Schredinger equation can be writterllas/f

W(z,t) = ih%z/z(:c, £) (2.65)

—R? )
%V +V(x)

with V(x) denoting the potential. The bracket denoted by Hhis Hamiltonian of the
system. If one now takes the complex conjugate of both sitlegra (2.65), one obtains,

v (x,t) = —zh8t¢ (z,t) (2.66)

—h?
[_ VQ +V>k
2m

If we now replace the dummy variable t withit is apparent that both(z, t) andy*(x, t)
will be solutions of the original eqn.(2.65) if we requirathhe Hamiltonian in egn.(2.66)
be the same as the Hamiltonian in eqn.(2.65), in other wimdsequiring that

V(z) =V*(x). (2.67)

For this to hold, it is clear that V(x) has to be real, and byliogtion, so too the Hamil-
tonian H. A unitary matrix that is also real, is by implicatisymmetrical. In coordinate
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representation the form of the time reversal operator Tfwhat we have seen, is simply
the complex conjugation operator:
T =K, (2.68)

with the unitary operator Y, from eqn.(2.64), in this casmbequal to the identity opera-
tor. In general however, Y is not equal to the identity oparand in fact the requirement
that the Hamiltonian of a system is invariant under time reak is given by

THT '=H (2.69)

For more detail in this regard, see [77] and [102]. That daydar most quantum mechan-
ical systems that normally occur in nature, exhibit timeersal symmetry, making the
GOE, at least from a quantum-mechanical point of view, thetrapplicable of the three
ensembles introduced by Wigner.

Invariance under basis transformation

To write down the Hamiltonian of a physical system in a mafiobm, it is necessary first
to choose an orthonormal basis in which you are going to ddsete are many different
ways of doing this, each leading to a seemingly different Haman matrix. In general,
one can transform the Hamiltonian matrix H of a system resgiirom one choice of
basis to a Hamiltonian ‘H’ for a different choice of basis b finear tansformation

H =T 'HT (2.70)

the only requirement on the transformation matrix T beingt tils inverse exists. In
guantum mechanics, however, Hamiltonian matrices areyalweqjuired to be Hermitian.
The GOE does not hold for systems exhibiting time reversalmsgtry that have broken
spin-reversal symmetry. An ensemble was however constior this special case, the
GSE, which we shall briefly discuss ahead. A quantum mechhsistem lives in a
Hilbert space and when choosing a basis for this Hilbertepiacs usually done so that
this basis is orthonormal, in other words the basis vect@sa chosen that they are not
only orthogonal to each other, but also all have a norm of 1/&ndill only be guarantied
of being so if we further restrain the transformation matoixeing unitary. For a unitary
matrix U, with the property

UUt=UU=1 (2.71)
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the transformation of basis is now
H =U'HU (2.72)
Taking the conjugate transpose on both sides of equati@8)@.e then have
(HO = (UTHU) = )t (H) (U = (UtHU) = H (2.73)
by using the property of conjugate transposition that far taatrices A and B
(AB)" = BT Al (2.74)

as well as the known fact that H is Hermitian to begin with. En73) shows thall’, the
result of a unitary transformation of H, is equal to the cgajie transpose of itself, or is in
other words, Hermitian. For Hamiltonian matrices desagisystems with time reversal
symmetry, we have to restrict the form of the transformatietrix in eq.(2.70) even
further. As discussed in the previous section, Hamiltosiainsuch systems all have the
property of being symmetrical. If H therefore describes stesy that is invariant under
time reversal, the matri¥ also has to be symmetrical as it too describes a system where
time reversal symmetry holds. This can only be guarantetbe ifransformation matrix T
of eq.(2.70) is even further restricted to being orthogoAal orthogonal transformation
preserves symmetry in the same way that a unitary transtmmpreserves Hermiticity.
This can be shown in much the same as in 2.73, using the factahan orthogonal
matrix O we have

OTOo=00" =1 (2.75)

Here, | represents the identity matrix. Even though the fofa Hamiltonian matrix that
describes a system is dependent on choice of basis, thé artahanics of the physical
system are not. Hamiltonian matrices that are within a apit@nsformation of another
should lead to the same, basis independent solutions ofdfv®&dinger equation. This
brings us to an important feature of the GOE. Since matrltatsare within an orthogonal
transformation of one another describe the same physist sy it stands to reason that
these related matrices should carry the same statistiaghtvin ones ensemble. The
GOE was constructed that this is indeed so. To verify thigjddake a look at the j.p.d.f.
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of the matrix ‘H’ given by equation
P(H') = Nyersr((07H07?) (2.76)
Furthermore,

Tr((O"HO)*) = Tr(O"HOO"HO)
= Tr(O"HHO) =Tr(0O"H?0)
= Tr(OO"H?) =Tr(H?) (2.77)

by using eqn. 2.75, and the characteristic of the trace imthat
Tr(AB) =Tr(BA) (2.78)

for any two square matrices A and B of equal dimension. Byriirsgeequation 2,77 into
equation 2.76, we then obtain

P(Hl) — NO@ZA_]\QITT((OTHO)Q)
— NOGW]-&?)

— P(H) (2.79)

Thus the j.p.d.f. for the matri¥ is the same as the j.p.d.f. for the matrix H as we
expected (hoped), as they are merely an orthogonal tranafmn away from another.

2.3.5 Size Of The Matrices And Block Diagonal Form

The choice of basis is an important issue, as a good choicasi$ lmay simplify the
problem at hand greatly. Ideally, for example, one couldosleathe basis of the Hilbert
space in which the system lives in such a manner that the kanah matrix of the
system would simplify to a diagonal matrix, which is as sienpk it gets. To do this,
however, one would have to solve the Schroedinger equa®the set of basis vectors
that results in a diagonal Hamiltonian matrix, is in fact ge¢ of allowed states of the
system, i.e., the eigenstates of the Schredinger equatitheifirst place. The states of
the quantum mechanical system are labelled by what aredagliantum numbers, each
state corresponding uniquely to a unique set of quantum etsnbVhat these quantum
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numbers represent, and the way that they label the statBssdrom system to system.
The states of the hydrogen atom, for example, can be labeyledset of three numbers,
(n,I,m), nrepresenting the so called principle quantumipem representing total angular
momentum, and m the projection of angular momentum ontotaiodixed direction. For
much more complicated systems, such as that of a heavy s tdéaelling of individual
states in such a manner is very difficult. In principle it wiblle possible to label all
the states exactly, but that would require an exact solusfotme systems Schredinger
equation that which we cannot do in the first place. In att@mg@n approximate solution
- it turns out that at higher excitation levels some of therquan numbers very quickly
get washed out, as the levels get close to one another ahtbstak. There are, however,
quantum numbers that are exactly conserved throughoup#utram - the so called good
quantum numbers. For a heavy nucleus, for example, thesg gugmtum numbers are
total spin, and parity. Even though labelling individuaitss is not practical, it is possible
to group states with the same good quantum numbers togeltesr @hoosing a basis for
ones system in such a way that the Hamiltonian matrix of tiséesy reduces to a block-
diagonal form such as in fig.(2.8). Each of these blocks can bie seen as a Hamiltonian
matrix of a sub-system, and each of these smaller sub-systelnlems can be tackled
individually. Unfortunately, these sub-problems can n@sblved exactly either. Itis in
fact these sub-problems that RMT was applied to in the fiatel the matrices of the
GOE representing such a sub-block of a possible Hamiltooiidime entire system.

2.4 Circular Ensembles

Not only the lack of physical motivation for the independen¢ matrix elements posed a
problem but also it was against the basic premise of randotrixitaeory. What Dyson
[57] argued is that an ensemble of matrices should be cartetiin such a way that all
interactions are equally probable and that was impossibiiotif matrix elements were
required to be independent of one another, which then leadnstruction of Dyson’s
famous ensembles with same physical considerations asefisgensembles, but with-
out the added requirement of independent matrix elemengsodid it in such a way
that the ensemble remained analytically tractable. Thetourethat naturally arises is
that why to bother about the Wigner’s ensembles if those efzgson are physically
more justifiable. The remarkable fact is that the analytiesiilts obtained from Wigner’s
Guassian ensembles and those from Dyson’s circular enssral® the same [57]. This
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Figure 2.8: A Hamiltonian matrix in block-diagonal form. this case a basis has been
chosen is such a way that each of the blocks correspond to-gystdm of states each
with a fixed total angular momenturh

was the very first indication of a very important concept indam matrix theory called
universality that is still today not understood fully.

2.5 Gaussian Unitary Ensemble

Whereas the GOE was constructed for the systems with tinexgal invariance, the GUE
was was constructed for the systems with that do not haveptbjgerty. It is, in princi-
ple, easy to create a quantum mechanical system without rewersal invariance by
just putting a quantum mechanical system that has a timesav&/mmetry in a strong
external magnetic field. However, it was not possible at ilme ttnsembles were first
constructed because the magnetic fields required to sutftfigibreak the time-reversal
symmetry of atomic nuclei systems were not experimentallgsiple. Dyson [57] how-
ever, mentioned the possibility of future application toraic and molecular systems.
The GUE has proven to be a very valuable ensemble, with atjics far away from the
nuclear systems it was originally intended for. The diffexe between between GOE and
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GUE lies in the requirement of time reversal symmetry. Asiscuaissed in the section
of GOE that systems with time-reversal symmetry have symaidamiltonian matrices
describing them and it is therefore the symmetric matribas the GOE is built of. So,
without the requirement of time-reversal symmetry all oae say about the Hamiltonian
matrices of such systems is that they are Hermitian, and Gliferefore built simply out
of Hermitian matrices. The other requirements on matricgSUE are the same as those
on matrices in the GOE. Just as in the case of GOE the matricee IGUE are such that
their individual matrix elements are independently distted. As the matrices in GOE
were required to be symmetric, the individual matrix eletaemere restricted to being
real. With the requirement on the matrices in the GUE beingk&red to Hermiticity,
the individual matrix elements, except for those on the aied, can now in general have
complex values. Let us suppose that the matrix elements efaidan matrix A, of size

N x N, is given bya;; = z;; + iy;;. The requirement of Hermiticity does restrict the
possible values of the matrix elements. As, mentioned abwenatrix elements on the
diagonal of a Hermitian matrix cannot have a complex valuenRhe definition of Her-
miticity one can first of all deduce that the matrix elememts$he diagonal of a Hermitian
matrix are restricted to having real values, or in other wgtd= 0,7 = 1...N. Secondly
the matrix elements opposite of the diagonal from each atherelated by:;; = a;.
These restrictions imply that, just as with the symmetri¢rioes in the GOE, not all the
matrix can be freely choosen. Let us suppose for the argunsake, that the matrix el-
ements we are free choose are those lying in the upper tilemgart of the matrix, the
above restrictions pinning rest of them down, so to speakinAke case of GOE the
freely choosen elements are required to be independestlytited, but in this case with
the added meaning that the real and imaginary parts alsodep@mdent of each other.
Considering the above, an N N thus hasV? elements that are free to be chosen, N of
them lying on the diagonal, ardx Y&~ — N (N — 1) lying above the diagonal. The
joint probability distribution function thus gives the fability of finding matrix H in the
differential volume element or the invariant measure hagahm

HGUE Hd RGHGUE HGUE Hd HGUE (280)

p<v
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With this definition, the equation for the probability degsof the GUE is similar to the
expression of GOE and is given by

P(HCVE)d[HEVE] = Noe:cp{ - 2—]§2T7*(H GUE>2}d[H “r] (2.81)

The GUE is invariant under unitary transformations of Hitteppace. The real and imag-
inary parts of the matrix elements are uncorrelated randanmalbies with equal Gaussian
probability distributions centered at zero. The factorthmexponent are chosen in such
a way that the second moments have the values

R ¥

HEVUEHpcéUE = N(SMU(SVP (282)
In the GUE, the transformation to eigenvectors and eigeil®ghs new integration vari-
ables involves a unitary transformation u and yields

—-N
P(HYEYA[HCYE] = Ny du exp{WZEi}

1
< [[(E, = E.)* ][ 4E. (2.83)
p<o v
Here du denotes the Haar measure of the unitary group in Nrdilmes. Instead of the
factor|E,— E,| occuring in the expressiaf(H )d[H]| = Ny  dO exp{% > Eﬁ} [1,co B~
E,| 1], dE, for GOE, the above equation for GUE contains the fatfy— £, )?. Hence,

the level repulsion for the GUE is quadratic. This differetetween GOE and GUE can

be easily understood: In GOE, the coupling of any pair ofleisedescribed by a single
parameter, namely, the real coupling matrix element. Fertwo levels to have small
spacing, the value of real coupling matrix element must ballsnHowever, in case of

GUE the coupling is described by two parameters, namelyalaleand imaginary parts

of the real coupling matrix element. In order to have smadkcepg, both parameters must

be small, and the probability of small spacings is reducedmingly.
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2.6 Gaussian Symplectic Ensemble

As discussed in the subsection of symmetry, that there igaaplass of quantum me-
chanical systems that exhibit time-reversal symmetry tev@ OE does not apply. These
are systems (for example, systems with strong spin-orbiploog) with half-integer total
angular momentum that are not symmetrical under rotati@n.skch kind of systems a
specific kind of ensemble was created, known as Gaussianlegtiepensemble. Quan-
tum mechanics demands that all Hamiltonian matrices to bhenkian, whereas in case
of GOE these matrices are further constrained to be symeagtthe constituents of the
GSE are constrained to being real. Ank2 matrix with complex valued entries can be
expressed as a linear combination of the following four roas:

0 0 i

Bo=| 1>, E1=<, é)
/ . f . (2.84)
— 7

E: y E:

In other words, one can write any complex valued 2 matrix Q as

—_

— O

Q=) cuB,. (2.85)

the coefficients,, in general being complex numbers. If however they are realptatrix

Q is said to be a real Quaternion. It is important to note teagn though called real
quaternion, such a matrix does not in general have only edabd entries. A Nx N real
quaternion matrix H is constructed out of NN real quaternion Z 2 matrices such as
depicted in equation above. Counting the individual matements, it is evident that the
dimension of H is in fact 2N« 2N. For the matrix H to also be Hermitian, one has to be
able to write it as follows:

H=Hy® Ey+ H ® E + Hy® By + Hy ® Es (2.86)

with Hy a N x N real symmetric matrix, anél;, H, and H; real antisymmetric matrices.
Here the® operator denotes the direct product. To get a feeling ohadl tet us, as an
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example construct 2 2 Hermitian real quaternion matrix. For the matrices

T Z) H1=< g g)
¢ - . (2.87)

B 0 f B 0 g
o) e (1)

We have
a 0 b+ig —f+id
0 d  b—1i
H— a i "9 (2.88)
b—ig f—id b 0
—f—1d b+ig 0 b

with a, b, c,d, fand g all real numbers.

As H, is a real and symmetric matrix so it hég]\;Ll) free parameters, and d%,,
H, and H3 are real antisymmetric matrices, each of them ﬁ%‘—l) free parameters.
Adding this all up, a real Nx N quaternion matrix has therefopeVZ — N free param-
eters, and for matrices in the GSE, these are once againredai be independently
distributed. If the distribution of the matrix elements &aussian, the resultant j.p.d.f.
for matrices in the GSE, just as for the GOE and GUE, has thergéform given by
P(H) = Le aTrU?)+tTr(t)te where a,b, and ¢ real numbers, with a required to be pos-
itive and C is a normalisation constant. Wheras the j.pad.fhe GOE is invariant under
orthogonal transformations, the j.p.d.f. of the GSE is rrara under symplectic transfor-
mations, brought about by the transformation matrices fiteersymplectic unitary group.
A matrix ‘B’ is a member of this group if it satisfies the idemgti

Z =BZBT (2.89)

where the matrix Z is defined by
Z=1® FE (2.90)

with | the N x N identity matrix. For a detailed discussion in this regaek section 2.4
in[77].
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2.7 Embedded Ensembles

2.7.1 Introduction

Gaussian (and circular ) ensembles were introduced irs8tati nuclear spectroscopy
because of the fact that these ensembles possess invaoaeties under the adequate
symmetry transformations [103]. However, the matricesheke kind of ensembles has
the limitation that they are always filled and therefore th&teams modelled represented
by these kind of ensemble of matrices possess d-body itit@nac As is well confirmed
from the the wealth of the experimental data that the reaksys like atomic nuclei or
atoms are well described by the real or effective two-bodgraction in the mean-field
basis. Lefk > denotes the mean-field single-particle states with k =1,.2, 3 ., the
Hamiltonian for such kind of systems can be written as

H= Y <pglH|kl > a}alaa (2.91)

k<l,p<q

wherea'(a) creates (destroys) a fermion in the kth single-particlestnd the two body
matrix elements< pg| Hkl > are properly antisymmetrized.

The main motivation behind the introduction of embedde@sides in nuclear statistical
spectroscopy was to tackle the problem of interaction rarkch is actually two body
dominant as compared to the multi-body interactions ptediby Gaussian orthogonal
ensemble. Hence such kind of ensembles provide presentargadistic picture of many-
body quantum systems particularly because of the factttedtes account of the number
of particles, the rank of the interaction or the size of thébétit space which otherwise
are not present in Gaussian ensembles. Embedded ensemphasicular, the embedded
Gaussian orthogonal ensemble of random matrices with k-badractions (EGOE(K)),
were introduced by French and Wong [104, 105] and Bohigad-torés [106, 107]. The
earlier studies used for analysing the EGOE(K) were theeandhell model and Monte-
carlo methods. A good physical insight into EGOE(K) can bé&mied by using the
binary correlation approximation [108, 109, 36]. The EGREEr many fermion (boson)
systems assumes that many particle spaces are direct psquhges of single particle
states, as in the nuclear shell model. Now let us define EG@i (a(m > k) particle
sysytems (bosons or fermions) with the particles say Oistied in N single-particle states.
The EGOE(K)is generated by defining the Hamiltonian, whedkbody, to be GOE in the
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k-particle spaces and then propagating it to the m-parsigbees by using the geometry
(direct product structure) of the m-particle spaces. Toertak definition more obvious,

let us consider one of the simplest ensembles, EGOE(2)fimidas which is appropriate

for atomic nuclei when studied using the shell model. Givea gingle particle states
lv>;,1=1,2, ... N, the two-body Hamiltonian is defined by

H2)= > <wwlHvv; >, a}d, a0, (2.92)

Vi <vj,Vp<v]

Where&il creates a fermion in the state|in > and similarlya,, destroys a fermion in the
state|r, >. The symmetries for the antisymmetrised two-body matrexrednts (TBME)
< vy |H|vv; >, being,

<uyy|Hlvy, >, = — <yy|H|vv; >, (2.93a)

< Vle|H‘VZ‘Vj > = < ViVj|H‘Vle >a (293b)

The Hamiltonian H(m) in m-particle spaces is defined of thé/Bvia the direct product
structure. The non-zero matrix elements of H(m) are of tkypes,

<UVilg...... Un|H|ivg . ... .. U >q = Z <y|Hlv; >, (2.94a)
Vi <vj<vm,
<Vply...... Un|H|ive . ... .. U >q = i < vy |Hlny, >,  (2.94Db)
< VplglVs ... ... Um|H|vovs . ... .. U >q = - < vy H|ns >, (2.94¢)
and all other< . ... .. |H|...... >,= 0 due to two-body selection rules. Thus EGOE(2)

is defined by above equations with GOE representation for tHaertwo-particle spaces,
i.e., < vy |H|vy; >, are independent Gaussian random variables.

< vy |H|viv; >4 =0 (2.95a)
| < | H|viv; >, |? = V(1 + 8iz), (k1)) (2.95b)

Here bar denotes ensemble average:aigda constant. The dimensions of matrix H(m),

dis d(N,m) =(Y) and the number of independent matrix elements are ime(ﬁ?}d;—“)
N(N-1)

where the two-particle space dimensidp~= —=—. e.g; d(11,4) = 330, d(12,5) = 792,

d(12,6) = 924, d(14,6) = 3003, d(14,7) = 3432, d(40,6) = 3BBB&(80,4) = 1581580 etc
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and Ime(11) = 1540, Ime(12) = 2211, Ime(14) =4186. The EGQPE@so called as two-
body random matrix ensemble(TBRE). Extensions of abovatsaps for boson systems
is straightforward. But as far as Hamiltonians of many-bodgracting particle systems
are concerned, they contain a mean-field part (one-bodyhpand two-body residual
interaction V mixing the configurations built out of the disution of the particles in the
mean-field single-particle orbitals; h is defined by singéeticle energies (SPE);i =
1o..... N and V is defined by the TBME. Thus,the BE+ 2), which is the embedded
ensemble of (1+2)-body Hamiltoniang,£(1 + 2): {H} = [h(1)] + M{V(2)} ,gives
a more realistic picture of quantum many-body systems. H¥reis EE(2), i.e., itis
EGOE(2) withv = 1 in above equation or an ensemble with TBME being independent
variables with a distribution different from Gaussian (éxample uniform distribution).
Similarly [h] is a fixed hamiltonian or an ensemble with smglarticle energies (SPE)
chosen random but following some distribution. Finallyj fimd {V} are independent.
It is to be expected that the generic features of EE(1+2)agmbr those of EGOE(K) for
sufficiently large values ok and significant results emerge ass varied starting from\
=0.

Many different types of embedded Gaussian ensembles hareib&oduced in the
literature as shown in the fig.(2.9). They are generated tgrporating symmetries and

Classical RM ensemblos
[GOE/GUE)

Two-body
Intaractions

two-body ensembles
[EQOE(ZVEG UE[2)]

T i i — 1

one— pius (wo-body ensembles
[EGOE{f+2)/EQUE({1-2}]

5y mim airies

EGODE(1+2)-8 e EGDE[2]-J

Muaagacopic sysieme Huciei, #Moma

L
i EQUE{2}-BU{4}

HMucial

Figure 2.9: The information content of various random magnsembles. Also shown
are the areas in which the embedded ensembles with variausslyies are relevant.

other information in the interactions. Besides EGOE(k) B®DE(1+2), the other em-
bedded ensembles are EGUE(k), TBRIM, RIMM, EGUE(2)-s, EGDMS, EGOE(1+2)-
s [this ensemble is sometimes called RIMM [110] and TBRE4L[lL BEGUE(k), BE-



54

GOE(k) and BEGOE(1+2). The ensembles generated by thréx-hour-body inter-
actions, etc., are also called 2-BRE, 3-BRE, N-BRE [112].inGdeyond these, with
JT-symmetry for a two-body Hamiltonian we have EGOE(2)-dicl is nothing but the
TBRE mentioned in the beginning. Adding a spherical oneyladt will make the TBRE
more realistic and the resulting ensemble is EGOE(1+2pdr(ficlei EGOE(1+2)-JT )
[7]. Itis also called RTBRE [113]. Similarly the TBRE for angjle j shell is called
TBRE-j in [111]. Also studied in literature are displaced B (called DTBRE) [114]
where a constant is added to all the two-body matrix elemearfiged Hamiltonian plus
EGOE called K+EGOE [7], EGOE with particle-hole symmetr{led RQE [115, 116],
induced TBRE [110], EGOE(2) with good parity [117], EGOE hvé partitioned GOE
in 2-particle space called p-EGOE [7, 118], and finally EGR)ERU (4) [119] with good
spin-isospin SU(4) symmetry. For bosons there are studi8B8GOE(1+2)-L (also called
BTBRE-L) with bosons in sp orbits [120] and sd orbits [121}lwihe Hamiltonian pre-
serving the many-boson orbital angular momentum L, andBEBOE(2) with SO(N1p
SO(N2 ) symmetry in the interacting boson model [122]. Altgb the GOE and GUE
versions of embedded Gaussian ensembles have receivetioatt¢here are no studies
yet of the GSE versions of these ensembles.

2.7.2 Definition Of The TBRE

The TBRE is defined within the framework of spherical nuclglaell model, which as-
sumes that, nucleons move independently in a central paksvith a strong spin-orbit
force. Let us consider one of the major shells of that modaimBrical examples are
calculated for the sd shell with the single particle-stagédelled bys, ,, d3/;» andds,,
and single-particle energies/., €32 andes;;». This can be generalised to other major
shells of the heavier nuclei since number of many-partitdées becomes forbiddingly
large for numerical work. Sometimes, also a single j shethviialf-integer single par-
ticle total spin j is considered to yield useful insightghaligh not realistic for nuclei.
By putting several nucleons into a major shell, a basis dimrbrmal antisymmetrised
many-body states of fixed total spin J, parity P and isospifihEse states are labelled
as|Ju > with J standing for the quantum numbers J, P and T and with 1,...... ,
d(J) a running index with range given by the dimension d(dhefHilbert H(J). We will
focus attention on a fixed but arbitrary z-projection of M ofal spin J so that dj is
the actual number of states not counting their degenera@raang M. In the middle of
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the sd shell and for low values J Xi(s typically of the ordei10® and as much larger for
heavier nuclei (other major shells). The actual constonctised for the basis of states
|Ju > because basis resulting from from different modes of canstin are connected
by a unitary transformation. In the sd shell nuclei, all $#particle states have positive
parity and therefore, quantum number P is omitted and mdealgf we consider only sd
shell states with isospin T =0, so that it suffices to labeltfamy-body states by the total
spin J only. The number of nucleons in the major shell is deshbly m and sometimes,
we consider several nuclei simultaneously with differesiies of m. For this case, we
denote the dimension of Hilbert space by d(J,m) and singifar other quantities. The
many-body statesJ > are eigenstates of the single-particle shell model Hamidio
with a very high degree of degeneracy. The degeneracyesl kthen we take account of
the residual interaction of the shell model. Also, it is ased that the residual interaction
mixes states only within the same major shell. However,dbgimption is unrealistic in
the sense that intruder states from higher shells occuraJew excitation energies, and
mixing with higher shells is bound to play a major role at tipper end of the spectrum.
The residual interaction is assumed to be two body altholgtetare evidences for three
body forces and also coulomb interaction betweeen the psatoneglected. In order to
elucidate role of the residual interaction, it is assumed the single-particle energies
within a major shell are all degenerate. For the case of sHi, sheneans that we put
€12 = €3/2 = €52 = 0. Then the problem reduces to finding the residual interactio
which entirely determines the full shell model HamiltontdnLet us consider the matrix
elementsd ,, (J) with respect to the basis of statdg: >.

The residual two-body interactidni possess a finite number of two-body matrix elements
within a major shell and we can arrive at the form of these eaftllowing manner. Let
ji where i=1, 2, 3, 4 designate the four (equal or differenty®alof total single-particle
spin, parity and isospiry2 . Couplingj; andjs, (js andj,) to total two-body spirs; (so
respectively), denoting the parity of the resulting wavefiions byr; (7w, respectively),
and introducing the notation s for the quantum numbers #he reduced two-body ma-
trix elements ofl, within a major shell have the form jsjss||Va||jijzs >, where we
have puts; = s, = s becausd/’ conserves spin, parity and isospin. The number ‘a’ of
such two-body matrix elements within a major shell is lirdites for example for the sd
shell,a = 63 whereas for the case of a single j shell and identical nusleos: j + 1/2.
The matrix elements are denotediywith o = 1, 2, ....a and also the two-body specific
operator whose matrix elements are designated,by/ is completely characterised by
the a matrix elements, within a major shell and is immaterial of the actual fornvof
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The Hamiltonian of the shell model is linear in the matrixeéntv, and is of the form

H,(3) =) 0aCiu(J, ) (2.96)
The matrices”,,, (J, «) carry the two-body interaction into the Hilbert spadéJ) and
depends on the quantum numbé&i@nd on the particular statesandr and on the particu-
lar two-body operatat under consideration. The values of thig, (J, «) s are completely
specified by the underlying shell model, i.e., the singlaipla states that occur within a
given major shell, the coupling scheme used to constructhtmey-body stated . >, and
the exclusion principle. Th€,,(Ja) depends upon the values of the matrix elemepts
and is independent of the choice of two-body interactiore &tuation (105) gives the de-
composition of H into parts that are determined by the symiegeof the shell model [the
matricesC,, (Jo)] and matrix elements, that carry the information on specific details
of two-body interaction. The aim is to give generic stateta@out spectral properties
of H that apply (almost) to all two body interactions for whi€BRE is employed. The
matrix elements,, are assumed to be uncorrelated Gaussian-distributedmava@ibles
with mean value zero and a common second momé&nWithout loss of generality, we
can putv? = 1 as all single particle energies are equal so that the scaledpectrum
is determined by?. Now the mean value of the observables is worked out by iategr
ing the random variables,, the measure being given by the product of differentials of
thev, s and a Gaussian factor €xp)_  v?a/2). After calculating the mean values and
square root of the variance of the observables, we are siutt@r{ihe error given by the
latter) that the mean values applies to all memebers of teereble i.e., to all two-body
interactions, with the exception of a set of measure 0. Widwt, s Gaussian random
variables, the Hamiltonia/,, (J) represents an ensemble of Gaussian-distributed ran-
dom matrices, the TBRE. Numerical studies have shown tleesplectral fluctuations of
the TBRE generally coincide with those of the GOE, that isalnse of the complete mix-
ing of basis statesl . > by H and is independent of the specific choice of thes and
thus reflects a property of the matriggs, (J, ). In order to acheive such mixing, almost
every linear combination of these matrices must be suffiljielense matrix in Hilbert
space, with sufficiently complex matrix elements. This thea a remarkable statement
as the matrices are defined entirely in terms of an indepépaeticle model ( which is in-
tegrable). In principle, th€’,, (J, «) can be worked out using group-theoretical methods
and using the fact that the same possibility exists for thbezided Gaussian ensembles
and has been used [123, 124]. Intuitively, that mixing propef the C,,,(J, «) can be
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understood by observing that each of the matrix elemeiit,pfJ, «) contains sums of

products of Clebsch-Gordon and Racah coefficients and cieeffs of fractional parent-

age. The combination of these three coeeficients becoméytugmplex for more than

three particles in a major shell, irrespective of the wefirded nature and simplicity of

the three coefficients. A more detailed discussion of of toperties of the matrices was
given in [125].

2.8 Comparison of GOE and TBRE

As far as GOE is concerned it has three important properkestly, it is invariant un-
der orthogonal transformations (and hence is mathemigticelnageable). Secondly, it
is universal and thirdly, it is ergodic. TBRE does not havg anch such properties in
common with GOE. In case of TBRE the set of matricgs(J, «) is fixed and a uni-
tary transformation of all matrices generates anotheressntation of the ensemble and
does not lead to the another memeber of the ensemble, whikbsmthherefore, TBRE
non-unitarily invariant and is not orthogonally invariafill now, it is not clear whether
TBRE is universal i.e., yields results that do not dependhenassumed Gaussian dis-
tribution of the matrix elements, or in otherwords it is not clear how a non-Gaussian
distribution of v, would affect the spectral fluctuations of the TBRE. Whereasdse
of GOE, local spectral fluctuation properties and globaktté properties become sep-
arated in the limit N— oo and this separation lies at the root of universality i.ecalo
fluctuation properties donot depend on the form of the dhistion of the matrix elements.
Also TBRE is not ergodic because the limit of infinite matrirngnsion cannot be taken
in a meaningful way except for the case of a single j shell,r@he—> oc is a mean-
ingful limit that has not been explored yet. Contrary to tlsist GOE is ergodic which
is proved by showing that correlation functions vanish vifittreasing distance of their
energy arguments and also in the proof—N oo is made use of. Inspite of all these
shortcommings of TBRE, it has certain attractive featusewell. The TBRE produces
spectra with Wigner-Dyson level statistics and at the same TBRE does carry in-
formation content because the number of random variablem@l compared to typical
matrix dimensions. Ideally, it takes ‘a’ data points to cdetgly determine the values of
random variables in the TBRE and the number is typically somhpared to the number
of eigenvalues pertaining to fixed values of J, T, anahd this shows the important role
played by the matrice§),, (J, «) in the TBRE. These matrices are fixed by the geometry
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of the shell model itself and these are responsible for tloemgtmixing of the shell-model
configurations and the choice of residual interaction omledmines the particular linear
combination of the C’s that forms the shell-model HamileonH,, (J). In the GOE, the
analogs of the matricesS,, (J, «) exist and these are thé(N + 1)/2 matricesG,, which
either have a unit element somewhere in the main diagonatamd everywhere else or
have a unit element somewhere above the main diagonal , itermage below, and
zeros everywhere else. The s{«{fu} forms a complete basis for real and symmetric ma-
trices. In contradistinction, the matric€$, (J, o) do not form such a complete set. To be
sure, every matrix’',, (J, ) may be thought of as a linear combination of tig But the
number of matrice€’,, (J, «) is typically much smaller than the number of independent
random variables/ (N +1)/2 in GOE. Therefore, many other linear combinations of the
G, which are linearly independent 6f,, (J, «) and which do not occur in the TBRE and
TBRE may be negatively defined by constraining all such limeanbinations to be zero.

2.9 Conclusions

Random matrix theory has been applied to a huge number of fiatth considerable suc-
cess as described in this chapter by means of a figure 1. As fanysics is concerned,
and in particular to nuclear physics, it has produced resuitl inferences that are quite
consistent with the predictions from shell model calcolasi. The main motivation be-
hind the introduction of random matrix theory in nuclear picg by Wigner in 1955 was
to get an understanding about level and strength fluctuatidmother apparent reason
for the use of RMT in nuclear physics one can cite, is that gihéii excitation energies
the level density becomes very high as is clear from equdfipeo that by the time one
reaches, for example, at neutron thresholdy B MeV the nuclear models fail to pro-
vide finer details about the individual states of a quantumy¥tzody system like atomic
nuclei. Paraphrasing Wigner, the assumption made whilé/imgprandom matrix the-
ory to nuclear physics is that Hamiltonians which governldbkaviour of a complicated
system is a random symmetric matrix with no particular prope except for its sym-
metric nature. The significant results that follow while bopg random matrix theory to
nuclear physics i.e., the inferences drawn from the randatnixrensembles are: (i) the
nearest-neighbour spacing (S) distribution (NNSD) P(SjafSinfolded spectra)is well
represented by Wigner's surmigdS)d(S) = Se~5°dS showing level repulsion ass dis-
cussed in section. (ii) the Dyson-Mehig statistic showing spectral rigidity as described
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in section. (iii) the locally renormalised transition stgghs (x) obey the Porter- Thomas
law P(z)dx ~ x~'/2¢” as elaborated in section. The classical random matrix elpigsm
had been quite successful, specifically GOE in modellingpttgsical realities. As far
as GOE is concerned, the spectral fluctuation propertiesraptex nuclear spectra often
agree with the predictions of random matrix theory or to beenwrecise with those of
GOE, the truth of which is established for resonances obsieav neutron threshold and
the coulomb barrier for protons [126] and also in a numbelases likewise to the levels
at lower excitation energies [127]. The basic tenet of GOtbtdn keeping with the shell
model, which is basically a single-particle model with adaal interaction, the interac-
tion of which is dominated by two-body forces and is the fundatal dynamical model
of the nuclear physics [128]. In a representation where thayabody basis states are
Slater determinants of single-particle states, a two-kbatBraction will have non-zero
matrix elements only between those Slater determinantgitfiar by at most two units
in occupation number of single-particle states. Of thel tmtianber of such determinants,
this is a small fraction. In otherwords, in an arbitrary sdsr the many-body states, the
number of independent matrix elements of the two-body autgon is very much smaller
than that of GOE and this fact is changed only quantitatilsatynot qualitatively when we
allow for the three-body residual interaction. Around 19s fact led to the following
question: Are the predictions of GOE for standard specuatdlation measures (nearest-
neighbor spacing distribution and Dyson-Mehta statiyticsmsistent with the results of
the shell model calculations with a residual two-body iattion.The answer, based on
numerical calculations, has been affirmative [129, 106],rmmerous more recent calcu-
lations have confirmed it [39] . The calculations were based mndom-matrix ensemble
[the two-body random ensemble (TBRE)] that differs from@@E and accounts for the
specific properties of the nuclear shell model: The exisefa residual two-body in-
teraction that conserves total spin, parity, and isospifokiunately, this realistic feature
of the TBRE poses a severe challenge for an analytical utasheling precisely because
the many-body states carrying fixed total, spin and isos@ivary complex. As a conse-
guence, very little is known analytically about the TBRE€eTéare several open questions
and directions for future research as far as TBRE is condg(ip&Ve are still lacking a
deeper analytical understanding of the TBRE and its fluinairoperties. An analytical
approach must be based on properties of the matrices demertedyC, (.J, «). While a
theoretical description for shells with several subshislisrobably difficult, focusing on
a single j shell might simplify the problem. (ii) The TBRE piets correlations between
spectra with different quantum numbers e.g., differentsesasspins, or isospins for nu-
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clei within a major shell. Experimental verification is diffilt due to limitations in the
length and completeness of observed nuclear spectra, et B&rmi systems might be
more accessible. (iii) The correlations between spectth different quantum numbers
might also affect the scattering matrix, more preciselghscorrelations might induced
correlations among S-matrix elements carrying differetaltspin quantum numbers. The
present analysis of fluctuating cross sections in compouetenneglects any such cor-
relations. A better understanding of this problem would igialy desirable.



Chapter 3

Chaos Measures in Wave-functions and
Transition Strength Distributions

3.1 Introduction and Review of Literature

There has been an unprecedented growth in the use of randdmx thaory to quan-
tum systems particularly in the context of quantum chaoser&@lare number of chaos
and complexity measures for quantifying the quantum ch&msong them are number
of principal components, information entropy in wave-ftioes and transition strength
distributions, transition strength and transition sttbrgums. For example, the statistical
properties of total Gamow-Teller strength as a functionxafitation energy is related to
regular or chaotic features of nuclear dynamics and thength has astrophysical im-
portance in pre-supernova evolution and stellar collafpstact, the smoothed behaviour
of the total Gamow-Teller strength versus excitation epavdl be adequate for many
astrophysical purposes and it will give information abouter-chaos transitions, just as
energies, wave-function amplitudes, and transition gtien

In this unit we are going to discuss about the chaos measuneave-functions and
transition strength distributions. In the section 1 introion an overview of the litera-
ture regarding the chaotic measures in wave-functionsrandition strength distributions
shall be covered. This will be followed by the basic reswtsL+2)-body random matrix
ensembles. In the next section we are going to re-derivexpiesions for chaotic mea-
sures (number of principal components and informationogylrin wave-functions and
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transition strength distributions. Also in this sectionréebdiscussion on the compari-
son of exact shell model calculations and GOE and EGOE gredgshall be discussed,
supplemented by some results. In the last section we shiaddunce transition strength
sums as a measure of chaos.

The study of quantum chaos in finite-interacting many plrtiziantum systems has
underwent a change from the study of spectral statistickdstudy of wave-functions
and transition strength distributions (for example, elmutiagnetic and Gamow-Teller
transition strengths in atomic nuclei, dipole strengthstoms etc.). There has been
a great deal of spectroscopic activity using the measurehabs and complexity like
the number of principal components and localisation lemgtivavefunctions and tran-
sition strength distributions. The results obtained framhsstudies is being then tested
against the predictions from realistic EGOE(1+2) ensembler example, the number
of principal components and localization lengthdinand )/, transitions strengths itV
measuring complexity and chaos in transition strength fabneigenstate with energy;
has been studied and results when compared with the patdtiom EGOE(1+2) in the
Gaussian domain, a good agreement has been found [43]. Odhe aft eigenvalue am-
plitudes of many fermionic systems and construction ofimf@tion entropy, number of
principal components and similar other measures of contglard chaos in the system
is of great current interest. Firstly, the investigatioh$zaailev [130] and detailed study
of nuclear shell model studies by Zelevinsky and collalmysaf131, 39] established the
importance of these measures. Further, these studiesmedfthat Gaussian orthogonal
ensemble (GOE) of random matrices is totally inadequatepta the strong energy
dependence of these quantities. The measures of chaosmaptezdy, that is, the locali-
sation length related to the information entropy had alsmbmlculated with the nuclear
shell model wave-functions in large shell model basis stéde several Ca, Sc and Ti
isotopes, and compared to the predictions of embedded @aumshogonal ensemble.
The dimensionalities involved in the calculations are sgdaupto many thousands, en-
sures good statistics and there is a good agreement in tioichegion (central region)
of the energy spectrum, while some deviations are obsemgwand-state region. Also,
from these studies, it has been established that localis&ngth of shell-model wave-
functions in Ca isotopes is much smaller than in Sc, showisty@ang dependence of
nuclear chaos, in good agreement with previous resultdt@senergy level fluctuation
properties [132]. The formulas for the complexity and chaxasures like information
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entropy and number of principal components has been debyersing the results from
statistical spectroscopy or to be more accurate from the E@Dthe bivariate Gaussian
forms for smoothed strength densities in transition stitedgstributions. These measures
describe the shell model results in terms of the bivariateetation coefficient{ and
which reduce to GOE results fgr= 0 [133]. The chaos measures, number of principal
components(NPC) and information entrogy"( ) are normally defined for the eigen-
functions expanded in terms of a given set of basis statesvekdsr, imagining that a
given basis state is a compound state generated by the a€teotransition operator on
an eigenstate with energy E, it is possible to extend the unea$\PC and™/ for transi-
tion strength distributions [133]. The inverse participatratio (or NPC) of an eigenstate
is the effective number of basis functions contributingttdtiprovides a measure for the
presence of chaos in the system. For example, smallness ©fdidfpifies presence of
collective states [134], and also NPC can be used as a mdasulefining the region of
onset of chaos in the spectrum [135]. Interestingly, it wias amployed, without actu-
ally realisingly the connection to the work of [133], in thiady of rotational damping
using the particle-rotor model [136]. NPC asé'/° in transition strength are signifi-
cant because transition strength are observables, whie-sactions in general are not
observables. Here, we will discuss these measures for tl@HEG-2) ensemble oper-
ating in the Gaussian domain. Working along these linesstadying quantum chaos
in finite-interacting many-body systems, using transitstrengths and wave-functions,
several research groups have recognised the fact thatthleddy random matrix ensem-
bles and their various extensions form good models for wtdeding various aspects of
chaos in interacting particle systems [7]. In particulaing the so called EGOE(1+2),
embedded Gaussian orthogonal ensemble of (1+2)-bodyatiens defined by a mean-
field one-body plus a chaos generating random two-bodyaotien, several studies has
been made on the nature of occupancies of single partickssttrength functions (or lo-
cal density of states), information entropy, transitiaresgth sums and transition matrix
elements of one-body transition operators, Fock-spa@digation by etc. in the chaotic
domain of interacting particle systems such as atoms [1Ridlei [7, 39], quantum dots
[138, 139, 140], quantum computers [34, 141] and so on. Beber[7] gives a overview
of the subject. The common feature shared by the Hamiltgnianall these kinds of
systems consists of mean-field one-body part plus a contplg&nerating two body in-
teraction. With one plus two-body interaction§ [= h(1) + AV (2), A is a parameter]
one has EGOE(1+2) (the embedded Gaussian orthogonal eleseinoine plus two-body
interactions). For EGOE(1+2), h(1) is fixed (or an ensembi#f) some average single-
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particle level spacing with unit variance for the matrixmbnts, so thak is the interaction
strength in units of average single-particle level spacigh m fermions distributed over
N single particle states, firstly it is a well known fact thiae tEGOE(1+2) state density is
Gaussian for all values and in the strict sense of the word, it is Gaussiandardilute
limit defined bym — oo, N — oo, and§; — 0. Two important chaos markeps and
are also known for EGOE(1+2) [139, 142, 143, 144, 145]. }or \. there is chaos in
the sense that the level fluctuations start coming close t& h@tuations;\. marks the
transition from Poisson to GOE. Similarly ass increasing from\., the strength func-
tions change from Breit-Wigner (BW) to Gaussian form (the BWGuassian transition
was discussed first by Lewenkopf and Zelevinsky [146]). Xhe \x (it is to be noted
that\r > A\¢) marks the onset of Gaussain and the A region is called the Gaussian
domain and here not only the state densities and strengthidns are Gaussian and level
(strength) fluctuations follow GOE but also the bivariagngition strength densities take
bivariate Guassian form [7]. Theregiap < A < Arregionis called Breit-Wigner (BW)
domain. Shell model with realistic interactions has essaleld the operation of quantum
chaos, and EGOE(1+2) in Gaussian domain, for 2s1d shelenircl2, 39]. In this unit
the two measure of chaos (in wave functions and transitieength distributions): (i)
number of principal components NPC (or the inverse pawitgm ratio); (ii) localisation
lengthl;; as defined by the information entropy™/°) will be discussed. It is well estab-
lished that the NPC in wavefunctions characterises vateyess of chaos in interacting
particle systems [147]. NPC for transition strengths is asuoee of fluctuations in transi-
tion strength sums. Similarly the role ff in quantum chaos studies is well emphasized
by lIzrailev [130] and more significantly, using nuclear plogsexamples [148]. It is well
demonstrated that the wave-function entréf¥/° coincides with the thermodynamic en-
tropy for many particle systems with two-body interactiofsufficient strength but only
in the presence of mean-field, i.e., in the chaotic domainnitit mean-field - therefore
the significance of EGOE(1+2). Clearly deriving the predmes of EGOE(1+2) for NPC
and/y are of considerable importance. The problem was addressgdl9, 150]. In
[149] results for NPC in wave-functions, in the so callediB¥Wigner (BW) domain, are
derived. On the other hand in [150] results in so called Ganstomain are derived for
NPC andly in transition strength distributions with only the final ués mentioned for
wave-functions.
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3.2 Basic Results For (1+2)-Body Random Matrix En-
sembles

By distributing m fermions in N single particle states, amswg at the very outset that
many-particle spaces are direct-product spaces of thieegpagticle states , two-body ran-
dom matrix ensembles (usually called TBRE) are generatetkbging the Hamiltonian
H, which is 2-body, to be a random matrix in the 2-particlecgzaand then propagat-
ing it to the (g) dimensional m-particle spaces by using their geometreétiproduct
structure); often one considers a GOE representation ir24particle spaces and then
the TBRE is called EGOE(2). More details regarding it aresgiin reference [7]. For
EGOE(2), withN >> m >> 2, the normalized state densityF) = < §(H — E) >
take Gaussain form and is defined by the centeoid < H > and variance®> = <
(H — ¢)? >. In order to explicitly state that the state density is gatest by the Hamil-
tonian H, sometimeg(E) is denoted ag’ (E) and similarlye ase;; ando asoy. The
averages<> are over the m-particle spaces and in case of nuclear phgsasples,
they are usually over the m-particle spaces with fixed amgutamentum (J) and isospin
(T) which are good quantum numbers. Just as with the statgitgegiven a transition
operator O, the normalized bivariate strength densitiestrjmnelements of O weighted
by the state densities at the initial and final energigéh);, £;) = [ < O'O > ]71 <
O'6(H — E;)O§(H — E;) > take bivariate Gaussian form EGOE(2) and it is defined by
the centroidge;, ;) and widths(o;, o) of its two marginals and the bivariate correla-
tion coefficient is given by O[(H — ¢;)/a;]O[(H — €;)/0;] > / < OTO >. Thirdly,
the level and strength fluctuations follow GOE. Also with Baussian forms for the
state densities and bivariate Gaussian forms for the strefensities, the strength sums
< E|O'O|E > = Y .| < F'|O|E > |* take the form of ratio of two Gaussians,
< E|O'O|E > = poro.c(E)/pa(E) wherepoio.o(E) = < O'O5(H — E) > is
defined by its centroidyip = < O'OH > / < O'O > and variancer?,, = <
O'OH? > | < O'0 > —¢2, , where G stands for Gaussian.

However, for realistic interacting particle systems weeéhavmean-field part [one body
part h(1)] and a two-body residual interaction, which mik&s configurations built out
of the the distribution of particles in the field single-pelg states where h(1) is defined
by the single-particle energies i= 1,2,......,N and V(2) is defined by its two-body matrix
elements. It is to be noted that all the EGOE results menti@ai®ve are indeed appli-
cable to EGOE(1+2), but only in the domain of chaos. GivenNhand the average
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spacingA [generated by h(1)] of the single-particle states (witHoss of generality one
can put\ = 1), it is possible to find the critical value \. such that for\ > )., there
Is the onset of chaos (GOE fluctuations) in many £> 1) particle spaces. In fach,

Is of the order of spacing between m-particle mean-fielddstsites that are directly cou-
pled by the two-body interaction. For details in this regsee [139, 140]. Fok > A,
for instance it has been well established that the tramsgicength sums in EGOE(1+2)
follow the EGOE forms as shown in fig. (3.1). The most usefrgity for deriving the
formulas for NPC andy in wave-functions is the strength function or local density
statesF(F) . Given the mean-field basis statés> with energiest, = < k|H|k >,
the eigenstate§Z > can be expanded & > = Y, CF|k >. Then the strength
function Fi.(F) = < §(H — E)* > =Y., |CF|?0(F — E') and therefore it gives
information about the structure of wave-functions. In ereeproceed further, let us say
that theF), energies are generated by a Hamiltonian(the structure of{,, is discussed
ahead). With this, it is easy to identify},(£) as a conditional density of of the bivariate
pviv(E, Ey) = < 6(H — E)é(H, — Ey) > . Taking degeneracies of E arfg, into
account, we have

pbiv<E7Ek) = < 5(H— E) >< 5(Hk —Ek) >
1
= (3) > e

= (é) |CE12[dp™ (E)][dp" (Ey)] (3.1)

Fi(BE) = pon(E, Ey)/p™ (Ey)
ICER = poin(E, By)/[dp™ (E))[dp™ (E})] (3.2)

In the above equations, d stands for the dimensionalityehtkparticle spaces amd—/ﬂ?

is the average ¢f/|? over all the degenerate states. Now let us try to have look ove
the structure off;, andp(FE, Ey). It should be noted that the two-body interaction V(2)
can be decomposed into two pait$2) = VI + V' so thath(1) + V1% generates the
E}. energies (diagonal matrix elements of H in the m-particlemaeld basis states).
By distributing the m particles in N single particle statdgere is an underlying U(N)
group and with respect to this grotf” contains a scalar paif'?° (a function of m),

an effective (m- dependent) one-body (Hartree-Fock-lpa) V1! and an irreducible
two-body part’[%:2, The V190 1 V[0l1 will add to h(1) giving an effective one-body part
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of H; h(1)= h(1) + V00 1 VIOl = The important point to be worth noticing is that,
with respect to a U(N) norm, the size "2 is usually very small compared to the size
of h in the m-particle spaces.

3.3 Chaos Markers)., A\r and )\,

As is well known that the realistic systems such as nucletasora mean-field one-body
interaction, which is defined by a set of single-particléestaplus a complexity generating
two-body interaction, so the appropriate random matri>eertge for their description is

EGOE(1+2), first studied by Flambaum et al. [151] is defined by

{H}=h(1) + MV(2)}

where{} denotes an ensemble. The mean-field one-body Hamiltdifiein= > ", €;n; is

a fixed one-body operator defined by the single particle eeeegwith average spacing
A, wheren,; is the number operator for the single-particle state> and in general
one can choose thés to form an ensemble. ThE&(2) is the EGOE(2) with the unit
variance for two-body matrix elements, which form the GOH ans the strength two-
body interaction in units ofA. Hence, EGOE(1+2) is defined by the four parameters
m,n, A and A and A =1 without loss of generality. The construction of EGOE(L+2
is discussed in chapter 2. Before proceeding further letaidarget to mention that
EGOE(1+2) with h(1) a fixed Hamiltonian, usually generatingingle-particle spectrum
is called the two-body random interaction model (TBRIM) bprfbaum and Izrailev
[151]. If h(1) is defined with single-particle energies drafkom the eigenvalues around
the centre of the semicircle density of a GOE (or a GUE), itaidecl random interaction
matrix model (RIMM) by Alhassid [152]. Alternatively jacqd et al. [139, 140, 153]
considered RIMM with single-particle energies random hstiate; = A + §;, whereJ;
are uniform random variables.

The important aspect about EGOE(1+2) is thah@hanges, in terms of state density,
level fluctuations, strength functions and entropy, thesrsde is described by three chaos
markers. Firstly, the state densitig§™ = < J(H — F) >™ take Gaussian form,
for large enough m, for al\ values. This follows from the fact that EGOE(2) gives
Gaussian state densities and also in general the h(1)'sipeodaussian densities. From
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now on the superscripts H or m or both s will be dropped as long as there is no
confusion. With the increase ik, there is a chaos marker. such that forA > . the
level fluctuations follow GOE, i.e\, marks the transition in nearest-neighbour spacing
distribution from Poisson to Wigner form. This transitioocars when the interaction
strength) is of the order of the spacingy. between the states that are directly coupled by
the two-body interaction. This definition has the origimfrauclear structure calculations
by Aberg [154]. Thus, for the Poisson to Wigner transitioa@h marker), oc 1/m?*N
[139]. Given mean-field h(1) basis statés> = >, CF|FE >, the strength functions
are defined byFi(F) = Y ;. |CEP12 = |CE|2dp" (E) where d is the dimension of
m-particle space. Asg increases further from, the strength functions change from
Breit-Wigner (BW) [149] to Gaussian form and the transitjpmint is denoted by .
The Breit-Wigner to Gaussian chaos marker can be understood as follows. Firstly,
there are two scales in EGOE(1+2) with the first one belagthe other one being the
m-particle spacing\,,. The estimation using the h(1) spectrum, for the spectruamsgd
by m-particle spectrum i8,, = m(N —m) ~ mN, we haveA,, = mN/d(N,m). The
Fermi golden rule gives the spreading width tolbex \?/A. ~ mNA? [149]. Thus,
participation ratio i oc I'/A,,, = A*md(N,m). For the BW domaif® < B,,/ f, where

fo > land( >> 1. This gives\/ﬁ << A < . [155, 156]. As d(N,m) is
usually large, the BW form sets in fast ang o« 1//m. The . < A\ < A\p region is
called the BW domain, with the strength functions close ta$3&n form. In principle,
the BW form starts in a region below.. There is a\; such that below,, the strength
functions are close to&function form and for\ > )\, there is onset of the BW form, but
fluctuations here will be close to Poisson fox \y. This transition from BW to Gaussian
was first recognized by Zelevinsky et 8Mg shell-model results [157] and it has been
shown to be a feature of EGOE(1+2) by Kota and Sahu [158]. @ shows the BW to
Gaussian transition in atoms. An important question camogrisolated finite interacting
particle systems is [159] that in the chaotic domain willrthkbe a point or a region where
thermalization occurs i.e., there will be a region wheréedént definitions of entropy,
temperature, specific heat and other thermodynamic vasailve the same results, as
for infinite systems. For obvious reasons, this has to happgand) ; and this gives the
third chaos markek,. To understand this marker, in the Gaussian domain of EGE&H(1
three different entropies are considered: thermodyndisties™), information (S™/)
and single-particl¢S*?) entropies. The definitions of thermodynamic and singldigar
entropy is given agS™"e ™)y = Inp™™(E) and (S*P) g = — > {< n; >F In(< n; >F
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+(1—=(<n; >F)  In(1—(< n; >F)}; < n; >Fisthe occupancy of the ith single-particle
state energy E. The EGOE(1+2) formulas, for the three eigsaoe [158, 160]

exp[(S™) g — (S™) pas] — exp( — 1/2E2>
E = (E — ei(m))/ 0, (m)

eapl(S™)  — (5™ gom] = /1 = CQpr(l/%z) expC?E2)2 S (3.3)
exp[(S™) g — (S™°)cor] — ea:p( — %CQEQ)
(? ~oj /o (H) = 03/ (0f + N?oi)

J

Heree (m) is the spectrum centroid and, (m) is the spectral variances. Results stated
above are compared with numerical EGOE(1+2) calculatiorigi( 3.3) and can be un-
derstood as follows [161]. For H = h(1) + V(2) with h(1) defineg single-particle level
spacingA and V(2) with matrix elements variangé, there are two natural basis defined
by h and V respectively. Then for the thermodynamic consitilens to apply, the entropy
measures should be independent of the chosen basis. Findttye dilute limit h and V
will be orthogonal. The variance of h in m-particle space3gm) = [(mN?)/12]A? =
f2AZ% Similarly, the variance of V isrZ(m) ~ [(m?N?)/4])\* = ¢?° 2. The Sinfe
and S°F are determined by and for, for strength functions expanded in h(1) basis,
Co(N) = /(g222)/(f2A% + g2)\2. Now the obvious thing is that as— oo, {, goes close

to zero. Similarly whem\ — oo, (,, gets close to zero. In both of these situatiéfis’®
takes GOE values arf? approaches its maximum value. The conditigh\;) = (oo ()
gives)\;, = |A/g| and herel? = 0.5. Also note that\, ~ A/(3m)Y/2. With )\, defined,

it is easily seen that,.(\) = (y(\?/)), thus there is a duality in EGOE(1+2) and at the
duality point\ = ), the entropies are basis independent. Moreover at this pbiat0.5;

i.e. the spreadings produced by h and V are equal. Using &), (t is easily verified
that at and around? = 0.5, all the three entropies will be close to each other (see fig
3). Thus\ ~ )\, with ¢? ~ 0.5 defines the thermodynamic region for interacting particle
systems. Comparison of the figure with shell model calomfetiby Horoi et al. [148] for
2Si and by Kota and Sahu [160] fétMg, it is seen that the nuclei are in general in the
thermodynamic regime (i.e\ ~ \;).

The three chaos markers of EGOE(1+2) are summarized as shdigr(3.4) and for
more details see [161, 162]. The important point that needsetmentioned here that
the broad structure shown in figure is a general feature of E@&€R)’s with additional
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good quantum numbers [163] and also for BEGOE [164, 165].héndtudy of multi-
partite entanglement and fidelity decay in the context ohtwa computers and quantum
information theory the importance of embedded random matisembles and the BW
and Gaussian domains defined by the chaos markers have begnired [166, 167, 168,
169]. This defines a new roadmap for the future developmargmibedded ensembles.

3.4 EGOE(1+2) Results for NPC andy in Wave-functions

For EGOE(1+2), in the chaotic domain with> Az, from the previous section we have
the results: (i)F, are generated b7, = h(1), therefore the variance @f’*(E},) is of;
(i) widths of the strength functions are constant and areegeted by V(2), the average
variancer? = o2 ; (iii) Fi(E)'s are in Guassian form; (i), (E) is a conditional density
of the bivariate Gaussiam,;,.c(F, Ey). The correlation coefficierg of py;.c(E, Ex) is
given by

2

B < (H —eg)(Hr — €g) > B oy
< (H—ep)?>< (H,—en)? > ( _E)

The centroids of the E anll, energies are both givenlayy = < H >. Inthe the above
equation, the second equality is obtained by using the gahality between h(1) and
V(2) operators. It can be immediately seen t{tais nothing but the variance df;,’s [the
centroids ofFy(E)] normalised by the state density-variance. Theq(F, Ex), which
takes into account the fluctuations in the centroid$dfE') and assumes that variances
are constant, is used to derive formula for NPC &ndh the wavefunctions (methods of
taking into account variance fluctuations will be discussiegad }/)r = |E > expanded
in the mean-field basis defined by the statgsBefore proceeding further, let us define
NPC and ;.

¢ (3.4)

|E>=Y " CFlk>
k

— (vpC)p= [l (35)

lg(E) = exp[(S™°)]/(0.48d) (3.6)
(5™ = =Y |CEPIn|CE ) (3.7)
k
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In the eq.(3.6) 0.48d is the GOE value f§1/°, thus,i;; = 1 for GOE. Similarly, NPC

is d/3 for GOE. In terms of the locally renormalized amplitudgs = CF/\/|CE|?
where the bar denotes the ensemble average with respect@&E@2),> ", |CF|* =

>LICEI*(JCE)?)2. Then the ensemble averagedPC) f; is obtained as follows.
[ SRR (38)
k

In the above step use has been made of the fact that EGOE texdarbrage fluctuations
separation (with little communication between the two): &ample, in the normal mode
decomposition of the EGOE state density, it is seen thatahg Wavelength parts gen-
erate the smooth Gaussian density (with corrections) amdhbrt-wavelength parts the
GOE fluctuations with the damping of the intermediate ones (8, 108, 170, 171] for a
detailed discussions on this important result). This adleevcarry out théCZ|* ensemble
average independent of the other smoothed (average) teaw. uNing the fact that the
local fluctuations follow Porter Thomas and th@¥|* = 3, a GOE result. Hence the
above equation becomes

[CE1t=3% (ICFP)? (3.9)
k

Finally, using the result from previous section that Gaarsgorm, valid in the chaotic
domain @ > g, ), of all densities for EGOE(1+2) gives the final formula.

Fa . (3/d) [oviv-c (B, Ey)]?
G = frtey | 5
_ (3/d) H, 2
= [pg(T)]z/dEkpG (Ek)[FkG(E)] (3.10)
Hence the final form of NPC is
(NPC)y = (d/3)\/1 — Cleap — {%} (3.11)

This result was quoted first in [133] without details. Befowening to the formula for
localization length, let us briefly discuss about the corrections to eq.(3.1&)tduhe
fluctuations in the variances &i,(E); the form with ;. (E) the form with £}, (E) shown
explicitly, is written in eq.(3.11) for this purpose andgtiorm also allows one to un-
derstand the results equation [172] as discussed aheadcoftextion to NPC due to
do? = o2 — o2 is obtained by using, for smalb?|, the Hermite polynomial expansion
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which gives [173]F.q(E) — Fk;G(E){lecQ(S,f—l)} wherec, = % and&, = (E—By)
k

This correctedr)(E) is used in the integral form witlhy(E) in eq.(3.11). As NP(k: in-
volves sum over all thék > states, it is a valid assumption to tréaf’s as a random in
[F.(E)]? only the terms that are quadratic (is?) will contribute (see [172]). Replacing
[Z:’E] by Z:z = [(d)"{ 3°,.(607)%"/2 /o2 and substituting the correctdd (F) for Fy.q(E)
inkeq.(3.ﬁl), we get

B/ [peiea (B, Ex)] (00%) oo 1\?
WPO) = Lt | i (L)
. C2E? 11(002)72 -1
where
L a0+ =23 s (14 s
XEB) =gyen|P' -2 —1-a F +<1_C2(1+2§) (3.13)

The §o? correction term in the above eq.(3.12) is valid only when fthetuations in
the variances of(E)'s are small and this is in general true. For sngaitalues, this
formula for NPC in the above eq.(3.12) reduces to the exfmesggven by Kaplan and
Papenbrock [172] for EGOE(2) where they used the idea klat¢he scar theory. For
EGOE(1+2) Hamiltoniarf = h(1) + AV (2), with A — oo one obtains EGOE(2) and
then it is clear from the definition given in that in this lingit~ 0. To be more precise,
with N >>m >> 1, 2 ~ ((§)) ' and[(60?)/o%)]2 ~ (M)t for H = V(2).
Therefore, for finite N, the correlation coefficient and tlagiance corrections are small
but nonzero and in the large N limit, they are zero giving ti@Exesult as pointed out
in [150]. As we add the mean-field part to the EGOE(2creases and at the same time
the variance correction decreases. Thus, the formula(aith term is important only for
small{. Eq. (3.11) is accurate for reasonably lafg@say for{ > 0.3) as in the examples
discussed in [150]. All these results are well tested by timaerically. Proceeding exactly
as in equation of NPC, formula for the localization lengthas a function of excitation
energy is derived. Firstly, using the definitionlgf and writing|C#|? in terms of|C/|?
and|CE|* as there occurs separation of averages and fluctuations Ufeg the GOE
results|CE|> = 1 and|CE]2in(|CE|?) = 1 = —In0.48. Finally applying the eq.(3.2)
and replacing all the densities by their Gaussian forms angerting the sum in eq.(3.5)

into an integral and finally carrying over the integratiame expression foty in wave-
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functions is obtained,

re(E) pc* (Er)pg (E)

— ﬂeazp(%)exp(g £ ) (3.14)

2

the result in above equation was reported in [150] withotitke By rewriting the inte-
gral in the above equation in terms Bf(E£) and making smal{do?) expansion just in
the case of NPC, the formula incorporating corrections duuttuations (with respect
to k) in the variances of(E) is derived following the arguments that led to eq.(3.12).
Neglecting the higher order terms|ifdo?) /% )], the final result is

lg(E) = \/1—7@63719(%26:6])[ — <<2E2] X <1 — 1[(5022)]1/(E)); (3.15)

2 8L oy

where

Y(E) = ﬁ{@ — RBP4+ 4¢3 (1 - () + 2 (3.16)

3.4.1 Derivation Of Number Of Principal Components For Transi-
tion Strength Distributions

The two important results of statistical spectroscopy hat in strongly interacting shell
model spaces (essentially ihw spaces). (i) the state densities take Gaussian form and
(i) the bivariate strength densities take bivariate Geustrm. These results have their
basis in the EGOE representation of the Hamiltonian H (wischn general one plus
two-body in nuclear case).

I(F)= <<6H—-FE)>> =dx<déH—-FE)> =dxp(E) (3.17)
p(B) O8] = po(B) = ——exp (E; ) (3.18)

In the above eq.(3.1A4 < ... >> denotes trace ( similarly ... > denotes average), the
¢, o and d are centroid, widtfr? is variance) and dimensionality respectively. Note that
e= < H> o0>= < (H-¢)>,G stands for Gaussian and the bar ovef)
indicates ensemble average (smoothening) with respe@G@EE The strengti(E;, Ey)



74

generated by a transition operator O in the H-diagonal badi§ E;, Ey) = |< Ef |
O | E; >|*. Correspondingly the bivariate strength dengity,,(E:, E;) Of ppiv.o(Ei, E})
which is positive definite and normalized to unity is defingd b

[biv;o(Eiu Ef) =

<< O'§(H — E;)O§(H — E;) >>
Y <E|O0'(H - E;)Oi(H — E;) | E >
E
I(E) < E|O'6(H — E;)Od(H — E;)
E)Y <E|O(H-Ey) | E' ><E |O§(H-E) | E >

I(E) i I(E;)<E|O'6(H—-Ef)|E'<E|OH—-FE)|E >
I(E) x I(E;) < E|O'§(E'— E;) | ' >< E' | O6(E — E;) | E >
I(E) x I(Ef) < E; |O" | By >< E; | O | E; >

I(E) x I(Bf) < Ef |O | E; >*< E;|O| E; >

I(E;) x I(Ey) [< E;f | O | E;

<< O'0 >> pyivo(Ei, Ey) (3.19)

pbiv;o(Ei7 Ef)EE)’OprZU O(Eia Ef) = pbiU—G’;o(Eia Ef)
1

2mo1094/1 — (2

X

~1
M-

(1)

X

<E—61)2_2< <E—€1) (Ef—EQ)
01 01 g9

(3.20)

In the eq.(3.20); ande, are the centroids angf ando? are the variances of the marginal
densitiesp;.0 (E;) andps,0(Ey) respectively. The bivariate reduced central moments of

Phiv0) 8T 1 =

<OT(HO;;2)qOHG;f1)p>/ < OTO > and(¢ = y, is the bivariate cor-
relation coefficient. Although the EGOE forms in eq.(3.18543.20) are derived by
evaluating the averages over fixed m-spaces, however irga farmber of shell model
examples, it is verified that [39, 2, 108, 174, 175, 176, 178] they are equally appli-

cable in fixed-m, mT and mJT spaces. In practice, just as icdse of state densities,
bivariate Edgeworth corrections are added to the biva@atessian form in (3.20). The
point worth mentioning here is that, in general, the (mJTyes for theE; and £y need
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not be same. The Gaussian forms in (3.18) and (3.20) give acniprmulas for NPC
and S in transition strength distributions incorporatihg information that the hamilto-
nian and transition operators are of lower particle rar&ki(iz << m, where k and t are
maximum particle ranks of H and O respectively). Firstly,wi# define mathematically
the NPC and information entropy S for transition strengtitthen the ensemble average
with respect to EGOE is carried out. Let us introduce thestieal quantities normalised
strengthR, average (smoothed) normalised streri@tand locally renormalized strength
R where

R(E, Ef) = {<E|OO|E >} "| < Ef|O|E; > |? (3.21)
R(E;,Ef) = {< EJOMO|E; >} | < E/|O|E; > |? (3.22)
R = {|<E/O|E; > P} | < E4|O|E; > |? (3.23)

The eq.(3.21) can be shown normalized as follows

Mg, | < EfO|E; > Yp, | < EfO|E; >
< E;|O'O|E; > ZEf < E;|Of|Ef >< E¢|O|E; >
2p, | < EfO|E; > |
ZEf < E¢|O|E; >*< E¢|O|E; >
>, | < Ef|O|E; > |?
2p, | < Ef|O|E > |2
=1 (3.24)

Then the measures NPC and entropy S for strength distriimiéice

(NPC)g, = { S {R(E,, Ep)Y }1, (S)e, = =Y R(E:, Ep)InR(E;, Ey)  (3.25)

¥ Ey
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In the first step for the derivation 6f PC/(E);, it is written in terms of R2) andR

2
2 2
< E¢|O|E; > |? | < E¢[O|E; > |
(NPCYp, Z{' /0] }{ J
By

| < Ef|O|E; > |? {mf

_ {Z {R (B, Ey) }Q{R(Ei,Ef)}Q}_ (3.26)

In the second step of the derivation use is made of the fatttliese is a separation
of average and fluctuation in transition strengths, so theatan evaluat%:R(Ei, Ef)}2

separately. Also, the numerically observed result thaBBOE fluctuations follow GOE
is used. i.eR(E;, E;) distribution is Porter-Thomas [2, 179]. In otherwords, l&ca

implies that the locally renormalized amplitude§<Ef‘O‘Ei>‘ are Guassian distributed

{<Esl01B>12}
with zero center and unit variance. In the study of strengittdlations [180] and in many

other similar investigations [181] the local averages E;|O|E; > |? are obtained via

a numerical smoothening procedure while in [2, 179], SS foare used; in [2] double
polynomial expansion given in [177] is used and in [179] bzt Gaussian is employed.
The P-T law forR gives [182]

1/2

(R) =1, (R?) = 3, (RInR) = In(0.48) (3.27)
NPC(E); — {32 R(E: E)) }2} (3.28)
Ey
_ eff(Ez
B 3

whered.;;(E;) stands for effective dimension which depends on the engérgyHence
above equation becomes

(3.29)

Sy, [[<EOE > | }

NPC(E); = {3 .
[< E;|OO|E; >}
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To proceed further the bivariate strength density,(E;, E¢) OF ppivo(Ei, E¢) which is
positive definite and normalized to unity is defined by

]biv;o(EiaEf) = I(EZ) X ](Ef) |< Ef | ) | Ei |2
= << 0'0 >> phivo(Ei, Ey) (3.30)

For EGOE(1+2) in the Gaussian domain they take bivariates&8an form with normal-
ization<< OO >>. Now writing the numerator and denominator in eq. (3.29gmrs

of p’s and replacing the sum ovét; by the integraJ (— — — — — )p(Er)dEs will lead to

the equation

NPC(E); = [3/+wdf><p(Ef)dEf{{R(TEﬂ}2H1

— _OOOO 2 —1

= 3/; dy xp(Ef)dEf{|<<Ejg?g?éj>|}

_ —3 / " () dE, <<<?O>>>2<p€;m5 7. 7) ;
B & x (pa(B)) B (pre(Bp) (<EIOTOE> )
_ -1

2 2
NPO(E): = 3/+oodf  o(E)E, d; >: (<OTO>2) (pbiv;O(Ei,Ef;> 2

e (o0 o (7)) < (<00> ) LBk

271
t+oo (pbiv;O(Ei7 Ef))

_ %x (pl:O(Ei)>2 /_OO dE; g, (Er)
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df 1 (E—€1)2
= — X exrp —

3 2mo? o1
—e . —e e 2
T (C R C oI g
X [/ dEf dr%a703(1-¢?) i ! ]
- 1 eii( i )
Voras

—e1\2 +oo
df 1 67<E01 ) [/ \/%O’f

- dE
f47r20%a§(1 —(?)

X 2
3 2moy -

X e

a5 () () () ><f>] -

In order to simplify the above, let us make the following stuthsons.

E— A — —
€1 _ E,A _ €9 Gf’ €f €9 _y (332)

01 Uf 09

d
3 2no} Mirotod(1 - ¢?)

[e.9]

. +o0
<NPC>EZ — ﬁx 1 €E2[/ E \/27T0'f

ﬁ{QEQﬁlCEyHyQ(142)(y62+A2)2} ]_1
X e oody

NPC = 2 dE
( )5 3 27”7%6 An20ldy(1—C?) J_o !

df 1 EQ[ \/27T0'f /+oo

_1_9f 3 A L. -1
- 2(1i<2) {2E2 _4CEy+2y2—(1—C2) <y202+A2+2y02A2) }
€ O'Qd’y
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1 o 2 +o00

3 2mo? Ar20265(1 — C2) | o,

*Q(TI&) { (2*522(1%2))y2+2y(*QCE*(1f<2)&2AAz)+(2E27(1fg2)522> } -1
X e dy

= ﬁ X 1 e—E2[ V2mos oo dE;
) J

3 2mo} Amotdy(1 - ) J

Ty {y2x2+2E2(142)5222y(2¢E+(1¢2)5252) } !
X e dy

3 8 27?0%6 Am2oioy(1 — (2)

—0o0

2(1)(2<2){g42)2(112(2034(142)52&2)} m{zﬁz(lcgmgz} -1
xoe X e dy

_dy 1 EQ[ V2moy /+°° JE
) !

X
3 27?0%6 4m20209(1 — (2)

—00

- 2(1{2@—) {y2—%<2CE+(1—C2)zsz}) }"'ﬁ(QCE‘F(l—CQ)O:\QA\Q)Q—ﬁ <2CE+(1—42)6252)2}
X e

S ]
X e dy

dg I e [ V2o M{2E2(142)522}

3 mel | 4rote(1- )"

e

2
__x?_ 1 (or i1 2y e K .
- L aN2 oo T2a-¢9) {y 22 (2CE+(1 C)UQAQ)} ]
w  emenme (KEHA-()dls) / [ dy

—00

df 1 e [ V2roy _2(1+<2){2E2_(1—C2)AA22}
_ X .

3 27?0%6 4m20209(1 — C2)

-1
. o 5
em(24E+(1*<2)0’2A2)2 % /_27'(' % \/ 1 C ]
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df g 1 {MLCQ)(?CEJFOCQ)UAQAAQ)QXQ(?EQ(1C2)522)} -1
— Xe —¢

3 - X
dy 1

3 |/1- X
m{2x2(1<2)ﬁ2+4<21§22X2E2+4E<(142)&252+X2(142)522(142)2522522}] -t
e
dy 1

3| /1-CX

1 -1

2x2(1-¢2)

{ (2X2-2X2(244¢C2—2X2) B2 4 AEC(1— ()22 Kot X2 (1—C2) A2 4 (1-¢2)2652 A, }]

dpf 1
31— C2Xa,

{2¢2(2—X2)E2+4<(1—¢2)5252+(1—¢2)A2+(1—¢2)2522522+X2(1—{2)522 }] -1

1
2x2(1-¢2)

dpf L
3| 1-C2Xa,

X {242(2_2+<f22(1—42))+4C(1—CQ)5252+(1—C2)A2J2Q+X2(1—42)52 }] -

e

dy 1

3 1v/1— X0y

Crelee) {(242622(1CQ))E2+4C(142)5252@+(1CQ)AQ(XQJr(lCQ(fz)}] -
(&
dpy 1

3 11— (2Xa,y

EreIee)] { (262522 (1-¢?) ) E2+4¢(1-(?) G2 Ko B4 (1-(?) A2 (2- 522 (1-¢2)+(1—(2) 2 ?) }]
e
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dpp 1
3 V1-CXa,

72)(2(1_(;2) { (242&22(1742))E2+4<(17<2)&252E+2(1742)522 } ] -1
e

X
_ % 1
3 [/1=CXd,
zx2<11<2>X2(1<2){42522E2+246252E+522}] -1
X e

C2522E2+2C6252E+522}

. % « 1= Q“QXUAQeF{
. . 2
( FaCE+A,y
_ %w/l_gzxgbe (52) (3.33)

Working along the similar lines the EGOE expression for tiferimation entropy can be

derived.
(S)s £ SRIE B A5, Eini(5, £ |
Ey
x =S (R(E;, By))R(E:, Ef)InR(E;, By)
Ey
pr:0(Ei) /)/(Ef)
5201 _ 2 A n T 9
_ m{o.zlgdf[@mexpl ol €>€xp_w]}
1— 2 1 — (2 S CE L AL)2
— cap((S)p) = 0.48d;|62y/1— Ceap “2<2 < >€xp_w] (3.34)

In the derivation of information entropy from first step tetiatep results in (3.18), (3.20)
and (3.27) are used. It is to be noted thék,, £;) = %&f” is a conditional den-

sity and it takes a Gaussian form with,.0 andp,.c taking Gaussian forms. The third
equality in equation (3.34) is obtained by substituting @eaussian forms in (3.18) and
(3.20)for the densities in second equality and carryingtbeatintegrations. In the dilute

limit, with EGOE(K) for H and an independent EGOE(t) for O inparticle space (i.e.,
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in the situation, as it is the case with the numerical examglscussed ahead, that the
initial and final spaces connected by the transition opesdoare same and H and O are
representable by EGOE,) it is seen that [160, 161, 162+ d', 01 = 0y = 0 = ¢/,

€, =€ =€ = € and »
e

Then the formulas fofN PC') g, and(S) g, get reduced to the forms determined only by
the correlation coefficient

dz‘ C2E2 ~ EZ‘—E
NPC)y = /1= Clexp — - .
(NPC)g, 3 Ctexp e . (3.36)

exp((S)g,) = 0.48d;+/1 — (Pexp (%) exrp (— — 5 E) (3.37)

For GOE obviously = 0 [162] and then the above equations reduce to the well known
GOE results i.e.(NPC)g, = % and(S)p, = In(0.48d). Shell model calculations had
been performed using Rochester-OakRidge shell model ¢o887 dimensional space
(251d)™=5-7=21=0 for testing the EGOE results given by equations (3.33) arg#j3The
operator ‘O’ choosen is two-body in nature and is basicaliys as in [183], the two-body
part of H without the configuration-isospin centroid promhgcpart. The Hamiltonian
H = h(1) + V(2) is defined by Kuo’s [184] two-body matrix elements ( V(2)) and
170 single-particle energies ( h(¥%» €ds, = —4.10MeV,eq,,, = 0.93MeV e, =
—3.28MeV'). The diagonal matrix elemenrt £|O|E > of O in H diagonal representation
are put equal to zero for the reasons explained in detaiBB,[183]. With these choices it
isseenthat = ¢ = —32.78,0 = ¢ = 10.24 MeV, ¢; = ¢, = —29.88, 01 = 0y = 10.67
MeV, A = 0.28, ¢, = 1.04 and X = 1.25. ¢ = 0.55, while the EGOE estimate given by
eq. (3.35) is 0.67 for one-body H and 0.4 for two-body H as m nd the rankt’ = 2.
Using these parameters in egns. (3.33) and (3.34) the EG@E<tor NPC and exp(S)
are constructed and compared in the fig.(3.6) with the exsadt snodel results and the
theoretical predictions given by EGOE is in excellent agreet with the shell model
results. Further, these results show clear departures@0ia results just as seen in the
3276 dimensional spages1d)™=12/=21=0 shell model results in [131, 39]. The EGOE
results give also a formula for the ratiop(S)/N PC,

ea:p% C3(1 — CQ)EQ

Vite T2+

exp(S)/NPC = (1.44) (3.38)
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The above equation shows thatp(S)/N PC' increases as the energy is away from the
centre and this behaviour is clearly seen in the fig.(3.6).

3.5 Transition Strength Sums

EGOE(K) is constructed in m-particle spaces [i.e., in @ﬁé} dimensional space gener-
ating by distributing the m fermions over N single-partistates] by defining it to be a
GOE in k-particle space for k-body operators (usualy< m) and then using the direct-
product structure of m-particle spaces. The two importasuiits given by EGOE, are that
in strongly interacting shell model spaces (essentiallyiin spaces), (i) the state densities
I(F) = << 0(H — FE) >> take Gaussian form [108, 185, 9] and (ii) with the strength
R(E;, E;) = | < E;|O|E; > |* generated by a transition operator O in the H-diagonal ba-
sis, the bivaraiate strength densitigs.o (E;, E;) = << O'6(H—E;)O§(H—E;) >>

= I,| < E¢|O|E > |2I(E;) take bivariate Gaussian form [186, 36]. Here.. > stands

for average and< .... >> stands for trace. Although EGOE forms in (i) and (ii) are
derived by evaluating the averages over fixed m-spaceshtiidyequally well in fixed m,
mT and mJT [2, 150, 108, 183, 185, 187, 188, 189] spaces iga farmber of numerical
shell model calculations. Edgeworth corrections are adoléie Gaussain forms in prac-
tice. One of the important byproducts of (ii) is that the s@@ion strength sum density
<< O'O6(H — E) >>, which is a marginal density of the bivariate strength dgmsi
takes a Gaussian form, since the marginal of a bivariate €kauss a Gaussian. There-
fore, itimmediately follows from (i) and (ii) that the traitisn strength sums generated by
a transition operator acting on an eigenstate vary with txicgaion energy as the ratio of
two Gaussians. GiveA = O'0, the transition strength sum is given by the expectation
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value< K >F

<K>F = <0l0>"

= Y <E|O'E;> <Ef|O|E; >
By

= > <E|O'E;> <Ef|O|E; >
By

= > <EO|E;> " <E/|O|E;>
By

= > | <E{O|E;> |? (3.39)
By

also it can be written as the expectation value densipyd4’) [183, 188, 189] as

<K>" =[dp(E)) | Yoer < Ea|K|Ea >

= Ix(E)/I(E) - : (3.40)
= px(E)/p(E)ESOF p (E)/p(E)
= pr.c(E)/pc(E) )
where
p(E)=<0(H—-E)>=d 'I[(E)=d'<<d(H—E) >> (3.41)
and,

pr(E) =< K6(H — E) >=d 'I,(E) =d' << K§(H — E) >>; K = 0’0 (3.42)

In eq. (3.40) d is the dimensionality and G stands for Gaunssiad the bars ovex £) and
pr(E) indicates the ensemble average (smoothed) with respe@@HEE While deriving
eq.(3.40) it is assumed that the smoothed formg,0f) /p(F) reduces to the ratio of
smoothed form ofp,(F) and p(£). This result ignores the fluctuation in boph(E)
andp(F) and the rms error due to neglect of fluctuation is given in geafthe number
of principal components or the inverse participation rdtiothe transition operator O
[2, 150]. The smoothed EGOE form fer K >¥ takes into account (K,H) andx, H?)
correlations, which define the centraidand widthoy, of px (E); ex = < KH >/ <

K >ando} = < KH >/ < K > —e:. The results in the eq.(3.40) are quite general
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and in order to study its domain of validity detailed shelldabcalculations has been
done by using the operator that generates GT strength sum) 18 defined by

Oty =D ouldt=(i) (3.43)
i=nucleons

wheret,. converts a neutron into proton and vice-versa. The total @&iTeller strength
originating from an initial state at energy E to all final stais given by the expectation
value

KE®(GT) =Y 05 067, (3.44)

H

Exact shell-model calculations for the total GT strengthehldeen carried out for all the
J=0 states of®V in the 814 dimensiondll f2p)™=%7=%7=0 space. The calculations were
performed with the NATHAN code of the Strasbourg-Madridingsthe effective inter-
action KB3, which successfully reproduces the experimdmtaing energies, excitation
spectra, and transition strengths for nuclei in this refl®®, 191]. On the other hand, the
expectation value densipyi ). for the K(GT) operator is constructed in terms of its
centroid and width and, similarly, the state density Gaurssi hen, using eq. (3.40), the
smoothed form of the GT strength sum as a function of exoagnergy is constructed
and compared with the exact shell model results. In fig. (3t73 very clear that the
smoothed EGOE curve describes very well the shell modeltsgsxcept at the edges
of the spectra. Thus, it seems that the agreement is goodawoticlregion and that the
deviations are just in the ground-state region, where thiestare not sufficiently com-
plex (chaotic). Similar kind of deviations are observednat ipper end due to the finite
shell-model space.
In embedded Gaussian orthogonal ensemble (EGOE) of randatncas, the transition
strength sums generated by a transition operator actinghagigenstate vary with the
excitation energy as the ratio of two Gaussians. This gémesalt when compared to
the exact shell model calculations of Gamow-Teller Strersgims in nuclei, shows good
agreement in the chaotic domain of the spectrum and strovigtams are observed as
nuclear motion approaches a regular regime.Thus transsti@ngth sums seem to be a
new statistic sensitive to the chaoticity of the system.
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3.6 Conclusions

The study of quantum chaos in atomic nuclei using the cha@sunes like number of
principal components and information entropy in shell-eloagdave-functions and transi-
tion strength distributions has became a much debateda&ulfjalculations performed
by the French’s group with the, then Rochester-Oak Ridg# stalel code had estab-
lished this fact that the smoothed ( with respect to energle¥sl densities (fixed-J or
JT density of eigenvalues) I(E) take Gaussian form whilecaclassical ensembles, it
takes semi-circular form, as discussed in detail in chaptdrfurther, for the smoothed
transition strengths, it was found in 80’s that, they follbwariate (in the two energies
involved) Gaussian while classical ensembles give cohstdnes. The chaos measures
like the number of principal components and informatiorr@py in shell model wave-
functions have quite different behaviour compared to GGitlts while as the level and
strength fluctuations after unfolding individual spectng seen to follow GOE. From the
shell model studies it is also established that, it gensisgparation in averages (smooth
forms) and fluctuations and cross-correlations (absentOiE)an spectra with different
guantum numbers. Thus, both one and two-point functionsliffierent for shell model
and the validity of these results have been extensivelpksted both in 2s1d and 2p1f
shell examples. All these differences show that we needk® it&to account the two-
body nature of nucleon-nucleon interaction in RMT. Shelb@lovith ensembles of ran-
dom two-body interactions is seen to produce the forms fdoua quantities seen in the
shell model calculations with realistic interactions amsht¢e the random matrix ensem-
bles generated by random interactions are called embeddmindles. The important
insights, drawn from the study of embedded ensembles inctiapter are: by starting
from the EGOE(1+2) Hamiltonian defined B§(1 4 2) = h(1) + AV (2) and increasing
the \ value from zero, the following results are observed: (i)dfigalue density will be
essentially of Guassian form for allvalues. (ii) As) increases, there is transition from
Poisson to GOE fluctuations with the onset of GOE fluctuatadns= .. (iii) For A ~ 0
strength functions will be delta functions and then quidkisn into Breit-Wigner (BW)
form atA = )y with \y << A.. As X increases beyonal. there will be a transition from
BW form to Gaussian with the onset of this transitionat A\r > \. (iv). As we increase

A further, there will be a region around~ )\; ~ Ar where different definitions of en-
tropy, temperature etc. will coincide defining ‘thermodgmaregion’. The existence of
three chaos markers or transition markers) » and\; has been established numerically
for both fermion and boson systems by analyzing spin-ledspim embedded ensembles.
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Same structure is also seen in shell model calculationsrasittitom two-body interactions
having J or JT symmetry [EGOE(1+2)-J or EGOE(1+2)-JT] andemmportantly, also
with realistic interactions in presence of a mean-field bgnghing all the two-body ma-
trix elements by a factor. In this chapter, compact formtda®NPC and ;; are re-derived
and the derivation is based on the results: (i) The Gaussian for strength functions
Fi.(E)'s and the bivariate Gaussian form faf, (F, E)) [with F,(E) being a conditional
density ofpy,;,,(E, E;)] which are valid in the chaotic domain defined hy> Ag,; (ii)
there is average fluctuation separation (with little comioaition between the two) in
energy levels and strengths with local fluctuations follogvihe Porter-Thomas law, and
(ii) there is a significant unitary group decomposition logé tHamiltonian. For the case
of EGOE(1+2), the NPC and; take Gaussian forms as a function of excitation energy
and they are defined by the bivariate correlation coefficiewhich measures the vari-
ance of the distribution of,( £)’s relative to the state-density variance. Also in this unit
theory for incorporating corrections due to fluctuationthia variances (with k) of(F)

is also given. For the small value gf the present formulation gives back the results
for pure EGOE(2) [ i.e., in the limih — oc] as derived in [172]. By re-deriving the
statistical spectroscopy (EGOE) expressions for the meaPC and exp(S) in transi-
tion strength distributions the important inference drasvthat the bivariate correlation
coefficient( that characterizes the strength distributions deterntimegnergy variation
of the measures as seen in shell model results and the agreasnghown in fig(3.6) be-
tween the exact shell model results and the EGOE forms me&bsious the fact that the
hamiltonian and transition operator in numerical exampdeveell represented by EGOE.
Thus, EGOE (and SS) considerations are essential for dealih questions related to
chaos and complexity in finite interacting many-particlewum systems, like atomic
nuclei. For example, to study the region of onset of chao4,[139, 155], chaos and
thermalization [148, 151, 139, 155], nature of chaos neastyline at high spins [192]
etc. it is necessary to go beyond the simple EGOE (and SS)@mider interpolating
[151, 139, 155] and partitioned [185] EGOE’s just as it is edrefore for the Gaussian
ensembles [183, 193, 194, 195]. Some of these more gene@EEBsembles are be-
ing investigated by using the large body of results avadlablstatistical spectroscopy
[2, 108, 174, 175, 176, 177, 178, 183, 185, 187, 189, 14, 186é]uy further extending
them. The formulas derived for NPC ahgare subjected to numerical EGOE(1+2) tests
with ¢ ranging from 0.1 to 0.8. These and the analysis of the refulta EGOE(2)-

S example and some nuclear shell model examples, cleanmy poi that isolated finite
realistic interacting particle systems, in the chaotic domi\ > Ar, ), will have the wave-
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function structure as given by EGOE(1+2). Finally, the féasufor NPC and; depend
on just one parameter and this appears to be an aspect of gimorheaos.
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Figure 3.1: strength functionsFy, (E), Dyson-MehtaA statistic for level fluctuations and occupancies E|n;|E > for
EGOE(1+2) for various values of interaction strength// } = h(1) + A{V(2)} for a system of 7 fermions (only one member is
considered here because of computational contraints§ust[a46]); the matrix dimension is 3432. The single pagtiehergies used
in the calculations are; = (i + 1/4), i=1,2,....14 just as in [146]. (a) The histograms are EGIBEJ results for strength functions,
continuous curves are BW fit and the dotted curves are Gaufmia < 0.1 and the Edgeworth corrected GaussianXor- 0.1.

In constructing the strength functiot@,‘f\2 are summed over the basis stafes> in the energy windowF;, + A and then the

ensemble averagé‘%k (E) vs £ is constructed as a histogram; the valueofs chosen to be 0.025 for < 0.1 and beyond this
A = 0.1. Here,Ej, = (Ekai:;m and in the figureE), = 0. Note that for\p, ~ 0.2, there is BW to Gaussian transition.(b)The

Aj statistic for overlapping intervals of length< 40 are compared with poisson and GOE values. ¥e¥ 0.06, there is a Poisson
to GOE transition in the\ 3 statistic.(c) The wavy curves are numerical EGOE(1+2)lte$ar occupancies and the smoothed curves
with A > 0.06 correspond to the results of EGOE(2) theory (ratio of Gaunsji Note that foA < 0.06, there are wide fluctuations
in occupancies and the smoothed forms here are meaninditdbe results are shown for lowest six single-particleteta Results
similar to those in the figure, for the N = 12, m = 6 case, arentegadn [7]
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a1l
Frpw-c(E : o,B)dE = ab’f)mf ng) 5 E:)b;+ 57=- Heref is a scale parameter [fixed by the width Bf (£)]. More
ks -3 - @

important is thak =1 gives BW andx — oo gives Gaussian. As we go from Cel to Sml thearameter changes from 1.85 to 14
showing BW to Gaussian transition. See [149] for furtheniiet
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exp(Sinfo — STy is almost zero for all E.
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Chaos markers A, A and A, for EGOE(1+2)
H = h{1} + & V{(2)
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Figure 3.4: Chaos markers for EGOE(1+2). In the figure, measrthmber of fermions
and N is the number of single-particle states. Behavioun@thaos markers as a function
(m,N) is also indicated in the figure.
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Flgure 3.5 (a)Number of principal components NPC and (b) the locabma; in wave-functions for a system of six inter-
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the theory (3.11) for NPC and (3.14) fgr. For the case witln = 0, the dashed curves correspond to the theory (3.12) for NEIC an
equation (3.14) foty . For the other cases, the correction due to variance fluetigis negligible, and hence only the results of eqns.
(3.11) and (3.14) are shown in the figure. Note ¥i&C' = d/3 andig = 1 for GOE.
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Chapter 4

Fluctuation-free Nuclear Spectroscopy

4.1 Introduction

As far as a finite nucleus is concerned, it consists of a fixedbar of nucleons each of
which moves in the average one-body field generated by adrathicleons. In addition
to this the nucleons also interact with each other througts@ual two-body interaction.
In such a many-body system, the wave-functions for the systienucleons are usually
constructed as linear combinations of the anti-symmetrm®ducts of single-particle
wave-functions. The Hilbert space for these many-parstdes is in principle infinite:
however for practical reasons, calculations are carrie¢ddinite spaces defined by a set
of single-particle states. Since for a nuclear system, uisigally the lower energy part
of the spectrum which is of concern, so only a limited numtesiongle-particle states
near the Fermi energy are considerd to be active. There therrexcitations in the states
which are filled by particles, below the active ones as thé&atkans would require large
amount of energy. Similarly, excitations of particles itite states above the active ones
are forbidden. Except for their influence on the effectivertiitonian in the active space,
all the single-particle states other than the active oneslearefore essentially be ignored.

Within this finite many-particle space, calculations of ggbal quantity are restricted
to its contributions in the space used. For example, theityeofsstates is generally an
increasing function of energy simply from the fact that menegle-particle states are
accessible to the system at higher energies. On the othdr hasalculation of density
of states using a finite space will produce a function thattrauentually decrease with
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increasing energy and go to zero asymptotically since tted tmmber of states in the
finite space is limited. This unrealistic feature of caltigias using a finite space causes
no problem when we compare the results with experiment if sgime that the space
used is sufficiently large to encompass the region of interiéss therefore understood
that the results we calculate are always the partial resuéidinite space and this part of
the Hilbert space is usually referred as the active spadeemsgace for short.

In statistical spectroscopy we deal with the generalisedttfan, or the distribution,
that describes the dependence of a physical quantity ogem@d the other variables.
This is different from the usual approach in which the cated results are the expec-
tation values of the correspondng operator over specifiesta the transition strengths
between particular pair of states obtained by solving aareiglue problem. The advan-
tage of using the distributions is that, since the partiaulteof a physical quantity in a
finite space is bounded, the energy and other dependencidseexpressed in terms of
moments. If the expansions are restricted to lower orderptbments involved are then
traces of simple products of operators and they are in gefaraasier to obtain than
actually used to solve the eigen-value problem in a largeespehe common aim of most
of the studies in nuclear physics is to understand the nad&uting from the fundamen-
tal nucleon-nucleon interaction. One of the major problemsountered in this regard is
that very large space must be used before the results camfygaced with the experi-
ments. But on the other hand, most of the work involved mayupedluous since only
a small part of the information generated by such calcuiatis actually used. For ex-
ample, when the Hamiltonian matrix is diagonalised in a spEcseveral thousand basis
states, often only the lowest few eigenstates are of inteFagthermore, the eigenvec-
tors, each consisting of thousands of components, are nggoheral to obtain only a few
expectation values and transition matrix elements. lasté@iscarding the details at the
end, which one cannot make use of, it would be more profitaoleisable and judicious
not to calculate them and such procedure is essential froractigal point of view. It is
well established experimentally observed fact that thelneencrease the the number of
single-particle states is felt because of the fact that theyaparticle space grows expo-
nentially with the addition of single-particle states te tctive space. No improvement
computational techniques can hope to cope with the probfexponential growth in the
dimension of many-particle space unless a new approachkes tnd statistical methods
represents one such attempt. In case of nucleus energydipenof expectation values
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or the excitation strengths of an operator can be sepanatedwo parts; a secular part
corresponding to the slow changes that are noticeable elyaodistance of many states,
and fluctuations corresponding to differences betweerhbeigring states. In statistical
spectroscopy, the same separation can also be charadteritgzms of the moments of
the corresponding distributions, the low-order descgltire secular variation and higher-
order ones, the fluctuations. The expected economy comestfre belief that the slow
variations of a distribution are the important featureefdystem and that, consequently,
an expansion of the distribution can be limited to low-ordements. The justification
for adopting such a scheme comes from the studies using éleeof random matri-
ces. It has been shown that the fluctuations in the distobatof a physical quantity are
the properties common to many systems and therefore arese@ildor understanding
specific systems such as nuclei. As a result large part ofdhglexity in microscopic
calculations in large spaces can be avoided without anyotiosssential information. The
reason for the success of statistical spectroscopy in auslgstems is the presence of
large number of degrees of freedom present in them. In sustiersg central limit theo-
rem dominates and hence the distribution of the most obslvare essentially Gaussian
and are determined by few low order moments. The role playetidohigher order mo-
ments, conveyed by details generated in large microscapétiations, is reduced when
the system is dominated by the statistical properties. €gunantly, it is the low-order
moments of the distribution that can tell us something ablo@thucleus. Certainly the
statistical point of view cannot be taken to the extreme. é&x@ample, aspects of nucleus
which involve the coherent motion of nucleons cannot betéctavith advantage using
statistical spectroscopy. Also, if the interest is in soradipular state because of certain
distinguishing features that distinguish this state frahmeo states a statistical treatment
cannot be used. To understand such features many modelbéavelesigned from time
to time to understand such features successfully andtstatispectroscopy is incompe-
tent to provide explanation to such features. The stagiséipproach to nuclear structute
is based on the two premises. The first one is that a separaiobe made of the roles
played by the low-order and high-order moments, the loneobeing responsible for the
slow variations in the distribution as a function of energg éhe higher order ones for the
fluctuations. The second one is that the information of egemainly lies in the smooth
variations. Neither of the two premise can be establishedyfjout random matrix stud-
ies provide strong support for their validity under a readne set of assumptions. In a
given space, the properties of a system are governed byféaieé Hamiltonian operat-
ing in the space. However, since the interaction betweentilokeons inside the nucleus
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is not completely known, one must refrain from drawing casmns based on a partic-
ular Hamiltonian. Furthermore, since we are here intedesteéhe general features of
the nuclei, we are not concerned here with the special cteaistacs of a few nucleon
properties resulting from the peculiarities of the effeetHamiltonian operating in the
region. This calls for the introduction of ensembles in agglwith the ensembles used
in statistical mechanics. If for example, Q is the physiazmtity of interest, it is cal-
culated with the eigenvectors obtained from solving ther&atinger with all reasonable
Hamiltonians. Reasonable Hamiltonian stands for the oniehwsatisfies all the well
known properties of a nuclear Hamiltonian, such as timensal invariance, rotational
symmetry, and consisting of one-body and two-body intévast This term includes also
realistic Hamiltonians which usually means either Hanmiiéms derived from nucleon-
nucleon scattering data, or Hamiltonians whose definingir@ements are obtained by
fitting to experimental information of nuclei. Lét represents the operator corresponding
to the physical quantity Q of interest. In general, the valaeQ obtained, say, in the
form of expectation values ap, are different for different Hamiltonians. If the results
calculated with the eigenvectors of all reasonable Hamigtias are clustered in a narrow
region, we can safely assume that the average over the tomticor ensemble, of results
provides a good estimate of the value of Q calculated usiggneiectors obtained with
the true Hamiltonian. This approach is, however, diffeffemin the conventional statis-
tical mechanics which works with the time development of stayn under the action of
a fixed hamiltonian. Here in statistical nuclear spectrpgdbe system is fixed but dif-
ferent Hamiltonians. Instead of assuming the system ecgodime, i.e., given sufficient
time the system will, with equal probability, be in all pdssi states each of which is
represented by the member of the ensembile, it is assumethistagistical spectroscopy
that each reasonable Hamiltonian used to calculate therdseesult of Q is equally
representative of the true Hamiltonian. The proof for tlyset of ergodicity is not any
easier than in statisticaol mechanics. On the other, hatide iensemble distribution is
narrow, it is highly probable that the ensemble-averagégevis representative of what
one would obtain using the true Hamiltonian, since all tressomable Hamiltonians give
the similar results in this case. If the ensemble distrduts flat, the ensemble-averge
does not provide us with any clue concerning the possibleomu¢ with the true Hamil-
tonian. There may be several reasons for this failure anabtieem may well be that we
had choosen the wrong ensembile. Itis, therefore, extreimglgrtant to examine the fol-
lowing two points before drawing any conclusion on the basensemble results. Firstly,
we must ensure that the ensemble distribution is narrowadattis unlikely to find values
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far away from the average. This can be done by evaluatingditiad to the mean, also
the ensemble variance distribution, which is the ensemiseage of the square of the
guantity minus the square of the ensemble mean. A smalln@iadicates thet the en-
semble distribution is narrow. However, as usual, highemeats are required to specify
the shape of the distribution, but these are generally mactien to obtain in the case of
ensemble distributions. As the nuclear Hamiltonian is mwotpletely known it is difficult
to ensure it to be the member of the assumed ensemble. Asltitresay be required to
enlarge the ensemble as much as possible for relaxing thitioors for a Hamiltonian
to be a resonable one. Furthermore, the ensemble must bemmetibally manageable.
In fact the requirements of mathematical convenience anelasionable Hamiltonians for
the nuclear system do not necessarily coincide and thereegaint here is again to en-
large the ensemble so as to accomodate both the requirenBaritsat the same time if
the ensemble is too large, the proportion of truly reasaat@miltonians may become
so small that the ensemble averaged results will no longegfresentative of the nuclear
system. If the ensemble is dominated by unreasonable mentheraverage may not be
physically meaningful even if the ensemble distributionasrow.

The above lines can be made more clear if we consider theatiygpectrum of a heavy
nucleus as shown schematically in the fig.(4.1). This cormgbectrum of heavy nucleus
can be divided into four distinct spectral regions:

Groundstate Region(D,): This region which begins at the ground state and extends
upto 2 MeV excitation energy. This region is extraordinarith in experimental data ahd
this region has been studied in great detail through shetlahhdhe extensions of shell
model and other various microscopic models to determingtbend state energies, low
lying spectra, transition strengths and goodness of symesetmong various quatities of
interest. This conventional spectroscopy which has a vesgddomain has been suc-
cessful in the study of low-lying states of light and intedia¢e nuclei. However, this
type of spectroscopy is constrained by the dimensionalitii@spectroscopic space that
can be considered here, so the range of applicability gettell and large class of prob-
lems remain unaddressed in the domain of conventionalgsecipy. Also, itis generally
considered because of the restricted dimensionality difiyesingle-particle orbits and
applicable exact symmetries, it could only be valid at reédy low energies or close to
the yrast line.

D, Region: This region contains close-lying bound sates in the ebioitaenergy
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range of approximately (2-6)MeV. About this region verylditis known and may contain
an extremely large number of levels. The level spacing dse®with increasing excita-
tion energy and it becomes more or less impossible to disishgoetween the levels upto
6 MeV in a heavy nucleus.

D3 Region: Thisisthe region of slow neutron resonances with excite¢inergy in the
range 6-6.002 MeV. It is possible to identify the individiglels in this region by bom-
bardment with slow neutrons at an excitation energy at whiehtron decay becomes
feasible and in a small region (few KeV) from the thresholdefitron decay. The res-
onances which are formed by the strong reflection of the skewtrons at the surface by
the deep and narrow nuclear potential are sharp because gfitbading of the target plus
neutron giant-resonance state over a large number of éajessIn this region, neutron
resonance spectroscopy has helped in the measurement pfeterapectra containing
hundred of individual resolved and measured neutron res@sa Further, advancement
in charged particle spectroscopy have made the possible¢hsurement of similar spec-
tra for proton resonances. The importanc®gfregion has been emphasised by Bohr and
Mottelson (1973) by saying that whole of the nuclear phyb&s been decisively influ-
enced by the existence of small window, in the region of reubinding energy, within
which slow neutron reactions provide a probe of enormousdaiyesolving power. The
earlier experiments with slow neutrons revealed, very paetedly a dense spectrum of
resonances and this discovery has led to the strong coupditygeen the motion of the
incident neutron and many degrees of freedom the targets ddupling has given rise
to the formation of a compound system with a lifetime veryg@s compared with the
one-particle periods.

D,; Region: This is the region which lies in the energy window greatemtl6.002
MeV and contains overlapping levels.

The characteristic features of different regions has lestudy of the different quan-
tities of interest. In the ground-state domain where Hamilin is known in detail, so
we are not interest in calculating the averaged quantitieb sis level densities. In the
neutron threshold region and at higher excitation enerdgieessquantities of interest are
averages and fluctuations about them. Furthermore, theematital approaches and the
underlying assumptions vary from region to region. For epl@gwe go from a detailed
Hamiltonian inD4, to random matrices i3, to using just single-particle energiedy.
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The interesting point to be noted here is that there has bkitie averlap between the as-
sumptions and mathematical methods used in the variousnegi the typical spectrum
of a heavy nucleus. For example, the parameters for highetiar enegies have not been
evaluated in terms of more fundamental quantities and ¢salyg the great body of level
density and similar data has not been used to study or ththiestfective interaction. In
fact there has been least interest between those involtted ground-sate regidn, and
those interested in the higher energy regiiins D3 andDy.

Statistical spectroscopy which is based on statisticad kawd operating in model spaces
unifies the different approaches used in the ground statdgher energy regions and
makes clear the connection between the domains arising thheneffective nuclear in-
teraction. Although it works in the model spaces of convardl spectroscopy because
it does not deal with the construction and diagonalisatioR@amiltonian matrices and
hence is not constrained by the dimensionalities of theaeesp Furthermore, statisti-
cal methods are applicable in a wide range of circumstantes.objective of statistical
spectroscopy is to deal with the general features of the tauclei keeping in mind
statistical behaviour observed at high excitations exgeight down to the ground state
and hence it seems appropriate to use the same methodsgartalbf the spectrum and
in fact over the whole periodic table.

4.2 Laws Of Statistical Spectroscopy

Statistical spectroscopy deals with spectroscopy in teritlse complete set of correla-
tion functions of various orders (k-point functions). Theeepoint function defines the
state density and by parametric differentiation or othsewve obtain occupancies, spin
cut-off factors and expectation values more generally.r@gea natural extension to the
two-point correlation function which give a theory for tetion strength and symmetry
breaking (time reversal, parity, isospin, etc). Moreotkee,(k > 2)-point functions carry
essentially no information so that we have an economicatsire. The five laws of sta-
tistical laws are [197]

: 1. There is in the model space, a microscopic simplicityjvée from the action of
central limit theorems. The smoothed eigenvalue densttlose to a characteristic form,
usually Gaussian, describable therefore in terms of a smatiber of low-order Hamil-
tonian traces (moments).
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2. There is a microscopic simplicity corresponding to a ndalale spectral rigidity which
extends over the whole spectrum and ensures that the flisctaatre small and for the
most carry little information.

3.There is indeed, as implied above, a sharp separatiorebatthe secular behaviour of
the spectrum and its fluctuations, so that the two can besttesparately and by different
methods. This separation also arises from the action ofaldmhit theorem action.
4.There is a propagation of information (i.e., of tracesdtighout the set of model spaces
defined by N (the number of single particle states) and symyntleat label the spaces.
This enables us to express either exactly or approximatepending on the symmetries
involve, the many -particle traces as linear combinatiotiheffew particle input traces.

5. The ensembles that one uses have a strong ergodic behaviou

Similar laws apply to expectation value of operators andsitaon strength distributions,
i.e., for all spectroscopic observables generating sgledistribution theory. Statistical
nuclear spectroscopy was initiated by French during 198&#Wwith a series of five pa-
pers on trace propagation [198, 199, 200, 201, 202]. The eagers dealing with the
trace propagation by [203, 204, 205] were in the contextafat physics. A first detailed
account of spectral distribution in nuclei was given by [2P67, 208]. In addition there
are articles by [209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220] published
in various conference proceedings describing differepéets of statistical spectroscopy.
There were also three review articles [197, 221, 222] andk®f2P3, 224, 225, 226] on
the subject.

4.3 Moments Of a Distribution

To approach the study of distributions an averages in a moamtgative manner, we
shall first define the moments that characterise a distabuti general. For that consider
various operators denoted by G, one of which is for examplailianian defined in m-
particle model space. It implies that, fgy, € m, G ¢, is also a vector in m though
this relation does not necessarily hold for the subspaces dthe eigenvectors of H are
denoted by, ; wherei = 1,2, ...... , g- distinguishes between degenerate states. The
eigenvalues ar&, with £, < E,,;andr=1,2, ...... |, and the model space dimensionality
isd = > g,. The microscopic density I(x), its normalised counterpdnt) and the
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distribution function F(x) are
I'"(z) & I(x) = dp(x)

l
= Z 9-0(x — E;)
r=1

= Y <ril§(H —z)|ri >

= << O6(H—1xz)>>" 4.1)

/+OO I,dzx = d; /+OO plx)=1,F(x) = /x p(z)dz; F(—o0) =0, F(400) =1,

- - - (4.2)
The above can be generalised for— co. F(X) is a stairecase function with jumgs!g,
at eigenvalue%,. Thus,

F(x)=F(E)=d"> g B <2 <Eu (4.3)
k=1

Hereafter, it is assumed that if degeneracy= 1. The moments\/, of p and the charac-
teristic functiong are,

M, = /p(x)xpdx
= A7) g.(E)
= < Hpr>m (4.4)
The characteristic functiop are
o) = [ syt
= /p(a:)[l +itr + (it;)Q + (i?g +. |dx

o) = / p(z)dz + it / p(z)de

+<i2t!) /xZP(:c)d:c+ %/chp(ﬂf)df‘”r ------
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(@t)” M, + @Ms

o) = w4
.o
)2 \3
ot) = (Z;) M, + (Z;) Mj......
@y,
= ; oM
= <exp(itH) >™, (4.5)

MO = 17M1 :C7M2_ (Ml) =0 7(25(
For a Gaussian densipy;(z) =
by

) =1
exp — %(:”7’4)2 the characteristic function is given

\ﬁ

ba(t;¢,0%) = /empg(a:)dx

1 1 —
x C)de
27m

/ m/ e g

vl

ita:

(4.6)

In order to simplify the above equation, let us égﬁ =z =dr =o0dz

2 1 oo it(C+zo) _z
balt; (oY) = M) =T o

2ro

1 too 2
— ezt( / eztz—?
V2T J oo
L1 T Gmite)? 2,2
= e 2 e 2 dz
V2T ) oo

1 L 202 [T (ite)?
= M e 2 dz
V2T S

1 it t2<72
= — M2 /9
e 2 T
V2T

t20'2

= (4.7)

The characteristic function (which always exists) unigugétermines the distribution
and in general the moments of the distribution does not aeter the distribution and
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may not even exist. In case of finite-dimensional spacesmanabost of the cases which
we encounter in statistical spectroscopy and for operatdhsbounded eigenvalues, the
moments exists. The centrojdixes the location of the distribution and widéhdefines
the scale. The translational invariant central momenke(tabout the centroid as origin)
are M. The first few central moments are given by

M, = [ (&= ¢Ppla)da (4.8)

My = /p(az)daz =1 (4.9)

M= [ Oplada

= 0 (4.10)

My = / (x — O)*pla)dz
= [+ ¢ = 20)p(a)da

= /pr(x)d:c + ¢? / p(z)dx —2¢ / zp(x)dz
= My+(*—2¢.M,;

= My+¢*—2¢¢

= M,—(?

= M,— M?

= o’ (4.11)

The set ofM,(p < s)fixes theM,,(p < s), and vice-versa, by the homogeneous expres-

sions,
_ 1\ p r. _ p T
M, = E (—1) (T) M,_,.(" M, = Er (T)Mp_rg (4.12)

T
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The reduced central moments = % are 1,0,1 for p=0,1,2. Since the energy E and
centroid¢ can occur only a$E — (?) in the density and since fixes the scale and the
total integral ofp( ) is unity, thenp(z) must have the form(z) = o7 '92); p(x)dr =
n(z)dz; & = (:” ) wherez is the standardised form of x, i.e., x measured with respect t
¢ as the origin and re-normalised to unit variance. It folldten that

Opla) __opta) 0vla) _ 0 1=
oC  Ox ' 0o Ozl 202

p(a)] (4.13)

Moreover, if P”) (x) andp.” (x), withv = 0,1, 2, ...., are orthonormal polynomials de-
fined respectively withp(z) andn(z) as weight functions we have' (z) = P{"(z).
Most of the distributions that we deal with are are contirai@ather than discrete and we
encounter several of them in the limit-d oo or as a result of otherwise smoothing a
discrete distribution. The polynomial excitation functsooscillate about zero and are not
true probability densities. Fagr> 3, 11, are translation and scale invariant and hence de-
termine the shape of the distribution. In general terms, avedescribe the homogeneous
combinations of the:,~3; as shape parameters and write thenbasvith » > 3 and it
will be sometimes convenient to write= S, 02 = S,. A particular set of distribution
parameters, the reduced cumulahjs= K,/o”, which are non-trivial shape parameters
for p > 3 are of considerable importance. Just as the moments emntethie Taylor
expansion of(t), the cumulantsy, enter into the expansion of its logarithm,

togot) = 3 Y K () = eap (%K) (4.14)

p=1 P

T t t
logd(t) = <21—)K + (ZQ) e +%K o
t2 i
lOgd)(t) = tKl — EKQ — %K:; ......
(i) _ (it)°
lOg(Z p' Mp> = ’ltKl—aKQ 30 K3 ......
p=0

(4.15)

Hence, expanding log on the left hand side, we can write tbeeabquation

log (Mo + (1—‘) (Z;) My + (23]:)

t° t
M3 + oo ) - ’ltKl - EKQ (Zg) K3 ......
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2 3 4

Now using the expansion &bg(z) =z — & + % — 5 +......

it it)? it)3 , 12 it)?
lOg(1+(1—')M1+(2') MQ+(3') M3+ ...... )ZZtKl—EKQ—%K3+ ......
it)? 1 it)? 2 1 it)? 3
(z’tM1+<2,> M2+...)—§<itM1+(2‘) M2+...> +§<itM1+(2') M2+...>

1 it)? 4 12 it)?
—Z<itM1+<2') M2+...> +. —_ :itKl—aKz—%ngL ......

Comparing the coefficients of like powers of it or from ecp{4it can be easily seen that
logp(t) = it — o?t?/2 + ... which combined with eq.(4.14K, = M, = (, K, =

M, — M? = o? (as long as these moments). From eq.(4.7) it follows thaGhessian
cumulantsk, vanish forp > 2, which obviously is a defining property of the Gaussian
distribution. In general, using the two expansion formsds.&t.14) and (4.5), one finds
that [227, 228] that, whep > 2, the reduced cumulants, are given in terms of the
reduced central momenis. The shape parametgr= +, is called skewness artd = 7,

the excess. Broadly speakikgdefines a distribution which extends more in the> ()
domain than in théx < () andk, a distribution more sharply than the Gaussian. In
general, the expression for the reduced cumulants in tefthe ceduced central moments
IS,

! " Si 1
ky =PIy HH (1;") ﬁ} (=151 (S - 1)!] (4.16)
g v

i=1

and this gives

K M K My — M? 2
e MG e Mo MY o (4.17)
ag ag ag ag ag ag
K Ms — 3M{ M,y + 2M3
by = o = 2 TP T ) = (4.18)

3 o3
wherey, = f—; are the reduced central moments. In the eq. (4:183n be shown be
equal tous as follows.

H3 = —
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1
= — {/ 23 p(x)dr — Cg/P(:E)dx — 3(2/x2p(x)dx+3C2/xp(x)dx]
o
1
= 3 [M?, —3¢My — * — 3C2M1]
1
= =5 [Ms — M} = 3M M, + 317
Ms — 3M, M, + 203

o3

K M, — 3M2 — AM{M3; — 6 M* + 12M? M-
fy = Do Ma = 3My = MMy = GMy + 12M7 My (4.19)

ot ot

Henceu, = % Now

Mi = [ Ofpapts
= [ [+ ¢ = 200" + ¢~ 200)] pla)d

- / (z* + 22 = 20°C 4+ 2 + ¢ = 207 — 22°¢ — 220¢% + 427 C?) p(a)da

My = /x4p(:p)d:ﬁ+6C2/x2p(:p)dx+§4/p(x)dx—4(3/xp(:p)dx—4§“/x3p(:p)d:p
= My + 6MZMy + ¢t — 4¢* — 4CMs
= My +6M:My + M} — AM} — AM, M;

= M,+ 6M12M2 — 3M{1 — 4M; M (4.20)
Ky My
ks —pa = P

(M - 3MZ — AM M3z — 6 M + 12M3 M) — (My + 6 MEMy — 3M} — 4 M, M)

= -
My — 3MZ — 4My M3z — 6 M} + 12M3 My — My — 6 MEMy + 3M} + 4M, M;
—3MZ — 3M} + 6 M3E M,

. —3M22 - 3(M2 — 0'2)2 + 6M12M2

= g

—3M22 - 3M22 — 30'4 —+ 6M20'2 -+ 6(M2 - 02)M2
4

o
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—6M3 — 30t + 6Myo? + 6(My — 6MZ0>

ks — Ha = o
30!
ky—ps = 4 = -3
o
Ks  M;
ks —ps = P
My —5M My — 10Mo M + 20M3 M2 + 30M2M, — 60Mo M} + 24M7 +
= o

where,x = — M5 — 10M12M3 + 5Mi M,y + 10M§M2 — 4M15

[MyMs — MyM? — 3M2M; + 5My M3 — 2M7)
o
[M2M3 - M3<M2 — 0'2) — 3M22M1 —+ 5M1M2(M2 - 0'2) — 2Mf’<M2 — 0'2)]
o°
[M2M3 — M3M2 + ]\4'30'2 - 3M22M1 + 5M1M22 - 5M1M20'2 - 2M§M2 - SL’/]
o

ks —ps = —10

= —10

— —10

wherez’ = —2M3}o?

[Myo® + 2M, M2 — 5M, Myo® — 2M3 My + 2M30?]
5
Myo? 4 2030 — 5M, My(My — M?) 1 20, M2 — 2V My
5
Myo? 4 2M30? — SMPM, + 5MPMy + 20, M2 — 203 M)
5
(Myo? 4 2M30? — 3ML M2 -+ 3V
5
Myo? 4 2030 4 3N My (M2 — M)
5
[M30? + 2M3o? —J3M1M202]
5
My + 9N — 3]

ks —ps = —10

= —10

— —10

— —10

— —10

— —10

— —10
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g
= —10k;
Similarly,
ke = pg(m) — 15ky(m) — 10 [ks(m)]* — 15 (4.23)

In egn. (4.16) P'] are all partitions of P such th&t> 2 for all P,.

The polynomial expansions for the densities is describeldiail [229, 230, 227, 228].
There are two problems of immediate interest. The first isno éin adequate expansion
for the density in terms of the asymptotic density and thgmpamials defined by it. Given
that density, the second problem is that of deriving the @irder corrections to it when
we add a small term to the Hamiltonian; with the solution ts {the problem of linear
response), we shall be able to derive expectation valueswandules. Only in the case of
simplest textbook cases do we have any prospect of evajLmtiomplete set of moments;
usually we must settle for a small number of lower order masefhese of course place
constraints on the distribution [227] in accordance wita so called Principle of Mo-
ments, and they determine inequalities, as for example ¥y inequality [227, 228]
on various quantities defined by the distribution [231]. Sdhaequalities however are in-
dequate for our purpose. But we are saved by the CLT generatia close-to-Gaussian
smoothed density. Then it will turn that, “ to within fluctiis”, calculable (low order)
shape corrections will give adequate results for partiakaipers and Hamiltonians of in-
terest. As a consequence, we seek expansiop&ofaround an asymptotic shape which
we take to be a Gaussian ( other forms will arise in specias;abe modifications needed
or extensions will be straight forward). The general natfréhis expansion will be in
terms of a sequence of polynomial excitations of the asyhetiensity (see ahead for
GC, ED and CF expansions). Given a dengityith central moments\,., it is possible
to write orthogonal polynomial®,(x) as follows. The orthogonal polynomi&l,(z) is
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P

where

HenceFPy(z) =1

1 M, - - - M,
My My — — — My
_1 — - - - = —
(@ =D * — T T T T T
M‘ufl M,u - M2,u71
1 A e — e
1 My - - — M,
My M, — — — My
D, = — — - = = My,
Mu Mu+1 - - = M2u
_1 1 Ml
Pi(z) = [D1Dyg] >
1 =z
. (.T—Ml)
= 1
[D1Dyo]>
. (ZL‘—Ml)
1 M 1 M, ||
M, M, M, M,
. (ZL‘—Ml)
[(My — M?)(M,y — Mg)]?
1 M; M,
M, M, M;
1 = a2
PQ(.T): 1
1 M, My |]*® 1
M M1 M2 LMy
X
1 2 3 M, M,
My Mz My

112

(4.24)
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(MQLEQ - Mgl') — M1<M1.§U2 — Mg) + Mg(Mlx - MQ)

[(My My — M2 — My (M, My — MyMs) + My(M, My — M2)]z x (My — M32)2

M2$2 — Mgl‘ — M12l‘2 + M1M3 + MlMQI‘ — M22

[(MyMy — M2) — M2M, + 2M, MyMs — M3]z x M2

(4.25)

Now let us try to first of all simplify the numerator of above @g25).

Mox? — Msx — M?2? 4+ My Ms
My Myx — M}
(My — M?)2? + (M My — Ms)x 4+ My Ms — M?
o2 + (MyMy — M3)x + My Mz — M}
o3 (i 4 ¢)? + (M My — Ms)x 4+ My Ms — M?
o?(0?2? 4+ (? 4+ 202¢) + (My My — Ms)x + My Ms — M3
o*2? + 02C* + 20%2¢ + (M1 Myoz + (MyMy¢ — Msoi — MsC
M Ms — M?
M2i? + 0% 4 20%8¢ + (Myod + MyC? — Msod — M2
M3i? + 0% 4 20%3¢ + (Myod + My(?
(M3 —2¢° + 3My()od — M
M3i? + 0% 4 20%3¢ + (Myod + My(?
Msoi + 2C%cd — 3Mylod — M2
M2i? — Msoi + 0%C? + 20°3¢ — 2C Myo i + My(?
20303 — M2
M32i? — Msoi + 0C? + My? + 208 (0 + ¢?)
2( Myoi — M
M3i? — Mizod + 0%C? + Mo(? + 2Myo i — 2Moo i — M
M3i? — Msoi + (My + o) — M]3
M3i? — Moz + (My + %)% — (0% + M?)
M2i? — Msoi + MoC? 4 0%¢? — o — M} — 2M2¢?
M2 — Mgod + MyC? 4 02 — M3 — ¢ — 2073
M32i? — Moz — M2+ My — o?C* — ¢*
(4.26)
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= M3 — Myod — M5+ C3(My — (%) — 0°¢?
= M3i% — Mzoi — M3+ a°¢* — 0°¢?
= Mii* — Myoi — M3 (4.27)

Now, let us try to simplify the denominator of eq.(4.25).

(Mo M — M2) — M2M, + 2M, My M — M]3

X ./\/12%

— ME[(MoMy — M2) — MyC? + 20 MyM; — M]3

— ME[(Ma(M? + Ms) — M2 — MyC? + 20 My My — M]3

= MQ%[M4<2 + MoMy — M? — My + 2(MoMy — (% + My)*2

— ME[MoM; — M2 +2(C% + Ma)Ms — (5 — MS — 3C2M2 — 3¢ M)
— ME MMy — M2 + 203 Ma2C Mo M — ¢& — MS — 3¢ M2 — 3¢*My]3

(4.28)

Now,

M = [
= [ [+ =20+ ¢~ 200)pla)d]
= /(x4 + 22¢% = 203¢C + 22 4 ¢ — 20¢% — 223¢ — 20C3 + 422 p(x)dx

= /x4p(x)dx+6C2/x2p(:c)dx+c4/p(:c)dx —4C3/xp(x)d:c —4C/x3p(x)d:c
= My+6¢* My + ¢ —ACPM, — 4CM;

= My +6C* My + ¢* — 4 — 4C M5

= My +6¢*Mp — ACM; — 3¢

= My +6¢%(C* + My) — 4¢ M5 — 3¢*

= My +6¢"+6¢* My — 4CMs — 3¢*

= M, +6¢*My — 4C M3 + 3¢* (4.29)
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Also, the third central moment is given by

N
- / (* ~ ¢~ 30¢(x — Q) ) ol

= /:L‘gp(l‘)dl‘ — C?’/p(x)dx — 3§/x2p(x)dx + 3¢? / zp(z)dz
= My = 3CM, +3¢°
= M — 3CMs + 2¢°
— My = Ms+3CM,y —2¢° (4.30)

From eq.(4.29))M, can be written as

My = Mq—6CMy—3¢"+4¢Ms;
= My — 3" =60 My + 4¢((Ms + 3(Ms + (P)
= My —3¢" = 6 My + 4 M5 + 123 M + 4¢*
= My -+t 4ACM3 — 63 M, (4.31)

Hence, the equation becomes

Mo My — M2 + 2C3M32¢ Mo My — (& — MS — 3C2M2 — 3¢ M,)2
X MQ%
= [Ma(My+ ¢ +4C M3 + 6¢2Ma) — (M + 3CMy + ¢%)? + 2¢° (M + 3¢ My + ¢P)
£ 20My — (O — M — 3CPM3 — 30 Mu] M3
= [MoMy + MyC* + 6CME + 4 MoMs — (M2 4+ 9CEMS + (8 4 6 MaMs + 6¢E M,
+ 203 M) + 203 M + 6P My + 2¢8 + 20 Mo M3 + 6P M2 + 20 My — (8 — M3
— 3CM3 - 30 M EM;
= [MoMy+ MoC* + 6P M5 + 4CMaMs — M3 — M5 — (C — 6 MaM3 — 6T My
— 203 M) + 2C3 M3 + 6T My + 2¢% 4+ 20 MoaM s + 62 M3+ 2¢P My — (8 — M3 — 3¢2 M3
I YALIVE
= MMy — M2 — MM
= [Ma(MoMy — M2 — MD)]2 (4.32)



116

Therefore,P;(x) can be written as

Py(x)

M2i? — Maoi — M2

[My(MoMy — M2 — M3)]2

(4.33)

Alternatively, P»(x) can be written in the form as follows.

PQ(?E)

M2i? — Maoi — M2

[May(MaMy — M2 — M3)]2
M%(i«? — Mo — 1)

[May(MaMy — M2 — M3)]2
M3 (32— Migi — 1)

[My(MoMy — M2 — M3)]2
M3(# - 43— 1)

[My(MoMy — M2 — M3)]2
M%(i«? i — 1)

[May(MaMy — M2 — M3)]2
M3 (i«? i 1)

[My(MoMy — M2 — M3)]2

JAZ‘Q—’}/lZAC—l

K (MaMy — M3 - M)

22—z
1
My M3 4]
M M3

(4.34)
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_ (4.35)

Eq.(4.35) gives the general formula. In order to be usehd, first few terms of the
polynomial expansion must give a satisfactory represiematf the density. Compatible
with this are the facts that our interest is in fluctuatiorefdensities and there is a wide
gap in the spectrum between the first few long wavelengthatians of present interest
and the short wavelength ones which describes the fluchgtibfollows then that a finite
expansion will often be useful even when the complete expans not formally point
convergent. This is what we call “ convergence to within fliations”. In fact, statistical
methods are valid only for strong interactions; when theyvaeak, perturbation theory
Is appropriate. The situation is somewhat more complex whennteractions are of
intermediate strength.

Given the standardized variablteand the corresponding Gaussian density, it was ar-
gued by Edgeworth thaf(x)

n(&) = exp. {Z(—l)”@ ov }na(i“)'na(i“) _— exp (—”ﬁ) (4.36)
et vl 0V ’ Vo 2
is a true and unique law that represents the frequency cli@enagnitude that depends
on on a number of independent elements [Bowley (1972)].dfrthmbey of such events
varies, therk, oc v~ 2, and that the appropriate method of approximation is bydating
thev series. Thés, are reduced cumulants akgd(m) = k,(1)/y2 ! if the independent
variables are similarly distributed. Thus on the one hangeitebrth argument is a state-
ment of the CLT and, on the other, an argument that uniformitlg regard toy (particle
number in our examples) is a good guide to a method of appetiom Expanding the
exponential in eq.(4.36) and collecting all the terms tredtdve asy*g, P=12..a
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compact form for the Edgeworth(ED) expansion is

l Si
ﬁED(ZAC) = G ZAC 1 +ZZ H( ;:P:; ) ;'] H€p+2s( ) (437)
P=1 =1

Here[P] = [P, Py, ...P”'] is a partition of the integer P such that > P, > ... P >

0,8 >0,8=Y",and>'_, = P. Feller (1971) has shown that if the momepts

L, -1 €XISt and o (t)|° is integrable for some 3 1, thenn(z) exists for m> s and the
ED representation given by eqn.(4.37) is asymptoticallyveogent, i.e. as m» oo, the
series converges to the first= P + 1 terms. The ED expansion to ordBr= 6 is, with

b=

mw@>7m@{1+wywwm+[MH@@M$%%H%@ﬁ+wykww+%MH@@>

k/ Qk/ .
( 3>‘ 4H€10($)

N <k§!>3Heg(ir)] + {kgH%@) + ((,;,')2 + k3k5) Heg(2) +

8 )] + I en () + 4+ Kok Heol)

# (B ) ew) + B () + B Hew )] + et

(%5 ] :
(%
("

k, k)2 k!
+ kKL + Kk ) Heyo() + <( ) - (hs) ks + kgkgkg) Heys(#)

3! 2l
(K3)°

2(kh)? k;/) k:’)) H614(i‘)+WH616( o

2121 3] )+

—+ H@lg(fi‘)]}

(4.38)

The Hermite polynomialgie, (&) satisfy the recursion relatioH e, (z) = tHe, (&) —
rHe,_,(z) and explicit expressions for the lowest six polynomials are

A

=3*—622+3

Il
=
|
—_
-}
8

w
_I_
—_
Ut
&

Heo()

Hey(2)

Hey(7) =

Hey(#) = 3% — 3 . (4.39)
Hey(2)

Hes(2)

Hes(2)
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Here it should be noted that the centroid and width(@f) andpq(z) that correspond to
nep(Z) are identical in the above ED expansion.

4.4 State density and Nuclear Partition function

The origins of statistical nuclear theory can be traced badkethe’s derivation of level
density. His calculation were based on statistical medsawfiessentially non-interacting
particles in an unbound single-energy spectrum. This abaitigthe Wigner’s introduc-
tion of Hamiltonian random matrix ensembles are two landiar the in statistical spec-
troscopy. It is well known fact that the state densityl, £) , the number of states per
unit energy for a nucleus made of A nucleons, increases tpwgth the squareroot of
the excitation energy. Bethe(1937) derived the relation

p(A,E) = 1%@@2\/@ (4.40)
aiE1

using statistical arguments. This expression is ofterrmedetop as the Fermi gas model
since the nucleons inside a nucleus are treated esseisatign-interacting Fermi parti-
cles. A brief review of the derivation of Bethe’s level deg$or is useful, as a background
for statistical approach to this problem. The Hamiltoniaediin the derivation of Bethe
level density formula is taken to be purely one-body andvsmgby a set of set of single-
particle energies;. This is one of the major assumptions made in the derivatidheo
formula. The ignored two-body part of the Hamiltonian is ongant since it depresses
the ground-state energy from the excitation energy E iMef)] is measured.
For a one-body Hamiltonian, density of levels as a functiba and particle number is
given by

p(A€) = (A =n)s(E - E(n)) (4.41)

wheree;(n) is the energy of the ith quantum state of the n-particle syst@ the inde-
pendent particle approximation, we can write

n= Z”(V)i§ € = Z(”(V))ze(’/) (4.42)

v v

Each single-particle orbit here consists of only one stathat(n(v;)); is either 0, if the
states is occupied, or O if it is occupied as per Pauli’s esioluprinciple. The eq.(4.41)
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has singularities at each of the eigenvalues (4.42), baitintierest is in the average value
of this function when integrated over an interval in A an@ecause of the additive nature
of the relations (4.42) which determine the eigenvalue oh8a it is convenient to work
with the Laplace Transform

+o00 +o0
z(a, B) = /o /o p(A, €)el =PI Ade

The parameters andj correspond to the chemical potentiehnd temperature in statis-
tical mechanics.

+o0 +o00
z(a, B) = /0 /0 D (A= n)s(E — &(n))e®* P dAdE
= ) len-sam)

n,t

= T+ e (4.43)

v

In the above equation the term 1 comes frafw) = 0 and the exponential term comes
from n(v) = 1. In order to evaluate the product in eq.(4.43) in terms ofra swver the
one-particle states, we take logarithm on both sides ofgoatson

Inz(a, B) = ln[H(1+ea—ﬁf(v>)]

= In [(1 + e PN (1 g By (] @ Be@y ]
= In(1+4e* PO L in(1+ e PW) L in(l + e P@y 4.
= ) In(1+ e ) (4.44)

The second assumption made to derive the Bethe’s leveltgdosnula is that the single-
particle spectrum,

gle) = d(e—e(v)), (4.45)

can be approximated by a continuous distribution and we nssnargy scale such that
e(v) > 0. for all This is true if the single-particle states are clgspaced. In practice
this assumption does not seem to affect the state densitiarfge A. Using eq.(4.45),
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eq.(4.44) can be written as
InZ(a, B) = /O N g(e)In(1 + e ") de (4.46)
This can be checked by substituting) in the above equation.
Inz(a,B) = /0 h > o(e—e(v))in(1 4 ¢**)de
= ) In(1+ e~ P /0 N (e — e(v))de
= i In(1 4 > P01

= Z In(1 4 ) (4.47)

In equation (4.26), the logarithmic factor approaches fere > 3, while fore < g, it

approaches the value — 53(¢)) as can be easily seen belowe It 3, then
In(14 €M) = In(1+
= Inl
= 0

)

If, however,e < %,

In(1 + e 70y = in(1 + 50y = In(ePW) = o — Be

Thus, we can write the integral (4.26) in the form

InZ(a,p) = /B g(@)In(1 + e de +/ g(e)ln(1 + e*=PW)
0 2
B

= /OB g(e)in(1l + ea_ﬁe(y))de — /oﬂ g(e)(a — B(e))de

o

/
0

[e o]

gl Be)de+ [ gloin(L+ e )

e

(4.48)
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(=1 (=3

- /05 g(e)(a— Be)de+ | ge)lin(1+ ") — (a — pe)lde

0
i / g(OIn(1 + ¢80 e

™[R

iyl

_ / 9(6)(a — B(e))de
’ g(e)[In(1 4 e*7¢) — Inel@F9)de

e}

g( )in(1 + e* P de

+

+

Il
o\é
< P — o —

(€))de

1+ea Be
eo— Be

™[R

————1de

8

\N

+ g(e)In(1 + e*=7M))de

o3

- / 9(6) (@ — Be))de + / T 9Ol + e de

g(e)in(1 + e* 7)) de

+
mﬁ

(4.49)

By a change of variable we can combine the last two integrals,

% oo oo
| stemue e der [ glemuie e = [lgta/gra)tola/p-oinire )
0 & 0
’ (4.50)
sinceg(e) = 0 for ¢ < 0. The logarithm in this integral vanishes except in an iraeof
width ~ % around x = 0. If this interval is wide compared with the spgawfithe single-
particle levels:(v), we can treat the density function g in eq.(4.50) as smoathtions

equal to the average of the expression (4.45). Hence thé. 8@) (becomes

a/8 5
lm(a,ﬁ)Z/O 9(6)(a—5(6))d6+/0 lg(a/B+2)+g(a/B—2)lin(1+e777) (4.51)

If, at the same time, the interval is small compared with #ggan over which g varies,
we may expand the g functions in a power series in x and carryheuthe integration,
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term by term, to obtain

.CUQ "

a/B o]
Inz(a,B) = / g(€)(a — B(e))de + / [9(a/B) + 29 (@/B) + =g (@/B) ...
0 0 2!
2
+9(0/B) = g () B) + 59" (@/B) 4 ... Jin(L 4+ e ) da
a/B o]
- / g(e)(a— B(e))de + 2/ In(1 + e ") da
0 0
+/ 2?97 (o) B)In(1 + e P )dx + ... ..
0
a/B )
= [ st =By +29(0/8)1+ 4 0/, (452)
Wheregis the second derivative of g. The integrals to be evaluated&the form
I, = (1 4 e 4.53
/0 2" In(l + e "")dx ( )

with n an even intger. Further, using the expansiomof + x).

o [ (S ).

m=1
-1 m—1 00
— ( ) / xne—mﬂmdx
m 0
(=)™t nl

m (mﬁ)n-i—l

ool - (=™
- 5n+1z mn+2

m=1

n!(1— 2n1+1 )¢(n+2)) (4.54)

where((z) is the Riemann zeta function. The Riemann-zeta functioeimdd as

C(p)=> _n* (4.55)
n=1
hence,
o] e8] 2
g(2):2n222%:1+i+%+ ...... :% (4.56)
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Also,

Zn"l 1+—+1+ _ (4.57)
= T =55 .

the integrald, and/; can be calculated from then,

1
2n+1

L =nl(1— —)((n+2) (4.58)

where((z) is the Riemann Zeta function. For even integer n, this fumctan be ex-
pressed in nterms of the Bernoulli numbers as follows. Wenktiat Taylor series ex-
pansion of some function f(x) about= 0 is given by

=> i—? £™(0) (4.59)
n=0

For example, the Taylor series expansiongf; is given by

T " d T
s D D e (ex_ 1> le=0 (4.60)

x . B
= — " 4.61
et — 1 nz% n! o ( )
Now, changing the x— z, we have
z . B
= —nan 4.62
er —1 nZ:o n! : ( )

So, the Taylor series expansion for f(z) is given by

i Z — Z

> Bl

n=0 :
If the expansion is done aroung = 0, then

n=0

n

- (4.63)

N

s
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comparing eqns.(4.62) and (4.63), we get

B, = f(n)(o)

n! [ f(z)dz

2mi J, 2ntd

n! [z/e—1

= —¢p—7—d
2mi J, vl -
n! z  dz

= (4.64)

; 1
2w Joer — 12t

where the contou€’, is around the origin counterclockwise with| < 27 to avoid the
poles atwin. For n=0,

1 z dz
21 Jo, €2 — 1 2
1 dz

= — 4.65
2mi J.e* — 1 ( )

has a pole of order at= 0.

Res.(f(z)) = limzf(z)

— 1 ' (4.66)
Hence from eqn.(4.65), we havg given by

By = — x2mi(sumofresidues)
i

= — X2mix1

~- 1 (4.67)
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Similarly, for n=1, the singularity at z = 0 becomes a secordkr pole. The residue can
be shown to be $ by series expansion, followed by the binomial expansiorobavfs.

1 1
— (] —¢? —1
z(e* — 1) z< <)
1 22 28 -1
_ _;[1_(1+z+§+§+ ...... )}
1 2 23 !
= ; |:(Z —'— 5 —|— y + ...... ):|
1 22 !
= ; |:]_ + 5 + ? + ...... }
1 z 22 22 9
e ;|:1—(§+§+ )+(§+§+ )+ ...... :|
1 11 1
- I 4.68
z2 z21 3l ( )
The coefficient of:~!, which is the residue is%. Hence,
Bi = —— x 2mi(—1/2) = — (4.69)
e — 21— = —— .
Lo om 0T 2

Forn > 2, this procedure become rather tedious and one has to restiffarent means
for evaluating eqn.(4.64). The contour is deformed as shiovthe fig.(4.2). The new
contour ‘C’ still encircles the origin, as required but navaiso encloses (in a negative
direction) an infinite series of singular points along thegimary axis at = +2xip; p =
1,2,3....... The integration back and forth along the x-axis cancelsand,for R— oo,
the integration over the infinite circle yields zero. It islie noted here that > 2.
Therefore,

d oo
7{% ezz_ N zni = —2mi Z Residues(z = +2mi) (4.70)
p=1
By = L ° X %
210 Jo (e2—1) 22
1 d
- - (4.71)

omi Jo 2(e* — 1)

At z = p2mi, we have a simple pole with a residge=i)~". When n is odd, the residue
from p = 27ip exactly cancels that from = —p27i andB,, = 0, n= 3, 5, 7, and so on.



127

For even n, the residues add, giving

B, =

= _—C(n)(neven) (4.72)

where((n) is the Riemann-zeta function. Hence eqn.(4.58) can be sspdan terms of

Bernoulli numbers as
2n+1 -1

WhereB, = B4 = 30, Bs =1, ...... From the complex algebra, the residue at a

pole of order m at = z, for a functionf(z) is given by

1 dmfl
Res.(/(2)) = oy g2 = )" (e (4.74)
1 1 172 72
I =011 - 57)¢(2) = 5¢@) = 55 = 5 (4.75)
1 7 Tt Tt
L =211 = 535)¢(4) = 1¢(4) = 155 = 360 (4.76)
Hence, eqn.(4.52) can be written as
a/B 2 / 7 4
s ) = [ a(0)e = Ble)de + 29(0/8) T + o (/) 355

2 4

a/p o,
= [ st0ta = seNde+ Satal) + g (@) + ... @77)

Having obtained an expression for Z, we now invert the Lapl@mansform in order to
obtain the level density

+i00 +zoo
p(A, 5 / / B)exp{—aA+ SE}dadp (4.78)

In evaluating the above expression, we shall employ thelsguint approximation ex-
ploiting the fact that the integrand is a rapidly varyingdtion of « and/. Thus, the main
contribution to the integral comes from a small region arbtive point(ay ), where the
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integrand is stationary. The conditions that determing ¢kationary point are

OInZ 4 _y (4.79a)
Oa
olnZ
_ 4.79b
55 TE=0 (4.79D)

Expanding the exponent in the integrand to second ordendrthe point determined by
the conditions (4.79a) and (4.79b) we obtain a Gaussiagraitevhich can be evaluated

to yield
Z(a, Poexp{—apA + ByE})

AE) = 4.80
p(A,€) 21| D|1/2 ( )
where the determinant D is given by
02nZ  9%nZ
_ Oa? Oad
D= 92%nZ 82lng (481)
9p0a 8% la=ao,8=p0

In differentiating the function 4.77 to obtain the statipnpoint determined by be equa-
tions 4.79a and 4.79b, we shall cosistently neglect alléehas depending on the deriva-
tives of g. Thus, we obtain

(3o
A:/ ’ g(e)de (4.82a)
0

(F)o 2
F= /0 " eo(ode+ 000/ ) (4.825)

The relations (4.42) imply that in the ground-state
B
/ g(e)de = A (4.83a)
er
/ eg(e)de = Ey (4.83b)
0
whereer is the Fermi energy. Thus, the conditions can be written as

Qy = BOEF (4848.)

71.2

0
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Introducing these relations into the expression 4.80, anying out the evaluation of the
determinant 4.81, we finally obtain the level density as a@fion of A and the excitation
energy E,

11 7’ 2
p(AF) = \/—4_8561‘]){2 (Fg(eF)E) } (4.85)

The derivation of the above result involves the followingegpximations.
1. The replacement af(¢) by a smooth function in the evaluation of the integral 4.50.
This approximation is valid, provided

Bylgler) >>1 (4.86)
which on, account of the relations 4.84a and 4.84b, is etpnv#o
glerp) >>1 (4.87)

This condition simply reflects the fact that the averagelldeasityp is not defined until
we come to excitation energies E large compared with theggner!, of the first excited
state.
2. The neglect of terms depending on derivatives of g. Thedas in eqn. 4.77 is typical
of these contributions. From the relations 4.84a and 4.84Mfjnd that this term may be
neglected, provided

(QN(€F>)2 E?

(9(€F))3

For a Fermi gasy ~ Ae!/2¢,.*?, and thus the condition 4.88 becomes

<<1 (4.88)

E << epAY3 (4.89)

The neglect of the higher-order termsAin! amounts to treating the Fermi gas as degen-
erate. Thus, one might have expected that much weaker eamdit << e¢zA which,
indeed, is sufficient to ensure that the exponent in the deesity is accurate to within a
factor 2. However, to obtaip itself to such an accuracy, we must estimate the exponent
with an accuracy of one unit, and then the region of validitthe expression 4.85 is re-
stricted by the more severe condition 4.89. For a systenbéiig the shell structure, the
one-particle level density may vary much more rapidly amelgularly than for a Fermi
gas, and it may be important to improve on the present apmiation.



130

3. The use of the saddle-point approximation in evaluatiegnverse Laplace transfom
4.78. The accuracy of this approximation may be estimataah the magnitude of the
neglected terms in the expansion of the integrand. Thesestare small provided the
condition 4.86 is fulfilled.

4.5 Distribution of Eigenvalues

Let us start with the distribution of eigenvalues, also mefé to as the density function
or density of states. By the central limit theorem for a systd m particles in a space
consisting of N single-particle states, in the limit>> m, the eigenvalue distribution is
Gaussian for a Hamiltonian with lojw < m)particle ranks. As such limiting conditions
are not always satisfied in realistic situations, but we khba close to fulfill them, and

the eigenvalue distributions are expected to be approrijm&aussian in general.

Given a set of moments defining a distribution that is neady$3ian, a question that
arises is that how to find a way to realize the distributioslfts.e., to reconstruct the
distribution from the given moments. In otherwords, whatshkell be seeking for is to
find a distribution having the same moments as the given genly an incomplete set
of moments is available, there is some ambiguity in recacstrg thr distribution and a
model is required. For a nearly Gaussian distribution thetrdwect method is to use the
Gram-Charlier series [229]. Let us derive the Gram-Chagéries from first principles.
Any arbitrary density functiom(x) can be expanded in terms of polynomial excitations
of a given density)y(x), i.e., in terms of the polynomials that are orthonormglr) as
the weight function as follows.

nw) =) CiHe;(@)m(x) (4.90)

where He;(z) stands for Hermite Polynomials ang(x) is the given weight function.
Multiplying the above equation on both sides witte;(z) and integrating from-oco to
+00, we get

/00 n(x)He;(z)dr = Z /OO C;He;(x)He;(x)no(z)dx (4.91)

(e o]



Now, from the orthogonal property of Hermite polynomialg have
/ He;(z)He;(z)no(z)de = 0;i# j
= ilii=j

Using the egn.(4.92) in eqn.(4.91), we obtain

il x C; = /_OO n(x)He;(z)dx

[e.9]

Also, the explicit form of Hermite polynomials is given by

;12 i, il

Hej(z) = 2" — — 22 + i =6 L. — ...

211 291" T 233"

Therefore, eqn.(4.93) becomes,

L[ i i i—2 it i—4 i i—6
Ci = ﬁ /oo T/(l‘) |:.I’ — ﬁl’ + 222"’[’ — 233'1' =
1, il i
- Mz’_ﬁﬂi72+—22'2!1ui74_"'+"'

For moments about the mean,

Co=1
and
Cl - 0
as can be shown below.
1 [T
Co = 5[ (z=p)n(z)de=1
1 +oo 1
G =3 (@ — p) n(z)ds
1 +oo +o0o
= [ ety / n(z)de
= p—pu
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(4.92)

(4.93)

(4.94)

dx

(4.95)

(4.96)

(4.97)
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If we talk in terms of central moments (moments about aboeitntiean), the eqn.(4.95)
becomes then

L[ Eas
1 oo 2 2<2 B 1) e 0
G = g | [ - wrn@as - 2552 [ - wagas]
L[ [t
=3 { [ - / }
L[ [t
= 5 [/ (;p — d:E — 1}
1
similarly,
1 3(3—-1) 1
C3 = 30 [(MB R /~L1:| = 6#3 (4.100)
1 4(4 —1) 4(4—1)(4—2)(4-3)
Co =g {“4 SRT 22 9] Ho
1
=l =62 +3 (4.101)
, Similarly,
Cs = 120 (ps — 10u3) (4.102)
G = 5 (6 — 1514 + 45415 — 15) (4.103)
; 1
= —(ur—21 1 4.104
Cy 010 (7 s + 105u3) ( )
’ 1
Cs = {3 (M5 — 286 + 21043 — 420415 + 105) (4.105)

Substituting all the values of C’s in eqn.(4.90), we get

1
(,U4 — 6M2 -+ 3)H64[L‘ + ..

1 1
n(z) =no(w) |1+ 2(#2 —1)Hesx + 6,u3H63x + 55
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If n(z) is defined in standard measure, then [228, 229]

= (%) [1 + tusHes(2) + 55 (pa + 3)Heu(2))
na n(@) [1+3,5; S He, i) . (4.107)
C, = (He, (K))".

oz

TN — ~—
I

In the egn.(4.107) the density is for the eigenvalues of agraipr A" and in most of
the casedy = H. Thus, the shape parameters here are the Hermite polyreoniiae
Gram-Charlier expansion truncated to include= k3 and~, = k4 corrections is

=

nac(t) = nal T m

)1+ %H@g(f) +

ks ky }

=

= gl

) _]_ + EH@g(ZIA?) + ﬁH&l(i‘)
— na(@) 1+ %H@,(:&) + %H&l(ﬁ:)] (4.108)

=

= gl

Instead of expanding the density in terms of an asymptotierfassumed to be Gaus-
sian), it is sometimes useful to consider an expansion o¥dhniable following the prici-
ple used in the Edgeworth expansion. This gives the Coristher (CF) expansion
[227, 228] for the density. Including only; and~; corrections, the CF expansion is
[227, 237]

. 1 . : 2 o
er®) = = |10 - e+ 02 )
1L/ m,. Y2 . N T 2\
X 6$p{—§(!E—E(:ﬁ_l)—ﬁ(x3—3$)+§(4x3_7$)
(4.109)

The truncation of ED, GC, or CF expansions to a finite numbdeohs of correction
terms commonly that include, and~, may give rise to the negative density distribu-
tion particularly in the distribution tail, which is very partant for example for locating
the locating the ground-state. This problem is avoided hyitmaing of space which
also generates new information about partitioning symynétxperience indicates thatthe
partitioning is needed, if the ground state is 3.6r more below the centroid which cor-



134

responds to a dimensionality of few thousand. The same @mgldbut less severe arises
may arises with partitioning. It is to be mentioned here Far $ake of completeness that
the domain of validity i.e., giving positive densities fdrthe values of the variable.

4.6 Distribution Of Expectation values

Besides eigenvalue study, it is also of considerable iatéoestudy the distribution of the
expectation valuec E|O|E > of an operatop). In addition to the familiar electromag-
netic moments of a nucleus, sum-rule quantities are alsmpbes of expectation values.
In otherwords, fluctuation free expectation valuééE) = < K > of an operator
K in the H eigenstates are encountered for example in caicglaccupation probabili-
ties, electromagnetic moments, in the study of symmetWédsefe K might a function of
Casimir operators), in calculating spin cut-off factorslatecomposition of state densi-
ties, in evaluating strength sums for excitations, for eplenGamow Teller (GT) strength
sums that are important in beta decay rates calculations@ot. The most commonly
encountered situation is when it is required to calculagesttpectation value of Hamilto-
nian in the eigenstates of another operator, and the case waither of the two operators
is the Hamiltonian.

The non-energy weighted sum rule quantity(E) is the sum of excitation strengths
R(E', E) defined byR(F',E) = | < E'|O|E > |* = < E|OY|E' >< E'|O|E > from
a given state at energy at E to all final stai$sand can be written in the form

Go(E)=)_ <E|OYE' >< F|O|E> = <E|O'O|E > (4.110)
E/

where in obtaining the final result closure relation is us8thce summation is over the
final states(zo (F) depends only on the energy E of the initial state. In genthralenergy
weighted sum rule of order p is defined as

Gy(E)=> E"R(E',E)=>» <E|O'H’|EF' >< E'|O|E> = <E|O'H"O|E >
E’ E'

(4.111)
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The linear and quadratic energy-weighted sum rules are ts common ones encoun-
tered in nuclear physics applications. For the sake of saitylwe shall use the notation

K(E)= < E|K|E > (4.112)

for the expectation value of an operafdras a function of energy. For static moments, for
example K is the electromagnetic multipole operator while for the suife quantities,
K = OO for Gy(E), andK = OTH?O for G,(E). In order to take the advantage of
the statistical spectroscopy approach, it is necessarypiess eqns.(4.110) and (4.111)
in terms of traces. For the sake of convenience, we shall msé®f the average traces,
traces divided by the number of states in the space. To diggh between the two quanti-
ties, we shall usec< O >> for the trace of an operatar, and< O > =1 << 0 >>
for the average trace. The traceddf/ — £) is the number of states per unit energy inter-
val atenergy Ex< 0(H — F) >>= I(E) wherd (F) = dp(z) and is in general different
from unity. The delta function can be expanded in terms dfagonal polynomial®, ()
in the form .

0(x —y) = plx) Y Pu(@)Pu(y) (4.113)

pu=0

Where the polynomial®,(x) satisfy the relation

+o0o
/ P,(z)P,(y)p(z)dx = 0, (4.114)
Where the density functiop(z) is used as the weight function. When the dengity) is
Gaussian, we have

P,(x) 229, iHeM(g;) (4.115)

Vil
as can be seen by comparing egns.(4.92) and (4.114).

A polynomial of ordery is a power series of the argument upto a maximuntf the
momentsM,, of p(z) are known upto orde?., we can find all the polynomialB, (x)
upto orderu. Let us first illustrate how the polynomials are obtained loyking out the
explicitly the lowest few orders. since tli¢(x) are normalized according to eqn.(4.114).

Py(z) =1 (4.116)
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Next we can findP; () using the orthogonality condition (4.114)
“+oo +00
/ P (2)Py(y)p(z)de = 0,/ Py ()P (z)p(x)dx =1 (4.117)

[e.e] —0o0

Sincep(z) is centered, zp(x) = 0, and we obtain
P (z)=x (4.118)
The second-order polynomial has the form
Py(z) = a + br + cx? (4.119)

where a, b, and c are the coefficients to be determined by esjing4.114). The orthog-
onality to Py(x) yields

400
/ Py(x)Py(z)p(x)dx = a+ bM; + cMy = a+ ¢ =0, (4.120)

o0

and with P, (z)

+oo
/ Py(z)Pi(x)p(x)dz = aMy + DMy + cM3 = b+ cMsj (4.121)
the egns.(4.120) and (4.121) provide two of the three egustiequired to determine the
three unknown coefficients. The third equation comes froemttrmalization ofP(z),

+o0
/ (a+br +cx?)?p(z)dr = a* +2abM; + (b* + 2ac) My + 2beMs + 2 M,

[e.9]

= a®+ (b* + 2ac) + 2beMz + My =1 (4.122)

from above eqn.(4.122), we see that the moments upftg are needed to determine

P,(x). In general, we can express a polynomial of arbitrary ondéhé form of a deter-
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minant [229]

LM M .. M,
My My My . Mo
DDy 1| 2 Py(x)=| & i i o
Mot My Myst ... Moy

1 x x2 T

whereD,, is the same determinant as on the right side of the equatimepéxhat the last
row is replaced by M,,, M, 1, ..., My,).

Using eqn.(4.113) we can now exprés§E) in terms of traces. Starting from egn.(4.112),
we have

K(E) = ﬁ ; <WI|K§(H — E)|W >= ﬁ << K§(H - E) >> (4.123)

With the help of eqn.(4.113), the delta function is replalbgdn orthogonal expansion,

K(E) = éz << KP,H)>>P,(E)=>_ <KP,(H)>P,(E) (4.124)

In the last step, we have absorbed the dimension d by replélecetrace of an average,
and it is understood that both H and E are measured in theafritand with the origin at
the distribution centroid. It perhaps becomes easier torsenplications of eqn.(4.123)
by writing out the first few terms explicitly,

K(E)=<K >+ < KH > E+ < KPy(H) > P,(E) + ... (4.125)

The first term is the average of the operator over the entaeespnd it is the best possible
estimate for the expectation value &f for an arbitrary energy E unless one has some
further knowledge of the distribution. An improved valuendae obtained by adding a
linear energy independence if the correlatiorofvith H is known. If K is only weakly
correlated with H, we do not expe(ﬁf(E) to vary appreciably with E. On the other
hand, if< KH > is negative, we expect an increase[b(E) at low energies (below
the centroid) over and abovE with a corresponding decrease at higher energy side.
Conversely, a positive correlation betwerand H moves the strength from low to high
energy regions. The quadratic energy dependence is cedtarthe third term in the
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form of second-order polynomidh(E), and the more complicated energy dependences
are provided by the higher-order correlations in the subbsegterms. The use of an
orthogonal polynomial expansion normalized with the digndistribution as the weight
function ensures that the expansion is rapidly convergent.

4.7 Distribution Of Excitation Strengths

The excitation strengtR(E, E’), is a function of both starting energy E and the final state
energyE’ and hence its distribution is a two-dimensional one in thealées E andr’.
However, here our interest lies only in the smooth variatbthe distribution with the
state-to-state fluctuations removed, for example, by aingnor local average.
In addition to the dependence Bf E, £') itself on the averages, the number of states I(E)
in the initial space, and (£"), also changes with energy because of variations in the state
densities. Hence the strength function, the total strengghsured between two given
energy intervals,

S(E',E)=I1(E)I'(E")R(E', F) (4.126)

varies with the energies in a way that is in general diffefemhR(E’, F).

Given the density distributions, the conversion betwBéh’, £') andS(E’, E) is straight-
forward. However, in statistical spectroscoByFE’, F) is the quantity that is calculated
andS(E', E) is obtained from it via eqn.(4.126). There is occasionafesion between
the two quantities sinc8(E’, E) is the quantity usually measured in experiments.
Since it depends on both E aid, the distribution ofR(£’, E') requires a double orthog-
onal polynomial expansion, one in E and ondin We can take the same approach as for
the expectation value by using eqn.(4.113). However, befarrying out the expansion,
we must first express the square of a matrix element as antetijpecvalue, again by the
use of a delta function,

R(E'.E) = < E|O|E' >< F'|O|E >

1 A R
= ——= ) < E|O(H - E"|W ><W|O|E >
I'(E") 4=
1 A R
— < E|O'6(H — E")O|E > (4.127)

I'(E")
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The expectation value can be transformed, in turn, into @twith the help of second
delta function, and then into a polynomial series in the seagas in eqn.(4.123).

R(E',E) = m << O'6(H — E"YOS(H — E) >>

1 3t p? 9 Il
= =) << O'F,(H)OP,(H) >> F,(E')P,(E)
puv

= =3 < O'RLHOP,(H) > FL(E) P, (F) (4.128)

WhereP,(F) is the polynomial of order defined in the E space, aigl(E’) is defined

in the £’ space.

The first term in eqn.(4.128) is O'O >, the average strength in the space. The linear
energy dependences ©fandO" with the Hamiltonian< O'HO > E/, < O'1OH > E,
and< O'HOH > EE'. Let us examine one of these coefficients in more detail, for
example< OTHOH >. The average trace is taken over the product of four opexam

the extreme right, we have the Hamiltonian acting in the pabs containing the initial
state. The intermediate states generated by the actiomsdfifmiltonian remain, in gen-
eral, in the same space, the E space in this case. The efféus ¢, therefore, provides
the mutual interference between a pair of states in thdarggespace. The excitation oper-
atorO to its left takes the system into the final Bf space and the second H supplies the
interaction between a pair of states in the final space béfoterings the system back to
the starting space. More complicated interplays betweennitial and final spaces are
described by the high-order polynomial terms. Again we ekfiet the action of the first
few terms in eqn.(4.128) contains enough mutual influenedwden the operators and
spaces to give an adequate descriptioRQE’, F).

4.8 Conclusions

By examining the typical spectrum spectrum of a heavy nigléne fact that comes to the
surface is that this complex spectrum may be broadly classifito four distinct regions:

D; (ground-state domain) which begins at the groun-state doarad extends upto 2
MeV excitation energy( D) close-lying bound states in the excitation energy range of
approximately (2-6) MeV;, slow neutron resonances in thegne&indow (6-6.002)MeV;
(D,) overlapping levels for excitation energies greater th&@9%.MeV. The character-
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istic nature of the different regions has largely defineddhantities of interest. In the
ground-state domain, there is a little interest in averagpgrties such as level densities,
because of the detailed knowledge of the Hamiltonian avi@laThe study of average
and fluctuations around them is of major interest at the pattireshold energy energy
and higher excitation energies. Further, the mathemadigpioaches and the underly-
ing assumptions vary greatly from region to region. For epl@ywe go from a detailed
Hamiltonian inDy, to random matrices i®s, to using single-particle energies in, and
the interesting feature is that there has been a little apdrétween the assumptions made
and the methods used in the various regions.

Statistical spectroscopy, based on statistical laws [bp&}ating in model spaces, uni-
fies the very different approaches used in the ground-statdniggher energy region and
makes clear the connection between the domains arisingthrereffective nuclear inter-
action. It works in the model spaces of conventional spectpy and is not constrained
by the dimensionality of theses spaces because it does alowvidk the construction and
diagonalization of Hamiltonian matrices. Further, theistizal methods are applicable
in wide range of circumstances and the main aim of statissigactroscopy is to deal
with the general features of complex nuclei keeping in mirat the statistical behaviour
observed at high excitations extends right down to the giteatate domain. The origins
of statistical nuclear theory can perhaps be traced badket®@éthe [232] derivation of
level density and his calculations were based on statistieahanics of essentially non-
interacting particles (NIP) in an unbound single-partspectrum.

The starting point in statistical spectroscopy is the dgfistates( F) arising from a
Hamiltonian H acting in a spectroscopic space of m-pagi@teicleons) distributed in N
single-particle states. This density may be regarded apased of two distinct parts: an
average or smooth density and fluctuations around this geerBhe exact density may
be written as

P(E) = pu(E) + ps (E) (4.129)

wherep,(E) andpy(E) refer to the smooth and fluctuation parts respectively. Tasido
questions that arise are: (i) Is there a clear separationdeet the average behaviour and
fluctuation? this separation would allow treating the twempdmena by different meth-
ods, spectral distributions for the average behaviour b@dandom matrix ensembles for
the fluctuations. (ii) What is the nature and magnitude oftélatons? The magnitude
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provides an estimate of the irreducible errors (limitasipmplicit in spectral distribu-
tions and the nature of the fluctuations is linked to the arhofimformation carried by
them. Other important questions that arise are: (i) how da#iculated measures used to
define fluctuations agree with the experiment, (ii) are thetdlations universal and if so
what is the origin of the universality, (iii) what mechansffect fluctuations and what
limits may be imposed by agreement with tha data?.

The separation of information into two distinct parts i.@erages and fluctuations
provides a physical basis for statistical spectroscopynitefiquantum systems with in-
teractions such as nuclei, atoms and molecules. The deogwises due to the actions
of central limit theorems. It has been well established ®)8]1hat the eigenvalue den-
sity generated by a two-body Hamiltonian in a many-body sggts smoother as more
particles are added to the system and converges to a Gaukstidbution. The density
is then describable in terms of low-order moments of the Htaman, defined by traces
of powers of H, and all information contained in higher-ardeoments, being of little
importance is washed away by the CLT. This CLT smoothingtionaloes not affect the
spectral fluctuations when renormalized according to tlealldensity since as particle
number increases, the local spacing must rapidly decrease.

If we represent the exact density in terms of excitationt lypon a specific shape, a
normal decomposition, a sharp separation implies thatenpthwer spectrum, we have
(i) a few excitations with wavelengths comparable to thecspen span that care of the
secular variation, (ii) no excitations of intermediate ef@ngths because of CLT and (iii)
short wavelength excitations of the order of the mean spgaeisponsible for fluctuations.
This is indeed seen in seen shell model examples [217, 2, &88]in random matrix
ensembles, generated by random two-body interactionsnémy particle (fermions or
bosons) systems [234, 235, 233]. The first attempt demdadimgithe average-fluctuation
separation is due to [236].

As far as fluctuations are concerned, these deal with theatiens from local uni-
formity. The modelling of fluctuations by GOE of random meds was introduced by
Wigner [50, 1] has been very successful (along with GUE an&)G$he aim is not to
calculate individual fluctuations but to understand theegahnature of the fluctuation
patterns and to calculate physically relevant statistieasares such as spacing distribu-
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tion, number variances, spectral correlation functions et

The theoretical framework for studying fluctuations is pded by random matrix the-
ory through the appropriate ensembles introduced by Wigndrothers and the fluctua-
tion measures are derived from the set of k-order correldtiactions by averaging over
the Hamiltonian ensemble [238, 239]. These ensembles lesare $hown to have proper
ergodic behaviour [240] so that the results of the ensemigeaging apply to individual
spectra. The two-point fluctuations [241] are dominated tyrtsrange Von-Neumann
Wigner level repulsion [242] and Dyson-Mehta long-rangdeor[243]. Similarly, the
strength fluctuations follow the Porter-Thomas distribntj244]. The best experimental
evidences of GOE fluctuations has been provided by nuclear@esed on slow neutron
resonances in heavy nuclei and proton resonances in indetaauclei [245, 246, 247].
The essential requirement of the theory is to have a compédtef levels with the same
gquantum numbers (spin, parity etc.) thereby ensurung lieaetare no missing or spuri-
ous (those having different quantum numbers) levels. bylaoimg all the available high
guality into a nuclear data ensemble (NDE) and introduciewy spectral measures, Haq,
Pandey and Bohigas [248], Bohigas, Haq and Pandey [249, P&0Ibardi, Bohigas and
Seligman [251] have found remarkably close agreement legtwlee predictions of ran-
dom matrix theory and experiment confirming Wigner’s sugigeshat, “ the Hamilto-
nian which governs the behaviour of a complicated systemmas@om symmetric matrix
with no particular properties except for its symmetric matu

The evidences of GOE fluctuations came also from a varietyuahtym systems and
beyond [252, 253] and same fluctuations are found in shellaingplectra and also in
many EGOE spectra. However, there are open questions disofltictuation properties
and ergodicity of EGOESs [254] and in fact a major gap is thatio-point function is not
yet available even for EGOE(2) for spinless fermion systgig, 279, 255, 256]. His-
torically during and after the Albany conference (1971)¢heas a confusion regarding
the possibility of distinguishing between GOE and TBRE tlgio the study of spacing
distributions based on some preliminary work. Howevery\son it was established
[257, 274] that both GOE and TBRE essentially give the samaeisg distributions and
are not dependent on the rank of the interaction. Furthem# shown by Pandey [258]
that how the perturbation of non-random matrix correspogt a given Hamiltonian by
a random GOE matrix leads quickly to the GOE fluctuationsabgiestablishing the fact
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the fluctuations are unaffected by the specific featureseoH@imiltonian. Also there are
evidences that the two-body ensembles in general contzah ®OE structure giving rise
to GOE fluctuations [259, 260].

Fluctuations patterns are stable under a wide class of esanghe system’s hamil-
tonian and only under the gradual breaking of a good symntbe&y change from one
pattern to another. One of the interesting problems is thatdeen addressed [261, 262,
263, 264] is the breaking of time-reversal invariance unddach GOE changes to a more
rigid GUE, the model for time-reversal non-invaraince (TIRN'he problem then is to
determine from data a value or an upper bound to the TRNI pneheicleon interaction.
The first step of this problem involves the calculation of GOESUE transition curve
and thereby determining the RMS value of the symmetry brepklement in the com-
plex system and the final step involves the determining thgnmade V (TRNI) part of
the nucleon-nucleon interaction. A similar study has beserned out for parity breaking
by [265].

The fact that such a wide variety of systems as discussedovegtaragraphs shows
the same fluctuation patterns as those of a parameter freg/thed points towards the
existence of a universal law. The belief in the universalitysOE fluctuations has been
strengthened by the connection between chaos in clasgstahss and fluctuations prop-
erties of their guantum analogues. This led Bohigas, Gianand Schmidt [4] to con-
jecture that, “ the fluctuation properties of a generic quansystem with (without) time-
reversal symmetry, which in the classical limit are fullyaotic, coincide with those of
GOE(GUE). This link between the fluctuations and chaos hadged a much deeper un-
derstanding of the fluctuations especially for the nucl@é$] 267, 268] and has also lead
to a study of of relationship between chaos and statistpedtsoscopy [39, 269, 7]. Para-
phrasing, Papenbrock and Weidenmuller [281] chaos in guastystems implies if the
statistical properties of the eigenvalue spectrum comerdh the predictions of random
matrx theory and is a typical feature of atomic nuclei anceoself-bound Fermi sys-
tems. Similarly Berry and Tabor [5] conjectured that, widrtain exceptions completely
integrable systems should lead to Poisson fluctuationshndme much larger than GOE
fluctuations. All this is well summarized by Altshhuler irathbstract of colloquium he
gave in the memory of J. B. French in Rochester 2004: Cldsyremical systems can
be separated into two classes- integrable and chaoticutortgm systems this distinction
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manifests itself, e.g., in spectral statistics. Roughlgadqing integrability leads to Pois-
son distribution for the energies while chaos implies WigDgson statistics of levels,
which are the charateristic for the ensemble of random woesri.. the onset of chaotic
behaviour for rather a broad class of systems can be unddrata delocalization in the
space of quantum numbers that characterize the origiregable system.
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Chapter 5
Summary

As far as quantum chaos is concerned, there is no generatrsuns on its definition.
The question that arises then is how to identify signatufesiantum chaos. The various
signatures of quantum chaos that had been identified areptwtral properties of the
generating Hamiltonian [4], phase space scarring [18].emsgnsitivity to perturbation
[19] and fidelity decay [20] which indicate the chaos in cepending classical systems.
Recent studies have shown that entanglement in chaotiersgss a signature of quan-
tum chaos by demonstrating that it can serve as a good indif@atthe transition from
regular to chaotic regimes [21, 22, 23, 24, 25, 26, 27, 2830931, 32, 33]. A different
phenomenon characteristic of quantum chaos and withowssichl counterpart is the
dynamical localization of wavefunctions. In chaotic quantsystems, driven by an ex-
ternal dependent force, the wavepacket spreads diffysivehomentum space only upto
a characteristic time, and then stops spreading. This l@ivag completely different in
classical physics, since the occupation probability ingetepace, characterizing the state
of the classical analogue, spreads for ever diffusivel@]2Dynamical localizations also
affects the statistical properties of energy levels. ThelRivedictions depend only on the
system symmetries and not on the specific nature of the systédynamic localization
leads to spectral statistics that depend on the degreeafdation and not on the system
symmetries [130]. Therefore, dynamical localization adiices non-universal features
and a more complex scenario than predicted by RMT.

The atomic nucleus is a paradigmatic system to study mady-bleaos and RMT has
proven to be a very valuable tool in understanding the varampects of nuclear physics.

147



148

In 1984 BGS proposed the conjecture that links quantum cteaBMMT spectral fluctu-
ations and this discovery boosted a lot of experimental &edretical research on the
statistical properties of energy levels and wave functiorgguiantum systems, and in par-
ticular in complex many-body quantum systems. Random witeiory has been applied
to a huge number of fields with considerable success as beddri chapter 1 by means
of a figure. As far as physics is concerned, and in particalaruclear physics, it has
produced results and inferences that are quite consisiémthve predictions from shell
model calculations. In the first chapter of this dissertatiee random matrix theory with
its intimate relations with other branches of science anghmicular, nuclear physics has
been discussed at length. The main motivation behind thedattion of random matrix
theory in nuclear physics by Wigner in 1955 was to get an wstdeding about level and
strength fluctuations. Another apparent reason for the UR&d in nuclear physics one
can cite, is that at higher excitation energies the levekiigiecomes very high as is
clear from equation (1) so that by the time one reaches, famgike, at neutron threshold,
E ~ 6 MeV the nuclear models fail to provide finer details abowt ithdividual states
of a quantum many-body system like atomic nuclei. Paraphga#/igner, the assump-
tion made while applying random matrix theory to nuclearsty is that Hamiltonians
which govern the behaviour of a complicated system is a nansymetric matrix with
no particular properties except for its symmetric naturée Tripartite classification of
random matrix ensembles i.e., GOE, GUE and GSE given by Digawea been discussed
in the same unit along with their domain of applicabilityt#dugh the GOE which corre-
sponds to an ensemble of asymptotically large real symoyagiirices apart from having
rotational and time-reversal invarince with no other spedeatures, it describes simul-
taneous interactions between all particles because oftaistecal independence of the
matrix elements which is not physically significant as &adihamiltonians are, in gen-
eral, two-body in nature. In order to keep the generality @E>and to conform to
reasonable Hamiltonians, such as those used in shell maldelations, on the other, sta-
tistical extensions of the shell model has been proposed.drawback of GOE provided
a guiding clue and hence, necessitated the formulation beeded ensembles. A ma-
trix ensemble of random two-body Hamiltonians, with shetidal angular momentum
J (and isospin T) symmetry, called as two-body random enkemas first introduced
by French and Wong [271, 272] and Bohigas and Flores [273]. ZTHese embedded
ensembles are defined by representing the two-particle lktamain by one of the three
classical ensembles and then the many-particle Hamiltdiria>> 2) is generated by ex-
ploiting the direct product structure of the m-particlelyditt space. As a random matrix
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ensemble in the two-particle spaces is embedded in the panigle Hamiltonian, that
is why the name embedded ensembles. With GOE embedded in tieyrare called as
EGOEs. The distinguishing features of embedded ensembiepared to GOE are that
it doesnot share any of the properties of GOE i.e., neither ithivariant under unitary
transformations, nor ergodic. Till date, it is also not cledether it is universal or not
i.e., the TBRE yields results that does not depend on there$Guassian distribution of
matrix elements, and how the non-Gaussian distribution of matrix elemeng®iag to
affect the spectral fluctuation properties of TBRE. The $enatricesC),, (J, «) is fixed
and under unitary transformation generate another repiasen rather than generating
another memeber of the ensemble thereby making TBRE natiamtaunder unitary or
orthogonal transformation, which further adds to the matical complexity of TBRE.
In case of EGOE the correlations between between many ledtiomatrix elements are
responsible for generating results different from GOE.deecof EGOE the correlations
between between many particle ‘H’ matrix elements are nesipée for generating results
different from GOE. The ‘H’ operators can have a wide vargdtgymmetries such as spin
(s), spin-isospin SU(4), parityr) etc for fermion systems or the fermions can be spinless.
These give, EGOE(2), EGOE&; EGOE(2)-SU(4), EGOE(2)7) and so on. Similarly,
for boson systems it is possible that ‘H’ operator carry Fr¢as in proton-neutron IBM)
or spin 1 (as spin T =1 in IBM-3 Model) degree of freedom or thedns can be spinless.
Then, we have BEGOE(2), BEGOE(2)-F and BEGOE(2)-S1 ensssniihere ‘B’ stands
for boson. However, in reality in addition to two-body irdetions, realistic systems also
have a mean-field one-body part in the Hamiltonian, so th@t+ 2) = h(1) + AV (2)
whereh(1) is the one-body part, which is defined by single particle giesrand V(2) is
the two-body part. It is assumed that V(2) in particle spasaspresented by GOE (it
is also possible to consider GUE representation and thenawe BGUE and similarly
EGSE) with matrix element variance unity, which is 2 for diagl matrix elementsi

is the strength of interaction in terms Af and it is set equal to 1, without loss of gen-
erality. With H(1+2), we have EGOE( 1+ 2), EGOE( 1+ 2)-s etw] ¢hese are one plus
two-body embedded random matrix ensembles. By denotingatfie of interaction by
k, in am m-particle space for spinless fermion systems, we I&OE for m = k and the
embedded GOE, EGOE(K) for >> k [275]. For k = 2,m >> 2 and H preserving the
shell model J symmetry we have TBRE or EGOE(2)-J and the dnisesweraged level
density for GOE is semi-circular while for TBRE or EGOE(2jsitlose to Gaussian. The
reasons which have to do with the rank of the Hamiltonian figuarticles GOE implies
that the rank of H is m) have been established in [276, 277,2794. The transition from
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semi-circle to Gaussian has been studied in great detail doy &hd french [278] and by
Benet, Rupp and Weidenmuller [279, 280]. The Mon and Fre@@B][method is based
on evaluating the ensemble averaged moments of the Hamittamthe two limits m =
k andm >> k. By choosing matrix elements from a zero-centered didiobyall odd
moments vanish. For even-order moments, the binary (pae)veorrelations dominate,
higher order correlations being smaller by a facjtprwhere N is the number of single-
particle states, and go to zero in the limit — oco. The binary correlations are of two
kinds, linked and unlinked. For. >> k all terms contribute while for m = k, the linked
correlations goes to zero. this then gives either momenégs@aussian or a semicircle.
Going beyond this , Benet, Rupp and Weidenmuller [280] paddvat the semi-circle to
Gaussian transition point is m = 2k.

EGOEs with group symmetries provide a complete statistieakription, including
both spectral averages and fluctuations, of interactintefmiany particle systems such
as nuclei. However, GOE is sufficient if the point of focusdedl fluctuations in a given
spectrum. The EGOEs generate forms for spectral distabstior various observables
such as density of states, occupancies, transition strengfrength sums and so on, al-
though we need to apply corrections to the EGOE forms. Magerifsitantly, EGOEs
generate correlations between many particle states wifiereint quantum numbers in-
cluding particle number ( spectra of different nuclei anavih different J or JT values)
and these cross-correlations will be zero in a GOE desong#81, 282, 283, 284, 285].
Experimental tests of this feature are yet not availableaaddtailed account of EGOEs
with group symmetries is given [2, 7, 286, 282, 287].

Study of chaos measures like number of principal comporarddocalization length
in wave-functions and transition strengths has lead to stlmiirspectroscopic activity in
nuclear statistical spectroscopy. They measure the fratatien of transition strengths
and are reliable measures of chaos and complexity in themysAn attempt is made
in chapter 3 to rederive the formulae for NPC and informagatropy in wavefunctions
and transition strengths. The re-derivation of these nreasavolves the following steps:
() The EGOE exhibits average-fluctuation separation (Vtile communication between
the two) is used. (ii) the second step involves locally remaized amplitudes are Gaus-
sian distributed with zero center and unit variance i.ecalstrength fluctuations follow
Porter-Thomas distribution. Studying these chaos measateansition strengths are of
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more importance as compared in wave-functions becaussttanstrengths are observ-
ables while wave-functions are not. For example, the ptiedis of EGOE for the chaos
and complexity measures, number of principal componentisiacalization length in
transition strengths originating from an eigenstate witbrgy E have been tested sucess-
fully for E, and); transition strengths and shell model results for the 2p&tisiucleus
46\ are used as the example [43]. The shell model results fatredeguadrupole £»),
magnetic dipole §/;), Gamow-Teller strength sums and occupation numbers leddcl
using different valence spaces, when compared to predgfimm EGOE have estab-
lished the fact that transition strength sums can serve awatatistic able to distinguish
between regular and chaotic motion. These studies haveefuconfirmed the fact that
EGOE provides the good description of shell-model stresgths in chaotic domain and
for obtaining these results the study of behaviour of stitesgms from order to chaos
transitions generated by means of a family of Hamiltoni&rs) = A(1) + AV (2), built
from realistic one- and two-body interactions [42]. Thag@#@on strength as a new statis-
tic to measure chaos have been established also from théhéadbr EGOE of random
matrices, the strength sums generated by a transitiontopa@cing on an eigenstate vary
with the excitation energy as the ratio of two Gaussians hiscdjeneral result when com-
pared to exact shell model calculations of Gamow-Tell@rgth sums in nuclei and good
agreement is obtained in the chaotic domain of the spectameh,strong deviations are
observed as nuclear motion approaches a regular regime [41]

There are several open questions and directions for fuasearch as far as quantum
chaos in atomic nuclei is concerned: (i) A deep analyticadlanstanding of TBRE is lack-
ing. The analytical approach should be based on propefitibe enatrices”,,, (J, o) and
theoretical description for shells with several subshsltifficult and focussing on single
j shell might simplify the problem. The TBRE predicts coatgbns between spectra with
different quantum numbers (e.g., different masses, spmispspins) for nuclei within a
major shell. Experimental verification is difficult due tonitations in length and com-
pleteness of observed nuclear spectra, but other Fernaragsnight be more acessible.
(iii) The correlations between spectra with different quam numbers might also affect
the scattering matrix, more precisely, such correlatiorghimnduce among S-matrix el-
ements carrying different total spin quantum numbers.

The major objective to be achieved in future is to invesagatantum chaos using recently
introduced embedded random matrix theory measures faiti@mdensities and this will
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be studied using the simplified particle-rotor model pietand the realistic approach of
projected shell model. Further, the connection betweeatiostal damping and statisti-
cal distributions in high-spin phenomena employing prigdcshell model shall also be
explored.
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