
GEOCHEMISTRY OF THREE KASHMIR 

HIMALAYAN LAKES AND ITS IMPACT ON 

VEGETATION DYNAMICS 

THESIS 

SUBMITTED FOR THE AWARD OF DEGREE OF 

DOCTOR OF PHILOSOPHY (Ph.D) 

IN 

ENVIRONMENTAL SCIENCE 

BY 

Aftab Ahmad Bhat 

 
                   

 

 

FACULTY OF PHYSICAL AND MATERIAL SCIENCES 

P.G. DEPARTMENT OF ENVIRONMENTAL SCIENCE 

UNIVERSITY OF KASHMIR 

SRINAGAR- 190006 

2010 



 

 

      

 

 

 

 

 

 

 

 

d 

 

 

 

 

 

 

This is to certify that the Ph.D. thesis entitled “Geochemistry of Three 

Kashmir Himalayan Lakes and its Impact on Vegetation Dynamics” is an 

original work of Mr. Aftab Ahmad Bhat for the award of the degree of Doctor of 

Philosophy in Environmental Science from University of Kashmir. This study has 

been carried out under our supervision and the same or any part of this thesis has 

not been submitted for this or any other degree so far. 

                   We deem it fit for submission.  

 

 

 

  

            

Tel: (O) 0194-2420078, 2420405,  Ext: (O) 2155 

E- mail: aryousuf1951@gmail.com; aryousuf@kashmiruniversity.ac.in    

     

P. G. Department of Environmental Science 
& 

Centre of Research for Development 

 University of Kashmir 
(NAAC ACCREDITED GRADE ‘A’) 

Hazratbal Srinagar -190006 
 

Date: 31-12-2010 

 

         *****CERTIFICATE***** 

Prof.  A. R. Yousuf 
Supervisor 

(Ex-Dean Academic Affairs/ 

 Ex-Dean Biological Sciences) 

Centre of Research for development/ 

P.G. Deptt. of Environmental Science, 

University of Kashmir, 

Srinagar-190 006. 

Dr. Syed Wajahat Amin Shah 

Co-Supervisor 

Sr. Assistant Professor 

P.G. Deptt. of Chemistry,  

University of Kashmir, 

Srinagar-190 006. 

 
   
 

Prof. Azra N. Kamili 
Head,  

P.G. Deptt. of Environmental Science, 

Director 

Centre of Research for Development 

University of Kashmir, 

Srinagar-190 006. 
   
 

mailto:aryousuf1951@gmail.com
mailto:aryousuf@kashmiruniversity.ac.in


ACKNOWLEDGEMENTS 

“All praise to Almighty Allah 
SAW 

from whom all the blessings come, the most merciful 

and beneficent, the magnificent creator of creations, cherisher and sustainer of the worlds”. 

 I would like to express my deep and sincere gratitude to my mentor and supervisor, 

Prof. A. R. Yousuf, Ph.D., FIFSI, FZSI, FINE, P.G Department of Environmental Science 

and Centre of Research for Development, University of Kashmir, for his enthusiastic 

guidance, kind supervision, continuous encouragement, generous assistance, timely 

cooperation, valuable suggestions and constructive criticism during the course of present 

study. 

I am also deeply grateful to my Co-supervisor, Dr. Syed Wajahat Amin Shah, Ph.D. 

Sr. Assistant professor, Department of Chemistry, University of Kashmir for his 

encouragement, constructive comment, constant guidance and support throughout this work.     

 With immense pleasure I express my deep sense of gratitude to Prof. Azra N. Kamili, 

Head, P.G. Department of Environmental Science and Director, Centre of Research for 

Development, University of Kashmir, for providing laboratory facilities. 

I am grateful to Prof. A. K. Pandit, Prof. G. A. Bhat, Prof. A. M. Shah and Prof. M. 

Z. Chesti, Department of Environmental Science and Centre of Research for Development, 

University of Kashmir for their moral support, valuable suggestions and continuous 

encouragement and friendly behavior throughout my research work.     

     The field work would have been impossible without the untiring help extended by 

Dr. Arshid Jehangir, Dr. Feroz Ahmad and Dr. Dilgeer Mahdi. They had to face harsh 

climatic conditions during the collection of data. I am highly indebted to them for their 

priceless help.   

I would like to put on record my thanks to the scholars of CORD and Environmental 

Science in general and limnology Laboratory in particular namely, Dr. Aasimah Tanveer, 

Dr Sameera Siraj, Ms. Humaira Qadri, Ms. Hina Reyaz, Dr. Humaira Bashir, Dr 

Tehmina Yousuf, Ms. Ufaq Pujabi, Dr. Saheena, Mr. Umar Rashid and Mr. Basharat 

Mushtaq  who rendered full cooperation and support during my research work.    

The successful completion of the research work was possible only because of the active 

cooperation of my friends and colleagues. I am particularly indebted to Dr Sami-ullah Bhat 



Dr. Gh. Hassan Rather, Dr. Hilal Ahmad Lone, Dr. Haroon-ul Rashid, Dr. Irfan Rashid, 

Dr. Qazi Ashiq, Mr. Tahir Hussain Pandit,  Mr. Ajaz Qurashi, Dr. Parvaiz Ahmad, Dr. 

Irfan Ahmad,  Dr. Nakeer  Razaq,  Dr. Shams-U-din Tak, Mr. Bashir Ahamad, Mr. 

Zahoor-Ul-hassan, Mr. Showkat Ahmad, Mr. Javaid Ahmad, Mr. Adil Sofi, Mr. Naseer 

Ahmad, Mr. Ajaz A. Rather and Dr. Musavir for their help and close cooperation. 

I also express my profound gratitude to other teaching, technical and non-teaching 

staff members of CORD/Environmental Science, especially, Mr. K.A. Shah, Ms. Bilquis 

Qadri, Mr. Fida Mohammad, Mr. Javid Ahmad, Miss. Irfana Nabi, Mr. Hashim Jalil 

Chisti, Miss. Sumaira Tayub, Ms. Shazia, Mr. Farooq Ahmad, Mr. Mohd. Yousuf Dar, 

Mr. Manzoor, Mr. Khursheed, Mr. Yasir, Mr. Ghulam Nabi, Ms. Ulfat Shah, Ms. Rifat, 

Ms. Tasleema, Ms. Bilqees and Mr. Nisar Ahmad for their cooperation, whole hearted 

support and timely help.   

The present thesis is based on a part of the data collected for a research project entitled 

“Biodiversity of lake Tso Morari and  lake Tso Khar, Ladakh”  Sanctioned to Prof. A. R. Yousuf by 

Space Application Centre (SAC) ISRO, Ahmadabad. I am highly grateful to the authorities of (SAC) 

Ahmadabad for their help and cooperation; Special thanks are due to Prof J. K. Garg, Dr. T. S. 

Singh, Dr. Ajay and Dr. Dhinwa for their active participation in the field work, encouragement and 

close cooperation. I am also grateful to chief wild life Warden (J&K) and Regional Wildlife Warden, 

Leh for their Cooperation and assistance. 

I am highly thankful to my affectionate and dear Parents who had to bear a lot due to 

my research engagements. Without their encouragement and understanding it would have 

been impossible for me to complete this work. I take this opportunity to record my deep sense 

of appreciation for my brother Mr. Farooq Ahmad Bhat who was always a source of 

inspiration and shouldered all the domestic responsibilities during the course of study. My 

special gratitude is due to my Baijan and Sister for their loving support and encouragement.  

It would not be fair, if I fail to mention the name of my wife Umi Hamaad who has 

been constant source of brainwave, cooperation and encouragement for me. I am highly 

indebted to my young kid namely Hamaad-Ur-Rehman who did not disturb me while I was 

compiling my thesis.       

 

AFTAB AHMAD BHAT        



 

 

 
 

 

Dedicated 

To My 
Dear 

Parents 



CONTENTS 

 

Chapters  Title       Page No. 

Chapter 1  Introduction      1-6  

Chapter 2  Study Area      7-34 

Chapter 3  Review of Literature     35-62 

Chapter 4  Material and Methods     63-80 

  4.1. Physico-chemical analysis of water   63 

   4.1.1 Temperature     63 

   4.1.2 Depth      63 

   4.1.3 Transparency     63-64 

   4.1.4 pH      64 

   4.1.5 Conductivity     64 

   4.1.6 Dissolved Oxygen     64 

   4.1.7 Free carbon dioxide     65 

   4.1.8 Total alkalinity      65 

   4.1.9 Total hardness     66 

   4.1.10 Calcium      66 

   4.1.11 Magnesium     66 

   4.1.12 Sodium      67 

   4.1.13 Potassium     67 

   4.1.14 Chloride      67 

   4.1.15 Nitrate nitrogen      68 

   4.1.16 Ammonical nitrogen    68 

   4.1.17 Total phosphorus     68-69 

   4.1.18 Sulphate      69 

   4.1.19 Dissolved silica     69 

   4.1.20 Total dissolved solids    70 

  4.2 Sediment chemistry     71-75 

   4.2.1 pH      71 

   4.2.2 Conductivity     71 

   4.2.3 Organic carbon and organic matter   72 

   4.2.4 Ammonical nitrogen     72-73 

   4.2.5 Nitrate nitrogen      73 

   4.2.6 Exchangeable phosphorus    73 

   4.2.7 Total phosphorus     74 

   4.2.8 Exchangeable calcium and magnesium  74-75 

   4.2.9 Exchangeable sodium and potassium  75 

  4.3 Aquatic vegetation analysis    76-78  

   4.3.1 Frequency and relative frequency   76 

   4.3.2 Density and relative density   76-77 

   4.3.3 Abundance and relative abundance   77 

   4.3.4 Importance value index    77 

   4.3.5 Species diversity     77-78 



   4.3.6 Species richness/Variety component  78 

   4.3.7 Index of similarity     78 

  4.4 Statistical analysis     79 

Chapter 5  Results       81-218 

 5.1 Physico-chemical features of water    81 

  5.1.1 Tso Morari Lake      81-102 

   5.1.1a  Air and water temperatures   81 

   5.1.1b Depth and transparency    81-82 

   5.1.1c pH      82 

   5.1.1d Conductivity     82-83 

   5.1.1e Dissolved oxygen    83 

   5.1.1f Free Carbon dioxide    83 

   5.1.1g Alkalinity     83-84 

   5.1.1h Total hardness     84 

   5.1.1i Calcium and magnesium    84 

   5.1.1j Sodium and potassium    85 

   5.1.1k Chloride      85 

   5.1.1l Nitrate nitrogen     85-86 

   5.1.1m Ammonical nitrogen    86 

   5.1.1n Total phosphorus     86 

   5.1.1o Sulphate      86-87 

   5.1.1p Dissolved Silica     87 

   5.1.1q Total dissolved solids    87 

    Tables and Figures    88-102 

 5.1.2 Tso Khar Lake       103-124 

   5.1.2a  Air and water temperatures   103 

   5.1.2b Depth and transparency    103 

   5.1.2c pH      104 

   5.1.2d Conductivity     104 

   5.1.2e Dissolved oxygen    104 

   5.1.2f Free Carbon dioxide    104-105 

   5.1.2g Alkalinity     105 

   5.1.2h Total hardness     105 

   5.1.2i Calcium and magnesium    106 

   5.1.2j Sodium and potassium    106 

   5.1.2k Chloride      107 

   5.1.2l Nitrate nitrogen     107   

   5.1.2m Ammonical nitrogen    107 

   5.1.2n Total phosphorus     108 

   5.1.2o Sulphate      108 

   5.1.2p Dissolved Silica     108 

   5.1.2q Total dissolved solids    108-109 

    Tables and Figures    110-124 

 



 5.1.3 Manasbal Lake       125-150 

   5.1.3a  Air and water temperatures   125 

   5.1.3b Depth        125 

   5.1.3c Transparency      126 

   5.1.3d pH       126 

   5.1.3e Conductivity      126-127 

   5.1.3f Dissolved oxygen     127 

   5.1.3g Free Carbon dioxide     127 

   5.1.3h Alkalinity      127-128 

   5.1.3i Total hardness      128 

   5.1.3j Calcium and magnesium     128 

   5.1.3k Sodium and potassium     128-129 

   5.1.3l Chloride       129 

   5.1.3m Nitrate nitrogen     129-130 

   5.1.3n Ammonical nitrogen     130 

   5.1.3o Total phosphorus     130 

   5.1.3p Sulphate      130-131 

   5.1.3q Dissolved silica      131 

5.1.3r Total dissolved solids    131 

    Tables and Figures    132-150 

 5.2 Sediment Chemistry      151-188 

  5.2.1 Tso Morari Lake      151-163 

   5.2.1a pH      151 

   5.2.1b Conductivity     151 

   5.2.1c Organic carbon and organic matter  151-152 

   5.2.1d Ammonical nitrogen    152 

   5.2.1e Nitrate nitrogen     152-153 

   5.2.1f Exchangeable phosphorus    153 

   5.2.1g Total phosphorus     153 

   5.2.1h Exchangeable calcium    153-154  

   5.2.1i Exchangeable magnesium    154 

   5.2.1j Exchangeable sodium    154 

   5.2.1k Exchangeable potassium    154-155 

    Tables and Figures    156-163 

 5.2.2 Tso Khar Lake       164-175 

   5.2.2a pH      164 

   5.2.2b Conductivity     164 

   5.2.2c Organic carbon and organic matter  164-165 

   5.2.2d Ammonical nitrogen    165 

   5.2.2e Nitrate nitrogen     165 

   5.2.2f Exchangeable phosphorus    165-166 

   5.2.2g Total phosphorus     166 

   5.2.2h Exchangeable calcium    166 

   5.2.2i Exchangeable magnesium    166-167 



   5.2.2j Exchangeable sodium    167 

   5.2.2k Exchangeable potassium    167 

    Tables and Figures    168-175 

 5.2.3 Manasbal Lake       176-188 

   5.2.3a pH      176 

   5.2.3b Conductivity     176 

   5.2.3c Organic carbon and organic matter  176-177 

   5.2.3d Ammonical nitrogen    177 

   5.2.3e Nitrate nitrogen     177-178 

   5.2.3f Exchangeable phosphorus    178 

   5.2.3g Total phosphorus     178 

   5.2.3h Exchangeable calcium    178-179 

   5.2.3i Exchangeable magnesium    179 

   5.2.3j Exchangeable sodium    179 

   5.2.3k Exchangeable potassium    180 

    Tables and Figures    181-188 

 5.3 Macrophytes       189-218 

  5.3.1 Tso Morari Lake      189-192 

   5.3.1a Species composition    189   

   5.3.1b Density, frequency and abundance  189-190  

   5.3.1c Importance value index    190 

   5.3.1d Similarity and diversity indices   190 

    Tables      191-192 

 5.3.2 Tso Khar Lake       193-196  

   5.3.2a Species composition    193 

   5.3.2b Density, frequency and abundance  193-194 

   5.3.2c Importance value index    194 

   5.3.2d Similarity and diversity indices   194 

    Tables      194-196 

 5.3.3 Manasbal Lake       197-218 

   5.3.3a Species composition    197-198 

   5.3.3b Density, frequency and abundance  198-199 

   5.3.3c Importance value index    199-200 

   5.3.3d Similarity and diversity indices   200 

    Tables      201-218 

Chapter 6 Discussion       219-244 

 6.1 Water Chemistry       219-231 

 6.2 Sediment Chemistry      231-236 

 6.3 Macrophytes        237-240 

 6.4 Impact of geochemistry on vegetation dynamics    240-244 

   6.4.1 Tso Morari lake      241-242 

   6.4.2 Tso Khar lake      242-243 

   6.4.3 Manasbal lake      243-244 

 



Chapter 7 Conclusion       245-250 

Chapter 8 Summary        251-260 

Chapter 9 References       261-302 

Appendix I     Correlation Tables (I- VI) 

Appendix II   ANOVA Tables (VII- XX)     

 

   



 

 

 

Chapter 1 
 

 

 

 

                  

 

                                                                                                                                                   
 

  

 

 

 

 

 



Chapter 1                                                                                                                             Introduction 

 

 

1 
 

1. INTRODUCTION  

quatic plants, including the macrophytes, are in close contact with the 

environmental conditions of a lake through the root-system as well as 

the shoots/leaves which are surrounded or floating in a dense chemical 

solution compared with terrestrial plants. It is thus expected that aquatic plants 

respond strongly to the particular environmental conditions within a lake. The 

macrophytes act as ecotones horizontally between the land and open waters and 

vertically between sediments and over lying waters (Wang et al., 2007). Thus any 

change in the catchment, water column or sediments is associated with changes in 

aquatic vegetation.  

The eutrophication, acidification, and other water chemistry changes are 

reflected by the changes in species composition and abundance of macrophytes in 

the lakes (Roelofs, 1983; Srivastana et al., 1995; Arts, 2002 Macmets and Friberg, 

2005). The eutrophication of lakes often leads to change in species composition 

due to different nutrient demands and light requirements of the species and is main 

cause of declining of macrophyte cover, number and diversity in lakes and 

wetlands (Moller and Martin, 2007). However, in recent years the decline of 

macrophyte diversity from lakes and wetlands have been attributed to 

physiological stress associated with geochemical changes in sediments and 

overlying water column e.g. ammonium toxicity resulting from high concentration 

of ammonium is believed to be the main factor responsible for decline of 

submerged macrophytes from the lakes and wetlands (Smolders et al., 1996b, 

2000) as it retards the growth of macrophytes by disturbing their nitrogen and 

phosphorous metabolism  (Coa et al., 2004; 2009).  

The excessive use of manures and fertilizers has greatly increased the 

concentration of nitrate in surface waters which in turn hampers the growth of 

macrophytes, reduces macrophyte diversity and evenness (Oertli et al. 2000: 

Boedeltje et al., 2005; Bella et al., 2008). The presence of heavy metals and 

phosphorous in aquatic ecosystems resulting from agricultural runoff, industrial 

A 
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discharge and biological decomposition process has also been related with 

disappearance and recession of macrophytes from lakes (Wang et al., 2009; Radic 

et al., 2010, 11). Similarly, the high concentration of phosphorous has been known 

to cause protein damage, decrease photosynthesis and photorespiration efficiency 

(Wang et al., 2009). For example, the species richness of submerged macrophytes 

in Lake Fure Sø in Denmark has declined from 33 to 10 during the last 100 years 

in response to a 30-fold increase in external phosphorus loading. It is therefore, 

important to relate aquatic macrophytes quantitatively to their environmental 

tolerances so that the effects of environmental changes can be predicted. The 

highest macrophyte diversity is observed in mesotrophic or slightly eutrophic 

ecosystems and lowest is recorded in oligotrophic and eutrophic lakes 

(Vestergaard and Sand-Jensen, 2000; Heegaard et al., 2001; Murphy, 2002). The 

alkalinity and pH of the lakes regulates the species composition and dynamics of 

macrophytes. The species richness increase from acidic, poorly buffered lakes to 

neutral, well buffered lakes (Heegaard et al., 2001).  

Salinity has also been recognized as an important factor determining the 

composition of plant communities (Espinar et al., 2002; Watt et al., 2007). It 

restricts the growth of macrophyte communities and different growth forms have 

different tolerances to salinity. The free floating species are highly sensitive to 

salinity and become chlorotic and subsequently sank to bottom; the submergeds 

are relatively tolerant but fail to grow in salt solution of 6.66% (Haller et al., 1974; 

Van den Brink and Van der Velde, 1993). 

Sediments have a dual importance to the rooted macrophyte species, as a 

source of nutrients and as a means of anchorage within the lakes. Various 

macrophyte species have different, preferences and tolerances for both physical 

conditions and sediment chemistry. The principal influence of sediments upon the 

growth and distribution is due to physical properties of sediments (Sculthorpe, 

1967). The sediment texture effects anchorage (Denny, 1980) and determine the 
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rooting success of macrophytes and resistance to erosion in particular conditions of 

water flow (Haslam, 1978).  

Macrophytic species vary in their responses to sediment conditions (Barko 

and Smart, 1980, 1983; van Wijck et al., 1992; Holmer et al., 2005; Li et al., 

2012), which may influence the species composition of aquatic macrophyte 

communities. The excessive organic matter in sediments often contains high 

concentration of toxic organic acids, and metabolic product which inhibit their 

growth (Mishra, 1938; Barko et al., 1986; Brenda et al., 1993). The succession of 

aquatic plants communities (submerged to floating leaved to emergent) in lakes 

parallels the accumulation of organic matter in lakes and thus contribute to decline 

of submerged species (Wetzel, 1979; Carpenter, 1981). The decline of many 

macrophytes is also associated with increased sulphide concentration in surface 

waters and decreased iron levels in the sediments (van Wijck et al., 1992). The 

sulfate reduction generates the phototoxin, H2S and its subsequent precipitation 

with iron leads to iron deficiency which seriously hampers the growth of 

macrophytes (Smolders and Roelofs, 1993; Smolders et al., 1995). The anaerobic 

sediments provide favourable conditions for generation and accumulation of 

soluble sulfide including S, HS and H2S which are highly toxic to plants and are 

considered to be main cause of disappearance and recession of macrophytes 

(Holmer et al., 2005).  

  Jammu and Kashmir located in the foothills of Himalaya, abounds in fresh 

water natural lakes of varied ecological conditions from subtropical lowland Terai 

to high altitude alpine that have come into existence as a result of various 

geological changes. These water bodies provide an excellent opportunity for 

studying the structure and functional process of an aquatic ecosystem (Zutshi, 

1975; Kaul, 1977; Kaul et al, 1978; Trisal, 1983, Khan, 2000). The high altitude 

lakes are fed by snow-melt, precipitation and springs, whereas lakes of lower 

altitudes receive water from rivers, streams, and springs. Around 44.7% of high 

altitude lakes of India are found in Jammu & Kashmir with 87.2% share of total 
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area (SAC-ISRO, 2011). The Pangong Tso, Tso Morari and Tso Khar are three 

important high altitude (>4500m.a.s.l) saline lakes located in Ladakh region, being 

the only breeding grounds for migratory birds like black-necked crane and bar-

headed goose in India. These habitats have been reported to be devoid of any fish 

species (Bhat et al, 2011). On the Kashmir side high altitude lakes (3000-4000 m) 

like Gangbal, Sheshnag, Tarsar, Marsar, Kausarnag, etc., support some fisheries.  

The relatively low altitude lakes of Kashmir (alt. 1587-1600 m) like Dal, Nageen, 

Wular, Anchar and Manasbal, lying in the flood plain of river Jhelum, have 

luxuriant macrophytic vegetation and support commercial fisheries. 

The increasing anthropogenic pressure in recent years, in and around 

Himalayan aquatic ecosystems including their watersheds has contributed to the 

mineral enrichment of these systems, leading to accelerated eutrophication.  The 

research studies so far carried out in the lakes and wetlands of Kashmir Himalaya 

have covered various aspects of limnology (Zutshi and Khan 1978: Zutshi et al., 

1980; Zutshi and Ticku, 1990;  Zutshi and Yousuf, 2004), plankton and macro-

invertebrates (Pandit, 2002; Qadri and Yousuf, 2004; Reyaz and Yousuf, 2005), 

sediment chemistry (Trisal and Kaul, 1983; Geelani and Shah, 2007) 

environmental change (Gopal and Zutshi, 1998), and macrophytic diversity 

(Pandit, 2001: Rather and Pandit, 2005; Pandit, 2008).The earlier works on aquatic 

vegetation of Kashmir deal with taxonomic considerations (Zutshi and Kaul, 1963, 

Kaul and Zutshi, 1967; Kak, 1990) and production ecology of macrophytes (Kaul 

and Zutshi, 1966; Zutshi and Vass, 1971; Handoo, 1978). Some studies have 

included both the floral composition and water quality (Zuthsi, 1989; Pandit, 1992) 

Studies on seasonal change in physical and chemical parameters of lake waters 

have been useful in categorizing the lakes and their status (Pandit and Yousuf, 

2002). 

A perusal of these studies clearly indicates that not much work has been 

conducted on the limnology of the Ladakh waters and further no study has so far 

been conducted which would give a comparative limnology of Kashmir and 
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Ladakh lakes. The main constraints in this direction have been the extreme 

climatic conditions, formidable topography and high altitude of the area, where 

such lakes occur (Hutchison et al., 1943; Gopal et al., 2002). In the present study, 

therefore, an attempt has been made to investigate the ionic concentration in the 

water and sediments of two high-altitude lakes of Ladakh, i.e., Tso Morari and Tso 

Khar and evaluate the impact of water and sediment chemistry on the dynamics of 

macrophyte population occurring in these systems. An attempt has also been made 

to compare these aquatic systems in respect of water and sediment chemistry and 

macrophyte diversity with a typical valley lake of Kashmir, i.e., Lake Manasbal. 

The data obtained during the study conducted from 2004 to 2006, the observations 

made and the inferences made on the basis of the collected data are described in 

the following pages in the light of the available literature in the field. 
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Fig. 1.1. Map of Jammu and Kashmir showing location of Tso Morari, Tso Khar and Manasbal Lake.  
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2. STUDY AREA 

Jammu and Kashmir is located in the north-western part of the Himalaya 

between the geographical coordinates of 32
o
 15' and 37

o
 05' N latitude and 72

o 
35' and 

80
o
 20' E longitude. Although situated in sub-tropical latitude, but owing to 

orographic features the climate over greater parts of the Jammu and Kashmir State 

resembles to that of temperate latitudes. The climate of the valley has four distinct 

seasons spring (March - May), summer (June - August), autumn (September -

November) and winter (December - February). The precipitation in the valley is in the 

form of rain as well as snow with its highest occurrence in winter and spring season. 

Snowfall is mainly restricted to winter season and is attributed to western depressions, 

while rainfall occurs mainly in spring and summer seasons and is associated with 

western depression and southwest monsoon.     

Ladakh, on the other hand, lying in the high altitude range of North West 

Himalayas forms the cold arid zone of the state. More than 75% of the geographical 

area of the state falls in this zone. Summers in Ladakh are short, although long 

enough to grow crops. Both cold desert of Ladakh and temperate Kashmir valley are 

endowed with a number of water bodies of varied depth and size. While most lakes 

occurring in the valley are shallower, < 15m in depth, in Ladakh several very deep 

water bodies (depth > 50m) are located, containing generally brackish water. Keeping 

in mind variability in depth and salinity it was decided to undertake a comparative 

study of three water bodies of the region, very deep brackish Tso Morari, shallow 

saline Tso Khar, and shallow (<15) fresh water Manasbal lake of Kashmir.  

2.1 Tso Morari Lake 

The Tso Morari Lake, located in Rupshu desert of Changthang region (32° 40'–

33°15' N latitude and 78° 15' –78° 25' E longitude), lies about 220 km southeast of 

Leh at an altitude of 4500m above mean sea level, close to the Indus Suture Zone 
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(ISZ; Dubey and Shukla, 2008).The surface area of the lake is 148.8 sq km with 

maximum depth of 110m near the center. On the north and east sides, the lake is 

bounded by rolling hills of the Tibetan cold desert, whereas the western side is 

bordered by steeper peaks exceeding 5,500m.The Tso Morari is a land locked lake 

and is fed by several springs and glacial streams originating from high mountain 

glaciers. The major tributaries to the lake include the Gyoma in the Northern end 

entering  the lake through pasture land at Peldo Le, Korzuk in the North western side 

and Phersey stream  which flows in southwest  into the lake, creating a wide, sloping 

plain or fan, crisscrossed by small rivulets which eventually drain into the lake.   

The area is characterized by an arid, cold desert climate (Philip and Mazari, 

2000). The summer temperature ranges from 0° to 30°C, falling between -10° and -

40°C in winter (Mishra and Humbert-Droz, 1998). The lake is ice-covered from 

January to March. The mean annual precipitation in the region is about 100mm 

(Wünnemann et al., 2010). Keeping in view the ecological importance of the Lake 

and its surroundings, the Tso Morari was notified in November 2002 under the list of 

Ramsar Wetland sites. Tso Morari is the only breeding ground outside China for one 

of the most endangered crane – Black Necked Crane and the only breeding ground of 

Bar Headed Geese in India.  

 As a closed-basin lake, the only loss of the water is mainly through evaporation 

and seepage. There are no industrial activities or urban development within the Tso 

Morari basin, except for small village at Korzuk. The basin is, however, a popular 

pasturing area for Champa, the local shepherd of Tibetan origin. The wetland provides 

rich pastures for domestic livestock. The marshes and pasturelands around the lake 

are grazed by domestic and nomadic livestock. These high altitude pasturelands of 

Changthang are historically the home of Pashmina goat and main centre for 

production and supply of Pashmina wool from these areas to the Indian plains and 

Kashmir valley. Several species of Ungulates and big herds of Kiang also depend on 
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these pasturelands for grazing. A small portion on the periphery is used by the people 

of Korzok village for agriculture. 

 

Fig. 2.1. Map of Tso Morari lake showing location of study sites 
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2.1.1. Study sites 

 A preliminary survey of the lake was conducted in December 2004 and on the 

basis of habitat structure in the lake seven sampling sites were selected for collecting 

data from the lake and tributaries (Fig. 2.1; Plate 2.1.1, 2.1.2 and 2.1.3).  

Site TM1 

This site was located in the Gyoma stream of the lake about 3.0 km ahead of its 

confluence with the lake at 33º, 04.537' N and 78º, 16.511' E. The stream drains the 

northern catchment of the lake and is used by the Champas (local shepherds of 

Tibetan origin) as a drinking water source for their Cattle. Marmot tunnels are 

common along both the banks of stream. The stream has a rocky bottom.   

Site TM2 

It was located in the lake where the Gyoma stream emptied into the lake at 33º, 

00.584' N and 78º, 15.777' E. The site was relatively shallow due to deposition of silt 

brought by the Gyoma stream from the catchment. The site has a luxuriant growth of 

submerged macrophytes. 

Site TM3 

The site was located about 200m ahead of its confluence with the lake in the 

Korzok stream near Korzok village at 32º, 57.827' N and 78º, 15.554' E. The stream is 

used by the villagers of Korzok as a source of potable water and also for irrigating 

their agricultural fields lying on both the sides of the stream. During summer both the 

banks of the stream near its mouth are used as camping sites for tourists.   
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Site TM4 

The site was located in the littoral zone of the lake near the confluence point of 

Korzok stream on the western side of the lake at 32º, 57.827' N and 78º, 15.554' E. 

The site was shallow with abundant macrophytic vegetation. At this site sediments 

were dark in color with silty texture.        

Site TM5 

It was located towards the western bank about six to seven kilometers from 

Korzok site at 32º, 58.207' N and 78º, 16.977' E. The site was deep with sparse 

vegetation towards the banks. The site has very high slope.  The sediments at this site 

were dark in color with clayey texture. The bottom of this was designated as site 

TM5b.                   

Site TM6 

 The site was located towards the eastern side of the lake at 32º, 55.435' N and 

78º, 21.570' E. TM5. The site is marked by a sudden steep slope having average depth 

of 7 meters. 

Site TM7 

 It was located in the north eastern area of the lake just opposite to site TM2 at 

32º, 00.101' N and 78º, 17.636' E. It was relatively deeper than site TM2. The site was 

infested with very sparse vegetation. The sediments at this site were yellowish and 

sandy in texture.  
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Plate 2.1.1. Location of study sites in Tso Morari lake: a) TM1;  b) TM2; c) TM3 

a) 

c) 

b) 
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Plate 2.1.2. Location of study sites in Tso Morari lake: d) TM4; e) TM5; f) TM6. 

d) 

f) 

e) 
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Plate2.1.3. Location of study sites:-  g) TM7; h) Bar Headed Geese; i) Motor boat 

i) 

h) 

g) 
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 2.2 Tso Khar Lake 

The Tso Khar Lake is located between 32° 40' and 33°15' N latitude and 78° 15' 

and 78° 25' E longitude at an altitude of 4536 meters a.m.s.l, having a surface area of 

16.7 km
2
. It lies between the Zanskar range in the south and Ladakh range in the 

north. The basin is bounded by two longitudinal faults and forms a graben structure 

where the central block has subsided to constitute a basin (Wünnemann et al., 2010). 

Summer temperatures range from 0°C to 30°C, winter temperatures from -5°C to as 

low as -40°C. The Tso Khar is a land locked lake, fed by several glacier streams 

originating from high mountain glaciers. The southern streams are almost dry but 

show well braided stream channel features, while the southern streams are almost 

perennial. The southern streams, however, first enter into the Startspuk Tso where 

from the water is drained into the Tso Khar lake through a meandering channel 6 to 8 

meters in width and 2.5 km long. There are a number of freshwater and hot springs 

within and around the periphery of the lake basin. Geologically the catchment of the 

Tso Khar comprises of Puga formation (Pre Cambrian), Sondu formation (cretaceous 

to Paleocene) and Liyan formation (Miocene). The Puga formation contains mainly 

micrictic limestone and gypsum. 

The basin is a popular seasonal grazing pasture for domestic livestock, mainly 

yaks and horses and pashmina goats for the Champas. The arid steppe vegetation of 

surrounding areas is dominated by species of Astragalus and Caragana. The marshes 

around the larger lake contain areas with extensive deposits of natron, borax, and 

other salts. The basin is surrounded on all sides by peaks rising to over 7000m. Five 

study sites were selected in the fresh and saline water parts of the lake (Fig. 2.2; Plate 

2.2.1 and 2.2.2).  
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Fig. 2.2. Map of Tso Khar lake showing location of study sites 

2.2.1 Study sites 

Site TK1 

The site was located in the northern part of the Tso Khar towards the eastern 

bank at 33º, 17.600' N and 78º, 03.156' E. The site was devoid of vegetation. The 

sediments were dark in colour with clayey texture.   
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Site TK2 

The site was located in the Northern part near Thugji Gompa in the Tso Khar 

village towards the north eastern shore at 33º, 21.467' N and 78º, 01.400' E. The 

catchment area was covered by the green meadows.        

Site TK3 

This site was located in the spring adjacent to salt zone on its north western side 

having coordinates of 33º, 19.500' N and 77º, 55.417' E. The water of the spring is 

used by the people for drinking purposes. The adjacent area is used as camping site by 

the tourists and local shepherds. 

Site TK4 

It was located in the northern part of the Tso Khar on western side at 33º, 

19.450' N and 77º, 57.500' E. The site was devoid of vegetation. The sediments were 

brown in colour with clayey texture.   

Site TK5 

It was located in the fresh water (southern) part of the Tso Khar in front of 

watching tower at 33º, 16.300' N and 78º, and 01.972' E. The site has a luxuriant 

growth of macrophytes. The sediments in this area were brown in colour with loamy 

texture.   
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Plate 2.2.1. Location of study sites in Tso Khar Lake: a) TK1; b) TK2; c) TK4 

a) 

b) 

c) 
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Plate 2.2.2. Location of study sites in Tso Khar Lake: d, e and f) TK5 

d) 

e) 

f) 
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2.3 Manasbal Lake 

Manasbal lake is the deepest freshwater valley lake of Kashmir, having an area 

of 2.8km
2
, situated about 32km northwest of Srinagar city. The lake lies at an altitude 

of about 1584 a.m.s.l. between 34°15'and 34°16.534' N latitude and 74° 40' and 74° 

42.530' E longitude. Almost whole of eastern part of its catchment is a range of very 

high mountains which are mostly rugged and bare with several limestone quarries. On 

the north east there is the drug research form and fisheries farm. On the southern side 

is a low range of hills, extending from the lofty limestone mountain in the east, with a 

conical peak called Ahatang about 1920 a.m.s.l.  

 

Fig 2.3. Map of Manasbal lake showing location different study sites 
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The water of the lake is chiefly derived from springs spread throughout the lake 

bed. The lake is also fed by a small irrigation stream on the eastern side of lake (called 

Lar kull). This cold water stream takes off from Sind nallah and irrigates the field 

throughout its course. A small branch of this stream drains its water into the lake from 

spring to autumn. The lake is connected to river Jhelum by a channel called Nunnyar 

Nallah which is 1.6 km long and leaves the lake on its western side and runs south 

direction to join the river below the village Sumbal. 

2.3.1 Study sites 

On the basis of habitats available in the lake six study sites were selected for 

collection of data (Fig. 2.3; Plate 2.3.1 and 2.3.2). 

Site M1 

The site was located near the inlet of the lake at 34º, 15.279' N and 74º, 

41.352'E. The site has luxuriant growth of submerged macrophytes. The lake shore 

was covered with willow plants. The sediments were brown in colour with silty 

texture.  

Site M2 

This site was located near Koundabal village at 34º, 15.061' N and 74º, 41.057'E. 

The site was used by the local villagers for washing clothes and receives a drain from 

the village. This was most degraded site of lake. The sediments at this site were black 

in colour with clayey texture.      

Site M3 

The site was located in the littoral area near Jarogabal at 34º, 15.040' N and 74º, 

40.385' E. The site was dominated by submerged macrophytes with sparsely 
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distributed emergents like Phragmites and Typa. The sediments were brown in colour 

with silty texture.  

Site M4 

It was located near the outlet of the lake at 34º, 15.268' N and 74, 39.117' E. The 

site was dominated by submerged vegetation with significant population of 

Phragmites australis. The water at this site was clear. The sediments were brown in 

colour and were silty in texture.       

Site M5 

It was located in the centre of the lake at 34º, 14.916' N and 74, 40.015' E. The 

site was without macrophytic vegetation. This was the deepest site of the lake. The 

sediments were black in colour and with clayey in texture. The bottom of this site was 

designated as TM5b. 
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Plate 2.3.1. Location of study sites in Manasbal lake: a) M1; b) M2; c) M3 

 

a) 

c) 

b) 
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Plate 2.3.1. Location of study sites in Manasbal lake: d) M3; e) M4; f) M5 

f) 

e) 

d) 
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3. REVIEW OF LITERATURE 

The abundance and distribution of macrophytes in aquatic habitats are found 

to be influenced by myriad of factors like Depth (Spence, 1982; Anderson and 

Kalff, 1986: Hrivnák et al., 2006), eutrophication (Moyle, 1945; Hutchinson, 

1967; Pip, 1979; Lachavanne,1985 Rossette, 1991; Raven, 1998; Vestergaad and  

Sand–Jenson, 2000; Murphy, 2002; Nurminnen, 2003; Maemets and Freiberg, 

2005), acidification (Roelof, 1983; Arts et al., 1990; Nixdorf et al., 2001; Arts, 

2002) and sediment characteristics (Pearsall,1920, 21; Misra,1938; Denny, 1980; 

Barko and Smart, 1981ab; Anderson and Kalff, 1986;  Koch et at.,1990; Van-

wijck et al.,1992; Smolders et al.,1995; Holmer et al., 2005). However, role of 

geochemistry of lakes in structuring the macrophytic community has received little 

attention from the researchers. Voluminous literature is also available on the 

characteristics of macrophytic vegetation of lakes in Kashmir valley (Zutshi and 

Kaul, 1963; Kaul and Zutshi, 1966; Zutshi, 1968; Kaul and Vass, 1970; Zutshi and 

Vass, 1971; Kaul et al., 1978; Kak, 1978; Handoo, 1978; Zutshi and Wanganeo, 

1979;  Pandit, 1984, 1992,1996; Khan, 2000, 2008; Pandit, 2001, 2002;  Rather 

and Pandit, 2005, 2006; Pandit and Kumar, 2006), there are only few reports from 

lakes of Ladakh (Hutchinson,1933; Hutchinson et al., 1943;  Gopal et al., 2002). 

In the following pages important contribution made by different workers on the 

subject in the last 30 years has been reviewed.  

Rastogi (1976) assessed the geochemical characteristics of Lake Tso Khar in 

the Ladakh Himalayas. He reported that diluted inflowing water gradually gets 

concentrated while moving westwards, however, high calcium content of 

inflowing waters get precipitated immediately after entering the lake. Eugster and 

Jones (1979) found that initial Ca+Mg/HCO3 ratio is a key factor which regulates 

chemical composition of saline lakes. The high Ca+Mg/HCO3 ratio (> 1) in water 

leads to evolution of chloride or sulfato-chloride lakes, whereas low ratio (1<) 

favours the formation of alkaline soda lakes. They reported that saline lakes are 
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depleted in Ca due to precipitation of CaCO3 and enriched in sodium and chloride 

ions because of their conservative nature.   

Wiegleb (1981) found that vegetation samples from Lower Saxony, 

Germany, were more related to the physico-chemical type of the water course 

(acidic or base-rich) than to water quality. 

Carignan (1982) while working on relative importance of roots on 

phosphorus uptake by aquatic macrophytes concluded that plants absorb their 

nutrients from interstitial water which is dependent on the concentration ratios of 

interstitial and overlying water column. Barko and Smart (1983) examined the 

growth of three submerged (M. spicatum, H. verticillata and E.canadesis) and 

three emergents (M. aquaticun, P. nodosus and S.latifolia) macrophytes in 

laboratory conditions on different sediments with varying organic matter. They 

found that growth of all macrophytes species was negatively correlated with 

organic matter. The emergents showed low growth inhibition than submerged due 

to greater root zone oxidizing ability.  

Pokorny et al. (1984) studied the production ecology of Elodea canadensis in 

Czechoslovakia. He observed low values of pH, organic matter, nitrate, phosphate, 

and cations in water as well as in sediments colonized by E. canadensis as 

compared to open waters, however, the concentration of magnesium remain 

unchanged. Pomogyi et al. (1984) studied the nutrient leaching from dead and 

living plants of Ceratophyllum demersum in Hungry and concluded that 

phosphorus leached faster from dead plants than living plants whereas the leaching 

of carbon was equal in dead and living plants. 

Agami et al. (1984) while investigating the seasonal variations in growth 

capacity of Najas marina as function of various water depths at the Yorkon springs 

in Israel reported that light attenuation limited the growth of N. marina in these 

springs. Ozimek and Kowalezewski (1984) observed that eutrophication of Lake 

Mikolajskic in Poland has altered the distribution and frequency of submerged 
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macrophytes. They also found that eutrophication has altered the dominance of 

lake vegetation from Chara to Potamogeton type. 

Toxological effects of NaCl and KCl on Cyprus involucrate was carried out 

by Hockings (1985). The author found that salinities of 50mM, NaCl, and 100mM, 

KCl has negligible effect on the growth, while the salinities of 100mM, NaCl and 

200mM, KCl showed significant symptoms of salt toxicity. The NaCl salinity was 

more damaging than KCl and Cl ion was more toxic to plant growth than K ion. 

Carter et al. (1985) while working on abundance and distribution of 

submerged macrophytes in tidal Potomac River suggested that nutrient enrichment 

and poor light were responsible for disappearance of submerged macrophytes. The 

nutrient dynamics in littoral sediments of lake Memphremagog, Germany 

colonised by Myriophyllum spicatum was carried out by Carignan (1985). He 

observed high concentration of  phosphorus, exchangeable ammonia, calcium and 

potassium in pore water of colonised sediments as compared to un-colonised 

sediments.   

Nichols and Shaw (1986) reviewed the ecological life histories of 

Myriophyllum spicatum, Potamogeton crispus in North America. They observed 

that both the species grow on variety of sediment types; however their best growth 

was noticed on fine sediments with 10-25 % organic matter. They also found that 

both the species have broad range of tolerance to varied water chemistry, but are 

regarded as characteristic species of hard, nutrient rich alkaline waters. Dale 

(1986) studied the depth distribution of aquatic macrophytes in different lakes of 

Ontario, Canada. He observed that under high light penetration, the maximum 

depth at which macrophytes occur is frequently limited by water temperature and 

under optimum temperature conditions plant growth is limited by turbidity, under 

such conditions the area is occupied by those macrophytes (Cerotophyllum 

demersum, chrales and Utricularia) which do not require photosynthetic oxygen 

for root growth.  
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Wilson and Keddy (1986) found that macrophytic species with low 

competition ability were present on nutrient poor sites while as species with high 

competitive ability were found in nutrient rich sites. Anderson and Kalff (1986) 

reported that submerged aquatic plant distribution in lake Memphremagog 

(Canada) was not related to sediment characteristics. However, the authors found 

positive relationship between biomass of macrophytes and sediment characteristics 

and concluded that nutrient shortage prevents the competition and allows the 

coexistence of many species. Barko et al. (1986) reviewed the effect of 

environmental factors on distribution, species composition and productivity of 

submerged macrophyte communities. They found that light was a major factor 

which determines the distribution of macrophytes in the lakes. The reduction in 

light by plankton and suspended material produced the seasonal changes in 

dominance and interspecific competition whereas nutrient limitation was shown to 

decrease the productivity of macrophytes. The study also showed that sediment 

properties have significant effect on macrophytic distribution. Sediment texture 

affect the rooting of plants, low organic matter stimulates the growth whereas high 

concentration of organic matter reduced the growth of plants. High concentration 

of soluble iron, manganese and hydrogen sulphide in sediments was found to be 

toxic and inhibited the growth of macrophytes. 

Barko and Smart (1986) studied the growth of Myriophyllum spicatum and 

Hydrilla verticillata on 40 different sediments from 17 geographically widespread 

North American lakes. The study showed 10 to 20-fold declines in growth with 

increasing sediment organic matter and sand fraction in sediment. The growth 

inhibition of Hydrilla was more than Myriophyllum which indicated its sensitive 

nature. 

De-Decker and Williams (1988) reported that saline lakes of western Victoria 

were oligotrophic on the basis of nitrate-nitrogen, however, on the basis of total 

phosphorus lakes are considered as eutrophic. The authors concluded that saline 

lakes are limited by nitrogen rather than phosphorus. Kipphut (1988) reviewed the 
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role of the metal-rich sediments within Toolik Lake in regulating fluxes of 

phosphate and ammonium to the overlying waters. The oxidizing superficial 

sediments strongly adsorb phosphate and ammonium ions thus reduce the fluxes of 

ammonium and phosphate to overlying waters. 

Barko et al. (1988) reported that Valliseneria out competes Hydrilla at lower 

light intensities and sediment fertility, whereas higher sediment fertility favoured 

Valliseneria over Hydrilla. Zutshi and Waganeo (1989) worked on nutrient 

dynamic and trophic status of valley lakes. They observed that net balance of 

phosphorus and nitrogen was much higher in urban lakes in comparison to rural 

lakes. Kaul et al. (1989) conducted studies on hydrochemistry of three Kashmir 

Himalayan lakes (Khanpur, Trigam and Tilwan). They observed that waters were 

alkaline and calcium rich with varied Ca: Mg ratios ranging from 4:1 (Khanpur) to 

1:1(Trigam). Kovacs et al. (1989) recorded great quantities of organic matter 

deposited in Phragmites reed beds in Lake Balaton and in Lake Velence in 

Hungary. They found that a loose and deep organic matter layer in sediment 

produced permanent anoxic conditions and accumulation of hydrogen sulphide, 

which was injurious to the underwater parts of reeds. The author regarded acetic 

acid as the most harmful fatty acid and suggested that it could be responsible for 

reed death in lakes. 

Kilham (1990) while assessing the mechanism controlling chemical 

composition of African waters found that rock dominance and evaporation-

crystallization are main process controlling chemistry of African waters whereas 

atmospheric precipitation has insignificant effects on water chemistry. Yousuf et 

al. (1990) while comparing the physicochemical parameters of 1976 with 1988 of 

Manasbal Lake concluded that lake is progressing towards eutrophication. Last 

(1990) studied the paleochemistry and paleohydrology of Ceylon Lake in northern 

Great Plains of Canada and found that lake experience significant changes (30 ppt 

to greater than 300 ppt) in annual TDS concentration. The lake also exhibited 
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dramatic fluctuations in ionic ratios on a seasonal basis and changed from Ma-

(Mg)-SO4-HCO3 type in early spring to an Mg-(Na)-Cl-SO4 type by winter. 

Koch et al. (1990) studied the hydrogen sulphide induced growth limitations 

in wetland plants of North America. They observed that H2S suppressed the 

activity of alcohol dehydrogenase in the root cells, which decreased the total 

adenine nucleotide pool (ATP, ADP, AMP), and adenylate energy ratio. The 

author attributed limited growth of macrophytes in H2S sediments to decreased 

energy dependent uptake of ammonia. Grillas (1990) investigated submerged 

macrophyte assemblages in the marshes of the Camargue (France) and found that 

Callitriche sp. Ranunculus sp. and Tolypella sp. dominated communities in 

temporarily flooded oligohaline marshes whereas permanently flooded marshes are 

dominated by Potamogeton sp. and Myriophyllum spicatum.  

Principal determinants of aquatic macrophytic richness in 641 northern 

European lakes were studied by Roselette (1991). He found that meso-eutrophic 

lakes with alkaline pH had higher species richness than oligotrophic and hyper-

eutrophic lakes with low pH. Van Dijk and Vierssen (1991) reported that net 

growth of P. Pectinatus in eutrophic Lake Valwae, Netherlands was completely 

ceased under high levels of shading. Medson et al. (1991) studied the effect of 

Myriophylllum spicatum on native vegetation in lake George in U.S.A. They 

observed that constant expansion of Myriophylllum spicatum from 1987 to 1989 

has  reduced the number of species in  3m
2
 grid in Myriophyllum spicatum beds 

from 20 to 9 in two years,while as average number of species per quadrat 

decreased from 5.5 to 2.2 in the same period. 

Chambers et al. (1992) while working on the temporal and spatial dynamics 

of sediment chemistry of Pembina River, Canada found the highest concentrations 

of exchangeable phosphorus in the finest sediments, and the lowest in sandy 

sediments. Carignan and Neiff (1992) studied the nutrient dynamics in E. cressipes 

meadow in Brazil. They reported that calcium, magnesium and sodium have 

orthograde profiles in the meadow water whereas ammonia, dissolved reactive 
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phosphorus and potassium retained the vertical gradient.  Cornwell and Kipphut 

(1992) studied the biogeochemistry of Mn and Fe rich sediments of Toolik lake, 

Alaska, U.S.A. They found that Mn and Fe geochemistry exerts strong influence 

on the fluxes of phosphate and metals from sediments to overlying waters which 

limit the organic production of lake. Rajmankova (1992) while studying the 

ecology of creeping macrophytes reported that decomposition rates of 

macrophytes are controlled by C: N ratio. He observed that creeping macrophytes 

with low C: N ratio (10:1) decomposes faster than macrophytes with high C: N 

ratio (20:1). 

Stone and English (1993) investigated the geochemical composition of 

suspended and bed sediments of Lake Erie tributaries particles of various sizes. 

They found that total phosphorus concentrations decreased with increasing particle 

size and most of P was associated with iron and aluminium oxides, whereas 

calcium contents showed uniform distribution in all particle sizes. Martinova 

(1993) found that the main phosphorus transformation processes occur in the top 

20-30cm of freshwater sediments and was related to the decomposition of organic 

phosphorus and its subsequent adsorption on sediments.  

The growth and morphology of Potamogeton lucens, Potamogeton 

perfoliatus, Potamogeton nodosus and Ranunculus circinatus were studied in 

relation to salinity by the van den Brink and van der Velde (1993) in lower Rheine 

River in Netherlands. The sodium chloride level of the main channel negatively 

affected biomass production and growth rates for all three Potamogeton species.   

The effects of metabolic product of cellulose bacteria on the Hydrilla verticillata 

were studied by Brenda et al. (1993). They found that the metabolic product was 

inversely related to abundance of H. verticillata. The product was also found have 

inhibitory effect on photosynthesis, distorted chloroplast and increased respiration 

rate. 

Kok and Van der Velde (1994) attributed the limitation of macrophytic 

decomposition to physico-chemical characteristics of water (temperature, pH and 
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redox potential) as well as to the biochemical properties (nutrient and fibre 

content) of decomposing plant material.       

Palmer et al. (1994) summarized species-occurrence data from 1124 water 

bodies in England, Wales, and Scotland, and related species occurrences to 

alkalinity, pH, and conductivity measurements. Gacia et al. (1994) used a 

multivariate ordination analysis to study the relationship between macrophytic 

community composition and environmental factors and found that water chemistry 

(TP, nitrate, and ionic content of water), altitude, vegetation cover of the 

catchment, and nutrient availability are the major environmental factors which 

determine the macrophyte distribution in the Pyrenean lakes. They also observed 

that isoetids were distributed in soft waters oligotrophic lakes while, as potamids 

were found in relatively hard water. Chambers and Prepas (1994) determined the 

impact of effluent loading from sewage treatment plant on sediment chemistry of 

Saskatchewan River, Saskatchewan, Canada. They found effluent loading and 

aquatic macrophytes have caused significant changes in the chemistry of riverbed 

sediments. The high concentrations of pore water and sediment-bound nitrogen 

and phosphorus were observed in vegetated sites. 

Laboratory studies were conducted by Olila and Reddy (1995) to determine 

the pH effect on P fractions and P sorption kinetics in oxidized sediment 

suspensions from two subtropical lakes (Lake Apopka and Lake Okeechobee, 

Florida). They observed that alkaline pH increased the water soluble P 

concentrations in Lake Apopka sediment suspensions but no such effect was seen 

on Lake Okeechobee sediment suspensions and was attributed to adsorption of P to 

poorly crystalline Fe and Al oxyhydroxides at pH < 7.5. Camarero et al. (1995) 

determined the impact of acidification on alpine lakes of Alps in Central, 

Southwest and Southeast Europe. The multivariate analysis revealed that water 

chemistry of lakes was influenced by catchment lithology, biological activity of 

soils in the catchment, and atmospheric deposition.   
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Smolders et al. (1996b) examined the effects of NH4
+ 

on growth, 

accumulation of free amino acids and nutritional status of Stratiotes aloides and 

found that elevated water column NH4
+ 

concentrations and low DO reduced the 

growth and vitality of Stratiotes aloides. The growth inhibition was related to high 

uptake NH4
+
 and its subsequent incorporation in N-rich free amino acids, which 

requires more energy and carbon that cannot be used for growth. Sulfate reduction 

and organic matter decompositon in wetland soils and sediments was investigated 

by Devaid et al. (1996) and observed that sulfate reduction was limited by easily 

decomposible organic matter. Robach et al. (1996) used multivariate analysis to 

study the relationship between vegetation and water chemistry data from the 

Alsace Rhine floodplain and the Northern Vosges, France. The analysis showed 

that the response of macrophyte communities to nutrient enrichment was different 

in acidic and calcareous systems. 

Whitmore et al. (1997) studied the water quality and sediment geochemistry 

of 24 lakes of Yunnan province, china. They observed significant difference in 

water chemistry of deep tectonic origin and shallow solution lakes. The shallow 

lakes had high P and N concentration than deep water lakes and were more 

susceptible to riparian disturbances. The authors attribute high concentrations of 

Ca, Mg and HCO3 in the waters to carbonate geology. Ecology of Charophytes in 

lake Lake Okeechobee, Florida, was carried out by Steinman et al. (1997). The 

regression analysis showed that charophytic biomass was inversely related to water 

depth and positively related to Secchi depth, suggesting that irradiance strongly 

influences Charophytes distribution in this lake. The relationships between plant 

growth and sediments texture was investigated through experiments with 

Myriophyllum spicatum and Potamogeton pectinatus by Wertz and Weisner 

(1997). They found no significant relationship between macrophyte biomass and 

sediment density and texture. Wigand et al. (1997) while assessing the 

influence of submerged macrophytes on sediment biogeochemistry in 

Chesapeake Bay, U.S.A found that deep-rooted Vallisneria  americana  

retained greater amounts of inorganic phosphorus, Mn and Fe in the 
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sediments than Hydrilla  verticallata  and Myriophyllum  spicatum  due 

to higher root oxygenation capabilities.  

Williams et al. (1998) reported that sodium and chloride contribute 93 % and 

97% of total cations and anions respectively to lake Torres (central Australia). The 

ionic sequence of the lake was in the order of that Na > Mg > Ca; Cl > SO4> CO3. 

Torres and Mange (1998) also reported high contents of Na, Mg and K and low 

values of Ca in lake Zirahuan in Mexico. Alceocer and Hammer (1998) studied the 

saline lake ecosystems of Mexico and found that majority of lakes were alkaline 

(pH 8.5-11.5), turbid, rich in sodium chloride and had high conductivity (68-

112.5mS/cm). They also observed that species diversity of macrophytes decreases 

as salinity increased. Herbst (1998) found that hypersalinity (50- 100g/l) reduced 

the benthic nitrogen fixation in Lake Mono (California) which restrained the 

primary production and reduced species diversity. 

Garcia-Ruiz et al. (1998) showed that denitrification rates in 31 rivers in 

north-east England were strongly and positively related to the water content of 

sediments, percentage carbon and nitrogen of the sediments, percentage of 

particles size and river water conductivity, alkalinity and nitrate. House and 

Denison (1998) indicated that spatial differences in sediment chemistry were 

related to differences in sediment particle size. They attributed increase in 

sediment total phosphorus concentrations from winter to summer to phosphorus 

co-precipitation with calcite. Kupper et al. (1998) demonstrated that substitution of
   

Mg
2+ 

in chlorophyll molecules by metal ions such as Cu, Zn, Cd, Hg, Pb or Ni was 

the reason for the collapse of photosynthesis in L. minor and other water plants.  

Temple et al. (1998) assessed the impact of emergent macrophytes 

(Phragmites australis, Lythrum Salicaria and Typha angustifolia) on sediment 

chemistry of a Hudson River marsh ecosystem. They found significant depletion of 

ammonium in the sediments of all the three species from spring to summer 

suggesting that N is the limiting nutrient for these plants. The significant  drop  of  

porewater  N:P  ratio  from spring  to  summer  suggests  that the  plants  or 
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microbes  are  depleting  DIN  faster  than  DIP. Mensing et al. (1998) evaluated 

anthropogenic effects on the biodiversity of riparian wetlands in the United States 

and noticed that shrub vegetation was most influenced by agriculture activities on 

adjacent land. The study also noted that wet meadow vegetation was affected by 

local disturbances and environmental factors such as grazing, nutrient loading and 

pH level. 

Mosello et al. (1999) conducted studies on hydro-chemical evolution of two 

alpine lakes in relation to atmospheric deposition in Italy. He attributed low 

concentration of sulphate in lake waters to reduction of SO2 in acid deposition 

however high deposition rates of ammonium and nitrate raised nitrate 

concentration in lake water. Mosello (1999) reported that snow melt (acid 

deposition) caused sharp decline in pH, alkalinity, calcium and other major 

nutrients in 23 lakes, in Europe. Panday et al. (1999) studied the weathering and 

geochemical processes in Ganga head water and found that relatively high 

contribution of (Ca 
2+

 + Mg
2+

) to the total cations and the very low contribution of 

(Na
+
 + K

+
) to the total cations. The cation ratios suggest that carbonate weathering 

is the major source of the ions in water, while the silicate weathering has 

insignificant effect on water chemistry. 

Babu et al. (2000) interstitial and sediment geochemistry of waters of the 

Ashtamudi estuary located in the southwest coast of India. They found high 

concentration of N, P, and Fe in interstitial waters as compared to over lying 

waters. They also observed positive correlation of these nutrients with sediments 

and organic matter which indicate that these elements are released during the early 

diagenetic decomposition of organic matter trapped in estuarine muds. Mander et 

al. (2000) noticed that change in land use plays a major role in releasing 

phosphorus and nitrogen into aquatic environments, resulting in the eutrophication 

of water bodies. Vestergaard and Sand-Jensen (2000) used different multivariate 

analysis techniques to evaluate the distribution aquatic plant with respect to 

alkalinity and trophic state in Danish lakes. They found that Lakes with high 



Chapter 3                                                                                                                         Review of literature 

 

 

46 
 

alkalinity were dominated by vascular plants of the elodeid growth form, lakes of 

intermediate alkalinity contained elodeids and isoetid growth form, while the lakes 

of low alkalinity and low pH  dominated by isoetids and bryophytes. The eutrophic 

lakes were dominated by robust elodeid species which are able to compensate for 

turbid conditions, while as small elodeids and slow-growing isoetid species were 

absent from eutrophic lakes. 

Bianco et al. (2001) in their study on some ponds in the Castelporziano 

Reserve (Italy) found plant communities dominated by Callitriche sp. and 

Ranunculus aquatilis in temporary ponds, with turbid and eutrophic waters, 

whereas communities rich in Potamogeton species were present in permanent 

ponds, with   transparent and oxygenated waters.  Effect of Valliseneria americana 

on community structure and ecosystem function in lake macrocosm was studied by 

Wigand et al. (2000) at Louis Caldera centre Armonk, New York, USA. He 

observed that sediments under Valliseneria americana had low phosphate and iron 

content, but high redox potential. He also reported low level of TDS and DOC in 

the overlying water column in Valliseneria americana community. 

Tait and Thaler (2000) found that acid deposition has significantly altered the 

water chemistry (particularly alkalinity, sulphate, nitrate and calcium content) in 

the lakes of Eastern Alps.  Barbieri and Mosello (2000) observed that lake water 

chemistry is considerably affected by atmospheric loading leading to high 

concentration of nitrate and sulphate. Strauss and Lamberti (2000) while working 

on regulation of nitrification in aquatic sediments by organic carbon, found that 

organic carbon inhibited nitrification and that the inhibitory effect was greater 

when organic carbon quality was higher.                                                                                                                                                                                                                                                                       

Lyons et al. (2001) worked on geochemistry of Issyk-Kul Lake in 

Kirghizstan. Their findings revealed  that lake is enriched in V, Co, Cu, Mo, U, Sr, 

Sb, Cs, Br, Fe and Li and deficient in Mn, B, Si, and NO3  relative to inflow rivers 

waters. The lake has saline water with Na + K > Mg + Ca and Cl ≥ SO4 >> HCO3. 

Hadgson et al. (2001) investigated the limnology of saline lakes of Raucer islands 
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in Eastern Antarctica. They observed that waters were chloride dominated with an 

ionic order of Cl>Na > SO4>K>Ca> HCO3. The lake waters has high conductivity 

(3.55-131.5 mS/cm) whereas nitrate and phosphate content was very low.  

Tolotti  (2001) while working on trophic status of 16 high mountain lakes of 

Italy found that lakes  had low buffering capacity, levels of mineralization and low 

conductive values (8-21 µS/cm). On the basis of average total phosphorus 

concentrations, 4 lakes were classified as ultra oligotrophic while as 12 lakes were 

classified as oligotrophic. Eriksson (2001) studied the effects of flow velocity and 

oxygen metabolism on nitrification and denitrification in macrophyte-periphyton 

complex and concluded that water flow and oxygen metabolism have minor effects 

on nitrification but have significant effects on denitrification rates in biofilms 

present on submerged macrophytes. Heegaard et al. (2001), while analyzed the 

relationship between occurrences of macrophytic species with Lake Environment 

from 574 lakes in Northern Ireland found that generalist species have wide range 

of tolerance to nutrients and ions (phosphorus, nitrogen, Ca, K, Si, and Mg) as 

compared to specialized species. 

Beutel et al. (2001) made limnological studies on saline Walker lake,   

Nevada, USA. They observed that lake was well oxygenated throughout the study 

period, dissolved solids were dominated by sodium (31.8%), chloride (25.2%) 

sulphate (24.4%) and carbonate (22.3%). The lake was enriched in phosphorus and 

limited in nitrogen. Heijmans et al. (2001) carried out studies on elevated carbon 

dioxide and increased nitrogen deposition on bog vegetation in Netherlands and 

pointed out that elevated atmospheric carbon dioxide increased the height of 

Sphagnum magellanium that reduces the growth of shallow rooted macrophytic 

species, while increased nitrogen deposition favoured the growth of shallow rooted 

macrophytes over sphagnum magellanium. 

Bhat et al. (2001) studied the impact of effluents from SKIMS hospital, 

Soura on Achar lake and attributed high concentration of Na, K, P and nitrate to 

the draining of hospital waste into the lake.  Nagid et al. (2001) pointed that wind 
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induced resuspension of sediments was the main factor responsible for 

eutrophication in Lake Newnan in Florida. They proposed increase in water level 

to reduce the internal nutrient loading to lake. Rather et al. (2001) while working 

on water quality of Hokarsar wetland found low values for depth, alkalinity and 

pH and high values for calcium, magnesium, sodium, potassium, nitrogen and 

phosphorus.  

Geochemistry of water and ground water in the Pantanal wetland, Brazil was 

studied by Barbéro et al. (2002). They attributed the changes in geochemical 

composition of waters to precipitation of calcite, Mg-calcite and the formation of 

Mg-silicates as waters become more saline. Roeloefs et al. (2002) summarised the 

effects of acidification on macrophytic vegetation in fresh water habitats of 

Norway. They found that acidification (pH < 4.5) ceased nitrification process, 

accumulate ammonia and increases CO2 concentrations in waters which ultimately 

restrain the growth of macrophytic species which uptake nitrate as a dominant 

nitrogen source. 

Pandit and Yousuf (2002) while working on six Kashmir Himalaya lakes 

revealed that total phosphorus and total inorganic nitrogen in epilimnetic layer   

are the best chemical indicators to assess trophic status of these lakes. They placed 

the mountain lakes, (Gangabal and Nundkuol) under oligotrophic category, rural 

lakes Manasbal and Malpursar, under mesotrophic while semi-urban Anchar lake 

under eutrophic and urban Khushhalsar Lake under hyper eutrophic category.  

Translocation and growth experiments of Potamogeton lucens on industrial 

tailings in traunsee (Austria) were studied by Wychera and Humpesch (2002). The 

field experiments suggest that the industrial sludges are less favorable for the 

growth which was reflected by limited growth of P. lucens and less dry weight at 

sluges site. 

Thiebaut et al. (2002) monitored the water quality in the Northern Vosges 

(NE of France) by using the diversity and trophic indices based on macrophyte 
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communities. He found highly significant correlations between the four tested 

chemical variables (bicarbonate, calcium, phosphorus and ammonical nitrogen) 

and trophic indices, abundance and richness. Trophic indices and McIntosh’s index 

were more effective in predicting water quality than diversity indices and provide 

direct information on the quality and degree of degradation of the ecosystem from 

which the sample was taken, whereas diversity indices did not provide such 

information. 

Kufel and Kufel (2002) reviewed the role of charophytes as nutrients sink in 

shallow lakes. The charophytes indirectly affect nutrient cycling in lakes by 

utilizing bicarbonate ion which accompanied by precipitation of calcite during 

periods of intensive photosynthesis, favours immobilization of P by binding in the 

crystal structure or sorption on sedimenting mineral particles. Charophytes also 

enhance nitrification/denitrification processes in the lakes.     

Khan (2003) assessed the variations in physicochemical parameters of four 

saline lakes in Western Victoria, Australia. He observed that lakes were alkaline 

(pH 8.2-9.3), turbid (30 to 659NTU), and had low values of secchi depth (7.7 -

89Cm). On the basis of nutrient status, lakes were classified as eutrophic to hyper-

eutrophic and among the four lakes one lake was limited by nitrogen while the 

remaining three were limited by phosphorus.  

Meerhoff et al. (2003) while studying the structural role of free floating 

verses submerged macrophytes in lake Podo, Southern Hemisphere (UK) observed 

significant difference among microhabitats of these plant communities particularly 

in temperature, conductivity and alkalinity, NO3 and soluble reactive phosphorus. 

Temporal variations in biomass of submerged macrophytes in Lake Okeechobee, 

Florida were carried out by Hpson and Zimba (2003). They reported that total 

biomass in submerged macrophytic community was strongly influenced by water 

transparency and subsurface light conditions. 
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The geochemical study of the Dankar, Thinam and Gete lakes of the Spiti 

Valley was undertaken by Das and Dhiman (2003). The high (Ca+Mg): HCO3 

equivalent ratio (6.94) in Dankar lake indicated carbonate weathering, while as 

low (Na+K): TZ
+
 ratio (0.07) showed insignificant silica dissolution in this lake. 

The low (Ca+Mg):HCO3 equivalent ratio (2.09) and (Na+K): TZ
+
 ratio (0.12) 

indicated both carbonate weathering and silicate weathering are contribution to the 

lake Thinam. In Lake Gete, the (Ca+Mg): HCO3 equivalent ratio and the (Na+K): 

TZ
+
 ratio showed dissolution of both carbonate and silicate rocks in the basin. 

Furthermore all the lakes were enriched in Mg and depleted in Ca.  Selig and 

Schlungbaum (2003) compared the Phosphorus release rates from two dimictic 

(Dudinghausen and Tiefer) lakes during the summer stratification. They found 

soluble reactive phosphate (SRP) and NH4
+
were released from the anoxic sediment 

into the water column during stratification. The P-release was higher (15-207 mg P 

m
-2

 y
-1

) in Lake Dudinghausen than Lake Tiefer (22 and 55 mg P m
-2

 y
-1

). 

Van den Berg et al. (2003) used Logistic regression to analyses the 

relationship between six submerged macrophyte taxa (Chara spp., Potamogeton 

perfoliatus, Potamogeton pectinatus, Potamogeton pusillus, Myriophyllum 

spicatum, Alisma gramineu) and four environmental variables (turbidity, effective 

wind fetch, and water depth and sediment silt percentage) in lake, Veluwemeer. 

The authors found that water depth and light extinction were the most important 

factors determining the occurrence of all studied species. The effective wind fetch 

had a moderate effect and sediment silt had an insignificant effect on the 

occurrence of macrophytes. Preston et al. (2003) studied the long term impact of 

urbanization on aquatic plants in Cambridge and river Cam. They observed 35% of 

native aquatic plant species were extinct due to pollution and transformation of 

riparian pastures into suburban open spaces. 

Redox chemistry in the root zone of   salt marsh sediments in Tagus estuary 

Portugal was studied by Sundby et al. (2003). They observed high precipitatation 

of Fe oxides when roots infiltrate and supply high oxygen to anoxic Fe (II) 
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containing sediment in spring. The authors did not find such precipitation in 

summer due to unavailability of Fe (II) or in winter when oxygen was unavailable. 

The relationship between catchment characteristics and lake water chemistry of 30 

upland lakes of U.K was examined by Maberly et al. (2003). They found that 

catchment vegetation characteristics (conifers, woodland, pasture and shrub) had 

significant on water chemistry (DON, DOC, DIN, and TDP) of the lakes.   

Takamura et al. (2003) studied the effect of macrophytes on water quality in 

three shallow lakes of Japan. They reported that Trapa japonica had wide 

tolerance range to nutritional levels than Polygonum amphibium. The 

concentration of DO, nitrate, nitrite and soluble reactive phosphorus were lower in 

Trapa stands as compared to other vegetation stands. Hupfer and Dollan (2003) 

studied the phosphorus retention mechanisms in sediments of Lake Müggelsee 

Germany after re-colonisation by Potamogeton crispus and Elodea canadensis 

under laboratory conditions. They found a sharp redox-gradient in sediment at root 

surface oxidised ferrous iron to ferric iron which bound substantial portions of 

phosphorus.   

Liikanen et al. (2003) studied the nutrient dynamics in the sediments of the 

eutrophic, boreal Lake Kevätön in Finland. The authors found high fluxes of NH4
+ 

and P from the deep profundal sediments with the highest mineralization rate to 

overlying water column. The fluxes of NH4
+ 

and P were negatively correlated with 

the overlying water O2 concentration and the sediment redox potential, and 

positively with the carbon mineralization rate and the sediment O2 consumption. 

 Kufel et al. (2004) studied the in situ decomposition of Ceratophyllum 

demersum, Menyanthes trifoliate and Nuphar lutea in three small mid-forest lakes 

with different pH and nutrient content in Poland. They observed that 

decomposition of C. demersum and M. trifoliate plants was faster in acidic waters 

than in alkaline waters whereas decomposition of Nuphar lutea was the fastest and 

was independent of pH. 
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Kundangar and Abu-Baker (2004) while comparing the past limnological 

data of Dal lake with present, reported a progressive increase in various chemical 

parameters viz specific conductivity, total conductivity, sodium and potassium 

while considerable increase was observed in silicate, nitrate nitrogen, ammonical 

nitrogen and that of total nitrogen. Dissolved oxygen showed gradual decline 

whereas no significant change was observed in pH. 

Xie et al. (2004) reported that higher nutrient concentration is an important 

factor in controlling the decomposition rate of macrophytes. The authors observed 

that nutrient requirements of decomposers exceeded the nutrient supply from the 

decomposing plant material.  

Cao et al. (2004) found that high water column NH4
+
–N concentrations (1–

20mgL
−1

) significantly decreased soluble carbohydrate (SC) content and increased 

free amino acids (FAA) content of P. crispus in an acute exposure experiment.   

Fractionation of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) was 

performed on bottom sediment of river Odra (Germany / Poland) by Głosińska et 

al. (2004). The observed the majority of heavy metals (Zn, Mn, Fe, Cr and Ni) 

were bound to hydrated iron and manganese oxides, whereas significant amounts 

Cd, Pb, Ni and Zn, were bound to carbonates. Furthermore about 85-97% of Ni, 

Mn, Cr and Cu were potentially bioavailable which indicated that metals are not 

permanently immobilized in the bottom sediments. Last and Ginn (2005) assessed 

the influence of seasonal variability of hydrologic cycle on saline lakes of Great 

Plains of western, Canada. They observed that 85% of lakes showed remarkable 

changes in ion concentrations and ionic ratios by seasonal fluctuations in water 

levels.   

Boedeltje et al. (2005) evaluated combined effects of water column nitrate 

enrichment, sediment type and irradiance on Potamogeton alpines and observed 

that high water column NO3 concentrations, low light availability and anoxic, 

muddy sediments are key factors hampering growth of rooted submerged plants in 
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shallow, eutrophic fresh water lakes. Maemets and Friberg (2005) investigated 

long and short term changes in macrophytic vegetation in strongly stratified hyper 

eutrophic lake Vereni, Estonia. The study revealed that strong eutrophication has 

changed the vegetation from Myriophyllu –Potamogeton type to Ceratophyllum-

Lemma type from1984 to 1988 due to formation of loose organic rich sediments. 

The decrease in water level in 1998 facilitated rapid mineralization of sediments 

which favoured dominance of Ranunculus cincinnatus in the lake. The effects of 

floating-leaved, submerged and emergent macrophytes on sediment resuspension 

and internal phosphorus loading were studied in the shallow Kirkkojarvi basin in 

Finland by Nurminen and Nurminen (2005). The authors observed that all the 

three life forms considerably reduced sediment resuspension compared with non-

vegetated areas. The submerged (Ceratophyllum demersum, Potamogeton 

obtusifolius, Ranunculus circinatus) and emergent (Typha angustifolia) plants, 

showed average resuspension rate of 43% than in the adjacent open water. The 

floating-leaved, submerged and emergent plants reduced internal phosphorus 

loading by 21, 12 and 26 mg m
2
 /d respectively as compared to non-vegetated area.  

Saenger et al. (2006) surveyed the inland lakes and saline pond of Christmas 

Island and Teraina islands of republic of Kiribati and found that dissolved oxygen 

(DO) and pH values were inversely related to salinity. Hypersaline lakes were 

hypoxic and have neutral to alkaline pH. They also reported high precipitation 

rates of calcite, gypsum, halite and a variety of chlorides which reduced the Ca
2+

, 

Na
+
, and K

+ 
content of waters. The expansion and decline of Charophyte 

communities in 11 lakes of Sejny Lake District (north-eastern Poland), was studied 

by Kłosowski et al. (2006). They observed that Chara species disappeared 

completely from some lakes and were replaced by Potametea (mainly Nupharo-

Nymphaeetum albae and Ceratophylletum demersi) due to high phosphorus and 

DIC concentration. They also found negative correlation between phosphorus, pH 

and turbidity in these lakes. 
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Kian et al. (2006) while working on phosphorus speciation in three 

submerged macrophytes found that more than 80% of total phosphorus in Najas 

marina and Vallisnerea gigantea was present in bioavailable form, 19% was 

represented by organic phosphorus and less than 1%was found as calcium bound. 

However, in Chara fibrosa major portion of total phosphorus was represented by 

organic phosphorus (41%), 46% was bioavailable and 15% was calcium bound. 

Shilla et al. (2006) studied the decomposition and nutrient dynamics of submerged 

macrophytes in Myall Lake, Australia and found that water column exhibited low 

nutrient concentrations during growth phase, while significant increase in water 

column nutrients was observed during decay period. 

Guangwei et al. (2006) studied the geochemical forms and bioavailability of 

phosphorus from the sediments of 25 lakes in the middle and lower reaches of 

Yangtze River. They observed significantly positive relationship of sediment 

exchangeable phosphorus with total phosphorus (TP), dissolved total phosphorus 

(DTP) and soluble reactive phosphorus (SRP) contents in the lake water. The 

major portion of phosphorus was associated with Fe (Fe-P), detrital apatite (De-P), 

and occluded (Oc-P) fractions. Furthermore the bioavailable phosphorus ((Bio-P)) 

content was lower in macrophytic dominant sites than non macrophytic sites. 

Jeelani and Shah (2006) investigated geochemical characteristics of Dal Lake. 

Their findings revealed geochemical characteristics of lake water is influenced by 

weathering of carbonate and silicious rocks of catchment area. However the author 

attributed high concentration of Zn, Cu and Pb in sediments of Gagribal and 

Nigeen basins to anthropogenic sources.   

Tolotti et al. (2006) conducted limnological study on alpine high altitude 

lakes in Italy. They categorised 75% of lakes as ultra oligotrophic on the basis of 

TP and observed   low levels of mineralization and buffering capacity of in these 

lakes. Fureder et al. (2006) studied the relationship between water chemistry and 

geolithology in Alps, Austria. They observed that lakes with calcium carbonate 

catchment had high values of calcium, magnesium, conductivity, pH and alkalinity 
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whereas lakes with siliceous geology depicted low levels of Ca, Mg, conductivity 

and alkalinity. 

The relationship between the sediment geochemistry and phosphorus fluxes 

in a great lakes coastal marsh was studied by Mayer et al. (2006) and found that P 

fluxes sediments from to overlying water column vary from 0.57 to 5.03mg P m
−2

 

day
−1

 which makes the marsh more resilient to restoration even after the reduction 

of the external  phosphorus loading.  

Mony et al. (2006) studied the ecological requirements and floristic 

composition of three Ranunculus communities in North-eastern France and 

concluded that water alkalinity, conductivity, and ANC were key parameters 

which separate Ranunculus fluitans community from Ranunculus peltatus and 

Ranunculus penicillans. Ranunculus fluitans community was characterised by high 

species richness and low evenness whereas, Ranunculus peltatus and Ranunculus 

penicillan communities were characterised by high evenness and low species 

richness.  

Zak et al. (2006) studied the sulfate mediated phosphorus mobilization in the 

sediments of river Spree NE Germany. They found high sulfate content and high 

temperature played a key role in P mobilization from the sediments.  Jin et al. 

(2006) investigated the phosphorus release kinetics from the sediments of 9 lakes 

in Yangtze River region, China and found that total phosphorus (TP), organic 

matter (OM), Al2O3+Fe2O3 and the percentage of sand particles were the most 

important factors affecting the ability of phosphorus sorption. Seasonal variability 

of dissolved and particulate P forms of two lakes in Western Pomerania (North-

East Germany) was studied by Selig et al. (2006). They found higher concentration 

of total P (93-298 μg l
-1

) and SRP (13-74 μg l
-1

) in the surface water of Polimictic 

Lake Bützow than dimictic Lake Dudinghausen (TP: 19-68 μg l
-1

; SRP; 5-28μg l
-

1
). In the former lake, the highest values were recorded in spring and autumn, 

whereas in the latter the values were higher in summer.   
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Brenner et al. (2006) determined the role of submersed aquatic vegetation 

(SAV) in the sedimentation of organic matter (OM) and phosphorus (P) in Lake 

Panasoffkee, Florida (USA). The study showed that in response to increased P 

loading from human settlement and forest clearance, SAV and associated 

periphyton served as temporary sinks for soluble P by promoting P burial and 

retention in sediments, thus maintaining relatively clear-water, low-nutrient 

conditions in the lake.  DE-Vincet et al. (2006), performed field measurements and 

laboratory experiments to determine the contribution of physical, biological, and 

chemical mechanisms to nutrient dynamics in two shallow (Lake Honda and Lake 

Nueva) lakes in Andalusia (Spain).The study revealed wind induced resuspension 

of the surface sediment favoured by its morphometry, hydrologic regime, sediment 

granulometry and intense organic matter mineralization increased the nutrient 

concentrations in lake Honda. In Lake Nueva, wind-induced resuspension was 

limited by coarse surface sediment and development of macrophytic beds (Najas 

marina, Potamogeton pectinatus). 

Rejmankova and Houdkova (2006) found that decomposition proceeds much 

faster at P-enriched sites due to presence of more active and diverse decomposer 

community. The high salinity significantly reduces the decomposition process due 

to low microbial activity and diversity. 

Eimanifar and Mohebbi (2007) reviewed the various aspects of hypersaline 

Lake Urmia and found that lake belongs to sodium- chloride- sulfate type. The 

cations were dominated by Na
+ 

and K
+
, whereas anions were dominated by Cl

-
.The 

concentration of Na
+
 and Cl

- 
in the lake was 4 times higher than seawater. 

Phytotoxic effect of Cd on Eichhornia crassipes was carried out by Mishra et al. 

(2007). They found that Cd accumulation and toxicity to plants dependent on 

concentration and duration of cadmium in the water medium. Phytotoxicity caused 

reduction of chlorophyll, protein levels and in-vivo nitrate reductase activity of 

plants. Joniak et al. (2007) reported that 12 small water bodies situated within 
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urban and suburban areas of Pozan city in Poland have significant difference in 

water chemistry between vegetation and non vegetation zones.  

The influence of water level and salinity on plant assemblages of a seasonally 

flooded Mediterranean wetland were studied by Watt et al. (2007). They 

considered water regime and salinity as the most important environmental variable 

which regulate vegetation composition of seasonally flooded Mediterranean 

wetland. Koch et al. (2007) studied the Synergistic effects of high temperature and 

sulfide on tropical sea grass (Halodule wrightii and Thalassia testudinum) in 

mesocosm in Florida. They concluded that sea grass has high thermal tolerance 

however Synergistic effect of high sediment H2S and high temperature lead to 

mortality of sea grass. Boers et al. (2007) found that frequent flooding and nutrient 

enrichment in wetlands along Des Plaines River in Wadsworth, Illinois U.S.A. 

favours the aggressive, flood tolerant plants, Typha×glauca (hybrid cattail), which 

had significantly reduced and species diversity and richness of the wetland. Moller 

and Martin (2007) conducted studies on distribution of eelgrass (Zostera marina) 

in the coastal waters of Estonia. The author observed decrease in occurrence of 

eelgrass in different water due to eutrophication. Bunluesin et al. (2007) reported 

that humic acid reduced the toxicity and accumulation of heavy metals (Cd and 

Zn) in C. demersum under laboratory conditions. 

Bennett et al. (2007) while evaluating climatic and non climatic influences 

on major ion chemistry in natural and man made lakes of Nebraska, USA found 

that Climate control the   chemistry of lakes via its influence on the hydrologic 

cycle, thermal structure, catchment weathering and erosion. They also reported 

that changes in precipitation and evaporation produced significant changes in ionic 

composition in lakes without outlet. 

  

Major ion chemistry of fresh water coastal lagoon (Mangueira Lagoon) in 

southern Brazil was studied by Santos et al. (2008). They observed that lake water 

was enriched with Na and HCO3 ions due to ground water which supply 50-70% 
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of the total Na
+
and Cl to the Lagoon. Furthermore the low K

+
 concentration in 

Lagoon was attributed to dominance of sands (quartz) and low content of K-

feldspars in the catchment. Boschila et al. (2008) while working on macrophyte 

co-occurrence in braided flood plains of River Parana in Brazil concluded that 

spatial segregation of macrophytes are structured by competition and habitat 

preferences.  

Lindholm et al. (2008) found that water milfoil had almost excluded plants 

like Potamogeton praelongus, Potamogeton gramineus and Chara aspera from the 

lake Österträsk, Finland. They also found that Myriophyllum sibiricum raised the 

pH values of about 10, caused oxygen supersaturation near the surface and anoxic 

condition in deeper layers. The high productivity of Myriophyllum sibiricum had 

changed the sediment texture from sandy to muddy. 

Major ion geochemistry of Nam Co Lake and its sources, in Tibetan Plateau 

were investigated by Zhang et al. (2008). They found that lake was enriched with 

Mg and Na and depleted in Ca. The stream water was low in Na and K but 

enriched with calcium, however in lake the former elements attain dominance due 

to evapo-concentration effect.  

Comparative effects of irradiance and phosphorus on the growth of three 

submerged macrophytes were made by Zhu et al. (2008).  Their findings revealed 

that higher irradiance (230 mmol s-
1
 m-

2
 vs. 113 mmol s-

1
 m-

2
) had significant 

positive effects on submerged macrophyte growth whereas elevated sediment 

phosphorus (2.1–3.3 mg g-
1
 vs. 0.7 mg g-

1
) did not have any significant impact. 

The co-precipitation of phosphate with calcium carbonate in the Salton Sea, 

California was conducted by Rodriguez et al. (2008). They found that the internal 

loading of P was controlled by calcite precipitation which gets actively 

precipitated due to alkalinity production via sulfate reduction reactions. Chambers 

et al. (2008), while assessing the global biodiversity of fresh water macrophytes 

found that vascular macrophyte generic diversity is highest in the tropics 

(Afrotropics, Neotropics and Orient) and lower in the Nearctic, Palaeoarctic and 
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Australasia and species diversity was highest in the Neotropics followed by the 

Orient, and Nearctic. Macrophyte distribution and species numbers decreased with 

latitudinal and altitudinal gain.  

Bella et al. (2008) conducted limnological study on 21 pounds (8 permanent 

and 13 temporary) located in four protected areas along the Tyrrhenian coast in 

central Italy. They observed low species diversity in temporary ponds than 

permanent ones and was negatively related to nitrate concentration and depth.  

Wang et al. (2009) found that phosphorus, Cd and Zn have antagonistic 

effect on two submerged macrophytes (E. nuttallii and H. verticillata). Cadmium 

and zinc reduced the photosynthetic efficiency and increased oxidative stress to 

plants. The oxidative stress induced by cadmium and zinc was partially alleviated 

by the addition of phosphorus. They also found that E. nuttallii was more sensitive 

than H. verticillata and accordingly was proposed as an indicative plant for 

polluted waters.  

Cao et al. (2009) studied the carbon and nitrogen metabolism of 

Potamogeton crispus, under NH4
+
 stress and low light conditions in Lake Donghu 

china. They found that P. crispus efficiently avoid NH4
+
 accumulation in the plant 

tissues in short term treatment with fertile sediment, which explain its notorious 

abundance in eutrophic waters. However, the detoxification of NH4
+
 consumes a 

large amount of carbohydrates, reduces its tolerance level over an extended period 

and NH4
+
 induced stress was intensified under low light availability. Trolle et al.  

(2009) studied the influence of water quality and sediment geochemistry on the 

horizontal and vertical distribution of phosphorus and nitrogen in sediments of 

lake Taihu, China. A multiple stepwise linear regression revealed that the 

combination of sediment manganese and carbon concentrations explained 91% of 

the horizontal variability and 65% of the vertical variability of TP concentrations 

in sediment. Wang et al. (2009), while studying water quality of Nam Co, in Tibet 

found high values of pH (9.21), dissolved oxygen (8.90mg l
-1

) and electric 

conductivity (1,851 lScm
-1

) in surface water of the lake. Hydrochemistry of Salt 
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Lakes of the Qinghai-Tibet Plateau, China was studied by Zheng and Liu (2009). 

The pH values of the plateau lakes  range from 7 to 9, indicating that the brine is 

neutral to alkaline and  tend to decrease from the carbonate type >sodium sulfate 

subtype > magnesium sulfate subtype > chloride type. They also reported that 

geothermal springs are the major sources of the Li, B, K, Cs, and Rb in salt lakes 

of the Qinghai plateau. 

McElarneya et al. (2010) evaluated the response of aquatic macrophytes in 

Northern Irish soft water lakes to eutrophication and dissolved organic carbon and 

found that large regional increase in DOC posed a threat to macrophyte abundance 

and diversity in these aquatic ecosystems. van Katwijk  et al. (2010) studied the 

Eelgrass (Zostera marina) vulnerability to eutrophication in the Wadden Sea in 

Netherlands and concluded that sea grass is not a useful early warning 

bioindicator, but rather a too late bioindicator of eutrophication. 

Ecotoxicological effects of aluminium and zinc on growth and antioxidants 

in Lemna minor were studied by Radic et al. (2010). The authors observed that 

metal stress increased the superoxide dismutase and peroxidases activities and 

decrease the catalase activity. The frond number, relative growth rates and 

chlorophyll were significantly decreased by Zn than by Al, which suggest high 

toxicity of Zn to duckweed. Hydrochemistry of lake Lago Péten Itzá,Guatemal was 

carried out by Perez et al. (2010). They found that sulfate dominated bicarbonate 

in anions and calcium dominates magnesium in cations. On the basis of total 

phosphorus the lake was assigned the meso-oligotrophic state. Furquima et al. 

(2010), while working on Pantanal Wetland, Brazil concluded that Ca, Mg, and K 

effectively undergo oversaturation and precipitation as the waters become more 

saline and are subsequently incorporated in the authigenically formed carbonates, 

smectites, and micas in saline lakes. The precipitation of Ca occurs as calcite and 

dolomite in nodules while Mg and K are mainly involved in the neoformation of 

Mg-smectites (stevensitic and saponitic) minerals.   
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Radic et al. (2011) studied the impact of industrial wastewater on duckweed 

plants in Croatia. They observed that waste waters caused reduction of duckweed 

growth rates, chlorophylls and carotenoid contents and peroxidase activity. 

It is clear from the above literature that very little information exists on the 

impact of geochemistry on macrophytic vegetation dynamics in high altitude lakes. 

It is in this context that the present work was undertaken.  
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4. MATERIAL AND METHODS 

4.1. Water Chemistry 

The surface and bottom water samples were collected in 1liter 

decontaminated polyethylene bottles between 10.00 and 12.00hr from the 

sampling sites. Collection of water samples was started from September 2004 

to November 2006. The Manasbal lake was sampled on monthly basis, 

whereas Tso Morari and Tso Khar lakes were sampled on seasonal basis.  Prior 

to sample collection bottles were rinsed with the lake water to be 

sampled and were transported to the laboratory.  The parameters like  

temperature, depth, and transparency were determined on spot, whereas the 

rest of the parameters were determined in the laboratory. The samples were 

stores at 4
0
C till further analysis. Standard methods given in APHA (1998), 

Mackereth et al . (1978) CSIR, (1974), Golterman et al. (1978) were 

followed to assess the various physico-chemical parameters.  

4.1.1. Water Temperature 

Water temperature was recorded on spot by dipping the bulb of the thermometer 

in water sample for 1 minute under shade. The results were expressed in °C.   

4.1.2. Depth 

The depth was recorded by sounding the lake bottom with a standard lead 

weight attached to the marked rope. The results were expressed in meters.  

4.1.3. Transparency 

The transparency of water was recorded with the help of standard Secchi 

disc (diameter 20 Cm.). The mean of the depths at which the Secchi disc 
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disappeared and reappeared was taken as water transparency. The results were 

expressed in meters. 

4.1.4. pH  

The pH was measured with the help digital pH meter (Systronics- MKVI).   

The pH meter was standardized against buffer solutions of pH 4 and 9.2 before used. 

4.1.5. Conductivity 

The digital conductivity meter (Systronics- DB-104) was employed to record the 

conductivity of water samples. Prior to use conductivity meter was calibrated with 

0.01M KCl. The results were expressed in µScm
-1

 at 25°C. 

4.1.6. Dissolved Oxygen 

Winkler’s method (APHA, 1998) was used for the determination of dissolved 

oxygen.  The dissolved oxygen was fixed on spot in 300mL dissolved oxygen bottles 

by adding 1mL each of alkali iodide-azide and manganous sulfate. The bottle was 

tightly stoppered then inverted and erected for several times to mix the reagents. The 

precipitate formed, was dissolved by addition of 1mL of concentrated H2SO4 in the 

laboratory. 50mL of the fixed sample was titrated against 0.025N Na2S2O7 till blue 

formed by addition starch disappeared. The Dissolved oxygen content was by 

calculated below given formula;  

                         
          

                
 

Where,   V = Volume of Na2S2O7 used. 

              N = Normality of Na2S2O7.          

              E =   Equivalent weight of oxygen. 
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4.1.7. Free Carbon Dioxide 

Free carbon dioxide was determined by titrating the 100ml sample 

against 0.02N NaOH in presence of phenolphthalein indicator (Mackereth et 

al., 1978). The CO2 was calculated by using formula;     

                             
      

                     
 

      Where, T= Volume of NaOH used 

 

4.1.8. Total Alkalinity 

Total alkalinity was determined by titrated sample against 0.02N H2SO4 

with phenolphthalein as indicator (pH 8.3) till colour changed from pink 

to colourless. Then same sample was again titrated with H2SO4 with 

methyl orange as indicator till colour changed from yellow to orange. The 

volume of titrant was used to estimate total alkalinity, carbonates and 

bicarbonates as per following formula;    

          

                    
           

                
 

    

                    
           

                
 

  Where, T = Volume of acid used in phenolphthalein and methyl          

orange titrations.  

              A = volume of acid used in phenolphthalein titration.  

               N =    Normality (0.02) of H2SO4 
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4.1.9. Total Hardness 

EDTA Titrimetric method (APHA, 1998) was followed. To 50 ml of 

sample 1ml ammonium buffer  was added to raise its pH. Then sample 

was titrated against 0.01 M EDTA solution with  Eriochrome black T as 

indicator, till  colour changed from wine red to blue. Total hardness was 

calculated as follows;  

                                
      

                
 

                                     Where,    T = Volume of titrant used  

4.1.10. Calcium 

EDTA titrimetric method (APHA, 1998) was followed. To 50ml of 

sample 1ml of 2N NaOH buffer was added to raise its pH to 12. The 

sample was then titrated against 0.01M EDTA using murexide as 

indicator and the calcium content in sample was estimated by the below 

given formula;  

                  
            

                
 

                      Where,      T = Volume of titrant used  

4.1.11. Magnesium 

        Magnesium was calculated as follows;  

       Mg
 2 +

 as mg/L = [Total hardness (as mg CaCO 3 /L) –     

                      Calcium hardness (as mg CaCO 3 /L)] X 0.243  
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4.1.12. Sodium 

Digital flame photometer (Systronics 130) was used to measure the 

concentration of sodium in samples. Instrument was calibrated against 

standard sodium chloride and result was expressed in mg/l after 

computing from known standards.  

4.1.13. Potassium 

Digital flame photometer (Systronics 130) was used to measure the 

concentration of Potassium in samples. Instrument was calibrated 

against standard potassium chloride and result was expressed in mg/l 

after computing from known standards.  

4.1.14. Chloride 

Argentometric method (APHA, 1998) was employed for the 

determination of chloride.50 ml sample was titrated against 0.0141N 

AgNO3 till yellow colour formed by the addition of  1ml K2Cr2O4  

indicator changed to faint brick colour. The chloride content  was 

calculated by following formula;   

                 
          

                
 

 Where, T = Volume of titrant (AgNO3) used.    

              N =   Normality (0.0141) of AgNO3   

              E = Equivalent weight of Chlorine 
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4.1.15. Nitrate Nitrogen 

Salicylate method (CSIR, 1974) was used for the estimation. 1ml of 

sodium Salicylate was added to 50ml of sample and subsequently 

evaporated to dryness on hot plate. The residue was  dissolved by adding 

1ml concentrated sulphuric to beaker and allowed to stand for 10 

minutes. Then 6ml of distilled water and 7ml of 30% sodium hydroxide 

solution was added. The samples developed yellow colour and the 

volume of the sample solution was raised to 50 ml by adding distilled 

water. The absorbance of yellow colour was measured at 410nm 

spetrophotometrically (Systronics 106) against reagent blank and values 

were computed from known standards curve.  

4.1.16. Ammonical Nitrogen 

Phenate method (APHA, 1998) was used for the estimation of 

ammonia in the water samples. To 25ml sample 1ml phenol solution, 

1ml sodium nitro-prusside solution, and 2.5ml oxidizing solution was 

added with thorough mixing. The sample was left in subdued light at 

room temperature for at least one hour for colour development covered 

with paraffin films. Colour is stable for 24 hours. Absorbance was 

measured at 640 nm spetrophotometrically against a reagent blank and 

values were computed from standards curve.  

4.1.17. Total Phosphorus 

The total phosphorus concentration was estimated  by stannous 

chloride method (APHA, 1998). 50 ml sample was digested with 1 ml 

sulphuric acid and 5 ml nitric acid on hot plate to a volume of 1ml.The 

sample was then cooled and diluted with 20ml distilled  water. Then 
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sample was titrated against 1N sodium hydroxide solution with 

phenolphthalein as indicator, till faint pink colour appeared. Strong acid 

solution was used to discharge the colour and those samples which 

required more than 5 drops, the sample v olume was reduced. The final 

volume was again raised to 50ml with distilled water. Then 4ml 

molybdate reagent and 10 drops of stannous chloride were added to 

sample with continuous stirring. The sample was allowed to stand for 10 

minutes between 20 to 30
o
c.After 10 minutes, but before 12 minutes, 

colour was measured photometrically at 690nm against reagent blank 

and values were computed from calibration curve.  

4.1.18. Sulphate 

Turbidimetric method (APHA, 1998) was used for estimation of 

sulphate. 20ml buffer solution was added to 100ml sample . To this 

barium chloride was added with continuous stirring. The absorbance was 

measured against reagent blank at 420nm spetrophotometrically. Values 

were computed from standard curve developed for each analysis 

separately.   

4.1.19. Dissolved Silica 

Molybdosilicate method (APHA, 1998) was used to determine silica 

in sample. In a rapid succession 1ml HCl and 2ml ammonium molybdate 

solution were added. Sample was then mixed and allowed to stand for 5 -

10 minutes, and then 2ml of oxalic acid solution was added and again 

mixed thoroughly.  Absorbance was measured at 410nm spetro -

photometrically after 2 minutes but before 15 minutes against reagent 

blank. Values were computed from standard curve developed for each 

analysis separately.  
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4.1.20. Total Dissolved Solids  

100ml filtered sample was taken in a previously weighed china dish 

and evaporated to dryness at 180
o
c in an oven for 1hour. This was 

followed by the cooling in a desiccator to balance the temperature and 

final weight of dish containing residue was taken. The increase in dish 

weight represented the amount of total dissolved solids and the result 

was expressed as;  

           
          

                
 

   Where,     A = weight of dried residue and dish in grams.  

                  B = weight of dish in grams.  
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4.2 Sediment Chemistry 

Sediment samples were collected with the help of Ekman dredge from 

three the lakes on seasonal basis. The samples were transported to laboratory 

in decontaminated polyethylene bags. The analysis was carried out on wet as 

well dry samples. Parameters like pH, conductivity, nitrate and ammonia were 

immediately analyzed on wet samples whereas the rest of parameters were 

analyzed on air dry samples. Standard methods given in Jackson (1973) and 

Page et al. (1982) were followed to assess the chemical parameters of the 

sediments. 

4.2.1. pH 

pH was determined with the help of digital pH meter (Systronics MKVI). 

A 1: 2 w/v suspension was prepared from 20g of wet sediments and 40 ml of 

distilled water in 100ml beaker with continuous stirring. The pH of suspension 

was recorded by pH meter which was standardized against pH 4 and pH 9 

before used.  

4.2.2. Conductivity 

Digital conductivity meter (DB-104) was used to record 

conductivity of sediment samples.  A 1: 2 w/v suspension was prepared 

from 20g of wet sediments and 40 ml of distilled water in 100ml beaker with 

continuous stirring.  Prior to use conductivity meter was calibrated with 

standard potassium chloride solution (0.01M).The results were expressed as 

µScm
-1

 at 25°C.   
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4.2.3. Organic Carbon and Organic Matter 

Walkley and Black (1934) wet combustion method was used for the 

determination of organic carbon in sediments. 0.2g of sediments was treated 

with excess of standard K2Cr2O7 in presence of concentrated sulphuric acid. 

The excess K2Cr2O7, not reduced by the organic matter of the soil, was 

determined by back titration with standard ferrous ammonium sulphate using 

diphenylamine indicator. The organic carbon was calculated by below given 

formula:   

   Organic carbon (%)     =                                    x 100 

     Where w = weight of sediment. 

Since it is assumed that organic carbon recovery by this method is only 

77% and hence, the values obtained were multiplied by a correction factor of 

1.3. 

 The organic matter was determined from organic carbon by assuming 

that organic matter contains 58% organic carbon and thus multiplying the 

value of organic carbon with Van Bemmelen factor of 1.724.   

4.2.4. Ammonical Nitrogen   

Indophenol blue method (Page et al., 1982) was employed to determine 

exchangeable ammonia from the sediments. 2.5g of wet sediment sample was 

shaken for 30 minutes on mechanical shaker with 50ml 2M KCl to obtain the 

exchangeable ammonia. To 5ml aliquot, 1ml of EDTA, 2ml of phenol-

nitroprusside and 4 ml of sodium hypochlorite were added and subsequently 

diluted to volume 50ml with ammonia free water. The sample was left in 

subdued light at room temperature for 30 minutes for colour 

      0.003 x 10 (B-C) 

W 
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development. After 30 minutes absorbance was measured at 640 nm 

spetrophotometrically (Systronics 106) against a reagent blank and 

values were computed from known standards . 

4.2.5. Nitrate Nitrogen  

Phenol-disulfonic acid method (Jackson, 1973) was used to determine the 

Nitrate nitrogen of sediments. 2g of sediment sample was extracted in a 

solution of 0.01M CuSO4 containing AgSO4 and was subsequently shaken on a 

mechanical shaker for 15 minutes. Then Ca(OH)2 and MgCO3 were added to 

precipitate AgCl and solution was further shaken for 5 minutes. Then 20 ml of 

the filtered extract was evaporated to dryness and allowed to cool. To this 3 

ml of phenol-disulfonic acid was added and allowed to stand for 10 minutes 

until reaction was complete. After that 20ml of distilled water and 10ml of 6N 

ammonia solution was added until yellow color develops. Color intensity is 

measured at 420nm on a spectrophotometer (Systronics 106) against the blank 

solution. Concentration of nitrate was computed from standard nitrate curve. 

4.2.6. Exchangeable Phosphorous 

Olsen’s method was used to determine the available phosphorous in soil 

samples. 2.5g of soil samples were extracted with 50 ml 0.5M NaHCO 3 

solution at pH 8.5 by shaking on a mechanical shaker for 30 minutes. 5ml 

aliquot was taken and adjusted to pH 5.0 with dilute H2SO4. Ascorbic acid 

method was used for color development. Intensity of the color was measured 

at 882nm on a spectrophotometer. The concentration of available phosphorous 

was obtained by comparing the absorbance with standard phosphorous curve.   
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4.2.7. Total Phosphorus   

The total phosphorus was estimated by triacid digestion method (Jackson, 

1973). A known weight of air dried sediment was digested in a mixture of 

three acids in the ratio of 9:4:1 (Nitric acid: Sulphuric acid: Perchloric acid) 

after pretreatment with nitric acid. The samples were digested till the 

appearance of white fumes of perchloric acid and the whiteness of the sil ica. 

The digest was allowed to cool and raised to a certain volume with distilled 

water and filtered through Whatman No. 1 filter paper. A suitable volume of 

aliquot was taken and diluted to determine the total phosphorus 

spectrophotometrically (Model-Systronics 106) by molybdenum blue. The 

concentrations were worked out from their respective standard curves and results 

expressed in ppm. 

4.2.8. Exchangeable Calcium and Magnesium 

The exchangeable calcium and magnesium were estimated by Versenate 

EDTA method (Jackson, 1973). The cations were extracted in 1N ammonium 

acetate solution by centrifugation and decantation method in a 1:10 soil 

extract ratio. Prior to analysis EDTA was standardized with standard Ca 

solution using both eriochrome black tea (EBT) and calcon as indicators.     

The exchangeable calcium and magnesium were calculated by using the 

following formulae: 

Calculation 

                     
             

  
 

                           Mg (meq/L)    =     Ca + Mg (meq/L) - Ca (meq/L)  
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                Where: V = Volume of EDTA titrated for the sample (mL) 

                            B = Blank titration volume (mL) 

     R = Ratio between total vol. of the extract and extract vol. 

used for titration. 

                    N = Normality of EDTA solution. 

                       Wt= Weight of air-dry soil (g) 

The concentrations were then converted and expressed in cmol(+) /kg  

4.2.9. Exchangeable Sodium and Potassium 

Digital flame photometer (Systronics 130) was used to measure the  

concentration of exchangeable sodium and potassium in samples. 

Instrument was calibrated against standard sodium chloride and result 

was expressed in mg/l after computing from known standards.  The Na and 

K ions were extracted from sediments in 1N
 
ammonium acetate solution by centrifuge 

method (Page et al., 1982)   
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4.3 Aquatic Vegetation Analysis 

The phytosociological features of macrophytes were worked out on 

monthly basis from January to December 2006. Quadrat method was followed 

for the macrophytic study. Quadrats of definite size (1m
2
) were laid randomly 

at the fours selected sites. For the submergeds, Ekman dredge was used to 

collect the plants falling in the quadrat. The species were identified using 

standard taxonomic works (Fasset, 2002; Kak, 1978). The macrophytes 

occurring in each quadrat/sampling unit were listed species wise and the 

number of individuals of each species was counted for various community 

characteristics of macrophytes (Misra, 1968). For Nymphoides peltatum three 

leaves were taken to represent one individual while for Nelumbo nucifera, 

Nymphaea alba and Euryale ferox one leaf was taken to represent one 

individual. In case of Ceratophyllum demersum (a free-floating submerged 

species) one meter length of the plant along with branches was taken as a unit 

to represent one individual. The genus Lemna (L. minor, L. major and L. 

trisulca) was taken as single species for various phytosociological.   

4.3.1. Frequency and Relative Frequency 

               
                                           

                            
      

                         
                      

                              
     

4.3.2. Density and Relative Density 

The density and relative density were calculated by using following 

methods: 
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4.3.3. Abundance and Relative Abundance 

The abundance and relative abundance were worked out by the following 

method: 

              
                                    

                                           
 

                        
                      

                        
     

4.3.4. Importance Value Index 

The importance value index (IVI) was calculated by using the following 

formula: 

                                      

Where, RF = Relative Frequency; RD = Relative Density; RA = Relative Abundance 

4.3.5. Species Diversity 

Species diversity was determined by using information statistics index 

(Shannon-Weiner, 1949) given as: 
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    = Index of species diversity 
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ni = Density of one species 

N = Density of all the species  

e = Base of natural logarithm   
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 = Addition of the expression for values of i from i  = 1 to i  = S 

4.3.6. Species Richness/Variety Component 

The species richness of macrophytes was determined by counting the 

number of species. 

4.3.7. Index of Similarity 

The Index of similarity (S0 was calculated according to Sorensen (1948), with 

the formula given below: 

                   S     =  X 100 

Where A and B represent the numbers of species at site A and B respectively, and C is 

the number of species common to both sites. 

 

 

 

 

 

2C 
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4.4 Statistical Analysis 

 The SPSS 12 software and Microsoft Excel was used to calculate mean, 

standard difference, correlation coefficient, IVI and diversity indices. The 

analysis of variance (ANOVA) test was used to work out whether the spatial 

and temporal variations in physicochemical parameters of water and sediments 

were statistically significant or not. Significant difference of mean values was 

performed by the Tukey’s honest square difference test at 5% level of significance (P 

≤ 0.05). Bivariate correlations (Pearson, two tailed) were used to explore the 

relationships between different physical and chemical properties of water and 

sediments. The impact of geochemistry on macrophytic vegetation was worked 

out by analysis of variance between vegetated and non vegetated sites in the 

three lakes.     
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5. RESULTS 

The physico-chemical characteristics of water of the three lakes differed with 

each other, reflecting variation in source rock, source of inlet water, productivity, and 

photosynthetic activity in the lakes. The results are depicted lake wise as follows. 

5.1. Physico-chemical features of water    

5.1.1. Tso Morari Lake 

5.1.1a. Air and Water Temperature 

The minimum (-7°C) and maximum (27°C) air temperature was observed at site 

TM2 and TM3 in December 2005 and August 2006 respectively. The mean air 

temperature varied from a low of 6.6±10.6°C at site TM1 to a high of 15.2±9.2°C at 

site TM6 (Table 5.1.1a1). Most of the sites (TM1, TM2, TM3, TM4, and TM7) had 

mean air temperature less than 10°C, except sites TM5 and TM6 (Fig. 5.1.1a). 

However, there was no significant difference (F7,54=0.586; p= 0.765) in mean air 

temperatures observed between the sites. The water temperature of Tso Morari lake 

ranged from 0.0°C (TM3) in December 2004 to 19°C (TM5) in August 2006 and 

followed the same trend as air temperature (Table 5.1.1a2). The mean values varied 

from 5.9±1.0°C (TM5b) to 10.1±4°C (TM6), although, the mean water temperature at 

sites TM1, TM2 and TM3 were higher than the mean air temperature (Fig. 5.1.1a2). 

However, there was no significant (F7,54=0.443; p= 0.871) difference in mean water 

temperatures between the study sites.  

5.1.1b. Depth and Transparency 

The variations in depth recorded at different selected sites in Tso Morari lake are 

depicted in Table 5.1.1b1. The water depth ranged from 0.2m to 46m during the study 

period. There was significant difference (F7,54= 4321; p= 0.000) among the study sites 
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with respect to depth. Site TM1 (0.2 ±0.1m) and TM3 (0.3 ±0.1m) representing the 

inlet streams had significantly lower mean water depth than all other sites. Among the 

lake sites, TM5 (44.1 ±1.3m) had significantly higher mean water depth followed by 

TM6 (36.2 ±1.2m), TM7 (6.2 ±0.6m), TM4 (4.7 ±0.9m) and least was recorded at site 

TM2 (2.5 ±0.6m) (Fig. 5.1.1b1). The transparency values of Tso Morari Lake varied 

from a low of 0.1m at site TM3 in December 2005 to a high of 23m at site TM5 in 

August 2006 (Table 5.1.12). For river sites TM1and TM3 water transparency followed 

the same trend as water depth throughout the study period. However, water 

transparency for the lake sites varied significantly during the study. The mean water 

transparency at TM6 (15.8 ± 2.3m) and TM5 (15.7±4.9m) was significantly higher (F 

7,54= 63.709; p= 0.000) than TM7(4.9 ±0.6m), TM4 (3.5±0.9m) and TM2 (2.3±0.6m) 

(Fig. 5.1.1b2).  

5.1.1c. pH 

The pH of water at all the sites during the study period was on the alkaline side. 

The minimum (7.38) and maximum (9.36) pH was recorded at site TM3 during 

December 2005 and October 2004 respectively (Table 5.1.1c). The mean pH ranged 

from 8.26±0.4 (TM1) to 8.89±0.3 (TM2). However, there was no significant variation 

in mean pH values observed between the study sites (F 7,54= 2.590; p=0.022 ) (Fig. 

5.1.1c). 

5.1.1d. Conductivity 

The conductivity fluctuated from a low of 109 µS/cm at TM3 (October) in 2004 

to a high of 2390 µS/cm at TM5 (October) in 2005 (Table 5.1.1d). A comparison of 

data at different sites revealed that TM1 and TM3 had significantly (F7,54=27.346; p= 

0.000) low mean values of conductivity than other sites. Site TM5 registered the 

highest mean values (1735±440 µS/cm) of conductivity. In general, lake water had 

higher conductivity values (>1000 µS/cm) than inlet stream sites (<300 µS/cm).  
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However, the conductivity values between the lake sites did not show any significant 

variation (Fig. 5.1.1d).  

5.1.1e. Dissolved Oxygen  

The variations in the dissolved oxygen at different sites are depicted in (Table 

5.1.1e). The concentration of dissolved oxygen varied from a minimum value of 

4.4mg/L (TM5b) in June 2005 to a maximum value of 11mg/L (TM4) in November 

2006. The maximum mean value of 8.5±1.6mg/L was recorded at site TM1 and 

minimum of 6.8±1.3mg/L was recorded at site TM5b (Fig. 5.1.1e). However, there 

was no significant variation (F7,54= 1.462; p= 2.00) in dissolved oxygen between the 

study sites.  

5.1.1f. Free Carbon Dioxide 

The free carbon dioxide at different sites is depicted in Table 5.1.1f and Fig. 

5.1.1f. The free carbon dioxide was absent at TM2, TM4, TM5 and TM5b during the  

investigation, whereas at TM1 and TM3 free carbon dioxide varied from a low of 3 

mg/L (TM7) in October 2005 to 20 mg/L (TM1 and TM3) in December 2005. The 

mean values varied from 0.5±1.2 mg/L at site TM7 to 7.1±7.4mg/L at site TM1.  

5.1.1g. Alkalinity 

The carbonate, bicarbonate and total alkalinity at different study sites in Tso 

Morari are depicted in Tables 5.1.1g1-3. Total alkalinity at most of the sites was 

mainly contributed by bicarbonates and followed the same trend as bicarbonate 

alkalinity.  During the period of investigation the total alkalinity varied from 32 mg/L 

for TM3 in July 2005 to 520 mg/L for TM4 in December 2005. However, the highest 

mean value was recorded for TM7 (411±61mg/L) and the lowest for TM1 

(68±18mg/L). The inlet stream sites (TM1 and TM3) were found to have significantly 

lower values (F7,54=16.627; p=0.000) of total alkalinity than other sites. However, no 
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significant difference in total alkalinity values was found between the lake sites (Fig. 

5.1.1g).  

5.1.1h. Total Hardness 

The total hardness values are depicted in Table 5.1.1h.The lake water was found 

to be highly hard water type. The values in general showed wider fluctuation from a 

low of 46 mg/L at TM1 in August 2006 to a high of 2100 mg/L at TM5b in July 2005. 

On the basis of mean values of total hardness, TM1(153±100 mg/L) and TM3 

(271±241 mg/L) showed significantly lower values (F7,54 = 8.577; p=0.000) than other 

sites. On the other hand, the mean total hardness values at sites TM5b (1151±520 

mg/L), TM5 (1051±329 mg/L), TM4 (1046±426mg/L), TM6 (928±526 mg/L), TM2 

(851±460 mg/L) and TM7 (792±204 mg/L),did not show any significant variation 

(Fig. 5.1.1h). 

5.1.1i. Calcium and Magnesium 

The calcium content varied from a minimum of 5mg/L (TM2 and TM5) to a 

maximum of 89mg/L (TM3) in December 2005 and 2004 respectively (Table 5.1.1i1). 

The mean values at different sites revealed that TM3 had highest values (44±25 

mg/L), while TM7 occupied bottom position (25±13 mg/L) (Fig. 5.1.1i1). However, 

mean calcium values did not show any significant (F7,54=1.319; p=0.529) difference 

between the study sites. Magnesium concentration ranged from a low of 4 mg/L for 

TM3 in June to a high of 1560 mg/L for TM4 in the same month (Table 5.1.1i2). On 

the basis of mean values, the highest magnesium content was recorded at TM5 

(380±412 mg/L), while the lowest for TM1 (18±12 mg/L). The magnesium content 

did not show any significant variation among the lake sites, however, TM1 and TM3, 

which represent inlet stream sites had significantly lower values (F7,54=8.244; p= 

0.000) than TM4, TM5, TM5b and TM6 (Fig. 5.1.1i2).  
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5.1.1j. Sodium and Potassium 

The variations in sodium content in Tso Morari lake are depicted in Table 

5.1.1j1. The sodium content fluctuated from a low of 2 mg/L at TM1 and TM3 in 

December 2004 to a high of 99 mg/L at TM4 in the same month. The mean values 

varied from a low of 10±7mg/L at site TM1 to a high of 74±14mg/L at site TM4. All 

the Lake sites had significantly higher (F7,54=19.752; p=0.000) values of sodium than 

TM1 and TM3 (Fig. 5.1.1j1). The potassium content of Tso Morari varied from 1mg/L 

(TM1and TM4) to 77 mg/L (TM6). The mean values of potassium also followed the 

same trend having minimum value of 6±10 mg/L at site TM1 and maximum of 

36±32mg/L at site TM6 (Table 5.1.1j2). The data revealed that site TM1, TM3 and 

TM4 had significantly low (F7,54=4.841;p= 0.000) potassium content (mean<6mg/L) 

than site TM6. Rest of the sites did not show any significant difference in mean 

potassium values (Fig. 5.1.1j2). 

5.1.1k. Chloride 

The chloride content in the Lake fluctuated from a low value of 2 mg/L at site 

TM7 in July 2005 to a high of 54 mg/L at site TM4 in August 2006 (Table 5.1.1k). 

The mean values of chloride ranged from 13±9mg/L (TM1) to 32±13mg/L (TM5b) 

(Fig. 5.1.1k). However, analysis of variance did not show any significant difference 

(F7,54 = 2.172; p= 0.051) between the study sites.  

5.1.1l. Nitrate Nitrogen 

The nitrate content of the lake is depicted in Table 5.1.1l. The data revealed an 

apparent seasonal trend in which high values of nitrate were recorded in winter and 

low values in summer. The nitrate content varied from 0.0 µg/L (TM5b) in August 

2006 to 1638µg/L (TM5) in December 2005. Conversely, minimum mean value of 
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194±87µg/L was registered at site TM6 and maximum value of 619±484µg/L was 

registered at site TM5 (Fig. 5.1.1l).  

5.1.1m. Ammonical Nitrogen 

The ammonical nitrogen at different sites in Tso Morari Lake is depicted in 

Table 5.1.1m. The data revealed relatively uniform distribution of ammonical 

nitrogen at all the sites with highest values in winter and autumn season. The 

ammonical nitrogen ranged from a low value of 6µg/L (TM7) in June 2006 to 

100µg/L (TM3) in December 2005. The ammonical nitrogen values showed 

insignificant (F7,54=0.415; p=0.889) variation between the study sites. However, 

highest mean value of 54±27µg/L was recorded at site TM3 and lowest value of 

39±23µg/L was observed at sites TM5 and TM5b (Fig. 5.1.1m).  

5.1.1n. Total Phosphorus 

The concentration of total phosphorus at different sites in Tso Morari Lake is 

shown in Table 5.1.1n. The high values of total phosphorus were reported for winter 

and autumn as compared to summer months. Total phosphorus varied from 76µg/L 

(TM3) to 1638 µg/L (TM5), whereas mean values varied from 120±29µg/L (TM3) to 

647±312µg/L (TM2). Except sites TM1 and TM3 which showed significantly lower 

values (F7,54=4.592; p=0.000) than sites TM2 and TM5, the total phosphorus 

concentration at other sites did not show any significant variation (Fig. 5.1.1n).  

5.1.1o. Sulphate 

Sulphate content at different selected sites in Tso Morari lake is shown in Table 

5.1.1o. The data revealed high concentration of sulphate in winter months and low in 

summer months. The sulphate content varied from a minimum value of 8 mg/L at site 

TM1 to a maximum of 520 mg/L at site TM5. The minimum mean value of 

34±21mg/L was observed at site TM1 and maximum value of 366±118mg/L was 
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recorded at site TM5. The mean values of sulphate varied significantly (F7,54=13.333; 

p=0.000) between the selected sites. Sites TM1 and TM3 had significantly low 

sulphate content than other sites. Significant difference in sulphate values was also 

recorded between TM4 and TM5 (Fig. 5.1.1o). 

5.1.1p. Dissolved Silica 

The data on silicate concentrations at Tso Morari lake are presented in Table 

5.1.1p. The silicate values ranged from a minimum of 1mg/l each at site TM1and 

TM2 to a maximum of 28mg/l at site TM6. The mean silicate values were highest at 

site TM6 (10±10mg/L) and lowest at TM1 (5 ±4mg/L). However, the mean silicate 

values did not show any significant (F7,54=0.799; p= 0.592) difference between the 

study sites (Fig. 5.1.1p). 

5.1.1q. Total Dissolved Solids  

The TDS ranged between 31mg/L at TM1 in 2006 and 980 mg/L at TM5 in July 

2005 (Table 5.1.1q). The mean values ranged from 111±84mg/L (TM1) to 

724±170mg/L, (TM5b). The mean TDS values showed significant (F7,54=10.870; 

p=0.000) variation between the study sites. Sites TM5b, TM5 and TM4 had 

significantly higher values of TDS than TM1 and TM3 sites. Site TM5b also showed 

significant difference in mean TDS values with sites TM2 and TM6 (Fig. 5.1.1q). 

 

 

 

 

 



Chapter 5                                                                                                                                                      Results                                                                        

 

 

88 
 

Table 5.1.1a1.  Spatial and temporal variations in air temperature (
0
C) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 6.0 -6.0 2.0 20.0 5.0 -7.0 9.5 25.0 5.0 6.6 10.6 

TM2 15.0 -3.7 5.0 20.0 10.0 -7.0 5.0 22.0 6.0 8.0 9.9 

TM3 13.0 -4.0 7.0 12.0 7.0 -6.0 4.0 27.0 6.0 7.3 9.7 

TM4 13.0 -3.5 11.0 20.0 14.0 -2.0 14.0 18.0 4.5 9.9 8.4 

TM5 * * 9.0 19.0 14.0 -3.0 11.0 21.0 3.0 10.6 8.5 

TM5b * * 9.0 19.0 14.0 -3.0 11.0 21.0 3.0 10.6 8.5 

TM6 * * 8.0 23.0 11.0 * 26.0 20.0 3.0 15.2 9.2 

TM7 * * * 21.0 8.0 -1.0 12.0 11.0 5.0 9.3 7.4 

 

Table  5.1.1a2.. Spatial and temporal variations in water temperature (
0
C) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 9.0 0.5 5.0 12.0 9.5 1.0 8.0 16.0 6.0 7.4 5.0 

TM2 11.0 2.0 7.0 16.0 14.0 2.0 10.0 17.0 3.0 9.1 5.9 

TM3 9.0 0.0 9.0 11.0 10.0 2.0 7.0 17.0 7.0 8.0 5.0 

TM4 13.0 2.5 5.0 17.0 12.0 2.0 8.0 14.0 4.5 8.7 5.5 

TM5 * * 5.0 12.0 12.0 2.0 6.0 19.0 6.0 8.9 5.8 

TM5b * * 5.0 6.0 6.0 5.0 6.0 8.0 5.5 5.9 1.0 

TM6 * * 6.0 15.5 12.0 * 12.0 10.0 5.0 10.1 4.0 

TM7 * * * 15.0 12.0 1.0 9.0 9.0 6.0 8.7 4.8 

 

Table  5.1.1b1. Spatial and temporal variations in depth (m) in Tso Morari lake during 

2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 0.2 0.2 0.3 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.1 

TM2 2.0 2.5 3.0 2.5 2.0 2.0 3.5 3.0 2.0 2.5 0.6 

TM3 0.2 0.2 0.3 0.4 0.3 0.1 0.4 0.3 0.2 0.3 0.1 

TM4 3.8 4.0 5.5 5.2 4.0 3.9 6.0 5.5 4.0 4.7 0.9 

TM5 * * 44.6 46.0 42.5 42.5 45.0 44.4 43.6 44.1 1.3 

TM5b * *                   

TM6 * * 37.0 35.0 34.5 * 37.4 37.0 36.3 36.2 1.2 

TM7 * * * 6.5 6.3 6.0 6.9 6.5 5.1 6.2 0.6 
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Table  5.1.1b2. Spatial and temporal variations in transparency (m) in Tso Morari lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 0.2 0.2 0.3 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.1 

TM2 2.0 2.5 2.0 2.1 2.0 2.0 3.5 3.0 2.0 2.3 0.6 

TM3 0.2 0.2 0.3 0.3 0.2 0.1 0.4 0.3 0.2 0.2 0.1 

TM4 3.8 3.0 4.0 3.2 3.0 2.0 4.4 4.8 3.0 3.5 0.9 

TM5 * * 16.0 12.0 12.0 11.2 22.0 23.0 14.0 15.7 4.9 

TM5b * * 16.0 12.0 12.0 11.2 22.0 23.0 14.0 15.7 4.9 

TM6 * * 17.0 17.0 12.0 * 18.0 17.0 14.0 15.8 2.3 

TM7 * * * 5.5 5.0 4.8 5.2 5.0 3.8 4.9 0.6 

 

Table 5.1.1c. Spatial and temporal variations in pH in Tso Morari lake during 2004-

2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 8.78 8.79 7.90 8.02 8.34 8.03 8.70 7.69 8.10 8.26 0.4 

TM2 9.24 8.92 8.97 9.02 8.05 9.00 8.97 9.00 8.88 8.89 0.3 

TM3 9.36 8.29 9.18 7.81 8.67 7.38 9.00 8.86 7.98 8.50 0.7 

TM4 9.29 8.08 8.90 8.96 8.60 8.94 8.96 8.90 8.94 8.84 0.3 

TM5 * * 8.75 8.88 8.68 9.04 8.60 8.92 8.90 8.82 0.2 

TM5b * * 8.76 8.80 8.73 8.90 8.73 9.00 8.87 8.83 0.1 

TM6 * * 8.86 8.87 8.45 * 8.00 8.72 8.77 8.61 0.3 

TM7 * * * 8.91 8.15 8.94 8.89 8.06 8.95 8.65 0.4 

 

Table  5.1.1d. Spatial and temporal variations in conductivity (µS/cm) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 160 118 240 298 270 210 227 275 230 225 57 

TM2 1067 1254 1796 1310 1847 1547 1937 1314 1021 1455 341 

TM3 109 146 233 336 253 213 175 139 333 215 82 

TM4 1672 1063 1860 1292 1871 1573 1700 1389 1037 1495 317 

TM5 * * 1995 1843 2390 1550 1910 1420 1035 1735 440 

TM5b * * 1990 1883 1086 1555 1910 1430 1045 1557 391 

TM6  * * 1060 1047 1915 * 1126 1422 1064 1272 345 

TM7 * * * 1925 1227 1534 1916 488 1068 1360 552 
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Table  5.1.1e. Spatial and temporal variations in dissolved oxygen (mg/L) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 9.2 10.0 6.0 10.0 8.6 10.0 8.6 6.0 8.0 8.5 1.6 

TM2 8.0 8.0 8.0 9.0 8.0 8.0 6.8 7.0 9.2 8.0 0.8 

TM3 7.0 8.0 7.0 7.0 9.0 10.0 9.0 6.0 10.0 8.1 1.5 

TM4 8.0 10.0 6.0 7.0 9.0 8.0 7.0 7.0 11.0 8.1 1.6 

TM5 * * 7.0 7.0 8.4 8.0 7.0 6.0 8.0 7.3 0.8 

TM5b * * 4.4 7.0 6.8 6.0 8.2 8.0 7.0 6.8 1.3 

TM6 * * 6.4 8.0 8.0 * 8.7 7.8 8.0 7.8 0.8 

TM7 * * * 7.0 7.0 8.0 7.0 7.0 9.0 7.5 0.8 

 

Table  5.1.1f. Spatial and temporal variations in free carbon dioxide (mg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 12.0 0.0 4.0 6.0 0.0 20.0 0.0 6.0 16.0 7.1 7.4 

TM2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM3 0.0 0.0 0.0 9.0 0.0 20.0 0.0 0.0 18.0 5.2 8.4 

TM4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM5 * * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM5b * * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

TM6 * * 0.0 0.0 0.0 * 8.0 0.0 0.0 1.3 3.3 

TM7 * * * 0.0 3.0 0.0 0.0 0.0 0.0 0.5 1.2 

 

Table  5.1.1g1. Spatial and temporal variations in total alkalinity (mg/L) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 74 52 68 100 80 70 54 40 72 68 18 

TM2 291 376 168 484 400 380 336 240 513 354 110 

TM3 78 328 48 32 90 70 340 380 408 197 161 

TM4 398 212 192 456 400 520 308 300 481 363 117 

TM5 * * 232 480 370 380 312 260 490 361 100 

TM5b * * 212 496 410 470 217 280 485 367 127 

TM6 * * 180 484 330 * 180 280 448 317 130 

TM7 * * * 486 380 460 366 330 446 411 61 
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Table  5.1.1g2. Spatial and temporal variations in carbonate alkalinity (mg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 0 12 8 0 20 0 0 0 0 4 7 

TM2 64 0 24 52 90 120 66 40 90 61 37 

TM3 22 4 8 0 20 0 50 0 0 12 17 

TM4 58 28 40 46 80 50 74 0 81 51 26 

TM5 * * 36 36 160 50 78 0 90 64 52 

TM5b * * 36 28 280 50 50 48 90 83 89 

TM6 * * 32 40 20 * 280 38 104 86 100 

TM7 * * * 46 0 80 62 0 110 50 44 

 

Table  5.1.1g3. Spatial and temporal variations in bicarbonate alkalinity (mg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 74 40 60 100 60 70 54 40 72 63 19 

TM2 227 376 144 432 310 260 270 200 432 295 102 

TM3 56 324 40 32 70 90 290 380 408 188 159 

TM4 340 184 152 410 320 470 234 300 400 312 107 

TM5 * * 196 444 210 330 234 260 400 296 97 

TM5b * * 176 468 130 330 167 240 395 272 128 

TM6 * * 148 444 310 * 44 220 389 259 151 

TM7 * * * 440 380 380 304 330 356 365 47 

 

Table  5.1.1h. Spatial and temporal variations in total hardness (mg/L) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 70 142 340 300 107 100 132 46 144 153 100 

TM2 584 904 1540 1600 1020 388 440 730 452 851 460 

TM3 110 184 660 700 260 160 80 58 226 271 241 

TM4 728 1220 1600 1800 890 508 826 760 1080 1046 426 

TM5 * * 1340 1400 1370 544 810 890 1000 1051 329 

TM5b * * 1550 2100 1090 688 934 608 1090 1151 520 

TM6 * * 460 1940 1100 * 480 606 980 928 562 

TM7 * * * 500 1070 614 868 876 826 792 204 
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Table  5.1.1i1. Spatial and temporal variations in calcium content (mg/L) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 12 25 60 50 38 19 28 8 36 31 17 

TM2 15 21 40 55 40 5 28 86 32 36 24 

TM3 19 89 61 65 53 33 26 10 40 44 25 

TM4 10 21 40 20 24 9 27 38 22 23 11 

TM5 * * 40 20 44 5 28 48 32 31 15 

TM5b * * 60 40 48 9 16 32 35 34 18 

TM6 * * 36 20 28 * 29 32 28 29 5 

TM7 * * * 10 36 8 24 38 34 25 13 

 

Table  5.1.1i2. Spatial and temporal variations in magnesium content (mg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 10 16 40 35 16 9 21 6 13 18 12 

TM2 125 207 150 355 224 91 182 125 66 169 87 

TM3 13 23 20 20 43 10 4 8 31 19 12 

TM4 172 121 1560 425 202 118 184 161 294 360 460 

TM5 * * 1300 330 306 129 184 187 223 380 412 

TM5b * * 149 485 236 144 217 150 222 229 119 

TM6 * * 430 460 251 * 22 142 198 251 169 

TM7 * * * 100 238 145 196 192 186 176 48 

 

Table  5.1.1j1. Spatial and temporal variations in sodium content (mg/L) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 7 2 3 15 10 19 6 22 6 10 7 

TM2 53 97 73 61 73 75 74 48 74 70 14 

TM3 23 2 5 28 73 6 25 44 5 23 23 

TM4 79 99 76 70 78 76 68 46 76 74 14 

TM5 * * 77 76 84 76 76 40 74 72 14 

TM5b * * 76 76 73 76 78 48 74 72 11 

TM6 * * 77 76 73 * 89 49 74 73 13 

TM7 * * * 75 15 75 70 38 76 58 26 
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Table  5.1.1j2. Spatial and temporal variations in potassium content (mg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 1 1 2 1 31 8 2 2 3 6 10 

TM2 9 37 27 13 3 24 22 22 27 20 10 

TM3 8 6 2 10 15 2 2 25 3 8 8 

TM4 17 1 3 16 4 29 20 22 29 16 11 

TM5 * * 28 19 2 24 14 20 29 19 9 

TM5b * * 3 18 11 26 26 20 20 18 8 

TM6 * * 4 19 76 * 77 18 22 36 32 

TM7 * * * 18 3 25 22 11 29 18 10 

 

Table  5.1.1k. Spatial and temporal variations in chloride content (mg/L) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 21 6 12 4 32 20 8 6 10 13 9 

TM2 48 36 36 12 34 28 11 34 26 29 12 

TM3 15 30 10 3 36 8 10 54 10 20 17 

TM4 50 8 52 15 20 28 10 38 22 27 16 

TM5 * * 32 18 22 28 11 38 38 27 10 

TM5b * * 46 20 46 30 10 35 35 32 13 

TM6 * * 40 20 36 * 20 34 38 31 9 

TM7 * * * 2 12 30 9 40 40 22 17 

 

Table  5.1.1l. Spatial and temporal variations in nitrate nitrogen content (µg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 231 498 468 413 148 758 150 187 237 343 206 

TM2 139 36 142 217 31 503 115 41 887 235 285 

TM3 177 101 68 272 90 170 666 776 99 269 265 

TM4 248 469 368 352 452 472 287 266 327 360 87 

TM5 * * 268 364 664 1638 213 664 520 619 484 

TM5b * * 274 258 263 434 570 0 249 293 176 

TM6 * * 328 108 248 * 102 208 170 194 87 

TM7 * * * 161 146 316 480 119 122 224 145 
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Table  5.1.1m. Spatial and temporal variations in ammonical nitrogen (µg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 49 82 33 53 65 20 26 18 49 44 22 

TM2 60 71 35 58 65 26 12 87 33 50 24 

TM3 59 69 33 43 75 100 10 60 34 54 27 

TM4 44 55 54 37 57 29 12 73 34 44 18 

TM5 * * 35 38 70 30 11 69 20 39 23 

TM5b * * 36 77 69 37 15 25 14 39 25 

TM6 * * 31 52 58 * 52 86 16 49 24 

TM7 * * * 49 68 24 6 76 17 40 29 

 

Table  5.1.1n. Spatial and temporal variations in total phosphorus (µg/L) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 130 120 130 140 560 144 170 143 140 186 141 

TM2 832 360 1028 720 1080 620 126 640 420 647 312 

TM3 108 76 148 148 120 84 122 160 110 120 29 

TM4 227 100 288 184 914 284 500 456 580 393 250 

TM5 * * 234 364 664 1638 213 664 520 614 488 

TM5b * * 624 518 284 470 220 650 720 498 188 

TM6 * * 170 240 456 * 128 490 720 367 228 

TM7 * * * 284 488 408 200 488 630 416 155 

 

Table  5.1.1o. Spatial and temporal variations in sulphate (µg/L) in Tso Morari lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 62 22 8 71 45 20 26 18 30 34 21 

TM2 66 354 328 161 480 302 478 161 388 302 145 

TM3 140 36 15 10 46 14 42 28 72 45 41 

TM4 75 23 382 145 141 307 52 145 246 168 120 

TM5 * * 383 199 474 321 424 244 520 366 118 

TM5b * * 360 101 458 300 359 340 380 328 111 

TM6 * * 399 167 473 * 218 378 372 335 117 

TM7 * * * 148 224 303 126 248 363 235 90 
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Table  5.1.1p. Spatial and temporal variations in silicate (mg/L) in Tso Morari lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 4 7 1 14 4 7 1 2 1 5 4 

TM2 14 9 2 13 14 9 2 2 1 7 6 

TM3 4 9 3 9 4 9 3 3 0 5 3 

TM4 14 11 4 17 14 11 4 2 3 9 6 

TM5 * * 2 25 15 9 5 2 4 9 8 

TM5b * * 3 13 14 22 6 2 0 9 8 

TM6 * * 4 10 13 * 28 2 4 10 10 

TM7 * * * 13 14 6 6 2 6 8 5 

 

Table  5.1.1q. Spatial and temporal variations in total dissolved solids (mg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM1 57 122 320 100 51 100 110 31 110 111 84 

TM2 340 320 480 422 416 210 460 480 440 396 90 

TM3 250 120 200 188 150 80 310 198 96 177 74 

TM4 678 480 520 200 400 840 470 440 744 530 195 

TM5 * * 440 980 490 580 462 480 844 611 214 

TM5b * * 800 460 910 710 530 790 866 724 170 

TM6 * * 640 100 470 * 190 144 876 403 313 

TM7 * * * 100 400 780 340 420 688 455 246 

*Sampling not done  
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Fig. 5.1.1a1. Changes in air temperature (

0
C) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 
Fig. 5.1.1a2. Changes in water temperature (

o
C) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly different (p< 0.001) between the sites 

(Tukey HSD). 

 

 
Fig. 5.1.1b1. Changes in depth (m) (mean ± SD) at different study sites in Tso Morari lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.1b2. Changes in transparency (m) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1c. Changes in pH (mean ± SD) at different study sites in Tso Morari lake. Different letters on the bars 

indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1d. Changes in conductivity (µS/cm) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.1e. Changes in dissolved oxygen (mg/l) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly different (p< 0.001) between the sites 

(Tukey HSD). 

 
Fig. 5.1.1f. Changes in free CO2 (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1g. Changes in total alkalinity (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.1h. Changes in total hardness (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1i1. Changes in calcium (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1i2. Changes in magnesium (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.1j1. Changes in sodium (mean ± SD) at different study sites in Tso Morari lake. Different letters on the 

bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
 Fig. 5.1.1j2. Changes in potassium (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different   

  letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1k. Changes in chloride (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.1l. Changes in nitrate (µg /l) (mean ± SD) at different study sites in Tso Morari lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1m. Changes in ammonia (µg /l) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1n. Changes in total phosphorus (µg /l) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly different (p< 0.001) between the sites 

(Tukey HSD). 
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Fig. 5.1.1o. Changes in sulfate (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1p. Changes in silicate (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.1q. Changes in TDS (mg/l) (mean ± SD) at different study sites in Tso Morari lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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5.1.2. Tso Khar Lake 

5.1.2a. Air and Water temperature 

The air temperature at different sites varied from a minimum of -7°C (TK3 and 

TK4) in December 2004 to a high of 25°C (TK1 and TK2) in July 2005 (Table 

5.1.2a1). The mean air temperature values did not show any significant variation 

(F4,31=0.342; p=0.848) between the study sites. However, minimum mean air 

temperature was registered for site TK4 (7.0±9.3°C) and maximum was recorded at 

site TK1 (12.4±11.2°C) (Fig. 5.1.2a1). The water temperature ranged from a minimum 

of 0°C (TK1, TK2, TK4 and TK5) in December 2004 and 2005 to a maximum value 

of 23°C (TK1, TK2 and TK5) in June 2005 (Table 5.1.2a2). The highest mean values 

of water temperature was found at TK5 (12.6±8.2°C) followed by TK2 (11.3±8.3°C), 

TK1 (11.1±8.8°C), TK4 (10.0±7.5°C) and lowest was observed at TK3 (8.6±5.1°C). 

The mean water temperature values however, did not show any significant variation 

(F4,31=0.304; p=0.873) between the study sites (Fig. 5.1.2a2).  

5.1.2b. Depth and Transparency 

The depth varied from 0.2m at site TK3 to a high of 2.8m at TK4. TK1, TK2 

and TK3 depicted <2m depth, while TK4 had >2m of depth throughout the study 

period (Table 5.1.2b1). The mean values of depth at TK4 (1.8±1.1m) and TK5 

(1.7±1.0m) were significantly higher (F4,31=5.542; p=0.002) than TK3 (0.3±0.1m) and 

TK1 (0.4±0.2m), while TK2 (1.0±0.6m) showed insignificant difference with other 

sites with respect to depth (Fig. 5.1.2b1). Lake transparency varied from a minimum 

of 0.1m at site TK1 to a maximum value of 2.2m at site TK4 (Table 5.1.2b2). The 

mean values of transparency were less than 1m at all the sites, lowest being recorded 

at site TK1 (0.1±0.1m) and the highest at site TK5 (0.6±0.3m). However, mean 

transparency values did not show any significant difference (F4,31=1.600; p=0.199)  

between the study sites (Fig. 5.1.2b2).  
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5.1.2c. pH 

The pH in this Lake varied from 7.55 at TK2 in December 2005 to 9.28 at TK5 

in July 2005 (Table 5.1.2c). The maximum mean value was observed at TK4 

(8.67±0.3) and the minimum at TK3 (8.25±0.4). However, pH values did not show 

any significant variation (F4,31=1.064; p=0.391) between the study sites (Fig. 5.1.2c).  

5.1.2d. Conductivity 

Conductivity values in Tso Khar lake are depicted in Table 5.1.2d. The 

conductivity varied from 271 µS/cm at TK3 in October 2005 to 31000 µS/cm at TK1 

in June 2005. The mean conductivity values at TK1 (23386 ±7366µS/cm and TK4 

(18165±5078µS/cm) were significantly higher (F4,31=51.667; p=0.000) than the mean 

conductivity values found at TK3 (463±175µS/cm), TK2 (1698±834µS/cm) and TK5 

(2036±1528 µS/cm), dividing the lake into two parts one   highly saline and other  

fresh water (Fig. 5.1.2d). 

5.1.2e. Dissolve Oxygen 

Variation in dissolved oxygen at different study sites is depicted in Table 5.1.2e. 

Due to high salinity of the lake, dissolved oxygen analysis was carried only at three 

sites. The dissolved oxygen fluctuated from a minimum of 2mg/L at site TK1 to a 

high of 9mg/L at TK2 and TK3. The mean values of dissolved oxygen also followed 

the same trend, being highest at site TK3 (8±1mg/L) and lowest at site TK1 

(4.3±2.5mg/L) (Fig. 5.1.2e).  

5.1.2f. Free Carbon Dioxide 

Variation in free carbon dioxide at different study sites is presented in Table 

5.1.2f. Free CO2 content varied from 0.0 mg/L to 20 mg/L. Perusal of the data reveals 

that mean CO2 values at TK3 (9.1±8.2 mg/l) were significantly higher (F4,31=3.689; 
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p=0.014) than site TK4 (0.3±0.8 mg/l). Rest of the sites did not show any significant 

variation in free CO2 values (Fig. 5.1.2f).  

5.1.2g. Alkalinity 

Considerable spatial variations were observed in total alkalinity values in Tso 

Khar (Table 5.1.2g1), ranging from a low of 68mg/L for TK5 in November 2006 to a 

high of 3740 mg/L for TK1 in October 2005. The maximum mean value of 

2364±790mg/L was recorded at TK1 against the minimum value of 160±50mg/L 

recorded at TK3. However, significant variation (F4,31=16.218; p=0.000) in total 

alkalinity values was observed between site TK1 with sites TK2, TK5 and TK3 and 

between site TK4 with sites TK5 and TK3. The total alkalinity was contributed by 

both carbonate (Table 5.1.2g2) and bicarbonate alkalinity (Table 5.1.2g3). 

5.1.2h. Total Hardness 

The hardness values in Tso Khar depicted wider fluctuations oscillating between 

90 mg/L at TK5 in November 2006 and 4672 mg/L at TK4 in December 2004 (Table 

5.1.2h). On the basis of hardness the lake water can be dived into hard and very hard 

type. Site TK1 recorded the highest mean value of 2950±908 mg/L against the lowest 

of 350±105 mg/L at TK3 (Fig. 5.1.2h). Similarly, the mean values of total hardness at 

sites TK1 and TK4 were significantly higher (F4,31=29.325; p=0.000) than other sites.  

Cationic Composition 

On the basis of cation content, the study sites showed wide-ranging pattern. At 

site TK1 and TK4 the cationic progression was observed to be  Na> K> Mg>Ca, 

while at site TK2 and TK3 the order was Ca>Mg>Na>K, and at site TK5, 

Mg>Ca>Na>K.  
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5.1.2i. Calcium and Magnesium 

The calcium content ranged from a low of 12mg/L (TK5) to a high of 410 mg/L 

(TK1) (Table 5.1.2i1). On the basis of mean calcium values site TK1 (241±107 mg/L) 

showed significantly higher values (F4,31=8.896; p=0.000) than sites TK5 

(41±19mg/L), TK3 (63±41mg/l) and TK2 (102±55 mg/l). However, the mean values 

of calcium at site TK4 did not show any significant variation with other sites except 

site TK5 (Fig. 5.1.2i1). Similarly the minimum magnesium values in Tso Khar lake 

was found at TK5 (15mg/L) and maximum at TK4 (1452 mg/L) (Table 5.1.2i2). The 

mean magnesium values were significantly higher (F4,31=31.007; p=0.000) at TK1 

(935±335mg/L) followed by TK4 (435±239 mg/l), while significantly least values 

were recorded at sites TK3 (38±13 mg/L), TK2 (74±44mg/l) and TK5 (98 ± 69mg/l) 

(Fig. 5.1.2i2).  

5.1.2j. Sodium and Potassium 

Variations in sodium content at different sites are depicted in Table 5.1.2j1.  The 

high values of sodium were observed in summer months than winter months. It varied 

from   8 mg/L (TK5) to   39986 mg/L (TK1). The highest mean value of 20354±9007 

mg/L was observed for TK1, followed by TK4 (17431±4936 mg/L), TK2 (124±119 

mg/L), TK5 (29±12mg/L) and lowest value of 20±10 mg/L was recorded for site 

TK3. However, the mean values reported for sites TK1 and TK4 were significantly 

higher (F4,31=42.874; p=0.000) than sites TK2, TK3 and TK5 (Fig. 5.1.2j1). Potassium 

content also showed high spatial and temporal variations throughout the study period 

and followed almost the same trend as sodium (Table 5.1.2j2). Potassium content 

ranged from a low of 1mg/L (TK3) to 7250 mg/L (TK4). The mean potassium values 

were significantly higher (F4,31=18.614; p=0.000) at TK4 (3426±3102mg/L) followed 

by TK1 (1910±1164mg/L), and significantly least values were recorded at TK3 (7±6 

mg/L), TK5 (12±9 mg/L) and TK2 (27±26 mg/L) (Fig. 5.1.2j2). 
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5.1.2k. Chloride 

The Lake exhibited high temporal and spatial fluctuations in chloride content 

throughout the study period (Table 5.1.2k). The chloride content varied 4mg/L (TK3) 

in December 2004 to 9990 mg/L at site TK1 in October 2004. The mean values of 

chloride found at TK1 (4934±2753 mg/l) and TK4 (4293±3142 mg/l) were 

significantly higher (F4,31=13.426; p=0.000) than the mean values observed at sites 

TK3 (19±15 mg/l), TK5 (28±20 mg/l) and TK2 (34±23 mg/l) (Fig. 5.1.2k). 

5.1.2l. Nitrate Nitrogen 

Spatial and temporal variations in nitrate content at different sites are presented 

in Table 5.1.2l. The lowest (49µg/L) and highest (2988µg/L) values of nitrate were 

recorded in October 2005 for sites TK1 and TK5 respectively. Whereas on the basis 

of mean values, highest value of 2348±578µg/L was registered for TK1, followed by 

TK2 (406±202µg/L), TK4 (396±136µg/L), TK3 (320±254µg/L), the lowest value of 

191±80µg/L was recorded at TK5. However, only site TK1 showed significant 

variation (F4,31=62.238; p=0.000) in nitrate content with rest of the sites (Fig. 5.1.2l). 

5.1.2m. Ammonical Nitrogen 

In contrast to nitrate nitrogen, ammonical nitrogen values at all the sites were 

generally low, ranging from a minimum of 6µg/L (TK2) to a maximum of 681µg/L 

(TK3) (Table 5.1.2m). On the other hand, highest mean values of 179±89 µg/L were 

observed at site TK1, and lowest of 86±51µg/L was recorded for site TK5. The mean 

ammonical nitrogen values, however, showed insignificant variation (F4,31=0.590; 

p=0.672) between the study sites (Fig. 5.1.2m). 
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5.1.2n. Total Phosphorus 

The minimum (64µg/L) and maximum (1228µg/L) total phosphorus 

concentration was found at site TK4 during June and December 2005 respectively 

(Table 5.1.2n). The mean values   ranged from   278±116µg/L (TK3) to 494±396µg/L 

(TK4). However, there was no significant difference (F4,31=0.927; p=0.461) in mean 

total phosphorus concentration between the study sites (Fig. 5.1.2n).  

5.1.2o. Sulphate 

Sulphate content at various study sites is shown in Table 5.2.1o. The minimum 

value of 4mg/L was observed at site TK3 in December 2005 and maximum value of 

787 mg/L at site TK4 in December 2004 .The minimum mean value of 18±21mg/L 

was reported for site TK3 and maximum mean value of 460±258mg/L was recorded 

for site TK4. However, the mean sulphate content at site TK4 was significantly higher 

(F4,31=12.852; p=0.000) than other sites. Significant variation in sulphate content was 

also observed between sites TK1 and TK3 (Fig. 5.1.2o).  

5.1.2p. Dissolved Silica 

The silicate concentration at different study sites in Tso Khar lake during the 

present investigation is presented in Table 5.1.2p. It ranged from 2mg/L each at TK1 

and TK4 to 28mg/L (TK5). The mean values ranged from 9±5mg/L at site TK1 to 12 

±8mg/L at site TK2 and did not show any significant variation (F4,31=0.349; p=0.842 

between the study sites (Fig. 5.1.2p).  

5.1.2q. Total Dissolved Solids 

The concentration of TDS   showed a fluctuation from 100 mg/L at TK5 to 2284 

mg/L at TK4 (Table 5.1.2q). Significant variation (F4,31=13.042; p=0.000) in mean 

TDS values was observed during the present study. The mean TDS values at site TK4 
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(1373±579mg/L) was significantly higher than mean TDS values found at sites TK5 

(138±53mg/L), TK3 (425±317mg/L) and TK2 (631±302mg/L). Site TK1 

(1130±347mg/L) also showed significantly higher values than site TK5 and TK3 (Fig. 

5.1.2q). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 5                                                                                                                                                      Results                                                                        

 

 

110 
 

Table 5.1.2a1. Spatial and temporal variations in air temperature (°C) in Tso Khar lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 17.0 -6.0 10.0 25.0 16.0 * * 23.0 2.0 12.4 11.2 

TK2 18.0 -2.0 10.0 25.0 16.0 -5.0 12.0 15.0 2.0 10.1 9.9 

TK3 * -7.0 * 14.0 20.0 -1.0 8.0 18.0 1.0 7.6 10.3 

TK4 * -7.0 4.0 16.0 12.0 -2.0 8.0 18.0 * 7.0 9.3 

TK5 * * 6.0 22.0 12.0 -3.0 10.0 * 12.0 9.8 8.2 

 

Table 5.1.2a2. Spatial and temporal variations in water temperature (°C) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 18.0 0.0 11.0 23.0 10.0 0.0 * 20.0 6.5 11.1 8.8 

TK2 16.0 0.0 11.0 23.0 10.0 0.0 13.0 22.0 7.0 11.3 8.3 

TK3 * 5.0 * 16.0 11.0 5.0 10.0 12.0 1.0 8.6 5.1 

TK4 * 0.0 12.0 17.0 12.0 0.0 10.0 19.0 * 10.0 7.5 

TK5 * * 17.0 23.0 10.0 0.0 17.0 17.0 4.0 12.6 8.2 

 

Table 5.1.2b1. Spatial and temporal variations in depth (m) in Tso Khar lake during 

2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 0.4 0.0 0.5 0.6 0.5 * * 0.5 0.4 0.4 0.2 

TK2 0.9 0.0 1.4 1.6 1.1 0.0 1.4 1.5 1.1 1.0 0.6 

TK3 * 0.2 * 0.4 0.4 0.2 0.4 0.4 0.2 0.3 0.1 

TK4 * 0.0 2.2 2.6 2.1 0.0 2.8 2.4 2.1 1.8 1.1 

TK5 * * 2.2 2.4 1.8 0.0 2.6 * 1.0 1.7 1.0 
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Table 5.1.2b2. Spatial and temporal variations in transparency (m) in Tso Khar lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 0.1 0.0 0.2 0.2 0.1 * * 0.1 0.1 0.1 0.1 

TK2 0.3 0.0 0.7 0.7 0.7 0.0 0.5 0.5 0.5 0.4 0.3 

TK3 * 0.2 * 0.4 0.4 0.2 0.4 0.4 0.2 0.3 0.1 

TK4 * 0.0 0.2 0.2 0.3 0.0 0.2 2.2 * 0.4 0.8 

TK5 * * 0.8 0.7 0.8 0.0 0.8 * 0.8 0.6 0.3 

 

Table 5.1.2c. Spatial and temporal variations in pH in Tso Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 8.61 8.53 8.55 8.72 8.36 * * 8.93 8.32 8.57 0.2 

TK2 8.76 8.85 8.55 8.73 8.36 7.55 8.58 8.90 8.62 8.54 0.4 

TK3 * 9.06 * 8.24 8.23 8.02 8.28 7.81 8.12 8.25 0.4 

TK4 * 8.92 9.03 8.57 8.25 8.33 8.98 8.62 * 8.67 0.3 

TK5 * * 8.75 9.28 7.90 7.57 8.77 * 8.58 8.48 0.6 

 

Table 5.1.2d. Spatial and temporal variations in conductivity (µS/cm) in Tso Khar lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 25800 27720 31000 28700 13420 * * 12690 24372 23386 7366 

TK2 2250 1022 3100 2870 1342 1054 1456 1358 833 1698 834 

TK3 * 315 * 466 271 533 805 421 432 463 175 

TK4 * 23300 11066 11820 22390 18200 22600 17780 * 18165 5078 

TK5 * * 5140 1380 1656 1320 1478 * 1239 2036 1528 
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Table 5.1.2e. Spatial and temporal variations in dissolved oxygen (mg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 * 7.0 * 4.0 2.0 * * * * 4.3 2.5 

TK2 9.0 6.0 4.0 4.0 4.0 6.0 8.0 7.0 8.0 6.2 1.9 

TK3 * 8.0 * 8.0 9.0 6.0 9.0 8.0 8.0 8.0 1.0 

TK4 * * * * * * * * * * * 

TK5 * * 6.0 6.0 8.0 6.0 8.0 * 8.0 7.0 1.1 

 

Table 5.1.2f. Spatial and temporal variations in free carbon dioxide (mg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 0.0 0.0 0.0 0.0 0.0 * * 0.0 0.0 0.0 0.0 

TK2 0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0 2.2 6.7 

TK3 * 0.0 * 4.0 10.0 20.0 0.0 12.0 18.0 9.1 8.2 

TK4 * 0.0 0.0 0.0 2.0 0.0 0.0 0.0 * 0.3 0.8 

TK5 * * 0.0 0.0 4.0 8.0 0.0 * 0.0 2.0 3.3 

 

Table 5.1.2g1. Spatial and temporal variations in total alkalinity (mg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 2860 2444 1576 1428 3740 * * 2440 2060 2364 790 

TK2 1110 456 1676 1284 1740 1060 580 260 446 957 549 

TK3 * 240 * 88 160 150 200 120 160 160 50 

TK4 * 2878 1440 2792 1840 2420 2338 1540 * 2178 580 

TK5 * * 80 144 404 180 110 * 68 164 124 
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Table 5.1.2g2. Spatial and temporal variations in carbonate alkalinity (mg/L) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 980 722 724 324 1180 * * 800 800 790 263 

TK2 230 134 728 320 780 0 100 40 0 259 300 

TK3 * 68 * 0 0 0 44 0 0 16 28 

TK4 * 1278 24 320 0 700 968 720 * 573 480 

TK5 * * 16 28 0 0 54 * 0 16 22 

 

Table 5.1.2g3. Spatial and temporal variations in bicarbonate alkalinity (mg/L) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 1880 1722 852 1104 2560 * * 1640 1260 1574 568 

TK2 880 322 520 1104 960 1060 480 220 446 666 336 

TK3 * 172 * 88 160 150 158 120 160 144 30 

TK4 * 1600 120 2472 840 1470 1470 820 * 1256 746 

TK5 * * 64 116 404 56 56 * 68 127 137 

 

Table 5.1.2h. Spatial and temporal variations in total hardness (mg/L) in Tso Khar lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 4000 2272 2130 2020 4300 * * 3064 2866 2950 908 

TK2 668 928 420 530 645 360 194 1160 382 587 303 

TK3 * 444 * 390 380 120 394 360 364 350 105 

TK4 * 4672 1930 3025 2300 2490 2868 2600 * 2841 884 

TK5 * * 830 800 400 640 280 * 90 507 298 
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Table 5.1.2i1. Spatial and temporal variations in calcium content (mg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 90 232 190 200 210 * * 353 410 241 107 

TK2 88 196 80 100 120 42 64 180 48 102 55 

TK3 * 64 * 48 120 20 36 120 32 63 41 

TK4 * 152 89 135 100 60 196 315 * 150 86 

TK5 * * 40 40 68 52 36 * 12 41 19 

 

Table 5.1.2i2. Spatial and temporal variations in magnesium content (mg/L) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 1452 1268 900 680 1030 * * 644 568 935 335 

TK2 58 107 85 78 54 42 38 172 33 74 44 

TK3 * 48 * 56 34 17 34 44 32 38 13 

TK4 * 920 430 390 330 198 259 520 * 435 239 

TK5 * * 177 170 68 124 36 * 15 98 69 

 

Table 5.1.2j1. Spatial and temporal variations in sodium content (mg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 15830 17608 39986 22214 14444 * * 16720 15688 20356 9007 

TK2 53 64 399 222 144 40 88 68 40 124 119 

TK3   11 * 21 12 29 38 18 14 20 10 

TK4 * 19760 11162 21622 13480 21100 22680 12210 * 17431 4936 

TK5 * * 28 25 44 29 38 * 8 29 12 
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Table 5.1.2j2. Spatial and temporal variations in potassium content (mg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 1203 1230 1480 4500 1800 * * 1436 1720 1910 1164 

TK2 34 17 14 45 88 8 22 3 14 27 26 

TK3 * 1 * 8 2 19 11 3 8 7 6 

TK4 * 140 31 5626 5626 7250 4880 430 * 3426 3102 

TK5 * * 9 5 5 9 11 * 30 12 9 

 

Table 5.1.2k. Spatial and temporal variations in chloride content (mg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 9990 3430 5850 3279 1240 * * 5250 5500 4934 2753 

TK2 39 10 58 32 24 20 10 82 28 34 23 

TK3 * 4 * 10 40 38 6 20 18 19 15 

TK4 * 7600 3336 2295 1488 1835 3800 9700 * 4293 3142 

TK5 * * 24 13 41 62 15 * 12 28 20 

 

Table 5.1.2l. Spatial and temporal variations in nitrate nitrogen content (µg/L) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 1743 2045 2777 2908 2988 * * 2423 1552 2348 578 

TK2 640 290 277 290 236 182 746 400 590 406 202 

TK3 * 824 * 422 152 392 170 129 148 320 254 

TK4 * 430 484 408 440 580 191 240 * 396 136 

TK5 * * 210 185 49 293 191 * 220 191 80 
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Table 5.1.2m. Spatial and temporal variations in ammonical nitrogen (µg/L) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 78 345 156 168 114 * * 153 242 179 89 

TK2 140 265 156 168 114 12 6 13 30 100 91 

TK3 * 681 * 40 98 29 10 65 15 134 243 

TK4 * 130 121 104 180 116 125 218 * 142 41 

TK5 * * 158 128 99 38 63 * 32 86 51 

 

Table 5.1.2n. Spatial and temporal variations in total phosphorus (µg/L) in Tso Khar 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 242 80 356 404 807 * * 318 485 385 226 

TK2 560 234 496 404 807 408 117 210 404 404 207 

TK3 * 212 * 144 441 435 273 240 202 278 116 

TK4 * 404 64 664 576 1228 83 440 * 494 396 

TK5 * * 228 228 400 140 257 * 520 296 139 

 

Table 5.1.2o. Spatial and temporal variations in sulphate (µg/L) in Tso Khar lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 320 250 185 199 190 * * 242 290 239 52 

TK2 100 123 190 146 185 101 103 168 257 153 53 

TK3 * 11 * 66 10 4 12 10 16 18 21 

TK4 * 727 248 181 665 787 370 240 * 460 258 

TK5 * * 37 81 246 73 66 * 160 111 78 
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Table 5.1.2p. Spatial and temporal variations in silicate (mg/L) in Tso Khar lake during 

2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 8 9 6 15 15 * * 2 9 9 5 

TK2 16 17 14 19 19 4 4 5 14 12 6 

TK3 * 11 * 10 10 4 12 10 16 10 4 

TK4 * 14 12 21 14 8 5 2 * 11 6 

TK5 * * 8 28 10 6 10 * 9 12 8 

 

Table 5.1.2q. Spatial and temporal variations in total dissolved solids (mg/L) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 960 1040 960 1900 905 * * 1010 1133 1130 347 

TK2 568 960 960 190 205 450 870 640 840 631 302 

TK3 * 950 * 750 290 170 480 218 120 425 317 

TK4 * 1310 920 2100 2284 980 1080 940 * 1373 577 

TK5 * * 108 100 190 100 220 * 108 138 53 

 

*Sampling not done 
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Fig. 5.1.2a1. Changes in air temperature (ºC) (mean ± SD) at different study sites in Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2a2. Changes in water temperature (ºC) (mean ± SD) at different study sites in Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2b1. Changes in depth (m) (mean ± SD) at different study sites in  Tso Khar lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.2b2. Changes in transparency (m) (mean ± SD) at different study sites in  Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2c. Changes in pH (mean ± SD) at different study sites in  Tso Khar lake. Different letters on the bars 

indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2d. Changes in conductivity (µS/cm) (mean ± SD) at different study sites in Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.2e. Changes in DO (mg/l)(mean ± SD) at different study sites in  Tso Khar lake. Different letters on the 

bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2f. Changes in free CO2 (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2g. Changes in total alkalinity (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.2h. Changes in total hardness (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2i1. Changes in calcium (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2i2 Changes in magnesium (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.2j1. Changes in sodium (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2j2. Changes in potassium (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2k. Changes in chloride (mg/l) (mean ± SD) at different study sites in Tso Khar lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.2l. Changes in nitrate (µg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2m. Changes in ammonia (µg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 

 
Fig. 5.1.2n. Changes in total phosphorus (µg/l) (mean ± SD) at different study sites in Tso Khar lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.2o. Changes in sulphate (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2p. Changes in silicates (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.2q. Changes in TDS (mg/l) (mean ± SD) at different study sites in  Tso Khar lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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5.1.3. Manasbal Lake 

5.1.3a. Air and Water temperature  

The air temperature at Manasbal lake fluctuated from 7°C (M1) in January to 

33°C (M3 and M5) in June and July during 2005, and in 2006 from 6°C (M1) in 

January to 34°C (M5) in June (Table 5.1.3a1). The highest (21.4±8°C and 21.5±8°C) 

and the lowest (18.1±8°C and 17.1±8°C) mean values of air temperature were 

recorded for sites M5 and M1 in 2005 and 2006 respectively. The mean air 

temperature values did not show any significant variation (F5,138=0.924; p=0.467) 

between the study sites (Fig. 5.1.3a1). The mean values of water temperature varied 

from 9.3±1.9°C (M5b) to 18.3±6.9°C (M5) in 2005 and from a minimum value of 

9.6±2.3°C (M5b) to 18.9 ±8.1 °C (M5) in 2006 (Table 5.1.3a2). In contrast to air 

temperature, mean water temperature in Manasbal lake was significantly low at site 

M5B than rest of the sites except site M1 (Fig. 5.1.3a2).  

5.1.3b. Depth  

A clear trend was observed in depth which depicted higher values in summer 

and lower in winter season at all the sites. Lower values of depth were found at site 

M1 (0.3m) and M3 (0.5m) during 2004 and 2005 respectively, while M5 recorded 

highest values during the study period (Table 5.1.3b). The mean values showed 

significant variation (F5,138=3365.12; p=0.000) between the study sites. Site M5 

(12.24±0.3m) had significantly higher and site M1 (0.9±0.6m) had significantly lower 

values of mean water depth than other sites. Site M2 (1.97±0.52m) had significantly 

higher values than site M3 (1.56±m) during the study period (Fig. 5.1.3b). 
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5.1.3c. Transparency 

The water transparency values at all the selected sites except M5 were below 

2.5m.The highest transparencies were found in summer season. During both years of 

investigation minimum (0.2m) and maximum (6.0m) transparency values were found 

at sites M1 and M5 respectively (Table 5.1.3c). The mean transparency values 

showed significant difference (F5,138= 601.29; p=0.000) between the study sites. Site 

M5 (5.1±0.58m) had significantly higher and site M1 (0.45±0.18m) lower mean 

transparency values than other sites. However, transparency values at sites M2 

(0.94±0.29m), M3 (0.82±0.36m) and M4 (0.85±0.49m) did not show any significant 

difference (Fig. 5.1.3c).  

5.1.3d. pH 

The pH of water was in alkaline range, except bottom site M5b, where pH was 

found to be slightly acidic throughout the study period. It ranged from a minimum of 

6.30 at site M5b to a maximum of 10.0 at site M2 during first year, while during 2
nd

 

year the range was  6.0 to 9.70 (Table 5.1.3d). On the basis of mean values, site M5b 

(6.65±0.25) had significantly lower (F5,138= 26.033; p=0.000) pH values than other 

sites (Fig. 5.1.3d). Rest of the study sites did not show any significant variation in pH 

values.  

5.1.3e. Conductivity 

The conductivity revealed variations from 213 µS/cm for M4 in September to 

565 µS/cm for M5b in October during the year 2004-05 while in 2005-06 it fluctuated 

from 259 µS/cm for M2 and M3 in August to a maximum of 596 µS/cm for M5b in 

June (Table 5.1.3e). The mean conductivity values were significantly different (F5,138= 

26.491; p=0.000) at site M5B (506±9 µS/cm) than other sites. Similarly, conductivity 

values at site M2 (409±15 µS/cm) were significantly higher than sites M5 (346±6 
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µS/cm) and M4 (362±11 µS/cm). Rest of the sites did not show any significant 

variation in mean conductivity values (Fig. 5.1.3e).  

5.1.3f. Dissolved Oxygen  

The highest concentration of dissolved oxygen (14mg/L) was recorded at site 

M1 and lowest (3mg/L and 5mg/L) at site M3 during both years of study (Table 

5.1.3f). The dissolved oxygen at site M5b, which represents the bottom site was 

absent throughout the investigation period. The mean values of dissolved oxygen 

ranged from 8.6±0.6 mg/L (M3) to 10.1±0.5 mg/L (M2). Except site M5B, the mean 

dissolved oxygen did not show any significant difference between the study sites (Fig. 

5.1.3f).  

5.1.3g. Free Carbon Dioxide 

Variation in free CO2 values at different study sites in Manasbal Lake is 

presented in Table 5.1.3g. CO2 values fluctuated from a minimum of 2 mg/L at site 

M1 to a maximum of 27 mg/L at site M5b in 2005. In 2006 free CO2 varied from 2 

mg/L at site M3 and M5 to 28 mg/L at site M5b. The mean values of free CO2 at site 

M5b (21±4.21mg/L) were significantly higher (F5,138= 45.549; p=0.000) than other 

sites. Similarly, the mean CO2 values found at site M1 (7±7.17mg/L) were 

significantly higher than site M2 (3±3.11mg/L). Rest of the sites did not show any 

significant variation in mean free CO2 values (Fig. 5.1.3g). 

5.1.3h. Alkalinity 

Total alkalinity was mainly contributed by bicarbonates; however, carbonate 

alkalinity was also recorded at some sites (Table 5.1.3h1-3). Perusal of the data on total 

alkalinity revealed that minimum values were recorded at site M4 (46 mg/L and 

86mg/L) and maximum values were found at site M5b (393mg/L and 390 mg/L) 

during both years of investigation (Table 5.1.3). The mean values ranged from 
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128±30.34 mg/L (M4) to 311±62.01 mg/L (M5b). Site M5b had significantly higher 

(F5,138= 71.176; p=0.000) values than other sites. The rest of sites did not show any 

significant variation in total alkalinity (Fig. 5.1.3h1).   

5.1.3i. Total Hardness 

The total hardness of Manasbal ranged from 57mg/L at M5 in July to 298 mg/L 

at M5b in August during 2004-05 and in 2005-06, the values varied between 75 each  

at M3 and M4 (May and June) to 288mg /L at M5b (June) (Table 5.1.3i). The mean 

values of total hardness ranged from 111±27.93 mg/L (M4) to 258±23.97mg/L 

(M5b). Comparing the sites on the basis of mean values, M5b had significantly higher 

(F5,138= 85.871; p=0.000) values than other sites. Rest of the sites showed 

insignificant variation in total hardness values (Fig. 5.1.3i).  

5.1.3j. Calcium and Magnesium  

The cations at all the study sites revealed the following order Ca>Mg>Na>K. 

The calcium content varied between 18 mg/L (M3 and M5) to 79 mg/L (M5b) in 

2004-05, while in 2005-06, the values varied from 20 mg/L (M4) to 78 mg/L (M5b) 

(Table 5.1.3j1). The mean values of calcium did not show any significant difference 

between the study sites, except site M5b (57±12.25mg/L) which showed significantly 

higher (F5,138= 17.823; p=0.000) values of calcium (Fig. 5.1.3j1). The minimum (3 and 

5mg/L) and maximum (22 and 20 mg/L) magnesium values were recorded at sites M3 

and M5b respectively, during both years of investigation (Table 5.1.3j2). The mean 

values of magnesium at site M5b (15±3.36µg/L) were significantly higher (F5,138= 

19.669; p=0.000) than other sites (Fig. 5.1.3j2).  

5.1.3k. Sodium and Potassium  

The sodium content was below 20 mg/L throughout the study period (Table 

5.1.3k1). The sodium content varied from 2 mg/L (M1 and M3) to 18 mg/L (M2 and 
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M5b) during 2004-04 and from 3mg/L (M3 and M4) to 17 mg/L (M5b) during 2005-

06. The mean values of sodium at site M5b (14±2.55µg/L) were significantly higher 

(F5,138= 37.623; p=0.000) than other sites. Site M2 (9±3.70µg/L) also had significantly 

higher values than other sites (Fig. 5.1.3k1). The potassium concentration varied from 

a minimum of 1 mg/L at most of the study sites, while maximum values of 7 mg/L 

were observed at site M5b during the study period (Table 5.1.3k2). The mean values 

of potassium showed significant variation (F5,138= 13.783; p=0.000) between the study 

sites. The mean concentration of potassium at site M5b (4±1.48µg/L) was 

significantly higher than other sites except site M2 (3±1.58µg/L). Site M2 also had 

higher values than sites M5 (2±0.71µg/L), M4 (2±0.65µg/L) and M3 (2±0.83µg/L). 

Significant difference in potassium was also observed between sites M1 (3±1.26µg/L) 

and M5 (Fig. 5.1.3k2).  

5.1.3l. Chloride 

The chloride content at various study sites in Manasbal Lake are depicted in 

Table 5.1.3l. The chloride fluctuated from 10mg/L at M5 to 50mg/L at M5b during 

the study period. The sites M3, M4 and M5 depicted low values of chloride and sites 

M1, M2 and M5b recorded slightly higher values of chloride content. The mean value 

of chloride at site M5 (15±3.09mg/L) were significantly lower (F5,138= 18.552; 

p=0.000) than other sites except site M3 (18±3.99mg/L),while at M5B (29±9.79mg/L)  

it was significantly higher than other sites (Fig. 5.1.3l).  

5.1.3m. Nitrate Nitrogen  

The nitrate content at different study sites in Manasbal Lake are shown in Table 

5.1.3m. Nitrate content varied from a minimum of 110µg/L at site M5 to a maximum 

of 408µg/L at site M2 in 2004-05 and from 109 µg/L at site M4 to 380 µg/L at site 

M5b in 2005-06. The mean values of nitrate nitrogen showed significant variation 

(F5,138= 16.834; p=0.000) between the study sites. The mean nitrate values at site M5b 
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(274±50.20µg/L) and M2 (272±63.86µg/L) were significantly higher than other sites, 

except site M1 (228±69.01µg/L). M1 and M4 (221±58.98µg/L) also had significantly 

higher values than site M5 (149±31.37µg/L) (Fig. 5.1.3m). 

5.1.3n. Ammonical Nitrogen 

The Manasbal Lake showed high fluctuations in ammonical nitrogen. The 

minimum (15µg/L and 16µg/L) and maximum (660µg/L and 680µg/L) values of 

ammonical nitrogen were recorded at site M5 and M5b respectively, during study 

period (Table 5.1.3n). The mean ammonical nitrogen was significantly higher (F5,138= 

730.06; p=0.000) at site M5b (559±77.84 µg/L) than other sites. The mean values at 

site M2 (73±35.51 µg/L) were also significantly higher than site M5 (32±13.38 µg/L) 

and M3 (41±22.48µg/L) (Fig. 5.1.3n).  

5.1.3o. Total Phosphorus 

The total phosphorus of the lake ranged from 56 µg/L (M5) in June to 485µg/L 

(M5b) in July 2004-05. While in 2005-06 it varied from 68µg/L (M3 and M4) in May 

to 532µg/L (M5b) in June (Table 5.1.3o). The mean nitrate content was significantly 

higher (F5,138= 36.587; p=0.000) at site M5B (377±80.59 µg/L) than other sites.   The 

mean values of total phosphorus at site M2 (233±89.02 µg/L) were  also significantly 

higher than sites M5 (127±36.57 µg/L), M3 (151±68.50 µg/L) and M4 (166±85.39 

µg/L) (Fig. 5.1.3o). 

5.1.3p. Sulphate  

Variation in sulphate content at different study sites in Manasbal Lake are 

depicted in Table 5.1.3p. Maximum sulphate content of 8 and 10 mg/L was recorded 

at site M5b and minimum of 1 mg/L was recorded at most of the sites during both 

years of study. The mean sulphate values ranged between 2.45±1.14mg/L (M4) to 
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6±2.70mg/L (M5b). However, mean values of sulphate at site M5b were significantly 

higher (F5,138= 17.654; p=0.000) than other sites (Fig. 5.1.3p).   

5.1.3q. Dissolved Silica  

The silicate content of the lake ranged from 1mg/L at most of the sites to a 

maximum of 18 mg/L at site M5b during the investigation period (Table 5.1.3q). The 

mean values ranged from a minimum of 1.33±mg/L at site M2 to a maximum of 

13.41±3.32mg/L at site M5b. However, analysis of variance showed significantly 

higher (F4,31=128.477; p=0.000) mean value of   silicate at M5b than other sites. Site 

M5 also showed significant difference in mean silicate values with sites M2, M4 and 

M3 (Fig. 5.1.3q).  

5.1.3r. Total Dissolved Solids  

The silicate concentration at different sites in Manasbal Lake is depicted in 

Table 5.1.3r. The highest (183mg/L) and lowest (21mg/L) TDS values were recorded 

at M2 in 2004-05 and in 2005-06 the  highest concentration of TDS was recorded at 

M5 (185 mg/L) and lowest at M4 (30 mg/L). The mean values of TDS showed 

significant variation (F5,138= 14.490; p=0.000) between the study sites. The mean 

value of TDS was significantly higher at site M5b (127±32mg/L) than other sites. 

Sites M2 (82±47mg/L) and M3 (78±28mg/L) also had significantly higher TDS 

values than site M4 (50±13mg/L) (Fig. 5.1.3r).    
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Table  5.1.3a1. Spatial and temporal variations in air temperature (°C) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  9.0 7.0 10.0 14.0 17.0 20.0 30.0 32.0 25.0 22.0 18.0 13.0 18.1 7.8 

 M2  9.0 9.0 10.0 16.0 18.0 22.0 32.0 32.0 28.0 27.0 20.0 13.0 19.7 7.2 

 M3  11.0 10.0 11.0 17.0 22.0 24.0 33.0 33.0 27.0 28.0 20.0 16.0 21.0 7.9 

 M4  10.0 8.0 12.0 13.0 19.0 27.0 31.0 31.0 28.0 26.0 31.0 15.0 20.9 8.5 

 M5  13.0 10.0 12.0 18.0 20.0 26.0 31.0 33.0 28.0 26.0 22.0 18.0 21.4 8.0 

 M5b  
              

2005-2006 

 M1  8.0 6.0 13.0 10.0 13.0 19.0 24.0 29.0 28.0 23.0 20.0 12.0 17.1 7.8 

 M2  9.0 8.0 11.0 14.0 18.0 20.0 26.0 29.0 26.0 23.0 20.0 12.0 18.0 7.2 

 M3  11.0 10.0 12.0 15.0 20.0 22.0 30.0 30.0 30.0 29.0 22.0 14.0 20.4 7.9 

 M4  10.0 8.0 14.0 12.0 14.0 24.0 26.0 32.0 33.0 26.0 20.0 15.0 19.5 8.5 

 M5  12.0 11.0 13.0 17.0 21.0 26.0 30.0 34.0 32.0 26.0 20.0 16.0 21.5 8.0 
 M5b  

              
 

Table  5.1.3a2. Spatial and temporal variations in water temperature (°C) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  7.0 5.0 7.0 10.3 12.0 17.0 26.0 28.0 23.0 20.0 15.0 10.0 15.0 7.8 

 M2  7.8 7.0 7.0 13.5 16.0 18.0 29.0 32.0 26.0 25.0 16.0 12.0 17.4 8.7 

 M3  9.0 7.5 8.0 16.0 19.0 21.0 31.0 30.0 25.0 24.0 16.0 11.0 18.1 8.3 

 M4  9.0 5.0 8.4 11.0 15.0 24.0 29.0 28.0 25.0 24.0 18.0 13.0 17.5 8.3 

 M5  9.2 8.4 8.6 16.0 18.0 22.0 26.0 29.0 25.0 20.0 20.0 17.0 18.3 6.9 
 M5b  7.0 7.5 7.5 8.0 8.0 8.0 10.0 12.0 11.0 10.0 12.0 11.0 9.3 1.9 

2005-2006 

 M1  5.0 5.0 7.0 8.4 9.0 15.0 20.0 24.0 25.0 20.0 17.0 9.0 13.7 7.4 

 M2  7.0 6.8 7.0 12.0 15.0 15.0 22.0 23.0 22.0 20.0 18.0 10.0 14.8 6.2 

 M3  8.5 7.2 8.0 12.0 15.0 20.0 26.0 26.0 25.0 24.0 19.0 12.4 16.9 7.3 

 M4  5.8 5.9 9.0 10.0 11.0 21.0 24.0 27.0 29.0 24.0 17.0 12.4 16.3 8.4 
 M5  10.0 8.0 9.0 14.0 18.0 25.0 28.0 29.0 30.0 24.0 18.0 14.0 18.9 8.1 

 M5b  6.8 6.9 7.8 8.2 8.0 10.0 12.0 12.0 13.0 13.0 10.0 8.0 9.6 2.3 
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Table  5.1.3b. Spatial and temporal variations in depth (m) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  0.3 0.4 0.4 0.7 0.8 1.8 1.5 1.8 1.3 0.5 0.5 0.4 0.9 0.6 

 M2  1.5 1.3 1.7 2.2 2.0 2.5 2.7 2.7 2.5 1.5 1.8 1.0 2.0 0.6 

 M3  1.5 1.7 1.9 1.7 1.4 2.0 2.2 2.5 2.6 1.7 1.6 1.5 1.9 0.4 

 M4  1.5 1.5 1.5 1.8 1.8 1.8 2.5 2.5 2.5 1.7 1.5 1.5 1.8 0.4 

 M5  12.0 12.0 12.0 12.5 12.5 12.5 12.5 12.5 12.5 12.0 12.0 12.5 12.3 0.3 

 M5b                              

2005-2006 

 M1  1.0 0.9 1.0 0.9 1.0 1.5 1.5 1.7 1.2 0.8 1.0 0.9 1.1 0.3 

 M2  1.0 1.5 2.5 2.5 2.0 2.0 2.5 2.3 2.5 1.7 1.8 1.6 2.0 0.5 

 M3  1.5 1.7 0.5 0.9 1.3 1.7 1.6 1.7 0.9 1.4 1.0 1.0 1.3 0.4 

 M4  1.7 1.0 0.6 0.8 1.2 1.7 2.5 2.5 3.2 2.2 1.0 0.8 1.6 0.8 

 M5  12.0 12.0 12.0 12.0 12.5 12.5 12.5 12.5 12.5 12.0 11.7 12.2 12.2 0.3 
 M5b                              

 

Table  5.1.3c. Spatial and temporal variations in transparency (m) in Manasbal lake during 2004-2006 

Year Sites  Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  0.2 0.4 0.4 0.4 0.2 0.2 0.3 0.3 0.5 0.4 0.3 0.3 0.3 0.1 

 M2  0.7 0.8 0.5 1.0 0.9 1.5 1.5 1.0 1.2 0.7 0.7 0.7 0.9 0.3 

 M3  1.0 1.0 1.0 0.4 0.7 0.7 0.7 1.5 2.0 0.5 0.7 0.4 0.9 0.5 

 M4  1.4 1.5 1.5 0.3 0.6 0.5 0.6 2.2 1.7 0.5 0.5 0.4 1.0 0.6 

 M5  5.6 6.0 5.7 4.3 4.2 5.0 4.2 5.6 5.1 5.7 5.5 5.6 5.2 0.6 
 M5b                              

2005-2006 

 M1  0.4 0.4 0.5 0.2 0.6 0.9 0.7 0.6 0.7 0.6 0.6 0.6 0.6 0.2 

 M2  0.7 0.9 0.7 1.2 0.9 0.8 1.5 1.3 0.9 0.6 0.8 1.0 0.9 0.3 

 M3  1.0 1.0 1.0 0.4 0.7 0.9 1.0 0.8 0.5 0.5 0.8 0.5 0.8 0.2 

 M4  0.4 1.0 0.6 0.5 0.9 0.7 1.2 1.0 1.0 0.6 0.6 0.4 0.7 0.3 
 M5  5.8 5.9 5.6 4.7 4.5 4.2 4.8 4.5 5.0 5.2 5.1 5.1 5.0 0.5 

 M5b                              
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Table  5.1.3d. Spatial and temporal variations in pH in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  7.90 7.40 7.70 8.40 9.20 8.20 9.20 9.70 9.10 7.80 7.70 7.40 8.31 0.80 

 M2  7.60 7.90 7.80 8.60 8.70 8.60 10.00 10.00 9.50 8.00 7.80 7.60 8.51 0.89 

 M3  7.50 7.50 7.80 8.30 8.60 8.60 9.40 9.70 8.70 7.70 7.90 7.80 8.29 0.73 

 M4  7.60 7.30 7.90 8.10 7.70 8.10 9.20 9.60 8.50 7.50 7.40 7.20 8.01 0.75 

 M5  7.90 7.70 7.70 8.10 8.40 8.30 9.10 9.00 8.00 7.50 7.70 8.40 8.15 0.51 

 M5b  6.90 6.70 6.80 6.70 6.30 6.40 6.80 6.90 6.50 7.00 6.80 6.90 6.75 0.20 

2005-2006 

 M1  7.90 7.90 7.90 7.70 8.30 7.90 8.10 8.20 8.80 8.00 7.30 7.40 7.95 0.40 

 M2  7.90 7.90 7.40 7.40 9.50 9.50 9.30 9.40 9.70 8.40 8.30 8.50 8.60 0.85 

 M3  7.70 7.80 7.80 8.00 8.40 9.30 9.70 9.40 9.00 8.10 7.80 7.50 8.38 0.77 

 M4  7.40 7.50 7.90 7.20 7.60 8.30 9.40 9.50 8.60 8.20 7.60 7.40 8.05 0.78 
 M5  7.90 7.70 8.00 8.20 8.00 9.20 9.40 8.90 8.30 8.20 7.60 7.90 8.28 0.58 

 M5b  6.90 6.80 6.60 6.40 6.30 6.60 6.40 6.30 6.80 6.70 6.00 6.70 6.54 0.26 
 

Table  5.1.3e. Spatial and temporal variations in conductivity (µS/cm) in Manasbal lake during 2004-2006 

Year sites Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Mean SD 

2004-2005 

M1 394 400 385 370 485 330 327 333 354 456 390 420 387 49 

M2 415 487 333 412 539 341 339 379 372 465 441 445 414 64 

M3 384 351 307 363 546 331 323 312 379 331 365 463 371 69 
M4 383 381 376 363 311 453 333 391 363 213 330 485 365 69 

M5 322 312 345 315 345 323 344 354 329 364 358 425 345 31 

M5b 464 515 455 477 563 522 522 563 542 518 565 496 517 38 

2005-2006 

M1 346 425 387 390 520 324 345 351 360 365 380 396 382 51 

M2 419 319 480 485 563 412 313 385 259 395 432 385 404 83 
M3 347 323 381 355 563 319 313 354 259 372 367 442 366 76 

M4 361 391 375 342 308 306 375 320 396 335 389 404 359 35 

M5 349 330 361 351 295 324 355 349 332 364 375 388 348 25 

M5b 459 481 499 417 479 524 596 525 510 488 464 492 495 44 
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Table  5.1.3f. Spatial and temporal variations in dissolved oxygen (mg/L) in Manasbal lake during 2004-2006 

Year  sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  12.0 14.0 11.0 10.0 9.0 11.0 8.0 8.0 5.0 8.0 8.0 8.5 9.4 2.4 

 M2  10.0 13.0 12.0 10.0 12.0 13.0 10.0 9.0 10.0 6.0 5.0 9.0 9.9 2.5 

 M3  10.0 10.0 10.0 12.0 11.0 12.0 8.0 4.0 3.0 4.0 4.0 8.0 8.0 3.4 

 M4  10.0 12.0 11.0 10.0 11.0 12.0 7.0 8.0 4.0 4.0 4.0 6.0 8.3 3.2 

 M5  11.0 13.0 12.0 10.0 12.0 12.0 8.0 8.0 7.0 7.0 8.0 9.0 9.8 2.2 

 M5b  a a a a a a a a a a A a a A 

2005-2006 

 M1  12.0 14.0 11.0 12.0 10.0 11.0 7.0 8.0 9.0 8.0 8.0 10.0 10.0 2.1 

 M2  12.0 13.0 12.0 13.0 10.0 13.0 10.0 9.0 9.0 7.0 6.0 9.0 10.3 2.4 

 M3  10.0 10.0 11.0 12.0 10.0 13.0 8.0 7.0 8.0 8.0 5.0 9.0 9.3 2.2 

 M4  10.0 11.0 12.0 10.0 10.0 10.0 10.0 8.0 7.0 8.0 9.0 9.0 9.5 1.4 
 M5  10.0 12.0 12.0 10.0 10.0 10.0 10.0 8.0 8.0 6.0 9.0 9.0 9.5 1.7 

 M5b  a a a a a a a a a a A a a A 
 

Table  5.1.3g. Spatial and temporal variations in free carbon dioxide (mg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  4.0 4.0 4.0 2.0 2.0 6.0 a a a 4.0 6.0 4.0 4.0 1.4 

 M2  4.0 6.0 8.0 7.0 a a a a a 5.0 6.0 4.0 5.7 1.5 

 M3  5.0 8.0 4.0 6.0 a a a a a 5.0 6.0 6.0 5.7 1.3 
 M4  6.0 4.0 10.0 8.0 6.0 6.0 a a a 5.0 6.0 6.0 6.3 1.7 

 M5  4.0 8.0 8.0 6.0 4.0 2.0 a a 9.0 5.0 6.0 8.0 6.0 2.3 

 M5b  15.0 18.0 21.0 17.0 15.0 17.0 18.0 21.0 27.0 27.0 21.0 24.0 20.1 4.2 

2005-2006 

 M1  4.0 4.0 4.0 6.0 6.0 5.0 19.0 15.0 14.0 17.0 22.0 25.0 11.8 7.8 

 M2  6.0 6.0 4.0 8.0 a a a a a a A a 6.0 1.6 
 M3  4.0 5.0 2.0 4.0 a a a a 12.0 18.0 20.0 18.0 10.4 7.5 

 M4  5.0 6.0 4.0 3.0 6.0 a a a a 8.0 6.0 10.0 6.0 2.2 

 M5  4.0 4.0 4.0 2.0 6.0 a a a 4.0 10.0 14.0 16.0 7.1 5.0 

 M5b  25.0 20.0 18.0 16.0 19.0 21.0 17.0 26.0 25.0 28.0 24.0 27.0 22.2 4.2 
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Table  5.1.3h1. Spatial and temporal variations in total alkalinity (mg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  136 196 104 193 132 128 96 51 110 175 196 214 144 50 

 M2  142 136 122 186 163 121 104 85 94 156 204 160 139 36 

 M3  159 142 186 146 139 100 96 71 140 188 175 172 143 37 

 M4  146 132 149 136 124 172 76 46 120 108 156 172 128 37 

 M5  164 184 115 139 144 132 58 63 124 180 199 212 143 49 

 M5b  256 366 393 312 303 286 258 275 292 352 216 300 301 50 

2005-2006 

 M1  184 136 172 186 252 210 190 155 122 132 148 136 169 38 

 M2  156 148 120 148 100 118 125 136 164 134 115 125 132 19 

 M3  168 126 140 154 164 144 108 100 100 135 120 131 133 23 

 M4  168 110 132 162 130 121 104 135 86 125 108 151 128 24 
 M5  168 173 132 150 124 104 114 103 96 102 102 153 127 28 

 M5b  216 225 196 356 354 390 390 355 296 389 384 300 321 73 
 

Table  5.1.3h2. Spatial and temporal variations in carbonate alkalinity (mg/L) in Manasbal lake during 2004-2006 

Year Sites Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Mean SD 

2004-2005 

M1 a a a a a a 26 18 8 a A a 17 9 

M2 a a a a 20 12 32 25 10 a A a 20 9 

M3 a a a a 11 16 16 20 8 a A a 14 5 
M4 a a a a a a 20 24 5 a A a 16 10 

M5 a a a a a a 16 18 a a A a 17 1 

M5b a a a a a a a a a a A a a A 

2005-2006 

M1 a a a a a a a a a a A a a A 

M2 a a a a 26 22 22 10 10 2 A 2 13 10 
M3 a a a a 8 26 28 15 a a A a 19 9 

M4 a a a a a 18 22 5 6 a A a 13 9 

M5 a a a a a 14 12 10 a a A a 12 2 

M5b a a a a a a a a a a A a a A 
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Table  5.1.3h3. Spatial and temporal variations in bicarbonate alkalinity (mg/L) in Manasbal lake during 2004-2006 

Year Sites Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Mean SD 

2004-2005 

M1 136 196 104 193 132 128 70 33 102 175 196 214 140 56 

M2 142 136 122 186 163 109 72 60 84 156 204 160 133 45 

M3 159 142 186 146 139 84 80 51 132 188 175 172 138 44 

M4 146 132 149 136 124 172 56 22 115 108 156 172 124 45 

M5 164 184 115 139 133 132 42 45 124 180 199 212 139 54 

M5b 256 366 393 312 303 286 258 275 292 352 216 300 301 50 

2005-2006 

M1 184 136 172 186 252 210 190 155 122 132 148 136 169 38 

M2 156 148 120 148 74 96 103 126 154 132 113 133 125 25 

M3 168 126 140 154 156 118 80 75 100 135 120 131 125 29 

M4 168 110 132 162 130 103 82 130 80 125 108 161 124 29 
M5 173 132 150 124 90 102 93 96 102 102 153 131 121 27 

M5b 168 173 132 150 124 90 102 93 96 102 102 153 124 31 
 

Table  5.1.3i. Spatial and temporal variations in total hardness (mg/L) in Manasbal lake during 2004-2006 

Year sites Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Mean SD 

2004-2005 

M1 125 147 134 102 110 96 85 76 89 110 125 134 111 22 

M2 139 137 148 117 111 97 68 68 60 98 112 106 105 29 

M3 125 136 128 112 105 84 62 62 87 116 93 108 102 24 
M4 136 124 132 114 125 110 89 67 72 76 96 100 103 24 

M5 158 139 161 128 113 94 77 57 90 132 149 158 121 35 

M5b 210 245 269 260 257 282 274 268 298 216 266 247 258 25 

2005-2006 

M1 125 130 156 148 151 138 126 125 142 184 194 179 150 24 

M2 127 142 147 127 141 120 90 96 124 135 148 156 129 20 
M3 132 101 126 128 99 94 75 88 107 163 200 184 125 39 

M4 117 144 124 88 94 75 90 104 120 132 162 174 119 31 

M5 144 164 154 130 156 154 110 95 100 162 178 202 146 32 

M5b 233 217 269 276 251 288 276 284 271 223 264 254 259 24 
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Table  5.1.3j1. Spatial and temporal variations in calcium content (mg/L) in Manasbal lake during 2004-2006 

Year  sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  42 46 54 30 32 28 25 22 25 31 32 38 34 10 

 M2  41 40 42 31 31 20 19 19 19 22 33 29 29 9 

 M3  38 39 46 32 31 26 18 19 18 20 28 30 29 9 

 M4  39 34 37 30 35 31 31 19 22 21 27 29 30 6 

 M5  45 38 43 39 37 25 21 18 27 22 25 27 31 9 

 M5b  58 69 79 47 53 37 30 40 44 60 52 69 53 15 

2005-2006 

 M1  34 35 42 57 41 46 42 35 37 52 62 52 45 9 

 M2  32 45 56 50 44 34 25 27 34 28 53 57 40 12 

 M3  27 30 34 45 37 26 22 26 27 43 58 56 36 12 

 M4  31 40 30 26 24 20 25 29 34 37 55 57 34 12 
 M5  35 46 44 38 51 43 30 26 27 42 51 55 41 10 

 M5b  66 60 75 78 55 54 54 54 55 61 63 57 61 8 
 

Table  5.1.3j2.Spatial and temporal variations in magnesium content (mg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  12 10 12 9 7 7 8 5 5 8 7 9 8 2 

 M2  11 9 10 10 8 5 6 5 4 6 7 8 7 2 

 M3  7 9 9 11 8 5 4 4 3 7 8 7 7 2 
 M4  9 9 10 9 9 8 7 5 4 6 8 7 8 2 

 M5  10 11 13 10 9 8 6 13 5 5 6 10 9 3 

 M5b  16 18 22 11 13 11 9 10 13 16 16 18 14 4 

2005-2006 

 M1  10 10 12 12 14 10 13 9 9 13 18 12 12 3 

 M2  11 11 13 11 12 8 7 7 9 10 13 16 11 3 
 M3  7 6 10 13 9 7 5 6 10 13 13 11 9 3 

 M4  10 11 9 6 6 6 7 8 9 10 13 14 9 3 

 M5  12 11 9 14 11 9 7 8 14 14 10 16 11 3 

 M5b  17 16 20 20 14 13 12 14 16 16 19 17 16 3 
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Table  5.1.3k1. Spatial and temporal variations in sodium content (mg/L) in Manasbal lake during 2004-2006 

Year  sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  8 10 11 9 6 4 4 2 5 6 7 8 7 3 

 M2  8 12 18 8 5 3 8 5 8 7 6 7 8 4 

 M3  6 5 4 3 5 2 3 4 5 6 6 7 5 1 

 M4  7 7 6 9 6 4 5 3 7 6 5 8 6 2 

 M5  6 6 7 5 5 4 5 6 9 7 8 9 6 2 

 M5b  17 15 14 10 13 10 9 13 14 15 18 17 14 3 

2005-2006 

 M1  9 7 10 8 7 5 4 4 9 7 8 10 7 2 

 M2  13 10 14 6 12 10 6 8 10 13 10 16 11 3 

 M3  5 6 8 9 5 6 4 3 7 7 9 10 7 2 

 M4  8 8 4 5 3 5 3 4 8 7 8 8 6 2 
 M5  9 7 5 8 4 6 5 5 6 9 10 7 7 2 

 M5b  14 13 15 16 17 14 10 10 12 14 16 15 14 2 

 

Table  5.1.3k2. Spatial and temporal variations in potassium content (mg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  3.0 5.0 3.0 2.0 1.6 1.0 1.0 1.0 2.0 3.0 3.0 4.0 2.5 1.3 

 M2  4.0 4.0 6.0 2.0 2.0 3.0 1.0 1.6 3.0 4.0 5.0 6.0 3.5 1.7 

 M3  2.0 3.0 3.0 2.0 1.0 1.4 1.5 1.0 1.0 2.0 2.5 2.5 1.9 0.7 

 M4  1.0 1.2 1.5 2.0 1.0 1.5 1.6 1.0 2.0 2.0 2.3 2.6 1.6 0.5 

 M5  2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 1.3 0.5 

 M5b  5.0 7.0 4.0 3.0 2.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 3.7 1.5 

2005-2006 

 M1  4.0 3.0 3.0 3.0 1.5 1.4 1.6 1.0 1.0 4.0 3.0 5.0 2.6 1.3 

 M2  5.0 3.0 4.0 2.0 1.6 1.3 1.0 1.0 1.0 3.0 4.0 4.0 2.6 1.4 

 M3  3.0 3.5 2.0 2.5 1.0 1.0 1.0 1.0 1.5 2.3 3.0 3.0 2.1 0.9 

 M4  2.0 2.0 2.0 1.0 1.0 1.0 1.0 2.0 2.0 2.6 3.0 3.0 1.9 0.8 

 M5  2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0 3.0 3.0 1.8 0.8 

 M5b  7.0 3.0 4.0 3.0 4.0 4.0 5.0 2.0 2.0 4.0 5.0 6.0 4.1 1.5 
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Table  5.1.3l. Spatial and temporal variations in chloride content (mg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  19 20 24 15 16 22 26 29 23 26 28 22 23 4 

 M2  21 20 17 18 16 23 22 16 30 22 29 26 22 5 

 M3  27 15 17 16 12 14 18 14 20 14 12 10 16 4 

 M4  20 18 13 19 16 18 18 18 21 21 24 24 19 3 

 M5  16 21 13 15 16 14 10 11 19 10 15 12 14 3 

 M5b  34 50 42 31 24 27 20 26 25 20 21 18 28 10 

2005-2006 

 M1  15 17 16 19 19 19 20 26 26 27 20 29 21 5 

 M2  25 19 15 15 20 28 23 26 26 24 25 23 22 4 

 M3  15 21 17 21 20 20 20 16 20 16 20 24 19 3 

 M4  22 20 19 20 18 18 14 20 26 20 35 28 22 6 
 M5  17 20 16 12 16 12 12 16 18 14 14 19 16 3 

 M5b  36 45 40 16 18 14 22 32 33 40 31 34 30 10 
 

Table  5.1.3m. Spatial and temporal variations in nitrate nitrogen content (µg/L) in Manasbal lake during 2004-2006 

Year Sites Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Mean SD 

2004-2005 

 M1  200 189 182 220 260 195 108 129 150 235 372 300 212 74 

 M2  235 210 240 283 340 252 203 192 290 304 408 390 279 71 

 M3  180 130 120 280 230 290 200 170 130 170 180 160 187 55 
 M4  270 160 118 250 280 159 253 200 190 139 170 290 207 59 

 M5  110 156 133 153 164 128 140 120 140 136 170 112 139 19 

 M5b  270 332 278 345 296 215 208 246 313 324 220 235 274 49 

2005-2006 

 M1  230 176 225 245 308 220 136 180 270 262 350 321 244 63 

 M2  220 205 245 270 320 236 213 182 263 340 358 320 264 58 
 M3  188 100 162 213 160 140 120 140 130 340 290 283 189 77 

 M4  278 200 220 212 251 185 109 226 290 243 286 324 235 57 

 M5  200 137 180 190 147 160 118 100 124 136 206 213 159 38 

 M5b  330 260 300 287 380 270 245 330 196 247 200 257 275 54 
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Table  5.1.3n. Spatial and temporal variations in ammonical nitrogen (µg/L) in Manasbal lake during 2004-2006 

Year Sites Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Mean SD 

2004-2005 

M1 63 57 30 64 23 20 26 19 30 45 65 72 43 20 

M2 121 103 96 66 35 36 53 42 50 73 68 89 69 28 

M3 38 45 36 44 20 23 25 38 60 42 63 35 39 13 

M4 40 28 41 60 30 18 26 30 50 43 60 42 39 13 

M5 32 24 18 32 20 25 24 15 20 40 42 35 27 9 

M5b 432 464 426 632 500 486 450 660 600 640 535 506 528 85 

2005-2006 

M1 38 50 64 56 32 29 20 25 45 69 68 52 46 17 

M2 59 86 75 80 30 43 48 40 63 100 120 184 77 43 

M3 60 52 43 40 30 24 18 22 58 92 48 67 46 21 

M4 28 30 25 40 20 16 20 18 60 80 74 105 43 30 
M5 54 43 35 26 16 20 25 24 26 56 60 53 37 16 

M5b 630 525 650 548 523 635 680 632 547 530 635 542 590 58 
 

Table  5.1.3o. Spatial and temporal variations in total phosphorus (µg/L) in Manasbal lake during 2004-2006 

Year Sites Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Mean SD 

2004-2005 

M1 200 242 160 120 76 103 83 70 150 230 263 270 164 75 

M2 322 290 309 202 169 136 110 86 220 268 285 320 226 85 

M3 162 182 200 105 60 138 70 52 65 192 230 210 139 66 
M4 285 235 230 125 72 60 56 90 70 150 240 250 155 87 

M5 152 136 170 105 60 72 92 100 112 162 150 200 126 42 

M5b 382 420 318 280 320 389 453 485 423 293 356 368 374 64 

2005-2006 

M1 240 225 182 129 120 92 106 122 192 234 270 296 184 69 

M2 336 265 240 190 120 110 136 149 270 350 322 380 239 96 
M3 190 208 180 76 80 68 109 130 159 230 245 286 163 72 

M4 230 240 261 123 73 68 70 110 160 263 230 302 178 86 

M5 136 140 112 92 124 105 120 106 110 160 130 210 129 32 

M5b 484 432 300 247 280 456 532 483 402 297 362 284 380 97 
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Table  5.1.3p. Spatial and temporal variations in sulphate (µg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  3 3 3 2 2 2 2 2 2 1 1 2 2 1 

 M2  1 3 3 2 2 2 1 1 2 2 1 2 2 1 

 M3  3 3 3 2 1 2 2 2 1 1 2 2 2 1 

 M4  3 2 2 3 4 2 1 2 2 2 2 2 2 1 

 M5  2 2 2 2 2 2 2 2 2 2 1 2 2 0 

 M5b  6 7 8 4 5 3 3 2 2 2 2 3 4 2 

2005-2006 

 M1  3 4 3 3 3 3 5 3 4 5 6 6 4 1 

 M2  2 2 3 3 2 2 4 2 3 4 5 5 3 1 

 M3  1 4 3 4 4 2 2 3 4 5 5 2 3 1 

 M4  3 2 3 3 1 2 2 2 3 3 5 1 3 1 
 M5  4 1 3 3 2 4 2 3 3 5 5 1 3 1 

 M5b  6 7 10 4 5 7 8 10 9 8 8 9 8 2 
 

Table  5.1.3q. Spatial and temporal variations in silicate (mg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  6 7 3 1 7 9 1 1 2 1 3 3 4 3 

 M2  1 2 1 2 1 1 1 1 0 1 1 2 1 1 

 M3  5 4 1 1 2 1 1 1 2 4 4 4 2 2 
 M4  5 2 2 1 2 1 1 0 6 4 4 2 2 2 

 M5  2 3 6 5 3 5 1 1 2 6 6 4 4 2 

 M5b  12 15 13 9 10 10 9 9 10 18 13 9 11 3 

2005-2006 

 M1  2 3 2 4 2 1 2 1 1 1 2 3 2 1 

 M2  3 3 2 1 1 1 0 1 1 1 2 2 1 1 
 M3  3 2 3 1 1 0 1 1 1 1 2 3 2 1 

 M4  3 2 3 1 1 1 0 1 1 2 1 2 1 1 

 M5  4 5 3 5 2 4 4 3 2 3 4 7 4 1 

 M5b  14 15 21 12 14 13 17 15 14 17 15 18 15 2 
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Table  5.1.3r. Spatial and temporal variations in total dissolved solids (mg/L) in Manasbal lake during 2004-2006 

Year  Sites   Dec   Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov  Mean SD 

2004-2005 

 M1  54 44 64 134 128 164 132 72 84 92 78 86 94 37 

 M2  40 21 44 82 180 124 140 140 183 146 125 49 106 57 

 M3  40 42 62 100 82 120 126 124 140 94 82 59 89 34 

 M4  48 54 62 84 74 44 48 42 36 34 44 48 52 15 

 M5  46 54 58 68 72 78 56 54 47 52 48 50 57 10 

 M5b  84 126 92 104 124 158 96 164 52 90 166 84 112 36 

2005-2006 

 M1  84 48 44 60 68 62 54 46 44 50 42 84 57 15 

 M2  70 50 66 44 58 48 54 46 52 64 68 70 58 10 

 M3  82 68 52 56 68 44 84 52 64 84 88 68 68 15 

 M4  54 44 36 48 30 44 48 64 58 42 61 48 48 10 
 M5  42 48 64 92 42 128 104 46 91 98 185 44 82 44 

 M5b  123 129 136 115 154 178 135 129 163 152 148 136 142 18 
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Fig. 5.1.3a1. Changes in air temperature (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3a2. Changes in water temperature (mean ± SD) at different study sites in  Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3b. Changes in depth (m) (mean ± SD) at different study sites in Manasbal lake. Different letters on the 

bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

a a 
a a a a 

0 

5 

10 

15 

20 

25 

30 

35 

M1 M2 M3 M4 M5 M5B 

A
ir

 T
em

p
er

at
u

re
 (

o
C

) 

ab 
b 

b b b 

a 

0 

5 

10 

15 

20 

25 

30 

M1 M2 M3 M4 M5 M5B 

W
at

er
 T

em
p

er
at

u
re

 (
o
C

) 

a 
c b bc 

d d 

0 

2 

4 

6 

8 

10 

12 

14 

M1 M2 M3 M4 M5 M5B 

D
ep

th
 (

m
) 



Chapter 5                                                                                                                                                      Results                                                                        

 

 

145 
 

 
F Fig. 5.1.3c. Changes in transparency (m) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3d. Changes in pH (mean ± SD) at different study sites in Manasbal lake. Different letters on the bars 

indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3e. Changes in conductivity (µS/cm) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.3f. Changes in dissolved oxygen (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3g. Changes in free CO2 (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3h. Changes in total alkalinity (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.3i. Changes in total hardness (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3j1. Changes in calcium (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3j2. Changes in magnesium (mg/l) (mean ± SD) at different study sites in  Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.3k1. Changes in sodium (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3k2. Changes in potassium (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3l. Changes in chloride (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.3m. Changes in nitrate (µg/l) (mean ± SD) at different study sites in Manasbal lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3n. Changes in ammonia (µg /l) (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3o. Changes in total phosphorus (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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Fig. 5.1.3p. Changes in sulfate (mg/l) (mean ± SD) at different study sites in  Manasbal lake. Different letters 

on the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3q. Changes in silicate (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 

 

 
Fig. 5.1.3r. Changes in TDS (mg/l) (mean ± SD) at different study sites in Manasbal lake. Different letters on 

the bars indicate that the means are significantly different (p< 0.001) between the sites (Tukey HSD). 
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5.2. SEDIMENT CHEMISTRY 

5.2.1. Tso Morari Lake  

5.2.1a. pH 

The variations in pH values of sediment from 2004 to 2006 at different study 

sites in Tso Morari lake are shown in Table 5.2.1a. The pH value at all the sites was in 

alkaline range. The minimum (7.80) and maximum (8.90) pH was recorded at site 

TM2 and TM7 in the month of December 2004 and June 2005 respectively. The mean 

values of pH ranged from a high of 8.55±0.3 at site TM7 to a low of 8.23±0.4 at site 

TM2. No significant differences (F4, 35 = 1.213; p = 0.323) were observed in mean pH 

values between the study sites (Fig. 5.2.1a). 

5.2.1b. Conductivity  

The conductivity values of sediments at different sites in the lake during 2004 to 

2006 are shown in Table 5.2.1b. The conductivity values of sediments at all the study 

sites were generally > 1000 µS/cm. The minimum (930 µS/cm) and maximum (2700 

µS/cm) values were observed at sites TM7 and TM5 respectively. Higher values at 

most of the sites were recorded in winter season and lower values in summer season. 

The mean conductivity values showed significant difference (F4, 35 = 26.543; p = 

0.000) between the study sites. TM5 (2344±242µS/cm) had significantly higher 

values, while TM7 (1201±265µS/cm) had significantly lower values than other sites. 

There were no significant differences in conductivity values between sites TM2 

(1841±205µS/cm) TM4 (1934±164µS/cm) and TM6 (1753±102µS/cm) (Fig. 5.2.1b). 

5.2.1c. Organic Carbon and Organic Matter  

The organic carbon in the lake sediments varied from 0.28% at site TM7 to   

6.7% at site TM4 during the study period (Table and Fig. 5.2.1c1). The study   



Chapter 5                                                                                                                                                      Results                                                                        

 

 

152 
 

revealed higher concentration of organic carbon during winter months at all the study 

sites. The mean values of sediment organic carbon at site TM7 (0.45±0.2%) were 

significantly lower (F4,35=17.49; p =0.000) than other sites. Further, site TM4 

(3.72±1.3%) had significantly higher concentration of organic carbon than sites TM6 

(2.37±0.7%) and TM5 (2.58±0.8%). However, sites TM2, TM5 and TM6 showed 

insignificant variation in the mean organic carbon values. Organic matter also 

followed the same trend as sediment organic carbon (Table 5.2.1c2). The highest mean 

values were recorded at site TM4 (6.22±2.2%), followed by TM2 (5.86±1.4%), TM5 

(4.44±1.4%), TM6 (4.07±1.0%) and significantly lower (F4,35=15.9; p = 0.000)  

values were recorded at site TM7 (0.76±0.3%) (Fig. 5.2.1c2).  

5.2.1d. Ammonical Nitrogen 

The HN3-N values in the sediments varied from 25µg/g at site TM7 in June 

2005 to 203µg/g at site TM4 in December 2004 (Table and Fig. 5.2.1d). Generally 

higher values at all the sites were observed in winter months. The mean values of 

NH3-N also showed significant variation (F4,35 =13.97; p =0.000) between the study 

sites. The mean concentration ranged from 44±18 µg/g (TM7) to 158±42µg/g (TM4), 

with TM4 having significantly higher values than other sites. TM2 (105±35µg/g) 

showed significantly higher values than sites TM6 (59±19µg/g) and TM7 

(44±19µg/g). Site TM5 (99±41µg/g) showed significantly higher values than site 

TM7.   

5.2.1e. Nitrate Nitrogen   

The NO3-N values of the sediments ranged from 30µg/g at site TM7 to 134µg/g 

at site TM4 (Table and Fig. 5.2.1e), with relatively higher concentrations in warmer 

months at all the sites. The highest mean value of NO3-N was recorded for TM4 

(99±24µg/g) followed by TM6 (84±17µg/g), TM5 (70±22µg/g), TM2 (64±19µg/g) 
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and at site TM7 (61±28µg/g). Site TM4 showed significantly higher (F4, 35 =4.12; p 

=0.008) values than other sites, except site TM6 where difference was not significant. 

5.2.1f. Exchangeable Phosphorus 

Variations in exchangeable phosphorus at different study sites are depicted in 

Table 5.2.1f. Its concentration ranged from 50µg/g at TM7 in June 2006 to 480µg/g at 

TM2 in December 2004. Site TM7 had low values of exchangeable phosphorus 

throughout the study period as compared to other sites. The mean values of 

exchangeable phosphorus were significantly lower (F4,35=31.74; p= 0.000) at TM7 

(70±15µg/g) and TM6 (127±37µg/g) than other sites. Significant difference in mean 

values was also observed between sites TM2 (386±65µg/g) and TM5 (257±75µg/g) 

(Fig. 5.2.1f). 

5.2.1g. Total Phosphorus 

The total phosphorus in the lake sediments ranged from 420µg/g at site TM7 in 

August 2006 to 1630µg/g at site TM2 in December 2005 (Table and Fig. 5.2.1g). 

TM2 and TM4 had high concentration of total phosphorus, while TM7 had the lowest 

values throughout the study period.  The mean total phosphorus were significantly 

higher (F4,35=20.29; p=0.000) at TM2 (1223±275µg/g) and TM4 (1164±196µg/g) than 

other sites. Site TM5 (807±149µg/g) also had significantly higher values than site 

TM7 (527±89µg/g). 

5.2.1h. Exchangeable Calcium  

The study revealed that exchangeable calcium of sediments varied from 7.2 

cmoles (+)/kg at site TM7 in June 2006 to 27.6 cmoles (+)/kg at site TM4 in 

December 2005 (Table and Fig. 5.2.1h).The mean values at TM7 (11.39±3.2 cmoles 

(+)/kg) were significantly lower (F4,35= 6.540; p =0.000) as compared to TM2 

(18.79±3.5 cmoles(+)/kg), TM4 (20.16±4.8 cmoles(+)/kg) and TM5 (20.26±3.8 
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cmoles (+)/kg). However, there was no significant difference in mean exchangeable 

Ca values between other sites. 

5.2.1i. Exchangeable Magnesium  

Variations in exchangeable magnesium of sediments at different study sites are 

depicted in Table 5.2.1i. It ranged from 10 cmoles (+)/kg at site TM7 in June 2006 to 

39 cmoles (+)/kg at site M4 in December 2005. The highest mean value was observed 

at site TM4 (30.59±6.9 cmoles (+)/kg), followed by TM5 (29.95±4.5 cmoles (+)/kg), 

and the lowest at site TM7 (13.73±7.7 cmoles (+)/kg). However, there was no 

significant difference in mean values between the study sites except site TM7, which 

showed significantly lower (F4, 35 =299.43; p = 0.000) values than other sites (Fig. 

5.2.1i). 

5.2.1j. Exchangeable Sodium  

Spatial and temporal variations in exchangeable Na at various sites lake are 

presented in Table 5.2.1j. It varied from 1.20 cmoles (+)/kg at TM7 to 4.3 cmoles 

(+)/kg at site TM4. There was significant difference (F4,35 = 6.895; p =0.000) in  the 

mean exchangeable Na values between the study sites. Site TM4 (2.98±0.7 cmoles 

(+)/kg) and TM5 (2.76±0.7 cmoles (+)/kg) had significantly higher values than site 

TM6 (1.91±0.6 cmoles (+)/kg), and TM7 (1.47±0.3 cmoles (+)/kg). Further, TM2 

(2.64±0.8 cmoles (+)/kg) also had significantly high values of exchangeable Na than 

TM7. Rest of the sites did not show any significant difference in mean values (Fig. 

5.2.1j). 

5.2.1k. Exchangeable Potassium 

The exchangeable K in the lake varied from 0.10 cmoles (+)/kg at site TM5 to 

1.80 cmoles (+)/kg at site TM4 (Table 5.2.1k). Higher values of exchangeable K were 

recorded in winter months. The mean values at site TM4 (1.24±0.3 cmoles (+)/kg) 
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were significantly higher (F4, 35=5.87; p=0.001) than TM7 (0.63±0.1 cmoles (+)/kg) 

and TM6 (0.90±0.2 cmoles (+)/kg). Site TM2 (0.94±0.3 cmoles (+)/kg) also had 

significantly higher values than site TM7. Rest of the sites did not show any 

significant difference in mean exchangeable K values (Fig. 5.2.1k). 
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Table 5.2.1a. Spatial and temporal variation in sediment pH in Tso Morari lake during 

2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 7.84 7.80 8.74 8.70 7.86 7.82 8.60 8.50 8.20 8.23 0.4 

TM4 8.23 8.13 8.65 8.73 8.20 8.30 8.60 8.74 8.40 8.44 0.2 

TM5 - 8.20 8.60 8.40 8.30 8.42 8.20 8.70 8.20 8.38 0.2 

TM6 - - 8.70 8.82 8.10 8.88 8.70 8.30 7.85 8.48 0.4 

TM7 - - 8.70 8.82 8.30 8.15 8.90 8.70 8.30 8.55 0.3 

 

Table 5.2.1b. Spatial and temporal variation in sediment conductivity (µS/cm) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 1830 2200 1800 1920 1800 2080 1630 1470 1840 1841 205 

TM4 1970 2090 1870 1780 1900 2190 1630 1880 2100 1934 164 

TM5 - 2600 2300 2300 2400 2450 2100 1900 2700 2344 242 

TM6 - - 1630 1700 1960 1680 1730 1830 1740 1753 102 

TM7 - - 980 1030 1400 1500 970 930 1600 1201 265 

 

Table 5.2.1c1. Spatial and temporal variation in sediment organic carbon (%) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 2.60 4.30 2.80 2.60 3.50 4.60 2.90 3.20 4.30 3.42 0.8 

TM4 2.20 4.00 3.10 2.80 3.70 3.60 3.20 4.20 6.70 3.72 1.3 

TM5 - 2.60 1.20 2.00 3.00 3.60 2.30 2.50 3.40 2.58 0.8 

TM6 - - 1.30 2.20 2.60 3.00 1.80 2.50 3.20 2.37 0.7 

TM7 - - 0.36 0.28 0.37 0.83 0.43 0.28 0.58 0.45 0.2 
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Table 5.2.1c2. Spatial and temporal variation in sediment organic matter (%) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 4.50 7.40 4.50 4.40 6.00 8.00 5.00 5.50 7.40 5.86 1.4 

TM4 3.70 6.80 5.30 4.80 5.00 6.20 5.50 7.20 11.50 6.22 2.2 

TM5 - 4.50 2.00 3.40 5.10 6.20 4.00 4.30 6.00 4.44 1.4 

TM6 - - 2.20 3.80 4.50 5.10 3.10 4.30 5.50 4.07 1.1 

TM7 - - 0.62 0.48 0.63 1.40 0.74 0.48 1.00 0.76 0.3 

 

Table 5.2.1d. Spatial and temporal variation in sediment NH3-N (µg/g) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 136 160 89 73 93 120 70 62 139 105 35 

TM4 176 203 98 120 135 190 109 200 187 158 42 

TM5 - 94 60 62 108 130 50 120 168 99 41 

TM6 - - 40 32 67 82 50 62 80 59 19 

TM7 - - 38 29 50 62 25 30 74 44 18 

 

Table 5.2.1e. Spatial and temporal variation in sediment NO3-N (µg/g) in Tso Morari 

lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 79 64 49 38 76 90 62 40 82 64 19 

TM4 89 134 65 88 120 98 78 130 85 99 24 

TM5 - 73 52 48 73 92 38 102 78 70 22 

TM6 - - 56 92 86 90 63 96 102 84 17 

TM7 - - 43 47 82 98 30 36 88 61 28 
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Table 5.2.1f. Spatial and temporal variation in sediment exchangeable phosphorus 

(µg/g) in Tso Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 394 480 360 281 439 460 318 380 363 386 65 

TM4 364 396 260 187 430 320 180 386 360 320 91 

TM5 - 386 200 260 320 282 153 196 260 257 75 

TM6 - - 132 138 160 184 106 80 92 127 37 

TM7 - - 68 56 82 96 50 68 70 70 15 

 

Table 5.2.1g. Spatial and temporal variation in sediment total phosphorus (µg/g) in Tso 

Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 1352 1520 1150 930 985 1630 1030 932 1480 1223 275 

TM4 1079 1338 980 870 1030 1480 1280 1130 1290 1164 196 

TM5 - 936 727 690 840 990 860 532 880 807 149 

TM6 - - 730 538 860 830 740 630 834 737 119 

TM7 - - 630 436 530 540 480 420 650 527 89 

 

Table 5.2.1h. Spatial and temporal variation in sediment exchangeable calcium (cmoles 

(+)/kg) in Tso Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 16.8 20.0 17.6 15.6 20.8 24.0 13.3 18.0 23.0 18.79 3.5 

TM4 18.0 26.0 13.8 15.8 22.0 27.6 16.2 19.0 23.0 20.16 4.8 

TM5 - 23.0 16.3 14.5 20.0 26.0 18.3 21.0 23.0 20.26 3.8 

TM6 - - 10.6 13.6 16.2 19.3 12.5 18.0 23.0 16.17 4.3 

TM7 - - 8.6 10.6 13.3 16.0 7.2 10.0 14.0 11.39 3.2 
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Table 5.2.1i. Spatial and temporal variation in sediment exchangeable magnesium 

(cmoles (+)/kg) in Tso Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 19.2 33.0 25.0 23.3 36.0 37.0 15.6 26.0 35.0 27.79 7.8 

TM4 26.4 38.6 20.3 27.0 35.0 39.0 23.0 30.0 36.0 30.59 6.9 

TM5 - 32.3 25.2 23.0 35.0 32.0 26.0 32.6 33.5 29.95 4.5 

TM6 - - 15.2 18.8 20.6 26.8 20.0 30.0 32.0 23.34 6.3 

TM7 - - 12 15.0 20.0 25.0 10.0 14.6 10.3 13.73 7.7 

 

Table 5.2.1j. Spatial and temporal variation in sediment exchangeable sodium (cmoles 

(+)/kg) in Tso Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 3.1 3.4 2.3 1.2 1.6 3.2 2.6 3.4 3.0 2.64 0.8 

TM4 3.6 4.3 3.0 2.0 2.6 3.0 2.2 2.8 3.3 2.98 0.7 

TM5 - 3.3 2.5 2.0 2.5 3.6 1.8 2.7 3.7 2.76 0.7 

TM6 - - 1.4 1.4 1.6 2.6 1.3 2.8 2.3 1.91 0.6 

TM7 - - 1.3 1.2 1.8 2.0 1.2 1.3 1.5 1.47 0.3 

 

Table 5.2.1k. Spatial and temporal variation in sediment exchangeable potassium 

(cmoles (+)/kg) in Tso Morari lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TM2 1.0 1.4 0.5 0.9 0.8 1.0 0.7 1.1 1.3 0.94 0.3 

TM4 1.5 1.8 1.2 0.8 1.0 1.3 1.2 1.0 1.4 1.24 0.3 

TM5 - 1.3 1.0 0.1 0.7 1.0 0.5 1.0 1.3 0.86 0.4 

TM6 - - 0.6 0.7 0.9 1.0 0.8 0.9 1.3 0.90 0.2 

TM7 - - 0.5 0.5 0.7 0.8 0.6 0.6 0.7 0.63 0.1 
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Fig. 5.2.1a. Changes in sediment pH (mean ± SD) at different study sites in Tso Morari lake. Different letters 

on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.1b. Changes in sediment conductivity (µS/cm) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.1c1. Changes in sediment carbon (%) (mean ± SD) at different study sites in Tso Morari lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 
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Fig. 5.2.1c2. Changes in sediment organic matter (%) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.1d. Changes in sediment ammonia (µg/g) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.1e. Changes in sediment nitrate (µg/g) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 
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Fig. 5.2.1f. Changes in exchangeable phosphorous (µg/g) (mean ± SD) at different study sites in Tso Morari 

lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.1g. Changes in total phosphorous (µg/g) (mean ± SD) at different study sites in Tso Morari lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.1h. Changes in exchangeable calcium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso 

Morari lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between 

the sites (Tukey HSD). 
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Fig. 5.2.1i. Changes in exchangeable magnesium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso 

Morari lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between 

the sites (Tukey HSD). 

 

 
Fig. 5.2.1j. Changes in exchangeable sodium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso 

Morari lake. Different letters on the bars indicate that the means are significantly (p<0.001) different between 

the sites (Tukey HSD). 

 

 
Fig. 5.2.1k. Changes in exchangeable potassium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso 

Morari lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between 

the sites (Tukey HSD). 
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5.2.2. Tso Khar Lake 

5.2.2a. pH 

The changes in pH value of sediment at different sites in the lake are shown in 

Table 5.2.2a. The pH was alkaline at all the study sites and showed wide variations. 

The saline zones of the lake had higher pH values. The pH ranged from 10.4 at TK1 

in July 2005 to 7.8 at TK2 and TK5 in December 2004 and 2005. The mean values 

were significantly higher (F3,32= 135.1; p = 0.000) at TK1 (10.11±0.20) and TK4 

(9.92±0.20) than at sites TK2 (8.27±0.31) and TK5 (8.30±0.40) during the study 

period (Fig. 5.2.2a). Relatively higher pH values were observed in summer at all the 

study sites. 

5.2.2b. Conductivity 

The conductivity of lake sediments varied from 890µS/cm at TK2 in July 2005 

to 58600µS/cm at TK1 in December 2005 (Table and Fig. 5.2.2b), with values above 

35000µS/cm at saline sites (TK1 and TK4). The mean values showed significant 

variation (F3,32= 407.6; p = 0.000) between the study sites. The mean conductivity 

values were significantly higher at TK4 (47325±6432 µS/cm) followed by TK1 

(41082±3591 µS/cm) and significantly low values were recorded at TK2 (1352±252 

µS/cm) and TK5 (1566±151 µS/cm).  

5.2.2c. Organic Carbon and Organic Matter 

The organic carbon in Tso Khar varied from 0.13% at TK1 and TK4 in 

November 2006 to 5.2% at TK2 in December 2004 (Table and Fig. 5.2.2c1). The 

organic carbon content at saline sites (TK1and TK4) was less than fresh water sites 

(TK2 and TK5) throughout the study period. Significant variation (F3, 32=120.4; p = 

0.000) was observed in the mean values between the study sites, with TK2 having 

significantly higher concentration of organic carbon (3.5±0.9%) followed by TK5 
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(2.8%). Organic matter also followed a same trend as in case of organic carbon (Table 

5.2.2c2), being significantly (F3,32=120.7; p = 0.000) high at TK2 (6.1±1.5%) followed 

by TK5 (4.8±1%) (Fig. 5.2.2c2). The organic matter values ranged from a maximum 

of 8.9% (TK2) in December 2004 to a minimum of 0.22% (TK1 and TK4) in 

November 2006.  

5.2.2d. Ammonical Nitrogen 

Spatial and temporal variations in exchangeable HN3-N concentration during the 

study period are presented in Table 5.2.2d. The highest (206 µg/g) and the lowest (48 

µg/g) value of HN3-N was observed at site TK2 in December (2004) and July (2005) 

respectively. The highest mean value of HN3-N was recorded at TK4 (119±40 µg/g) 

followed by TK2 (94±49 µg/g), and lowest at TK5 (88±51 µg/g). However, the mean 

values did not show any significant variation (F3,32 = .055; p =0.983) between the 

study sites (Fig. 5.2.2d).  

5.2.2e. Nitrate Nitrogen   

The NO3-N values varied from 32µg/g at TK2 in July 2005 to 380µg/g at TK4 in 

December 2004 (Table 5.2.2e). There was no distinct seasonal trend in NO3-N values 

at TK1 and TK4, whereas TK2 and TK5 had high NO3-N concentration in winter 

months and low values in summer months. The mean values of NO3-N found at TK1 

(308±28 µg/g) and TK4 (306±40 µg/g) were significantly higher (F3,32 = 157.3; p = 

0.000) than mean values of TK2 (81±40 µg/g) and TK5 (84±25 µg/g) (Fig. 5.2.2e). 

5.2.2f. Exchangeable Phosphorus 

The exchangeable phosphorus ranged from 25µg/g (TK1) to 420µg/g (TK2 and 

TK5) (Table 5.2.2f). In contrast to other parameters, the mean values were 

significantly higher (F3, 32 = 131.7; p = 0.000) at fresh water sites TK5 (364±63 µg/g) 
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and TK2 (314±71 µg/g) than saline sites TK1 (42±13µg/g) and TK4 (68±25µg/g) 

(Fig. 5.2.2f). 

5.2.2g. Total Phosphorus 

Variations in total phosphorus at different study sites are depicted in Table 

5.2.2g. The concentration varied from 236µg/g at TK1 in June 2006 to 1038 µg/g at 

TK5 in October 2005. Like exchangeable phosphorus, low concentration of total 

phosphorus was observed at saline sites (TK1 and TK2) and high values at fresh water 

sites (TK2 and TK5), the variations being statistically significant (TK1 :365±80µg/g 

and TK4:366± 65µg/g  were significantly lower (F3,32 = 74.1; p = 0.000) than  fresh 

water sites TK2:850±110 µg/g and TK5 :836±165 µg/g) (Fig. 5.2.2g).  

5.2.2h. Exchangeable Calcium 

Changes in exchangeable Ca at different study sites are depicted in Table 5.2.2h. 

The exchangeable Ca concentration at saline sites (TK1 and TK4) was almost twice 

that at TK2 and TK5. Exchangeable Ca values varied from a minimum of 9.30 cmoles 

(+)/kg at TK2 in June 2006 to a maximum of 38.20 cmoles (+)/kg at site TK4 in 

December 2005. The study also revealed that exchangeable Ca at all the sites was 

higher in winter months. The mean values were significantly higher (F3,32 = 38.8; p = 

0.000) at sites TK1 (30.9±4.5 cmoles (+)/kg) and TK4 (30.1±5.7 cmoles (+)/kg) than 

sites TK2 (15.4±5.4 cmoles (+)/kg) and TK5 (14.0±3.1 cmoles (+)/kg) (Fig. 5.2.2h).  

5.2.2i. Exchangeable Magnesium 

Like exchangeable Ca, relatively higher values of exchangeable Mg at all the 

sites were registered in winter months (Table 5.2.2i). The concentration ranged from   

7.8 cmoles (+)/kg) at TK2 in November 2006 to 30.2 cmoles (+)/kg) at TK1 in   

December 2004. The mean values of exchangeable Mg were significantly lower 

(F3,32= 9.504; p = 0.000) (11.4±3.3 cmoles (+)/kg) at TK2 as compared to TK1 
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(21.7±4.0 cmoles (+)/kg), TK4 (20.1±4.9 cmoles (+)/kg) and TK5 (17.7±4.4 cmoles 

(+)/kg). The mean values of exchangeable Mg at TK1, TK4 and TK5 did not show 

any significant differences (Fig. 5.2.2i).  

5.2.2j. Exchangeable Sodium 

Spatial and temporal changes in exchangeable Na at different study sites are 

presented in Table 5.2.2j. The saline sites (TK1 and TK4) registered higher (>500 

cmoles (+)/kg) values of exchangeable Na than fresh water sites (TK2 and TK5) 

throughout the study period. It ranged from 1.92 cmoles (+)/kg at sites TK2 in June 

(2006) to 947 cmoles (+)/kg at site TK1 in December 2005. The mean values of 

exchangeable Na varied from 2.71±0.6 cmoles (+)/kg (TK2) to 810.4±164.7 cmoles 

(+)/kg (TK1). Saline sites (TK1 and TK4) had significantly higher (F3,32 = 194.69; p = 

0.000) mean values of exchangeable Na than that of fresh water sites(TK2 and TK5) 

(Fig. 5.2.2j). 

5.2.2k. Exchangeable Potassium 

Spatial and temporal variations in exchangeable K at different selected sites   are 

presented in Table 5.2.2k. Its concentration varied from 0.6 cmoles (+)/kg at site TK2 

to 302 cmoles (+)/kg at site TK1. The mean values of exchangeable K were 

significantly higher (F3,32 = 217.5; p = 0.000) at TK1 (218.3±42.2 cmoles (+)/kg) and 

TK4 (188.5±28.8 cmoles (+)/kg) than  TK2 (1.0±0.2 cmoles (+)/kg) and TK5 

(1.1±0.2 cmoles (+)/kg)( (Fig. 5.2.2k). 
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Table 5.2.2a. Spatial and temporal variation in sediment pH in Tso Khar lake during 

2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 10.20 9.96 10.30 10.40 9.93 9.92 10.20 - 10.00 10.11 0.20 

TK2 7.82 7.80 8.60 8.30 8.60 8.20 8.60 - 8.20 8.27 0.31 

TK4 9.90 9.80 10.20 10.00 9.90 9.70 10.20 - 9.70 9.92 0.20 

TK5 - - 8.60 8.90 8.20 7.80 8.40 - 7.90 8.30 0.40 

 

Table 5.2.2b. Spatial and temporal variation in sediment conductivity (mS/cm) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 47.2 51.8 39.0 45.2 52.5 58.6 38.3 - 46.0 47.3 6.9 

TK2 1.4 1.6 1.0 0.9 1.5 1.6 1.4 - 1.4 1.4 0.3 

TK4 38.4 42.8 41.2 38.9 43.5 39.8 35.7 - 48.3 41.1 3.8 

TK5 - - 1.7 1.4 1.7 1.8 1.3 - 1.6 1.6 0.2 

 

Table 5.2.2c1. Spatial and temporal variation in sediment organic carbon (%) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 0.23 0.19 0.21 0.26 0.38 0.30 0.15 - 0.13 0.2 0.1 

TK2 3.20 5.20 2.60 2.83 3.60 4.32 2.90 - 3.60 3.5 0.9 

TK4 0.23 0.24 0.21 0.20 0.38 0.40 0.15 - 0.13 0.2 0.1 

TK5 - - 2.10 2.80 2.60 3.40 2.30 - 3.50 2.8 0.6 
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Table 5.2.2c2. Spatial and temporal variation in sediment organic matter (%) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 0.39 0.32 0.36 0.44 0.65 0.51 0.25 - 0.22 0.4 0.1 

TK2 5.50 8.90 4.48 4.87 6.20 7.40 4.90 - 6.20 6.1 1.5 

TK4 0.40 0.41 0.36 0.34 0.65 0.70 0.25 - 0.22 0.4 0.2 

TK5 - - 3.60 4.80 4.50 5.80 3.90 - 6.00 4.8 1.0 

 

Table 5.2.2d. Spatial and temporal variation in sediment NH3-N (µg/g) in Tso Khar lake 

during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 140 130 106 96 80 136 92 - 1.4 98 45 

TK2 160 206 63 48 106 142 83 - 130 94 49 

TK4 160 176 82 96 130 150 72 - 84 119 40 

TK5 - - 120 98 114 138 54 - 1.5 88 51 

 

Table 5.2.2e. Spatial and temporal variation in sediment NO3-N (µg/g) in Tso Khar lake 

during 2004-2006 

Sites 

2004 2005 2006 

Mean SD 

Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 302 290 320 260 345 290 316 - 340 308 28 

TK2 140 103 40 32 80 102 39 - 112 81 40 

TK4 323 380 260 280 306 316 262 - 324 306 40 

TK5 - - 89 72 102 106 40 - 96 84 25 
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Table 5.2.2f. Spatial and temporal variation in sediment exchangeable phosphorus 

(µg/g) in Tso Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 38 63 25 36 43 60 32 - 38 42 13 

TK2 262 302 232 250 390 372 286 - 420 314 71 

TK4 42 70 36 43 90 103 72 - 84 68 25 

TK5 - - 382 376 380 420 240 - 387 364 63 

 

Table 5.2.2g. Spatial and temporal variation in sediment total phosphorus (µg/g) in Tso 

Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 332 480 280 360 410 392 236 - 430 365 80 

TK2 820 1035 732 720 860 960 780 - 896 850 110 

TK4 430 413 380 290 384 439 270 - 320 366 65 

TK5 - - 706 740 1038 930 630 - 970 836 165 

 

Table 5.2.2h. Spatial and temporal variation in sediment exchangeable calcium (cmoles 

(+)/Kg) in Tso Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 26.0 30.0 26.0 27.0 32.0 36.0 32.0 - 38.0 30.9 4.5 

TK2 20.4 24.6 12.3 11.3 18.2 16.3 9.3 - 10.8 15.4 5.4 

TK4 30.0 33.0 26.0 19.6 32.0 38.2 28.0 - 34.0 30.1 5.7 

TK5 - - 10.6 11.2 15.0 18.0 17.0 - 12.4 14.0 3.1 
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Table 5.2.2i. Spatial and temporal variation in sediment exchangeable magnesium 

(cmoles (+)/Kg) in Tso Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 20.0 18.0 23.0 20.0 23.6 30.2 20.2 - 18.2 21.7 4.0 

TK2 16.5 15.8 11.0 9.2 9.7 12.3 8.5 - 7.8 11.4 3.3 

TK4 23.0 20.3 15.2 11.2 24.6 18.6 23.0 - 25.0 20.1 4.9 

TK5 - - 15.3 10.6 20.3 20.0 23.0 - 17.0 17.7 4.4 

 

Table 5.2.2j. Spatial and temporal variation in sediment exchangeable sodium (cmoles 

(+)/Kg) in Tso Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 

Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 630.0 920.0 913.0 939.0 513.0 947.0 736.0 - 885.0 810.4 164.7 

TK2 2.5 3.2 2.0 2.4 3.0 3.3 1.9 - 3.4 2.7 0.6 

TK4 538.0 830.0 729.0 630.0 890.0 896.0 730.0 - 820.0 757.9 126.4 

TK5 - - 2.3 2.0 3.1 3.2 2.5 - 3.5 2.8 0.6 

 

Table 5.2.2k. Spatial and temporal variation in sediment exchangeable potassium 

(cmoles (+)/Kg) in Tso Khar lake during 2004-2006 

Sites 
2004 2005 2006 

Mean SD 
Oct Dec Jun Jul Oct Dec Jun Aug Nov 

TK1 160.0 202.0 240.0 210.0 236.0 190.0 206.0 - 302.0 218.3 42.2 

TK2 0.9 1.2 0.9 1.1 1.0 1.3 0.6 - 1.3 1.0 0.2 

TK4 138.0 190.0 182.0 172.0 203.0 240.0 196.0 - 187.0 188.5 28.8 

TK5 - - 0.9 1.0 1.0 1.2 1.0 - 1.3 1.1 0.2 
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Fig. 5.2.2a. Changes in pH (mean ± SD) at different study sites in Tso Khar lake. Different letters on the bars 

indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.2b. Changes in conductivity (µS/cm) (mean ± SD) at different study sites in Tso Khar lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.2c1. Changes in organic carbon (%) (mean ± SD) at different study sites in Tso Khar lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 
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Fig. 5.2.2c2. Changes in organic matter (%) (mean ± SD) at different study sites in Tso Khar lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.2d. Changes in ammonia (µg/g) (mean ± SD) at different study sites in Tso Khar lake. Different letters 

on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.2e. Changes in nitrate (µg/g) (mean ± SD) at different study sites in Tso Khar lake. Different letters on 

the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 
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Fig. 5.2.2f.. Changes in exchangeable phosphorous (µg/g) (mean ± SD) at different study sites in Tso Khar lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.2g. Changes in total phosphorous (µg/g) (mean ± SD) at different study sites in Tso Khar lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.2h. Changes in exchangeable calcium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso Khar 

lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 
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Fig. 5.2.2i. Changes in exchangeable magnesium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso 

Khar lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between the 

sites (Tukey HSD). 

 

 
Fig. 5.2.2j. Changes in exchangeable sodium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso Khar 

lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD).  

 

 
Fig. 5.2.2k. Changes in exchangeable potassium (cmoles (+)/Kg) (mean ± SD) at different study sites in Tso 

Khar lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between the 

sites (Tukey HSD). 
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5.2.3. Manasbal Lake    

5.2.3a. pH 

The seasonal variations in pH values of sediment at different study sites in 

Manasbal Lake during 2004 to 2006 are depicted in Table 5.2.3a. The pH value at all 

study sites was alkaline, except M5 which had slightly acidic pH throughout study 

period, range being 8.00 at site M3 in winter 2005 to 6.80 at site M5 in summer 2006. 

Generally, higher pH values were observed in winter and autumn and lower in spring 

and summer. The mean values at site M5 (6.91±0.08) were significantly lower (F4, 35 

= 33.5; p = 0.000) than other sites. Furthermore, site M3 (7.72±0.19) had significantly 

higher pH values than site M2 (7.44±0.16) (Fig. 5.2.3a). The mean pH values at other 

sites did not show any significant difference.  

5.2.3b. Conductivity 

The conductivity values of the lake ranged from 346 µS/cm at site M4 to 910 

µS/cm at site M5 (Table 5.2.3b). Conductivity values were higher at M5 and M2 and 

lower at M3 and M4 in all the seasons during study period. The mean conductivity 

values were significantly higher (F4, 35 = 13.8; P = 0.000) at site M5 (766±113µS/cm) 

than other sites except site M2 (635±165µS/cm). The mean conductivity values at site 

M2 were significantly higher than site M3 (441±54µS/cm) and M4 (454±67µS/cm). 

However there was no significant difference in mean conductivity values between M1 

(511±86 µS/cm), M3 and M4 sites (Fig. 5.2.3b).  

5.2.3c. Organic Carbon and Organic Matter 

The organic carbon ranged from 5% at site M3 to 11.60% at site M2 (Table and 

Fig. 5.2.3c1). Most of the sites recorded higher value of organic carbon in winter and 

lower in summer season. There was significant difference (F4, 35 =13.7; P = 0.000) in 

the mean values of organic carbon between the study sites. Site M2 (9.80±1.29%) and 
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M5 (9.40±1.00%) had significantly higher concentration of organic carbon as 

compared to M3 (6.65±0.83%), M4 (7.29±1.04%) and M1 (7.73±0.99%) sites. The 

organic matter followed the same trend as organic carbon at all the study sites (Table 

5.2.3c2). The minimum (8.60%) and maximum (20.0%) values of organic matter were 

observed at site M3 and M2 respectively. The mean values of organic matter were 

significantly higher (F4,35=13.49; p=0.000) at M2 (16.78±2.32%) and M5 

(16.11±1.74%) as compared to M1 (13.25±1.66%), M3 (11.40±1.40%) and M4 

(12.34±1.84%) (Fig. 5.2.3c2). 

5.2.3d. Ammonical Nitrogen 

The ammonical nitrogen of the sediments varied from 115µg/g (M3) to 400µg/g 

(M5) during 2005 and from 126µg/g (M4) to 360µg/g (M5) in 2006 (Table and Fig. 

5.2.3d). Most of the sites showed higher values of NH3-N in winter season, and lower 

in summer season. The mean values of NH3-N at site M5 (323±57µg/g) were 

significantly higher (F4, 35= 12.7; p = 0.000) than other sites except site M2. Site M2 

(254±68µg/g) also had significantly higher values than M3 (173±37µg/g) and M4 

(167±38µg/g) sites. However, no significant difference in mean NH3-N values was 

observed within sites M1, M4 and M3.  

5.2.3e. Nitrate Nitrogen   

Seasonal variations in the sediment NO3-N at different sites are depicted in 

Table 5.2.3e. The lowest concentration NO3-N was recorded for sites M4 (63 µg/g) 

and M5 (56µg/g), while the highest values of 204µg/g and 230µg/g was observed for 

site M2 during 2005 and 2006 respectively. Except site M5, all the study sites 

recorded highest value of nitrate in winter season followed by autumn and lowest in 

summer during the study period. The highest mean value of NO3-N was found at M2 

(170±50 µg/g) followed by M1 (145±37 µg/g), and lowest at M5 (88±21µg/g). 
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However, the mean values of NO3-N showed significant variation (F4,35 = 4.36; p = 

0.006) only between sites M2 and M5(Fig. 5.2.3e).  

5.2.3f. Exchangeable Phosphorus 

Variation in exchangeable phosphorus at different study of the lake are depicted 

in Table 5.2.3f. The exchangeable phosphorus varied from a minimum of 306µg/g at 

site M1 to a maximum of 573µg/g at site M5 in 2005 and from 323µg/g at site M1 to 

610 µg/g at site M2 in 2006. The mean values of exchangeable phosphorus were 

significantly higher (F4,35 =8.9; p = 0.000) at site M5 (532±48 µg/g) when compared 

with sites M3 (386±27 µg/g), M1 (418±80 µg/g) and M4 (422±30 µg/g). Further, site 

M2 (481±69 µg/g) also had significantly higher values than site M3. Rest of the sites 

did not show any significant difference in mean exchangeable phosphorus (Fig. 

5.2.3f). 

5.2.3g. Total Phosphorus  

Total phosphorus of the sediments varied from minimum value of 860µg/g at 

M3 in summer 2005 to a maximum of 1730 µg/g at site M2 in winter 2006 (Table and 

Fig. 5.2.3g). Significant variations (F4, 35 = 19.9; p =0.000) in mean values of total 

phosphorus were observed between the study sites. Site M5 (1592±150 µg/g) had 

significantly highest values of mean total phosphorus when compared to other sites. 

Site M2 (1340±258µg/g), also had significantly higher values than sites M3 

(979±92µg/g) and M4 (1026±86 µg/g). The analysis of variance did not show any 

significant differences in the mean values of total phosphorus between the sites M3, 

M4 and M1.  

5.2.3h. Exchangeable Calcium 

The seasonal variations in exchangeable calcium at different sites are presented 

in Table 5.2.3h. The exchangeable calcium varied from 15 cmoles (+)/kg at site M4 to 
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56 cmoles (+)/kg at site M5 during the study period. The highest values of 

exchangeable Ca were reported in winter and the lowest in summer at all the study 

sites. The mean values of exchangeable calcium were highest at site M5 (30.80±12.61 

cmoles (+)/kg) followed by M1 (23.95±3.61 cmoles (+)/kg), M3 (23.93±6.89 cmoles 

(+)/kg), M4 (22.75±9.39 cmoles(+)/kg) and least at site M2 (20.75±2.60 cmoles 

(+)/kg). However, there was no significant difference (F4,35 = 1.826; p = 0.146) in the 

mean values of exchangeable Ca between the study sites (Fig. 5.2.3h).  

5.2.3i. Exchangeable Magnesium 

Variation in exchangeable magnesium values at different study sites are 

presented in Table 5.2.3i. It ranged from 5.6 cmoles (+)/kg at site M4 to 16.6 cmoles 

(+)/kg at site M5 during the study period. The results depicted that low values of 

exchangeable Mg at all the sites were recorded in summer while the rest of seasons 

did not reveal any definite trend. The mean values of exchangeable Mg ranged from a 

minimum of 8.28±3.15 cmoles (+)/kg at site M4 to the maximum of 10.28±3.69 

cmoles (+)/kg at site M5. The mean values of exchangeable Mg did not show any 

significant variation (F4,35 = .079; p = 0.536) between the study sites(Fig. 5.2.3i). 

5.2.3j. Exchangeable Sodium 

The exchangeable Na varied from 0.30cmoles (+)/kg at site M1 and M4 to     

1.39cmoles (+)/kg at site M5 during the study period (Table and Fig. 5.2.3j). Higher 

values of exchangeable Na were recorded in winter and spring seasons followed by 

autumn and lowest values in summer. The mean values of exchangeable Na ranged 

from 0.43±0.09cmoles (+)/kg (M3) to 0.89±0.28cmoles (+)/kg (M5). However, the 

mean values of exchangeable Na were significantly higher (F4,35 = 12.25; p = 0.000) at 

site M5 than other sites. Rest of the sites showed insignificant variation in mean 

exchangeable Na values.  
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5.2.3k. Exchangeable Potassium 

The seasonal values of exchangeable K ranged from 0.10 cmoles (+)/kg) at site 

M3 to 0.51cmoles (+)/kg at site M5 during the study period (Tables and Fig. 5.2.3k). 

Like exchangeable Na, higher values of exchangeable K were found in winter and the 

lower in summer at all the study sites. The mean values of exchangeable K were 

significantly highest (F4, 35 = 8.53; p =0.000) at M5 (0.32 ± 0.09cmoles (+)/kg) than 

other sites except site M2. Site M2 (0.27 ± 0.06cmoles (+)/kg) also had significantly 

higher values than site M3 (0.16 ±0.05 cmoles (+)/kg). Rest of the sites did not show 

any significant variation in exchangeable potassium.  
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Table 5.2.3a. Spatial and temporal variation in sediment pH in Manasbal lake during 

2004-2006 

Sites 

2005 2006 

Mean SD 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 7.82 7.60 7.40 7.72 7.70 7.50 7.42 7.46 7.58 0.16 

M2 7.45 7.50 7.20 7.35 7.60 7.68 7.30 7.40 7.44 0.16 

M3 8.00 7.62 7.54 7.83 7.96 7.70 7.53 7.60 7.72 0.19 

M4 7.73 7.60 7.32 7.60 7.82 7.86 7.50 7.50 7.62 0.18 

M5 6.92 6.90 6.83 6.90 7.03 6.90 6.80 7.00 6.91 0.08 

 

Table 5.2.3b. Spatial and temporal variation in sediment conductivity (µS/cm) in 

Manasbal lake during 2004-2006 

Sites 
2005 2006 

Mean SD 
Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 642 530 380 538 584 520 410 486 511 86 

M2 853 685 436 525 875 623 460 624 635 165 

M3 520 456 395 485 483 383 375 433 441 54 

M4 545 432 346 503 526 460 403 420 454 67 

M5 910 762 640 820 842 655 624 876 766 113 

 

Table 5.2.3c1. Spatial and temporal variation in sediment organic carbon (%) in 

Manasbal lake during 2004-2006 

Sites 

2005 2006 

Mean SD 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 8.50 8.30 6.40 7.00 9.00 8.60 6.70 7.30 7.73 0.99 

M2 11.00 9.40 7.60 9.70 11.60 10.00 8.60 10.50 9.80 1.29 

M3 7.60 7.20 5.00 6.70 7.00 7.20 6.00 6.50 6.65 0.83 

M4 8.20 8.00 5.40 6.80 8.50 7.70 6.40 7.30 7.29 1.04 

M5 10.00 9.00 8.60 10.60 9.80 9.20 7.60 10.40 9.40 1.00 
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Table 5.2.3c2. Spatial and temporal variation in sediment organic matter (%) in 

Manasbal lake during 2004-2006 

Sites 
2005 2006 

Mean SD 
Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 14.60 14.20 11.08 12.00 15.40 14.70 11.50 12.50 13.25 1.66 

M2 19.00 16.00 13.00 16.60 20.00 17.20 14.40 18.00 16.78 2.32 

M3 13.00 12.30 8.60 11.50 12.00 12.30 10.30 11.20 11.40 1.40 

M4 14.10 13.70 9.28 11.60 14.60 13.20 11.00 11.20 12.34 1.84 

M5 17.20 15.40 14.70 18.20 16.80 15.80 13.00 17.80 16.11 1.74 

 

Table 5.2.3d. Spatial and temporal variation in sediment NH3-N (µg/g) in Manasbal 

lake during 2004-2006 

Sites 
2005 2006 

Mean SD 
Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 250 185 140 200 284 193 145 235 204 50 

M2 340 208 185 294 325 195 178 305 254 68 

M3 195 173 115 180 220 155 132 210 173 37 

M4 190 132 115 203 210 173 126 190 167 38 

M5 400 265 280 375 360 240 350 310 323 57 

 

Table 5.2.3e. Spatial and temporal variation in sediment NO3-N (µg/g) in Manasbal lake 

during 2004-2006 

Sites 
2005 2006 

Mean SD 
Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 160 125 100 172 190 132 95 185 145 37 

M2 204 143 95 187 230 165 110 222 170 50 

M3 145 120 75 168 180 130 87 180 136 40 

M4 150 106 63 118 195 94 75 176 122 48 

M5 72 90 68 104 56 120 96 100 88 21 
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Table 5.2.3f. Spatial and temporal variation in sediment exchangeable phosphorus 

(µg/g) in Manasbal lake during 2004-2006 

Sites 
2005 2006 

Mean SD 
Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 460 403 306 432 540 390 323 492 418 80 

M2 535 442 395 486 610 486 415 476 481 69 

M3 385 400 367 410 426 375 337 386 386 27 

M4 456 416 382 430 465 425 385 420 422 30 

M5 558 485 573 486 521 470 600 560 532 48 

 

Table 5.2.3g. Spatial and temporal variation in sediment total phosphorus (µg/g) in 

Manasbal lake during 2004-2006 

Sites 
2005 2006 

Mean SD 
Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 1405 1140 896 1084 1306 1060 920 1100 1114 174 

M2 1680 1364 1057 1125 1730 1430 1170 1160 1340 258 

M3 1150 936 860 1020 1030 985 885 965 979 92 

M4 1144 1013 945 976 1160 1013 925 1034 1026 86 

M5 1453 1500 1842 1430 1650 1500 1760 1600 1592 150 

 

Table 5.2.3h. Spatial and temporal variation in sediment exchangeable calcium (cmoles 

(+)/Kg) in Manasbal lake during 2004-2006 

Sites 

2005 2006 

Mean SD 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 21.0 28.0 20.0 21.0 30.0 25.0 22.0 24.6 23.95 3.61 

M2 23.0 22.0 16.4 20.0 23.6 20.0 18.0 23.0 20.75 2.60 

M3 36.0 21.4 17.0 22.0 33.0 20.0 18.4 23.6 23.93 6.89 

M4 39.0 15.0 17.0 20.0 36.0 19.0 15.0 21.0 22.75 9.39 

M5 56.0 28.0 15.8 32.0 40.6 26.0 20.0 28.0 30.80 12.61 
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Table 5.2.3i. Spatial and temporal variation in sediment exchangeable magnesium 

(cmoles (+)/Kg) in Manasbal lake during 2004-2006 

Sites 

2005 2006 

Mean SD 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 9.0 10.4 7.0 8.0 8.6 7.2 8.0 10.6 8.60 1.34 

M2 10.0 9.2 6.8 8.6 9.2 8.0 7.2 9.6 8.58 1.15 

M3 12.4 7.6 8.0 10.6 10.8 7.0 6.6 8.0 8.88 2.10 

M4 14.0 6.4 6.8 8.0 12.4 6.0 5.6 7.0 8.28 3.15 

M5 16.6 9.2 6.0 9.2 15.2 9.0 7.4 9.6 10.28 3.69 

 

Table 5.2.3j. Spatial and temporal variation in sediment exchangeable sodium (cmoles 

(+)/Kg) in Manasbal lake during 2004-2006 

Sites 

2005 2006 

Mean SD 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 0.56 0.34 0.30 0.39 0.63 0.57 0.39 0.46 0.45 0.12 

M2 0.62 0.52 0.39 0.56 0.78 0.52 0.43 0.43 0.53 0.13 

M3 0.47 0.47 0.34 0.30 0.52 0.43 0.39 0.54 0.43 0.09 

M4 0.56 0.39 0.30 0.39 0.57 0.39 0.35 0.50 0.43 0.10 

M5 1.39 1.00 0.63 0.60 1.13 0.87 0.65 0.83 0.89 0.28 

 

Table 5.2.3k. Spatial and temporal variation in sediment exchangeable potassium 

(cmoles (+)/Kg) in Manasbal lake during 2004-2006 

Sites 

2005 2006 

Mean SD 

Winter Spring Summer Autumn Winter Spring Summer Autumn 

M1 0.26 0.21 0.15 0.19 0.26 0.28 0.18 0.21 0.22 0.04 

M2 0.31 0.33 0.19 0.23 0.36 0.26 0.23 0.26 0.27 0.06 

M3 0.21 0.21 0.10 0.13 0.25 0.15 0.10 0.15 0.16 0.05 

M4 0.28 0.18 0.13 0.18 0.23 0.21 0.15 0.20 0.19 0.05 

M5 0.51 0.26 0.23 0.36 0.38 0.31 0.23 0.32 0.32 0.09 
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Fig. 5.2.3a. Changes in pH (mean ± SD) at different study sites in Manasbal lake. Different letters on the bars 

indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.3b. Changes in conductivity (µS/cm) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.3c1. Changes in organic carbon (%) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 
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Fig. 5.2.3c2. Changes in organic matter (%) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.3d. Changes in ammonia (µg/g) (mean ± SD) at different study sites in Manasbal lake. Different letters 

on the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 

 

 
Fig. 5.2.3e. Changes in nitrate (µg/g) (mean ± SD) at different study sites in Manasbal lake. Different letters on 

the bars indicate that the means are significantly (p< 0.001) different between the sites (Tukey HSD). 
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Fig. 5.2.3f. Changes in exchangeable phosphorus (µg/g) (mean ± SD) at different study sites in Manasbal lake. 

Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.3g. Changes in total phosphorus (µg/g) (mean ± SD) at different study sites in Manasbal lake. Different 

letters on the bars indicate that the means are significantly (p< 0.001) different between the sites. (Tukey HSD) 

 

 
Fig. 5.2.3h. Changes in exchangeable calcium (cmoles (+)/Kg) (mean ± SD) at different study sites in Manasbal 

lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 
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Fig. 5.2.3i. Changes in exchangeable magnesium (cmoles (+)/Kg) (mean ± SD) at different study sites in 

Manasbal lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different 

between the sites (Tukey HSD). 

 

 
Fig. 5.2.3j. Changes in exchangeable sodium (cmoles (+)/Kg) (mean ± SD) at different study sites in Manasbal 

lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different between the sites 

(Tukey HSD). 

 

 
Fig. 5.2.3k. Changes in exchangeable potassium (cmoles (+)/Kg) (mean ± SD) at different study sites in 

Manasbal lake. Different letters on the bars indicate that the means are significantly (p< 0.001) different 

between the sites (Tukey HSD).  
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5.3. MACROPHYTES 

A survey of macrophytic vegetation revealed the presence of 38 macrophytic 

species, belonging to 29 genera and 23 families. The three lakes were located in 

different altitudinal and climatic zones. The three water bodies also differed in their 

salinity level, with some parts of Tso Khar being hyper-saline and devoid of any 

macrophytic vegetation. The Tso Morari Lake was slightly brackish and deep which 

with the macrophytic vegetation restricted to littoral zone only. The Manasbal Lake 

was typical fresh water and had a wide diversity of macrophytes. Only one 

macrophyte species, Potamogeton pectinatus was found to be present in all the three 

lakes  

5.3.1. Tso Morari Lake 

5.3.1a. Species Composition 

The macrophytic community of Tso Morari was represented by mono-specific 

stands of submerged plant Potamogeton pectinatus belonging to family 

Potamogetonaceae. All other forms of macrophytes like free floating, emergents and 

rooted floating were absent in the lake. Among the study sites P. pectinatus was found 

only at TM2, TM4 and TM7 (Table 5.3.1a).   

5.3.1b. Density, Frequency and Abundance  

The density of P. pectinatus ranged from 215 to 560 indi./m
2
, 340 to 886 

indi./m
2
 and 13 to 30 indi./m

2 
at sites TM2, TM4 and TM7 respectively. Its density 

was highest in summer months (June, July and August) and lowest was recorded in 

winter months (November and December). The highest mean density was observed at 

site TM4 (618.9±207 indi./m
2
), while lowest was recorded at site TM7 (19.6±6.3 

indi./m
2
) (Table 5.3.1b1).  
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The frequency of P. pectinatus ranged from a minimum of 10% at site TM7 to a 

maximum of 100% at site TM2 and TM4 (Table 5.3.b2). The mean frequency ranged 

from 30±14.7 % (TM7) to 77.8±21.5% (TM4), while the abundance varied from 17 at 

site TM7 to 886 at site TM4. The mean abundance was highest for site TM4 

(643±188) followed by TM2 (429±119) and least abundance was recorded at site 

TM7 (29±10) (Table 5.3.b3). Higher values of both frequency and abundance were 

recorded in summer months and least in winter months.  

5.3.1c. Importance Value Index 

As only one species, P. pectinatus was present at all the sites, the IVI values 

could not be calculated. 

5.3.1d. Similarity and Diversity Indices   

P. pectinatus showed luxuriant growth at TM2 and TM4 where fresh water 

enters into the lake. However, the macrophytic vegetation was absent in inlet river 

sites TM1 and TM2. As only one macrophytic species was recorded the similarity 

index was 100% between sites TM2, TM4 and TM7 (Table 5.3.c). Further, the 

diversity index was equal to zero, which is a characteristic of mono-species stands. 

 

 

 

 

 

 



Chapter 5                                                                                                                                                      Results                                                                        

 

 

191 
 

Table 5.3.1a Conspectus of growth forms at different sites in Tso Morari Lake. 

Sites----> TM2 TM4 TM7 Total 

Life forms F G S F G S F G S F G S 

Emergents 0 0 0 0 0 0 0 0 0 0 0 0 

Rooted-

floating 
0 0 0 0 0 0 0 0 0 0 0 0 

Submerged 1 1 1 1 1 1 1 1 1 1 1 1 

Free- 

Floating 
0 0 0 0 0 0 0 0 0 0 0 0 

Total 1 1 1 0 0 1 0 0 0 0 0 0 

F= Family; G= Genera; S= Species 

 

Table 5.3.1b1. Density of Potamogeton pectinatus at various study sites in Tso Morari Lake 

Sites 
Oct-

04 

Dec-

04 

June-

05 

July-

05 

Oct-

05 

Dec-

05 

June-

06 

Aug-

06 

Nov-

06 
Mean SD 

TM2 380 270 482 560 230 215 540 490 328 388.2 134.4 

TM4 564 420 886 872 628 468 860 532 340 618.9 207.5 

TM7 Ns Ns 20 26 15 15 18 30 13 19.6 6.3 

 

Table 5.3.1b2. Frequency of Potamogeton pectinatus at various study sites in Tso Morari 

lake 

Sites 
Oct-

04 

Dec-

04 

June-

05 

July-

05 

Oct-

05 

Dec-

05 

June-

06 

Aug-

06 

Nov-

06 
Mean SD 

TM2 65 45 90 100 50 35 90 100 55 70.0 25.2 

TM4 70 60 100 100 85 60 100 85 40 77.8 21.5 

TM7 Ns ns 35 40 20 10 45 45 15 30.0 14.7 

Ns; Not Sampled 

 

 



Chapter 5                                                                                                                                                      Results                                                                        

 

 

192 
 

Table 5.3.1b3. Abundance of Potamogeton pectinatus at various study sites in Tso Morari 

lake 

Sites 
Oct-

04 

Dec-

04 

June-

05 

July-

05 

Oct-

05 

Dec-

05 

June-

06 

Aug-

06 

Nov-

06 
Mean SD 

TM2 436 342 532 560 323 236 575 490 365 429 119 

TM4 586 465 886 872 652 522 860 563 384 643 188 

TM7 Ns 33 46 25 23 19 27 40 17 29 10 

Ns; Not sampled 

 

Table 5.3.1.c. Macrophytic similarity between different study sites based on Sorenson's 

similarity index in Tso Morari lake 

Sites TM2 TM3 TM4 TM5 TM6 TM7 

TM1 0% 0% 0% 0% 0% 0% 

TM2   0% 100% 0% 0% 100% 

TM3       0% 0% 0% 

TM4         0% 100% 

TM5           0% 

TM6           0% 
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5.3.2. Tso Khar Lake  

5.3.2a. Species Composition 

A total of 2 species, belonging to 2 genera of 2 families (Potamogetonaceae and 

Ranuncluaceae) were recorded from Lake, P. pectinatus and Ranunculus aquatalis. 

Both the species belonged to submerged vegetation class and were observed only at 

sites TK2 and TK5 (Table 5.3.2a). The macrophytic vegetation was absent at site TK1 

and TK4 due to their hyper saline nature and at site TK3 which represents spring site.  

5.3.2b. Density, Frequency and Abundance  

The density of P. pectinatus ranged from 420 to 1790 indi./m
2 

at site TK2 and 

from 780 to 1632 indi./m
2
 at site TK5. However, the mean density was higher at site 

TK5 (1228±375 indi./m
2
) than TK2 (1079±578 indi./m

2
). The density of R. aquaticus 

ranged from 3 indi./m
2
 at both the sites to a maximum of 25 indi./m

2
 at site TK2 and 

22 indi./m
2
 at site TK5.  The mean density of R. aquaticus at TK2 (13±10 indi./m

2
) 

and TK5 (13±7 indi./m
2
) did not show any significant difference. Both the species 

showed the highest density values in July. The lowest density was recorded in 

December for P. pectinatus, while R. aquaticus showed lowest density in November 

(Table 5.3.2b1 & b2). 

At site TK2, frequency varied from 20% for R. aquatalis to 100% for P.  

pectinatus. At site TK5, lower values of frequency were again recorded for R. 

aquatalis (25%), while P. pectinatus (100%) had high values of frequency. Similarly 

the mean frequency ranged from 45.8±16.9% to 76.7±25.6% at site TK2 and from 

46±15.2% to 86±12.9% at site TK5 for R. aquatalis and P. pectinatus respectively 

(Table 5.3.2b3 & b4). The lowest abundance values were recorded for R. aquatalis, 

while highest abundance values were recorded for P. pectinatus at both the sites 

during the study period. Similarly, the mean values ranged from a minimum of 21±16 
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for R. aquatalis at site TK2 to a maximum of 1278±342 for P. pectinatus at site TK5 

(Table 5.3.2b5 & b6). 

5.3.2c. Importance Value Index 

The highest IVI values were recorded for P. pectinatus, while lower IVI values 

were recorded for R. aquatalis at both the study sites. The mean IVI values ranged 

from 36±16 to 264±16 at site TK2 and from 30±15 to 270±15 at site TK5 for R. 

aquatalis and P. pectinatus respectively (Table 5.3.c1 & c2.)  

5.3.2d. Similarity and Diversity Indices   

The Sorenson’s similarity index showed 100% similarity between TK2 and 

TK5, as macrophytic vegetation was formed by only two species and was restricted to 

these two sites only (Table 5.3.2d1). Other sites did not show any similarity based on 

macrophytic vegetation. The diversity values were also generally in the lower range 

and ranged from 0.0 to 0.045 at site TK2 and from 0.011 to 0.309 at site TK5. 

However, the mean diversity values were higher at site TK5 (0.028±0.011) than site 

TK2 (0.025±0.014) (Table 5.3.2d2). 

Table 5.3.2a. Conspectus of growth forms at different sites in Tso Khar Lake 

Sites-----> TK2 TK5 Total 

Life forms F G S F G S F G S 

Emergents 0 0 0 0 0 0 0 0 0 

Rooted floating 0 0 0 0 6 0 0 0 0 

Submerged  2 2 2 2 2 2 2 2 2 

Free Floating 0 0 0 0 0 0 0 0 0 

Total 2 2 2 2 2 2 2 2 2 

F= Family; G= Genera; S= Species 
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Table 5.3.2b1. Density of macrophytes at site TK2 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P. pectinatus 420 1538 1790 938 1360 430 1079 578 

R. aquatalis 4 15 23 8 25 3 13 10 

 

 

Table 5.3.2b2. Density of macrophytes at site TK5 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P. pectinatus ns 1238 1632 780 1560 930 1228 375 

R. aquatilis ns 10 18 12 22 3 13 7 

 

 

Table 5.3.2b3. Frequency of macrophytes at site TK2 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P. pectinatus 40 95 100 70 100 55 76.7 25.6 

R. aquatalis 30 55 60 50 60 20 45.8 16.9 

 

 
Table 5.3.2b4. Frequency of macrophytes at site TK5 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P. pectinatus Ns 80 100 75 100 75 86 12.9 

R. aquatilis Ns 40 65 45 55 25 46 15.2 

Ns; Not sampled 

 
 

Table 5.3.2b5. Abundance of macrophytes at site TK2 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P. pectinatus 525 1708 1790 1042 1360 477 1150 569 

R. aquatalis 6.6 18.7 35 12.5 45 5 21 16 
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Table 5.3.2b6. Abundance of macrophytes at site TK5 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P.pectinatus ns 1345 1632 850 1560 1005 1278 342 

R. aquatilis ns 15 35.5 18 35 7 22 13 

Ns; Not sampled 

 
Table 5.3.2c1. Important value index (IVI) of macrophytes at site TK2 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P. pectinatus 254.96 261.28 259.31 256.30 257.49 297.6 264 16 

R. aquatalis 45.04 38.72 40.69 43.70 42.51 2.4 36 16 

 

Table 5.3.2c2. Important value index (IVI) of macrophytes at site TK5 in Tso Khar lake 

Species Oct-04 June-05 July-05 Oct-05 June-06 Nov-06 Mean SD 

P. pectinatus  ns    264.76    257.39      58.91    295.02    273.99      270  15 

R. aquatalis  ns    35.24    42.61    41.09    4.98  26.01        30  15 

Ns; Not sampled 

 
Table 5.3.2d1. Macrophytic similarity between different study sites based on Sorenson's  
                        similarity index in Tso Khar lake 

Sites TK2 TK3 TK4 TK5 

TK1 0% 0% 0% 0% 

TK2   0% 0% 100% 

TK3     0% 0% 

TK4       0% 

 

Table 5.3.2d2. Diversity (Shannon Wiener) index of species at different study sites in Tso 
Khar lake 

Sites Oct-04 Dec-04 
June-

05 
July-05 Oct-05 Dec-05 

June-

06 
Nov-06 Mean SD 

TK2 0.027 - 0.027 0.034 0.024 0 0.045 0.021 0.025 0.014 

TK5 - - 0.023 0.030 0.039 - 0.037 0.011 0.028 0.011 
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5.3.3. Manasbal Lake 

5.3.3a. Species Composition       

The macrophytic community of Manasbal Lake was represented by all the four 

life form-classes, i.e. belonging to emergents, rooted floating leaf type, submerged 

and free floating. 37 macrophytic species were recorded from this water body, which 

belonged to 28 genera of 22 families. A total of 29, 21, 22 and 29 species were 

recorded at sites M1, M2, M3 and M4 respectively (Table 5.3.3a). The minimum 

numbers of species were recorded during January and December and maximum 

number in July and August at all the study sites. The emergents, rooted floating, 

submerged and free floating contributed about 40.54%, 21.62%, 27.02% and 10.81% 

to macrophytic community respectively. Among the life forms site M1 (12) and site 

M4 (11) had highest number of species belonging to emergent group, while site M4 

had highest number of species (10) of submerged class. The least number of species at 

all the sites belonged to free floating class. The emergents were represented by 15 

species, namely Alisma plantago aquatica, Carex sp, Cyperus difformis,  Echinocloa 

crusgali, Lycopus europus, Myriophyllum verticillatum, Nasturtium officinale, 

Polygonum amphibium, Sium latijugum, Bidens cernua, Nasturtium sp., Sagittaria 

sagittifolia, Phragmites australis, Typha latifolia and Eleocharis palustris. The 

submergeds were represented by 10 species including Ceratophyllum demersum, 

Chara fragiles, Hydrilla verticillata, M. spicatum, Potamogeton crispus, P. lucens, P. 

pectinatus, P. perfoliatus, P. pusillus and Utricularia aurea. The Rooted floating leaf 

types were represented by viz. Hydrocharis dubia, Nelumbo nucifera, Nymphaea 

alba, Nymphoides peltatum, P. natans, Trapa natans, and Euryale ferox and free 

floating include 4 species, Lemna minor, L. major, L. triscula and Salvinia natans 

belonging to 2 families and 2 genera. The maximum number of species belonged to 

family Potamogetonaceae,(6), followed by Lemnaceae (3) and Cyperaceae (3), while 
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Nymphaeaceae, Alismataceae, Poaceae, Haloragaceae, Brassicaceae and 

Hydrocharitaceae, were represented by 2 species each. 

5.3.3b Frequency, Density and Abundance   

At site M1 the highest mean frequency was reported for C. demersum (36.7%) 

followed by N. peltatum (23.75%), H. vericillata (23.3%), P. lucens (22.1%), M. 

spicatum (20.8%) and N. nucifera (20.0%), while lowest value was obtained for A. 

plantago-aquatica (0.83%) (Table 5.3.3b1). However, Lemna spp. recorded highest 

mean density (6.0 indi./m
2
) and abundance (30.64) values  followed by C. demersum 

(3.83 indi./m
2
 and 8.33), N. peltatum (2.30 indi./m

2 
and 7.98) and H. vericillata (1.29 

indi./m
2
 and 4.61). The minimum mean density (0.01 indi./m

2
) and abundance (0.27) 

values were recorded for A. plantago aquatic and C. fragile respectively (Table 

5.3.3b2-3).  

At site M2, the highest mean frequency value was recorded for C demersum 

(58.83) followed by N. peltatum (28.33), P. pectinatus (22.92) and N. nucifera (20.0), 

whereas lowest value of 0.42 was recorded for E. crusgali (Table 5.3.3b4). The data 

showed that frequency of macrophytes decreased in the order of submerged > rooted 

floating > free floating > Emergents. The mean density values of macrophytic species 

fluctuated from 0.01 indi./m
2
 (E. crusgali) to 5.65 indi./m

2
 (C. demersum)( Table 

5.3.3b5). The highest value of density was exhibited by submerged followed by free 

floating, rooted floating and lowest was recorded for emergents. However, the highest 

mean values of abundance were recorded for Lemna spp. (18.67) followed by C. 

demersum (9.41), S. natans (5.92) and N. peltatum (5.58), whereas lowest value was 

recorded for E. crusgali (0.02)( Table 5.3.3b6).  

At site M3 the highest mean frequency values were observed for M. spicatum 

(32.92), P. crispus (29.58), N. peltatum (27.08), C. demersum (25.42) and N. nucifera 

(19.58), while lowest mean frequency value of 1.67 was reported for H. dubia (Table 
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5.3.3b7). On the other hand, maximum mean annual density was obtained for C. 

demersum (2.99 indi./m
2
), followed by M. spicatum (2.63 indi./m

2
), N. peltatum (2.40 

indi./m
2
), and Lemna spp. (2.37 indi./m

2
) and least density value of 0.03 indi./m

2
 was 

recorded for M. verticellatum and H. dubia (Table 5.3.3b8). The mean values of 

abundance fluctuated from 0.45 (N. officinale) to 10.10 (C. demersum). The other 

species with high values of abundance included N. peltatum (7.09), M. spicatum 

(6.95) and P. crisps (5.43)( Table 5.3.3b9).   

At site M4, the highest values of frequency were observed for M. spicatum 

(35.42) followed by C. demersum (25.83), N. peltatum (24.17), P. crispus and P. 

natans (22.92) and least value was observed for N. alba (0.83)( Table 5.3.3b10). 

However, the mean density values of macrophytic species ranged from a minimum of 

0.02 indi./m
2
 (N. alba) to a maximum of 4.22 indi./m

2
 (Lemna spp.). The other species 

with appreciable density include C. demersum, N. peltatum, and M. spicatum (Table 

5.3.3b11). The highest mean abundance values were recorded for Lemna spp. (16.54), 

C. demersum (12.58), N. peltatum (9.20), M. spicatum (7.75) and P. crispus (6.78) 

respectively. Whereas, E. crusgali, C. difformis, E. palustris, P. amphibium, S. 

sagittifolia and N. alba recorded less than 1.0 abundance values (Table 5.3.3b12). 

5.3.3c. Importance Value Index 

On the basis of important value index (IVI), C. demersum was the most 

dominant species at all the study sites except at site M4, where M. spicatum was the 

most dominant species followed by C. demersum. At site M1 the other co-dominant 

species were M. spicatum (36.41), Lemna spp. (32.50), H. verticillata (29.86) and N. 

peltatum (26.68). The least dominant species having IVI values of less than 1.0 were 

Carex sp, A. plantago aquatic, E. crusgali M. verticillatum, C. fragiles and P. pusillus 

(Table 5.3.3c1). Similarly, at site M2 the species with high IVI values were P. 

pectinatus (33.4), Lemna spp. (31.02), N. peltatum (29.85) and P. crispus (15.4), 
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while low IVI values were recorded for E. crusgali (0.10), S. sagittifolia (0.44) and C. 

difformis (0.74) (Table 5.3.3c2). At site M3, M. spicatum (54.6), P. crispus (33.6), N. 

peltatum (27.56), P. pectinatus (17.6) also contributed significantly to dominance 

values, whereas E. crusgali, N. officinale and H. dubia showed least dominance 

having IVI value of < 1.0 (Table 5.3.3c3). The highest mean values of IVI at site M4 

was recorded for M. spicatum (50.31), followed by C. demersum (46.19), P. crispus 

(24.47), N. peltatum (22.81) and P. pectinatus (20.61), while least IVI value of 0.12 

was recorded for Lycopus europus (Table 5.3.3c4).  

5.3.3d. Similarity and Diversity Indices   

The Sorenson’s similarity index based on species composition generally showed 

good similarity between all sites except site M5, which was devoid of any 

macrophytic vegetation. However, the results indicate that site M1 had high degree of 

similarity with site M4 (71%), M3 (67%) and M2 (66%), while least degree of 

similarity (52%) was observed between site M2 and M4 (Table 5.3.3d1). E. crusgali, 

M. verticillatum, P. amphibium, H. dubia, N. nucifera, N. peltatum, C. demersum, M. 

spicatum, P. crispus, P. lucens, P. pectinatus, L. minor, L. major and S. natans were 

common at all the four sites. The number of species common to any two sites was 10, 

and for any three sites were 7. Whereas, L. triscula, U. aurea, P. perfoliatus, T. 

latifolia and N. alba were restricted in their distribution, being present at only one 

site.  

Species diversity ranged from a minimum of 0.41 at site M3 in February to a 

maximum of 2.65 at site M4 in September. All the sites showed low species diversity 

in winter months and high in summer months. The mean annual diversity was highest 

at site M4 (2.14±0.55) and lowest at site M2 (1.53± 0.59) (Table 5.3.3d2).  
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Table 5.3.3a. Conspectus of growth forms at different sites in Manasbal Lake 

Sites----> M1 M2 M3 M4 Total 

Life forms F G S F G S F G S F G S F G S 

Emergents 9 11 12 8 8 8 6 7 8 8 11 11 10 10 15 

Rooted 
floating 

7 7 7 6 6 6 6 6 6 6 6 6 7 8 8 

Submerged  5 5 8 3 3 5 4 4 7 6 6 10 4 6 10 

Free Floating 2 2 3 2 2 3 2 2 3 2 2 4 2 2 4 

Total 20 23 30 17 18 22 15 18 24 20 24 31 22 28 37 

F= Family; G= Genera; S= Species 
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Table 5.3.3b1. Monthly variations in frequency of macrophyte species at site I in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 5.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.83 1.9 

2 Bidens cernua 0.0 0.0 0.0 5.0 0.0 5.0 0.0 10.0 0.0 0.0 5.0 0.0 2.08 3.3 

3 Carex sp. 0.0 0.0 0.0 0.0 0.0 5.0 0.0 10.0 0.0 0.0 0.0 0.0 1.25 3.1 

4 Cyperus difformis 0.0 0.0 0.0 5.0 0.0 10.0 0.0 15.0 0.0 0.0 5.0 0.0 2.92 5.0 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 15.0 0.0 0.0 0.0 1.67 4.4 

6 Eleocharis palustris 0.0 0.0 0.0 10.0 0.0 0.0 15.0 0.0 10.0 5.00 0.0 0.0 3.33 5.4 

7 Lycopus europus 0.0 0.0 0.0 10.0 0.0 0.0 15.0 0.0 10.0 10.0 0.0 0.0 3.75 5.7 

8 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 5.0 0.0 1.25 3.1 

9 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 10.0 10.0 20.0 15.0 0.0 0.0 0.0 4.58 7.2 

10 Nasturtium sp. 0.0 5.0 0.0 10.0 15.0 10.0 20.0 20.0 15.0 10.0 0.0 5.0 9.17 7.3 

11 Polygonum amphibium 0.0 0.0 0.0 5.0 0.0 0.0 5.0 0.0 10.0 0.0 0.0 0.0 1.67 3.3 

12 Sium latijugum 0.0 0.0 0.0 0.0 5.0 10.0 25.0 15.0 15.0 15.0 0.0 0.0 7.08 8.6 

Rooted floating 

13 Euryale ferox 0.0 0.0 0.0 0.0 10.0 25.0 35.0 40.0 25.0 15.0 0.0 0.0 12.50 15.2 

14 Marsilia quadrifolia 0.0 0.0 0.0 5.0 0.0 10.0 0.0 15.0 0.0 0.0 0.0 0.0 2.50 5.0 

15 Hydrocharis dubia 0.0 0.0 0.0 0.0 5.0 0.0 25.0 0.0 25.0 0.0 0.0 0.0 4.58 9.6 

16 Nelumbo nucifera 0.0 0.0 0.0 10.0 15.0 25.0 40.0 45.0 45.0 35.0 25.0 0.0 20.00 18.2 

17 Nymphoides peltatum 0.0 0.0 5.0 15.0 20.0 35.0 45.0 50.0 45.0 40.0 30.0 0.0 23.75 19.4 

18 Potamogeton natans 0.0 0.0 0.0 0.0 5.0 15.0 35.0 40.0 15.0 0.0 15.0 0.0 10.42 14.2 

19 Trapa natans 0.0 0.0 0.0 0.0 0.0 15.0 20.0 30.0 20.0 10.0 0.0 0.0 7.92 10.8 

Submerged 

20 Ceratophyllum demersum 10.0 15.0 10.0 15.0 25.0 40.0 50.0 80.0 80.0 60.0 45.0 10.0 36.7 26.6 

21 Chara fragiles 0.0 0.0 0.0 0.0 0.0 5.0 5.0 0.0 10.0 0.0 0.0 0.0 1.7 3.3 

22 Hydrilla verticillata 0.0 10.0 15.0 20.0 25.0 35.0 40.0 45.0 40.0 25.0 25.0 0.0 23.3 15.1 

23 Myriophyllum spicatum 10.0 10.0 20.0 0.0 10.0 40.0 40.0 45.0 45.0 20.0 0.0 10.0 20.8 17.2 

24 Potamogeton crispus 0.0 5.0 0.0 10.0 10.0 15.0 25.0 40.0 35.0 30.0 20.0 0.0 15.8 14.1 

25 Potamogeton lucens 5.0 5.0 0.0 15.0 20.0 40.0 45.0 40.0 40.0 35.0 20.0 0.0 22.1 17.2 

26 Potamogeton pectinatus 5.0 0.0 5.0 5.0 15.0 15.0 15.0 25.0 30.0 20.0 10.0 0.0 12.1 9.6 

27 Potamogeton pucilus 0.0 0.0 0.0 0.0 0.0 10.0 0.0 10.0 0.0 0.0 0.0 0.0 1.7 3.9 

Free floating 

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 30.0 40.0 20.0 25.0 25.0 35.0 0.0 14.58 16.0 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.0 20.0 30.0 25.0 35.0 10.0 0.0 10.00 13.7 
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Table 5.3.3b2.  Monthly variations in density of macrophyte species at site I in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.01 0.03 

2 Bidens cernua 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.3 0.0 0.0 0.1 0.0 0.05 0.09 

3 Carex sp. 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.03 0.06 

4 Cyperus difformis 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.2 0.0 0.0 0.1 0.0 0.05 0.08 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.03 0.07 

6 Eleocharis palustris 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.04 0.08 

7 Lycopus europus 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.2 0.1 0.0 0.0 0.05 0.09 

8 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.02 0.04 

9 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 0.5 0.6 0.8 0.6 0.0 0.0 0.0 0.21 0.31 

10 Nasturtium sp. 0.0 0.1 0.0 0.3 0.4 0.3 0.8 0.8 0.5 0.3 0.0 0.1 0.30 0.29 

11 Polygonum amphibium 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.04 0.08 

12 Sium latijugum 0.0 0.0 0.0 0.0 0.1 0.3 0.4 0.6 0.8 0.6 0.0 0.0 0.25 0.28 

Rooted floating-leaf type 

13 Euryale ferox 0.0 0.0 0.0 0.0 0.3 0.6 0.8 1.4 0.9 0.7 0.0 0.0 0.39 0.48 

14 Marsilia quadrifolia 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.3 0.0 0.0 0.0 0.0 0.05 0.10 

15 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.0 0.8 0.0 0.0 0.0 0.11 0.25 

16 Nelumbo nucifera 0.0 0.0 0.0 0.2 0.3 0.5 0.6 1.8 3.5 2.8 0.4 0.0 0.84 1.19 

17 Nymphoides peltatum 0.0 0.0 0.1 0.8 1.3 2.0 4.6 6.0 8.0 3.0 1.8 0.0 2.30 2.63 

18 Potamogeton natans 0.0 0.0 0.0 0.0 0.2 0.4 0.8 1.6 0.6 0.0 0.4 0.0 0.33 0.48 

19 Trapa natans 0.0 0.0 0.0 0.0 0.0 0.5 0.7 1.3 1.6 0.4 0.0 0.0 0.38 0.56 

Submerged 

20 Ceratophyllum demersum 0.2 0.3 0.2 0.4 2.2 4.0 5.8 10.0 14.5 5.0 3.0 0.3 3.83 4.51 

21 Chara fragiles 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.03 0.05 

22 Hydrilla verticillata 0.0 0.2 0.2 0.3 0.5 0.7 3.2 3.5 3.6 2.0 1.0 0.3 1.29 1.39 

23 Myriophyllum spicatum 0.3 0.2 0.4 0.0 0.8 0.8 1.0 1.5 2.7 1.4 0.0 0.5 0.80 0.78 

24 Potamogeton crispus 0.0 0.0 0.0 0.1 0.2 0.4 0.6 1.8 1.2 0.9 0.2 0.0 0.45 0.58 

25 Potamogeton lucens 0.1 0.0 0.0 0.2 1.3 2.5 1.4 2.0 2.6 1.0 0.5 0.2 0.98 0.97 

26 Potamogeton pectinatus 0.2 0.0 0.0 0.1 0.2 0.4 0.6 0.3 1.6 0.6 0.3 0.0 0.36 0.44 

27 Potamogeton pucilus 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.03 0.06 

  

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 2.0 15.0 6.0 35.0 10.0 4.0 0.0 6.00 10.33 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.0 0.5 2.0 4.0 3.0 0.6 0.0 0.84 1.39 
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Table 5.3.3b3.  Monthly variations in abundance of macrophyte species at site I in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 1.5 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.32 0.8 

2 Bidens cernua 0.0 0.0 0.0 1.3 0.0 2.0 0.0 3.4 0.0 0.0 1.0 0.0 0.64 1.1 

3 Carex sp. 0.0 0.0 0.0 0.0 0.0 2.3 0.0 3.5 0.0 0.0 0.0 0.0 0.48 1.2 

4 Cyperus difformis 0.0 0.0 0.0 1.3 0.0 1.2 0.0 2.0 0.0 0.0 2.0 0.0 0.54 0.8 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 2.0 0.0 0.0 0.0 0.42 1.0 

6 Eleocharis palustris 0.0 0.0 0.0 2.4 0.0 0.0 3.5 0.0 1.3 0.0 0.0 0.0 0.60 1.2 

7 Lycopus europus 0.0 0.0 0.0 1.5 0.0 0.0 2.6 0.0 3.0 2.5 0.0 0.0 0.80 1.2 

8 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 1.0 0.0 0.30 0.8 

9 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 8.2 4.5 6.0 3.7 0.0 0.0 0.0 1.87 2.9 

10 Nasturtium sp. 0.0 1.3 0.0 3.4 5.6 5.0 6.3 6.5 6.0 3.0 0.0 1.3 3.20 2.6 

11 Polygonum amphibium 0.0 0.0 0.0 2.2 0.0 0.0 2.0 0.0 3.3 0.0 0.0 0.0 0.63 1.2 

12 Sium latijugum 0.0 0.0 0.0 0.0 2.5 2.0 3.6 5.3 8.0 5.6 0.0 0.0 2.25 2.8 

Rooted floating-leaf type 

13 Euryale ferox 0.0 0.0 0.0 0.0 2.0 3.0 4.0 6.2 5.8 4.0 0.0 0.0 2.08 2.4 

14 Marsilia quadrifolia 0.0 0.0 0.0 4.0 0.0 11.0 0.0 14.4 0.0 0.0 0.0 0.0 2.45 5.0 

15 Hydrocharis dubia 0.0 0.0 0.0 0.0 2.0 0.0 3.0 0.0 5.0 0.0 0.0 0.0 0.83 1.6 

16 Nelumbo nucifera 0.0 0.0 0.0 3.2 3.0 2.0 1.6 3.4 10.0 13.0 2.0 0.0 3.18 4.1 

17 Nymphoides peltatum 0.0 0.0 3.0 7.0 10.0 7.3 11.5 15.0 22.0 14.0 6.0 0.0 7.98 6.9 

18 Potamogeton natans 0.0 0.0 0.0 0.0 2.7 4.5 3.0 5.6 4.6 0.0 2.5 0.0 1.91 2.2 

19 Trapa natans 0.0 0.0 0.0 0.0 0.0 2.8 5.0 6.5 8.0 5.0 0.0 0.0 2.28 3.0 

Submerged 

20 Ceratophyllum demersum 2.3 3.0 3.0 5.0 9.0 13.0 10.5 14.0 18.3 10.0 7.5 4.4 8.33 5.1 

21 Chara fragiles 0.0 0.0 0.0 0.0 0.0 1.0 1.2 0.0 1.0 0.0 0.0 0.0 0.27 0.5 

22 Hydrilla verticillata 0.0 1.2 1.5 2.4 2.0 3.0 6.0 12.2 11.0 7.0 6.0 3.0 4.61 3.9 

23 Myriophyllum spicatum 2.0 2.0 3.0 0.0 4.0 3.5 2.6 4.0 10.0 7.0 0.0 2.2 3.36 2.8 

24 Potamogeton crispus 0.0 1.0 0.0 1.5 2.3 3.3 3.0 4.5 3.8 2.5 2.0 0.0 1.99 1.5 

25 Potamogeton lucens 1.0 1.2 1.5 2.5 4.6 7.3 5.0 6.0 8.0 3.8 3.2 2.0 3.84 2.4 

26 Potamogeton pectinatus 1.3 0.0 1.0 2.6 3.0 3.0 3.5 2.0 5.0 3.5 2.0 0.0 2.24 1.5 

27 Potamogeton pucilus 0.0 0.0 0.0 0.0 0.0 2.0 2.5 0.0 0.0 0.0 0.0 0.0 0.38 0.9 

Free-floating 

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 10.0 35.0 22.7 220.0 65.0 15.0 0.0 30.64 62.8 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.0 7.0 12.0 11.0 15.0 5.0 0.0 4.17 5.7 
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Table 5.3.3b4. Monthly variations in frequency of macrophyte species at site II in Lake Manasbal 

S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Bidens cernua 0.0 0.0 0.0 0.0 5.0 0.0 10.0 0.0 10.0 5.0 0.0 0.0 2.50 4.0 

2 Cyperus difformis 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 10.0 0.0 0.0 0.0 1.25 3.1 

3 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.42 1.4 

4 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 5.0 0.0 15.0 10.0 5.0 5.0 0.0 3.33 4.9 

5 Nasturtium sp. 0.0 0.0 0.0 5.0 0.0 10.0 0.0 0.0 15.0 0.0 0.0 0.0 2.50 5.0 

6 Polygonum amphibium 0.0 0.0 0.0 0.0 10.0 0.0 15.0 0.0 0.0 10.0 0.0 0.0 2.92 5.4 

7 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 5.0 0.0 0.0 0.0 1.25 3.1 

8 Sium latijugum 0.0 0.0 0.0 5.0 15.0 10.0 0.0 10.0 0.0 0.0 0.0 0.0 3.33 5.4 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 15.0 20.0 35.0 20.0 0.0 0.0 0.0 7.50 12.0 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 5.0 10.0 25.0 30.0 30.0 20.0 10.0 0.0 10.83 12.2 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 30.0 40.0 35.0 50.0 55.0 30.0 0.0 0.0 20.00 22.1 

12 Nymphoides peltatum 0.0 0.0 10.0 25.0 40.0 45.0 40.0 55.0 50.0 40.0 35.0 0.0 28.33 20.6 

13 Potamogeton natans 0.0 0.0 0.0 0.0 0.0 15.0 15.0 20.0 0.0 30.0 10.0 0.0 7.50 10.3 

14 Trapa natans 0.0 0.0 0.0 0.0 10.0 0.0 20.0 35.0 30.0 20.0 10.0 0.0 10.42 12.9 

Submerged 

15 Ceratophyllum demersum 20.0 20.0 40.0 50.0 50.0 65.0 80.0 85.0 65.0 55.0 50.0 30.0 50.83 21.1 

16 Myriophyllum spicatum 0.0 5.0 0.0 5.0 20.0 15.0 20.0 25.0 20.0 15.0 0.0 5.0 10.83 9.3 

17 Potamogeton crispus 10.0 5.0 0.0 5.0 15.0 15.0 0.0 20.0 30.0 25.0 15.0 0.0 11.67 10.1 

18 Potamogeton lucens 0.0 0.0 10.0 0.0 15.0 20.0 30.0 40.0 15.0 25.0 20.0 0.0 14.58 13.2 

19 Potamogeton pectinatus 10.0 10.0 20.0 15.0 25.0 10.0 30.0 55.0 45.0 25.0 20.0 10.0 22.92 14.5 

Free-floating 

20 Lemna spp. 0.0 0.0 0.0 0.0 0.0 25.0 40.0 45.0 30.0 35.0 20.0 0.0 16.25 18.1 

21 Salvinia natans 0.0 0.0 0.0 0.0 0.0 25.0 35.0 35.0 45.0 35.0 10.0 0.0 15.42 18.0 
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Table 5.3.3b5.  Monthly variations in density of macrophyte species at site II in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Bidens cernua 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.1 0.0 0.0 0.04 0.08 

2 Cyperus difformis 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.03 0.06 

3 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.01 0.03 

4 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.3 0.3 0.2 0.1 0.0 0.08 0.12 

5 Nasturtium sp. 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.3 0.0 0.0 0.0 0.05 0.10 

6 Polygonum amphibium 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.0 0.0 0.3 0.0 0.0 0.07 0.14 

7 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.02 0.06 

8 Sium latijugum 0.0 0.0 0.0 0.1 0.5 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.14 0.23 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 0.5 0.8 1.3 0.7 0.0 0.0 0.0 0.28 0.45 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.2 0.2 0.4 0.9 0.7 0.4 0.3 0.0 0.26 0.30 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 0.5 1.0 1.4 2.3 3.0 2.0 0.0 0.0 0.85 1.08 

12 Nymphoides peltatum 0.0 0.0 0.5 0.6 1.7 2.0 4.6 7.2 4.6 4.0 1.3 0.0 2.21 2.35 

13 Potamogeton natans 0.0 0.0 0.0 0.0 0.0 0.4 0.7 0.5 0.0 0.8 0.3 0.0 0.23 0.30 

14 Trapa natans 0.0 0.0 0.0 0.0 0.2 0.4 0.0 1.4 1.4 0.5 0.2 0.0 0.35 0.52 

Submerged 

15 Ceratophyllum demersum 1.0 1.3 1.6 3.3 5.0 7.7 12.6 13.2 8.5 7.0 3.6 3.0 5.65 4.19 

16 Myriophyllum spicatum 0.0 0.0 0.0 0.0 0.7 1.5 0.6 1.0 2.0 1.5 0.0 0.1 0.62 0.73 

17 Potamogeton crispus 0.1 0.0 0.0 0.1 0.1 0.3 0.0 0.5 0.9 0.4 0.3 0.0 0.23 0.27 

18 Potamogeton lucens 0.0 0.0 0.1 0.0 0.6 0.6 0.7 0.8 0.5 0.6 0.3 0.0 0.35 0.31 

19 Potamogeton pectinatus 0.2 0.3 0.4 0.2 0.7 0.6 1.0 4.0 4.5 1.0 0.4 0.4 1.14 1.48 

Free-floating 

20 Lemna spp. 0.0 0.0 0.0 0.0 0.0 2.0 8.0 14.0 22.0 8.0 2.0 0.0 4.67 7.10 

21 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.5 0.8 8.0 4.0 4.0 1.0 0.0 1.53 2.52 
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Table 5.3.3b6.  Monthly variations in abundance of macrophyte species at site II in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Bidens cernua 0.0 0.0 0.0 0.0 1.0 0.0 1.8 0.0 2.2 2.6 0.0 0.0 0.63 1.0 

2 Cyperus difformis 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 2.3 0.0 0.0 0.0 0.48 1.1 

3 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.02 0.1 

4 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 2.3 0.0 4.0 3.2 2.6 1.5 0.0 1.13 1.5 

5 Nasturtium sp. 0.0 0.0 0.0 1.2 0.0 2.0 0.0 0.0 3.0 0.0 0.0 0.0 0.52 1.0 

6 Polygonum amphibium 0.0 0.0 0.0 0.0 1.0 0.0 2.4 0.0 0.0 2.0 0.0 0.0 0.45 0.9 

7 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 1.0 0.0 0.0 0.0 0.27 0.7 

8 Sium latijugum 0.0 0.0 0.0 2.3 4.0 5.0 0.0 5.6 0.0 0.0 0.0 0.0 1.41 2.2 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 2.4 4.0 4.4 2.0 0.0 0.0 0.0 1.07 1.7 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 2.0 2.0 3.0 3.4 2.6 3.0 2.0 0.0 1.50 1.4 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 1.0 4.0 3.0 4.2 6.0 7.0 0.0 0.0 2.10 2.6 

12 Nymphoides peltatum 0.0 0.0 2.0 4.0 6.0 5.6 12.0 16.4 9.0 8.0 4.0 0.0 5.58 5.1 

13 Potamogeton natans 0.0 0.0 0.0 0.0 0.0 4.0 5.5 3.8 0.0 4.0 3.0 0.0 1.69 2.2 

14 Trapa natans 0.0 0.0 0.0 0.0 0.0 2.0 7.0 6.0 3.0 3.6 2.0 0.0 1.97 2.5 

Submerged 

15 Ceratophyllum demersum 2.0 2.3 4.0 7.0 10.0 13.0 16.0 18.0 13.6 13.0 9.0 5.0 9.41 5.4 

16 Myriophyllum spicatum 0.0 1.0 0.0 0.0 3.0 7.0 4.0 8.0 7.0 6.0 0.0 1.4 3.12 3.2 

17 Potamogeton crispus 1.3 1.2 0.0 2.0 2.5 2.0 3.6 4.0 3.3 3.0 4.0 0.0 2.24 1.4 

18 Potamogeton lucens 0.0 0.0 1.0 0.0 4.0 6.0 3.6 2.0 4.0 4.0 2.0 0.0 2.22 2.1 

19 Potamogeton pectinatus 1.2 1.3 1.0 1.7 3.0 5.0 4.0 8.0 7.0 5.0 3.0 2.0 3.52 2.3 

Free-floating 

20 Lemna spp. 0.0 0.0 0.0 0.0 3.0 8.0 15.0 30.0 105.0 50.0 13.0 0.0 18.67 31.2 

21 Salvinia natans 0.0 0.0 0.0 0.0 0.0 4.0 4.0 12.0 15.0 32.0 4.0 0.0 5.92 9.6 
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Table 5.3.3b7.  Monthly variations in frequency of macrophyte species at site III in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Carex sp. 0.0 0.0 0.0 0.0 5.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 1.25 3.1 

2 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 5.0 0.0 20.0 0.0 0.0 0.0 0.0 2.08 5.8 

3 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 5.0 0.0 20.0 0.0 15.0 0.0 0.0 0.0 3.33 6.9 

4 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 15.0 0.0 10.0 0.0 0.0 0.0 0.0 2.08 5.0 

5 Nasturtium sp. 0.0 0.0 5.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 1.25 3.1 

6 Phragmites australis 0.0 0.0 25.0 30.0 20.0 30.0 35.0 35.0 35.0 0.0 20.0 0.0 19.17 15.1 

7 Polygonum amphibium 0.0 0.0 0.0 0.0 10.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 2.08 5.0 

8 Typha latifolia 0.0 0.0 0.0 15.0 0.0 20.0 25.0 0.0 20.0 20.0 15.0 0.0 9.58 10.3 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 5.0 15.0 40.0 30.0 15.0 10.0 0.0 9.58 13.4 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 5.0 15.0 0.0 0.0 0.0 0.0 1.67 4.4 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 20.0 30.0 40.0 45.0 40.0 40.0 20.0 0.0 19.58 18.9 

12 Nymphoides peltatum 0.0 0.0 15.0 25.0 35.0 40.0 50.0 45.0 45.0 40.0 30.0 0.0 27.08 18.9 

13 Potamogeton natans 0.0 0.0 0.0 0.0 15.0 20.0 0.0 20.0 25.0 20.0 0.0 0.0 8.33 10.5 

14 Trapa natans 0.0 0.0 0.0 0.0 0.0 15.0 35.0 40.0 50.0 35.0 20.0 0.0 16.25 19.1 

Submerged 

15 Ceratophyllum demersum 10.0 15.0 10.0 10.0 20.0 25.0 40.0 40.0 35.0 40.0 35.0 25.0 25.42 12.3 

16 Hydrilla verticillata 0.0 0.0 0.0 0.0 5.0 10.0 20.0 35.0 25.0 30.0 20.0 10.0 12.92 12.7 

17 Myriophyllum spicatum 5.0 10.0 25.0 40.0 45.0 50.0 50.0 55.0 40.0 35.0 30.0 10.0 32.92 17.1 

18 Potamogeton crispus 0.0 5.0 25.0 40.0 35.0 55.0 50.0 45.0 40.0 20.0 25.0 15.0 29.58 17.5 

19 Potamogeton lucens 0.0 0.0 0.0 0.0 35.0 25.0 30.0 20.0 15.0 20.0 0.0 0.0 12.08 13.6 

20 Potamogeton pectinatus 10.0 0.0 0.0 15.0 20.0 40.0 30.0 40.0 35.0 30.0 0.0 0.0 18.33 16.3 

21 Potamogeton pucilus 0.0 0.0 0.0 5.0 0.0 0.0 10.0 0.0 15.0 0.0 0.0 0.0 2.50 5.0 

Free-floating 

22 Lemna spp. 0.0 0.0 0.0 0.0 0.0 0.0 10.0 25.0 20.0 20.0 5.0 0.0 6.67 9.6 

23 Salvinia natans 0.0 0.0 0.0 0.0 0.0 5.0 5.0 15.0 10.0 15.0 5.0 0.0 4.58 5.8 
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Table 5.3.3b8.  Monthly variations in density of macrophyte species at site III in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Carex sp. 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.03 0.1 

2 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.05 0.1 

3 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.03 0.1 

4 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.04 0.1 

5 Nasturtium sp. 0.0 0.0 0.1 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.03 0.1 

6 Phragmites australis 0.0 0.0 0.4 0.7 2.1 1.3 2.0 3.6 3.0 0.0 2.0 0.0 1.26 1.3 

7 Polygonum amphibium 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.04 0.1 

8 Typha latifolia 0.0 0.0 0.0 0.4 0.0 1.0 1.6 2.0 0.0 0.6 0.2 0.0 0.48 0.7 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.7 1.5 0.2 0.0 0.0 0.26 0.5 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.03 0.1 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 0.4 0.6 1.4 2.0 4.0 2.0 0.4 0.0 0.90 1.2 

12 Nymphoides peltatum 0.0 0.0 0.6 1.6 2.0 3.6 4.0 4.0 9.0 3.0 1.0 0.0 2.40 2.6 

13 Potamogeton natans 0.0 0.0 0.0 0.0 0.3 0.0 0.7 0.8 0.5 0.3 0.0 0.0 0.22 0.3 

14 Trapa natans 0.0 0.0 0.0 0.0 0.2 0.8 2.0 5.0 4.0 2.0 1.0 0.0 1.25 1.7 

Submerged 

15 Ceratophyllum demersum 0.3 0.2 0.4 1.0 3.0 3.2 5.0 8.2 4.0 4.8 3.5 2.3 2.99 2.4 

16 Hydrilla verticillata 0.0 0.0 0.0 0.0 0.1 0.3 1.0 2.0 2.0 1.6 1.0 0.5 0.71 0.8 

17 Myriophyllum spicatum 0.0 1.2 1.0 2.3 4.6 6.0 7.0 3.0 2.4 2.0 1.0 1.0 2.63 2.2 

18 Potamogeton crispus 0.0 0.0 0.8 1.5 2.0 3.4 4.0 3.0 2.5 1.4 1.3 1.2 1.76 1.3 

19 Potamogeton lucens 0.0 0.0 0.0 0.0 1.5 1.0 1.2 0.8 0.8 0.4 0.0 0.0 0.48 0.6 

20 Potamogeton pectinatus 0.4 0.0 0.0 0.6 2.0 2.0 1.4 1.7 3.0 1.0 0.0 0.0 1.01 1.0 

21 Potamogeton pucilus 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.06 0.1 

Free-floating 

22 Lemna spp. 0.0 0.0 0.0 0.0 0.0 0.0 0.4 6.0 15.0 4.0 3.0 0.0 2.37 4.5 

23 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.1 0.8 3.0 4.0 2.8 0.5 0.0 0.93 1.5 
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Table 5.3.3b9. Monthly variations in abundance of macrophyte species at site III in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Carex sp. 0.0 0.0 0.0 0.0 1.3 0.0 0.0 3.2 0.0 0.0 0.0 0.0 0.38 1.0 

2 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 1.5 0.0 4.3 0.0 0.0 0.0 0.0 0.48 1.3 

3 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 2.6 0.0 3.0 0.0 2.2 0.0 0.5 0.0 0.69 1.2 

4 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 2.0 0.0 3.4 0.0 0.0 0.0 0.0 0.45 1.1 

5 Nasturtium sp. 0.0 0.0 2.3 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.44 1.0 

6 Phragmites australis 0.0 0.0 3.0 6.0 7.0 6.7 7.9 9.2 11.3 6.0 4.6 0.0 5.14 3.7 

7 Polygonum amphibium 0.0 0.0 0.0 0.0 3.2 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.57 1.3 

8 Typha latifolia 0.0 0.0 0.0 3.5 0.0 0.0 5.7 8.0 0.0 3.2 3.4 0.0 1.98 2.8 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 3.2 2.0 2.5 6.2 3.0 0.0 0.0 1.41 2.0 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 2.5 5.2 0.0 0.0 0.0 0.0 0.64 1.6 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 1.7 3.6 4.3 5.0 10.0 7.4 3.0 0.0 2.92 3.3 

12 Nymphoides peltatum 0.0 0.0 6.2 7.4 9.0 10.0 8.5 18.0 12.0 10.0 4.0 0.0 7.09 5.5 

13 Potamogeton natans 0.0 0.0 0.0 0.0 2.5 0.0 4.2 3.5 5.0 3.0 0.0 0.0 1.52 2.0 

14 Trapa natans 0.0 0.0 0.0 0.0 3.4 7.3 7.0 10.0 12.0 9.0 6.0 0.0 4.56 4.5 

Submerged 

15 Ceratophyllum demersum 1.3 2.0 2.0 8.2 15.0 14.0 15.3 20.0 14.0 11.4 10.0 8.0 10.10 6.0 

16 Hydrilla verticillata 0.0 0.0 0.0 0.0 2.0 2.5 3.8 6.5 6.0 5.8 4.3 3.5 2.87 2.5 

17 Myriophyllum spicatum 1.2 2.2 5.3 6.2 13.6 16.0 12.0 7.0 8.3 5.0 4.6 2.0 6.95 4.7 

18 Potamogeton crispus 0.0 1.0 3.6 5.0 5.7 8.0 8.4 7.0 7.5 9.0 7.0 3.0 5.43 3.0 

19 Potamogeton lucens 0.0 0.0 0.0 0.0 5.0 3.2 5.5 4.2 5.0 3.2 0.0 0.0 2.18 2.4 

20 Potamogeton pectinatus 2.2 0.0 0.0 3.4 6.0 5.6 4.0 6.8 6.0 5.0 0.0 0.0 3.25 2.7 

21 Potamogeton pucilus 0.0 0.0 0.0 2.3 0.0 0.0 2.0 0.0 4.2 0.0 0.0 0.0 0.71 1.4 

Free-floating 

22 Lemna spp. 0.0 0.0 0.0 0.0 0.0 2.0 6.0 25.0 53.0 41.0 10.0 0.0 11.42 18.3 

23 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.0 4.0 11.0 18.0 15.0 4.0 0.0 4.33 6.6 
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Table 5.3.3b10. Monthly variations in frequency of macrophyte species at site IV in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 5.0 0.0 0.0 0.8 1.9 

2 Bidens cernua 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 1.3 3.1 

3 Carex sp. 0.0 0.0 0.0 5.0 10.0 15.0 0.0 20.0 0.0 15.0 10.0 0.0 6.3 7.4 

4 Cyperus difformis 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 15.0 15.0 0.0 0.0 3.3 6.2 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 5.0 5.0 0.0 10.0 0.0 0.0 0.0 0.0 1.7 3.3 

6 Eleocharis palustris 0.0 0.0 0.0 5.0 0.0 0.0 10.0 0.0 10.0 0.0 5.0 0.0 2.5 4.0 

7 Lycopus europus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.4 1.4 

8 Nasturtium sp. 0.0 0.0 0.0 5.0 0.0 15.0 0.0 0.0 15.0 10.0 10.0 0.0 4.6 6.2 

9 Phragmites australis 0.0 0.0 20.0 25.0 35.0 15.0 40.0 40.0 40.0 30.0 25.0 0.0 22.5 15.7 

10 Polygonum amphibium 0.0 0.0 0.0 5.0 0.0 0.0 10.0 15.0 20.0 0.0 0.0 0.0 4.2 7.0 

11 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 5.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 1.7 4.4 

Rooted floating-leaf type 

12 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 20.0 0.0 0.0 0.0 3.3 6.5 

13 Marsilea quadrifolia 0.0 0.0 0.0 10.0 0.0 0.0 15.0 0.0 10.0 0.0 0.0 0.0 2.9 5.4 

14 Nelumbo nucifera 0.0 0.0 0.0 0.0 20.0 30.0 50.0 55.0 45.0 30.0 25.0 0.0 21.3 21.2 

15 Nymphaea alba 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 5.0 0.0 0.0 0.0 0.8 1.9 

16 Nymphoides peltatum 0.0 0.0 20.0 30.0 30.0 40.0 35.0 45.0 40.0 30.0 20.0 0.0 24.2 16.4 

17 Potamogeton natans 0.0 0.0 25.0 30.0 40.0 30.0 40.0 35.0 30.0 25.0 20.0 0.0 22.9 15.0 

Submerged 

18 Ceratophyllum demersum 10.0 15.0 10.0 20.0 20.0 35.0 35.0 40.0 40.0 30.0 35.0 20.0 25.8 11.2 

19 Chara fragiles 0.0 0.0 0.0 0.0 20.0 20.0 25.0 30.0 30.0 25.0 20.0 0.0 14.2 12.9 

20 Hydrilla verticillata 0.0 0.0 0.0 0.0 15.0 10.0 15.0 10.0 20.0 20.0 0.0 0.0 7.5 8.4 

21 Myriophyllum spicatum 15.0 20.0 40.0 45.0 35.0 40.0 40.0 50.0 55.0 35.0 30.0 20.0 35.4 12.3 

22 Potamogeton crispus 0.0 10.0 10.0 25.0 30.0 40.0 45.0 40.0 35.0 20.0 15.0 5.0 22.9 15.1 

23 Potamogeton lucens 0.0 5.0 10.0 20.0 10.0 25.0 30.0 35.0 30.0 20.0 15.0 5.0 17.1 11.4 

24 Potamogeton pectinatus 10.0 0.0 15.0 15.0 20.0 30.0 20.0 35.0 40.0 30.0 20.0 15.0 20.8 11.2 

25 Potamogeton perfoliatus 0.0 0.0 0.0 10.0 0.0 10.0 0.0 15.0 15.0 20.0 0.0 0.0 5.8 7.6 

26 Potamogeton pucilus 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 0.0 0.0 0.0 0.0 1.7 3.9 

27 Utricularia aurea 0.0 0.0 10.0 0.0 20.0 30.0 25.0 20.0 30.0 30.0 20.0 0.0 15.4 12.7 

Free-floating 

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 25.0 30.0 35.0 20.0 15.0 10.0 0.0 11.3 13.3 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 10.0 15.0 20.0 25.0 20.0 15.0 0.0 8.8 9.8 
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Table 5.3.3b11.  Monthly variations in density of macrophyte species at site IV in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 

2 Bidens cernua 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.03 0.06 

3 Carex sp. 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.5 0.0 0.4 0.1 0.0 0.11 0.18 

4 Cyperus difformis 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.3 0.0 0.0 0.06 0.12 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.05 0.10 

6 Eleocharis palustris 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.3 0.0 0.1 0.0 0.07 0.11 

7 Lycopus europus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.01 0.03 

8 Nasturtium sp. 0.0 0.0 0.0 0.1 0.0 0.4 0.0 0.0 0.3 0.2 0.1 0.0 0.10 0.15 

9 Phragmites australis 0.6 0.6 0.6 0.5 2.3 2.0 3.5 6.0 3.0 2.4 1.0 0.6 1.93 1.67 

10 Polygonum amphibium 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.3 0.5 0.0 0.0 0.0 0.09 0.16 

11 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.3 0.0 0.1 0.0 0.0 0.05 0.10 

Rooted floating-leaf type 

12 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.8 0.0 0.0 0.0 0.13 0.25 

13 Marsilea quadrifolia 0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.4 0.0 0.0 0.0 0.10 0.19 

14 Nelumbo nucifera 0.0 0.0 0.0 0.0 0.5 1.4 3.6 5.0 4.0 3.0 2.0 0.0 1.63 1.85 

15 Nymphaea alba 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.06 

16 Nymphoides peltatum 0.0 0.0 0.5 1.5 2.0 4.0 6.0 8.3 7.0 5.2 3.4 0.0 3.16 2.94 

17 Potamogeton natans 0.0 0.0 0.4 0.8 2.4 3.2 3.5 4.0 1.3 1.0 0.5 0.0 1.43 1.47 

Submerged 

18 Ceratophyllum demersum 0.3 0.5 0.5 1.0 2.5 5.4 6.3 8.0 9.3 3.0 1.5 1.0 3.28 3.17 

19 Chara fragiles 0.0 0.0 0.0 0.0 0.4 0.6 1.2 2.5 5.2 3.0 1.3 0.0 1.18 1.63 

20 Hydrilla verticillata 0.0 0.0 0.0 0.0 0.3 0.6 0.6 0.8 0.5 0.6 0.0 0.0 0.28 0.32 

21 Myriophyllum spicatum 0.6 0.8 1.0 2.5 4.0 4.0 6.0 5.3 6.0 2.6 2.0 1.6 3.03 1.98 

22 Potamogeton crispus 0.0 0.4 0.5 1.3 2.0 3.0 4.0 3.6 3.0 2.5 1.0 0.0 1.78 1.43 

23 Potamogeton lucens 0.0 0.0 0.2 0.4 0.7 0.8 1.5 1.8 1.6 1.0 0.6 0.0 0.72 0.65 

24 Potamogeton pectinatus 0.1 0.0 0.2 0.4 0.5 1.0 1.3 2.7 2.5 2.0 1.0 0.4 1.01 0.94 

25 Potamogeton perfoliatus 0.0 0.0 0.0 0.2 0.0 0.5 0.0 0.6 0.7 0.9 0.2 0.0 0.26 0.33 

26 Potamogeton pucilus 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.03 0.06 

27 Utricularia aurea 0.0 0.0 0.6 0.0 1.0 1.4 2.3 3.5 3.0 2.0 1.5 0.0 1.28 1.23 

Free-floating 

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 5.0 13.0 15.0 7.0 6.0 4.6 0.0 4.22 5.32 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.2 3.0 2.0 2.0 0.0 0.73 1.06 
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Table 5.3.3b12.  Monthly variations in abundance of macrophyte species at site IV in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 1.0 0.0 0.0 0.21 0.50 

2 Bidens cernua 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.31 0.76 

3 Carex sp. 0.0 0.0 0.0 0.0 1.0 3.0 0.0 4.4 0.0 4.2 1.0 0.0 1.13 1.72 

4 Cyperus difformis 0.0 0.0 0.0 0.0 1.7 2.7 0.0 0.0 2.0 2.5 0.0 0.0 0.74 1.12 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 2.4 2.3 0.0 6.3 0.0 0.0 0.0 0.0 0.92 1.92 

6 Eleocharis palustris 0.0 0.0 0.0 1.8 0.0 0.0 2.6 0.0 3.0 0.0 2.3 0.0 0.81 1.22 

7 Lycopus europus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.11 0.38 

8 Nasturtium sp. 0.0 0.0 0.0 3.0 0.0 4.5 0.0 0.0 4.2 3.2 2.4 0.0 1.44 1.86 

9 Phragmites australis 0.0 0.0 0.0 4.0 6.0 6.0 8.3 15.0 8.0 9.5 3.0 0.0 4.98 4.74 

10 Polygonum amphibium 0.0 0.0 0.0 3.2 0.0 0.0 3.0 2.0 2.0 0.0 0.0 0.0 0.85 1.30 

11 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 1.8 0.0 0.0 2.2 0.0 3.4 0.0 0.0 0.62 1.17 

Rooted floating-leaf type 

12 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 3.6 6.0 5.0 0.0 0.0 0.0 1.22 2.26 

13 Marsilea quadrifolia 0.0 0.0 0.0 3.0 0.0 0.0 4.3 0.0 5.0 0.0 0.0 0.0 1.03 1.90 

14 Nelumbo nucifera 0.0 0.0 0.0 0.0 2.0 6.0 8.6 9.0 10.0 8.0 4.0 0.0 3.97 4.11 

15 Nymphaea alba 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 1.0 0.0 0.0 0.0 0.33 0.89 

16 Nymphoides peltatum 0.0 0.0 4.3 5.0 11.3 9.8 15.0 24.0 16.0 13.0 12.0 0.0 9.20 7.52 

17 Potamogeton natans 0.0 0.0 4.0 6.3 5.5 8.0 11.0 13.0 4.0 6.0 3.5 0.0 5.11 4.17 

Submerged 

18 Ceratophyllum demersum 4.0 6.0 8.0 11.5 13.0 18.5 20.0 23.4 24.0 12.0 6.0 4.5 12.58 7.30 

19 Chara fragiles 0.0 0.0 0.0 0.0 3.3 7.0 5.3 9.8 14.0 10.0 6.7 0.0 4.68 4.89 

20 Hydrilla verticillata 0.0 0.0 0.0 0.0 5.0 8.0 6.4 11.0 6.3 3.8 2.6 0.0 3.59 3.78 

21 Myriophyllum spicatum 2.3 3.0 5.0 7.8 9.0 14.5 10.4 13.0 12.3 8.0 5.0 2.7 7.75 4.21 

22 Potamogeton crispus 0.0 4.3 7.6 4.0 9.4 7.0 11.6 8.6 11.3 8.0 8.0 1.6 6.78 3.62 

23 Potamogeton lucens 0.0 1.5 4.0 4.0 8.5 3.4 6.6 5.3 8.0 6.8 4.3 1.2 4.47 2.70 

24 Potamogeton pectinatus 2.0 0.0 2.0 2.6 4.0 3.6 7.0 9.0 7.0 5.5 5.0 3.5 4.27 2.55 

25 Potamogeton perfoliatus 0.0 0.0 0.0 2.0 0.0 4.3 0.0 6.4 3.8 4.8 4.5 0.0 2.15 2.44 

26 Potamogeton pucilus 0.0 0.0 0.0 2.3 0.0 2.5 0.0 2.5 3.4 4.3 2.3 0.0 1.44 1.61 

27 Utricularia aurea 0.0 0.0 5.0 0.0 7.4 5.5 13.0 15.0 9.6 5.0 6.0 0.0 5.54 5.12 

Free-floating 

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 14.5 25.0 65.0 42.0 30.0 22.0 0.0 16.54 21.16 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 2.0 5.0 5.0 14.0 8.6 8.6 0.0 3.60 4.69 
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Table 5.3.3c1.  Monthly variations in IVI of macrophyte species at site I in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 6.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.74 1.8 

2 Bidens cernua 0.0 0.0 0.0 10.0 0.0 3.9 0.0 4.4 0.0 0.0 4.6 0.0 1.91 3.2 

3 Carex sp. 0.0 0.0 0.0 0.0 0.0 4.2 0.0 4.2 0.0 0.0 0.0 0.0 0.70 1.6 

4 Cyperus difformis 0.0 0.0 0.0 10.0 0.0 4.9 0.0 4.0 0.0 0.0 6.3 0.0 2.10 3.4 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 3.3 0.0 0.0 0.0 0.56 1.3 

6 Eleocharis palustris 0.0 0.0 0.0 19.5 0.0 0.0 5.7 0.0 2.2 1.3 0.0 0.0 2.39 5.7 

7 Lycopus europus 0.0 0.0 0.0 14.1 0.0 0.0 5.1 0.0 2.8 4.4 0.0 0.0 2.19 4.2 

8 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 4.8 0.0 0.68 1.6 

9 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 13.9 6.7 8.7 4.2 0.0 0.0 0.0 2.79 4.6 

10 Nasturtium sp. 0.0 35.9 0.0 25.3 23.5 9.4 10.3 9.1 4.7 5.4 0.0 17.2 11.73 11.5 

11 Polygonum amphibium 0.0 0.0 0.0 11.6 0.0 0.0 2.9 0.0 2.8 0.0 0.0 0.0 1.44 3.4 

12 Sium latijugum 0.0 0.0 4.0 0.0 8.8 6.3 8.1 7.1 5.6 9.2 0.0 0.0 4.09 3.9 

Rooted floating-leaf type 

13 Euryale ferox 0.0 0.0 0.0 0.0 12.9 12.8 11.1 13.3 6.8 8.5 0.0 0.0 5.46 6.0 

14 Marsilia quadrifolia 0.0 0.0 0.0 16.7 0.0 15.0 0.0 12.1 0.0 0.0 0.0 0.0 3.65 6.7 

15 Hydrocharis dubia 0.0 0.0 0.0 0.0 7.4 0.0 7.6 0.0 6.5 0.0 0.0 0.0 1.79 3.3 

16 Nelumbo nucifera 0.0 0.0 0.0 21.5 17.7 11.2 9.6 13.3 14.5 25.9 16.8 0.0 10.87 9.1 

17 Nymphoides peltatum 0.0 0.0 44.2 53.9 45.7 28.0 28.3 31.3 23.1 28.4 37.3 0.0 26.68 18.3 

18 Potamogeton natans 0.0 0.0 0.0 0.0 10.2 10.7 10.4 13.4 4.5 0.0 13.7 0.0 5.24 5.9 

19 Trapa natans 0.0 0.0 0.0 0.0 0.0 9.6 9.0 11.8 7.4 6.9 0.0 0.0 3.73 4.7 

Submerged 

20 Ceratophyllum demersum 93.2 98.4 61.3 36.0 58.0 47.0 31.5 44.6 35.8 37.3 55.6 80.5 56.60 22.9 

21 Chara fragiles 0.0 0.0 0.0 0.0 0.0 2.9 2.0 0.0 2.1 0.0 0.0 0.0 0.58 1.1 

22 Hydrilla verticellata 0.0 57.4 58.8 30.6 23.5 15.9 19.7 22.8 14.0 17.1 28.9 69.7 29.86 21.1 

23 Myriophyllum spicatum 101.1 65.6 99.4 0.0 22.9 18.2 11.5 12.9 13.5 13.9 0.0 77.8 36.41 38.2 

24 Potamogeton crispus 0.0 20.3 0.0 14.7 11.7 9.5 8.1 13.2 8.3 12.1 13.2 0.0 9.26 6.4 

25 Potamogeton lucens 44.3 22.4 11.5 23.4 35.8 32.3 15.1 14.6 12.0 14.5 17.8 54.8 24.87 14.0 

26 Potamogeton pectinatus 61.4 0.0 20.8 12.6 16.2 9.2 6.8 5.8 8.3 9.2 10.0 0.0 13.35 16.2 

27 potamogeton pucilus 0.0 0.0 0.0 0.0 0.0 5.2 2.4 1.5 0.0 0.0 0.0 0.0 0.76 1.6 

Free-floating 

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 29.6 71.9 31.6 105.5 78.3 73.2 0.0 32.50 39.3 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 0.0 10.0 16.9 12.0 27.7 17.9 0.0 7.04 9.6 
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Table 5.3.3c2.  Monthly variations in IVI of macrophyte species at site II in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Bidens cernua 0.0 0.0 0.0 0.0 4.6 0.0 4.9 0.0 3.6 3.5 0.0 0.0 1.38 2.1 

2 Cyperus difformis 0.0 0.0 0.0 0.0 0.0 0.0 5.2 0.0 3.6 0.0 0.0 0.0 0.74 1.8 

3 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.10 0.3 

4 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 0.0 5.3 0.0 6.2 4.3 3.6 6.4 0.0 2.15 2.8 

5 Nasturtium sp. 0.0 0.0 0.0 13.4 0.0 6.9 0.0 0.0 5.2 0.0 0.0 0.0 2.12 4.3 

6 Polygonum amphibium 0.0 0.0 0.0 0.0 7.4 0.0 7.4 0.0 0.0 5.0 0.0 0.0 1.65 3.0 

7 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8 1.5 0.0 0.0 0.0 0.44 1.1 

8 Sium latijugum 0.0 0.0 0.0 19.9 20.8 12.0 0.0 7.1 0.0 0.0 0.0 0.0 4.98 8.1 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 10.6 11.7 11.8 8.7 0.0 0.0 0.0 3.56 5.3 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 9.0 6.9 10.4 9.4 8.7 8.7 12.1 0.0 5.44 5.0 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 19.8 23.1 15.9 16.0 19.8 19.3 0.0 0.0 9.50 10.1 

12 Nymphoides peltatum 0.0 0.0 56.7 58.3 48.0 32.2 36.7 34.9 23.4 29.1 38.8 0.0 29.85 20.8 

13 Potamogeton natans 0.0 0.0 0.0 0.0 0.0 12.2 11.7 7.2 0.0 13.3 14.3 0.0 4.89 6.3 

14 Trapa natans 0.0 0.0 0.0 0.0 6.1 4.9 12.3 13.2 10.2 9.4 11.5 0.0 5.64 5.5 

Submerged 

15 Ceratophyllum demersum 171.4 170.9 161.5 158.9 94.1 79.3 75.3 52.1 36.1 46.3 80.1 211.9 111.5 59.6 

16 Myriophyllum spicatum 0.0 29.7 0.0 4.5 22.5 22.2 10.9 12.2 11.4 13.0 0.0 30.6 13.1 11.1 

17 Potamogeton crispus 61.6 33.2 0.0 18.3 13.4 8.9 3.9 7.4 9.5 10.0 18.8 0.0 15.4 17.2 

18 Potamogeton lucens 0.0 0.0 29.6 0.0 22.0 17.5 13.2 10.0 6.1 11.4 17.0 0.0 10.6 9.8 

19 Potamogeton pectinatus 67.1 66.2 52.9 27.5 24.6 13.1 14.6 22.8 21.1 13.3 20.2 57.5 33.4 21.1 

Free-floating 

21 Lemna spp. 0.0 0.0 0.0 0.0 7.4 29.3 50.5 55.6 102.3 69.6 57.5 0.0 31.02 35.2 

22 Salvinia natans 0.0 0.0 0.0 0.0 0.0 15.8 15.1 29.5 24.4 44.3 23.5 0.0 12.72 15.1 

 

 

 



Chapter 5                                                                                                                                                      Results                                                                        

 

 

216 
 

Table 5.3.3c3.  Monthly variations in IVI of macrophyte species at site III in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Carex sp. 0.0 0.0 0.0 0.0 4.1 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.72 1.7 

2 Echinocloa crusgali 0.0 0.0 0.0 0.0 0.0 3.5 0.0 7.4 0.0 0.0 0.0 0.0 0.91 2.3 

3 Myriophyllum verticillatum 0.0 0.0 0.0 0.0 5.9 0.0 7.2 0.0 4.4 0.0 0.8 0.0 1.53 2.7 

4 Nasturtium officinale 0.0 0.0 0.0 0.0 0.0 7.2 0.0 4.5 0.0 0.0 0.0 0.0 0.97 2.4 

5 Nasturtium sp. 0.0 0.0 18.1 0.0 0.0 0.0 5.6 0.0 0.0 0.0 0.0 0.0 1.97 5.3 

6 Phragmites australis 0.0 0.0 49.3 40.1 28.0 21.5 20.0 19.7 18.8 4.4 29.4 0.0 19.26 16.1 

7 Polygonum amphibium 0.0 0.0 0.0 0.0 9.5 0.0 6.8 0.0 0.0 0.0 0.0 0.0 1.36 3.2 

8 Typha latifolia 0.0 0.0 0.0 21.9 0.0 9.6 14.8 9.3 4.0 10.1 13.3 0.0 6.92 7.4 

Rooted floating-leaf type 

9 Euryale ferox 0.0 0.0 0.0 0.0 0.0 6.4 6.0 10.3 12.2 7.0 4.3 0.0 3.85 4.5 

10 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 3.5 6.6 0.0 0.0 0.0 0.0 0.85 2.1 

11 Nelumbo nucifera 0.0 0.0 0.0 0.0 11.8 14.8 16.0 15.5 20.8 23.9 16.1 0.0 9.92 9.2 

12 Nymphoides peltatum 0.0 0.0 60.1 52.0 35.6 38.0 29.5 27.9 32.0 29.6 26.0 0.0 27.56 19.4 

13 Potamogeton natans 0.0 0.0 0.0 0.0 10.5 5.3 5.8 7.5 8.7 8.8 0.0 0.0 3.88 4.3 

14 Trapa natans 0.0 0.0 0.0 0.0 5.5 16.1 19.2 24.1 24.0 23.7 25.0 0.0 11.47 11.4 

Submerged 

15 Ceratophyllum demersum 144.2 102.7 30.6 38.1 43.3 37.0 36.4 37.2 22.1 37.6 54.7 136.2 60.0 42.6 

16 Hydrilla verticillata 0.0 0.0 0.0 0.0 5.0 6.9 10.4 14.6 12.0 18.5 22.2 47.9 11.5 13.8 

17 Myriophyllum spicatum 56.6 161.4 77.8 66.1 59.4 58.0 41.4 20.7 17.0 20.8 27.0 48.8 54.6 39.1 

18 Potamogeton crispus 0.0 35.9 64.1 53.2 31.3 38.7 29.4 18.9 16.8 17.4 30.8 67.2 33.6 20.0 

19 Potamogeton lucens 0.0 0.0 0.0 0.0 27.7 14.7 14.5 8.0 7.3 9.3 0.0 0.0 6.8 8.8 

20 Potamogeton pectinatus 99.2 0.0 0.0 19.0 22.5 17.8 13.5 12.4 14.2 12.4 0.0 0.0 17.6 27.0 

21 Potamogeton pucilus 0.0 0.0 0.0 9.4 0.0 0.0 4.4 0.0 6.1 0.0 0.0 0.0 1.7 3.2 

Free-floating 

22 Lemna spp. 0.0 0.0 0.0 0.0 0.0 2.4 8.5 33.0 60.5 50.8 38.5 0.0 16.15 22.9 

23 Salvinia natans 0.0 0.0 0.0 0.0 0.0 1.7 6.9 16.0 19.2 25.8 12.0 0.0 6.80 9.2 
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Table 5.3.3c4.  Monthly variations in IVI of macrophyte species at site IV in Lake Manasbal 
S.No. Species Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

Emergents 

1 Alisma plantago aquatica 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 1.8 0.0 0.0 0.36 0.85 

2 Bidens cernua 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.55 1.29 

3 Carex sp. 0.0 0.0 0.0 2.0 4.2 6.4 0.0 5.8 0.0 7.2 4.8 0.0 2.54 2.94 

4 Cyperus difformis 0.0 0.0 0.0 0.0 1.8 4.8 0.0 0.0 3.8 6.0 0.0 0.0 1.37 2.21 

5 Echinocloa crusgali 0.0 0.0 0.0 0.0 4.7 3.2 0.0 4.6 0.0 0.0 0.0 0.0 1.04 1.91 

6 Eleocharis palustris 0.0 0.0 0.0 6.3 0.0 0.0 3.9 0.0 3.6 0.0 4.4 0.0 1.52 2.33 

7 Lycopus europus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.12 0.43 

8 Nasturtium sp. 0.0 0.0 0.0 8.0 0.0 7.9 0.0 0.0 5.0 4.9 6.2 0.0 2.67 3.42 

9 Phragmites australis 37.5 26.1 25.8 22.0 29.5 13.5 19.4 21.1 15.3 19.4 15.6 16.7 21.83 6.93 

10 Polygonum amphibium 0.0 0.0 0.0 8.2 0.0 0.0 4.2 3.7 5.1 0.0 0.0 0.0 1.76 2.80 

11 Sagittaria sagittifolia 0.0 0.0 0.0 0.0 4.6 0.0 0.0 3.9 0.0 2.4 0.0 0.0 0.90 1.70 

Rooted floating-leaf type 

12 Hydrocharis dubia 0.0 0.0 0.0 0.0 0.0 0.0 4.7 4.6 7.0 0.0 0.0 0.0 1.36 2.52 

13 Marsilea quadrifolia 0.0 0.0 0.0 12.2 0.0 0.0 6.5 0.0 4.6 0.0 0.0 0.0 1.95 3.90 

14 Nelumbo nucifera 0.0 0.0 0.0 0.0 11.0 15.2 21.8 19.9 18.8 20.0 20.8 0.0 10.62 9.79 

15 Nymphaea alba 0.0 0.0 0.0 0.0 0.0 3.9 0.0 0.0 1.3 0.0 0.0 0.0 0.44 1.17 

16 Nymphoides peltatum 0.0 0.0 34.4 36.6 32.1 27.7 27.0 28.7 25.7 28.9 32.6 0.0 22.81 14.10 

17 Potamogeton natans 0.0 0.0 34.5 31.1 31.1 21.9 21.0 16.7 9.0 12.3 12.2 0.0 15.81 12.45 

Submerged 

18 Ceratophyllum demersum 95.5 92.3 37.4 37.9 33.4 37.0 30.6 27.2 33.2 22.5 23.9 91.9 46.90 28.38 

19 Chara fragiles 0.0 0.0 0.0 0.0 11.9 11.3 10.4 12.4 20.1 20.1 18.6 0.0 8.73 8.36 

20 Hydrilla verticillata 0.0 0.0 0.0 0.0 11.7 9.8 7.9 7.1 7.1 8.7 2.4 0.0 4.55 4.55 

21 Myriophyllum spicatum 108.1 95.1 59.8 58.1 41.7 31.2 25.2 21.1 24.8 20.1 23.4 95.2 50.31 32.63 

22 Potamogeton crispus 0.0 66.4 36.4 30.7 30.1 22.8 23.3 15.2 16.0 16.3 16.8 19.5 24.47 16.19 

23 Potamogeton lucens 0.0 20.1 20.7 19.0 16.1 10.4 12.7 10.5 11.3 11.6 11.6 16.6 13.40 5.68 

24 Potamogeton pectinatus 58.9 0.0 18.8 14.6 13.2 12.3 10.6 13.3 14.0 15.8 15.7 60.1 20.61 18.73 

25 Potamogeton perfoliatus 0.0 0.0 0.0 9.5 0.0 6.8 0.0 5.9 5.4 10.1 5.0 0.0 3.56 3.99 

26 Potamogeton pucilus 0.0 0.0 0.0 3.8 0.0 1.8 2.2 3.0 1.6 2.7 2.1 0.0 1.43 1.38 

27 Utricularia aurea 0.0 0.0 32.1 0.0 19.5 14.8 17.0 14.2 14.4 15.5 18.8 0.0 12.19 10.17 

Free-floating 

28 Lemna spp. 0.0 0.0 0.0 0.0 0.0 30.7 44.9 52.5 34.3 38.3 43.5 0.0 20.34 21.91 

29 Salvinia natans 0.0 0.0 0.0 0.0 0.0 4.0 6.7 7.0 15.6 15.4 21.7 0.0 5.87 7.67 
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Table 5.3.3d1.  Macrophytic similarity between different study sites based on Sorenson's similarity index in Manasbal lake 

Sites M2 M3 M4 M5 

M1 66% 67% 71% 0% 

M2   61% 52% 0% 

M3     53% 0% 

M4       0% 

 

Table 5.3.3d2. Diversity (Shanon Wiever) index of species at different study sites in Manasbal lake 

Site Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean SD 

M1 1.47 1.47 1.52 2.36 2.14 2.49 2.20 2.49 2.05 2.18 1.95 1.60 1.99 0.39 

M2 0.69 0.48 1.05 0.91 1.70 2.08 1.82 2.12 1.97 2.10 1.88 1.53 1.53 0.59 

M3 0.67 0.41 1.63 1.81 2.15 2.20 2.49 2.60 2.34 2.37 2.14 1.25 1.84 0.72 

M4 1.22 1.35 2.10 2.15 2.31 2.54 2.42 2.55 2.65 2.64 2.48 1.26 2.14 0.55 

M5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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6. DISCUSSION 

6.1. Water Chemistry 

The basic aim of the present study was to compare the geochemistry of three 

completely different water bodies of Jammu and Kashmir State. Two of the water 

bodies are located in the cold desert of Ladakh, while the third one is in the main 

valley of Kashmir. While lake Tso Morari is a large and very deep (Zm>72m) brackish 

water body, the Tso Khar is very shallow (Zm< 5m) water expanse divided into two 

distinct parts, one fresh and the other salt water. Both these water bodies are without 

any outlet and are as such completely isolated in nature and the loss of water is mainly 

through evapotranspiration. Both these water bodies remain ice covered for three to 

four months during winter when the atmospheric temperature may dip down to as low 

as -40
o
C. The Tso Morari being very deep can be easily classified as cold monomictic 

water body (Hutchinson, 1967) as it did not record any significant stratification during 

the warmer summer in spite of intense solar radiation during day time which may be 

related to the fast winds regularly in the afternoon which mixed the water column 

very often.  

The Tso Khar, being shallow, could not be assigned to any category on the basis 

of thermal stratification. The third water body, viz Manasbal lake has the maximum 

depth of 12.5m.While the first two water bodies have distinct tributaries bringing in 

water, the Manasbal does not have any permanent and distinct inlet and the source of 

its water is mainly the springs spread over its basin as well as in its neighborhood. 

This water body has, however, an outlet, Nunnyar Nallah and as such forms a part of 

the Jhelum river system. In contrast to Tso Morari and Tso Khar, the Manasbal lake 

remains stratified for a period of 8 to 9 months from March to November and mixes 

up only during the winter months of December to February. While the other two 

water bodies remain completely ice covered during winter, this lake recorded a 
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temperature of 4 to 5 °C throughout the water column at this time of the year. 

Accordingly this water body is categorized as warm monomictic lake (Qadri and 

Yousuf, 1978). 

The three water bodies also showed significant differences in the transparency. 

The secchi disc transparency is essentially a function of reflection of light from its 

surface and is influenced by the absorption characteristics of water and its dissolved 

and particulate matter. Aquatic macrophytes serve as impediment to re-suspension of 

sediments and facilitate in improving transparency by reducing the concentration of 

inorganic suspended solids in the water (Jackson and Starret, 1959; Dieter, 1990; 

James and Barko, 1990; Horppila and Nurminen, 2001; Nurminen and Nurminen 

2005). The water in Tso Morari Lake appeared blue with silty particles in suspension, 

recording significantly high values of transparency in deeper areas (15m), especially 

during the calm weather conditions, probably due to low plankton populations and 

suspended particles (Mitamura et al., 2003). In case of Tso Khar lake, the re-

suspension of sediments by turbulent winds substantially reduced the transparency in 

areas devoid of any vegetation (Maceina and Soballe, 1990; Khan, 2003). However, 

in vegetated areas the dense submerged macrophytic association of Potamogeton 

pectinatus and Ranunculus aquatalis acted as effective barrier for sediment re-

suspension resulting in improving the transparency (Barko and James, 1998; Nagid et 

al., 2001; De-Vicente et al., 2006; Huang et al., 2007). In Manasbal Lake the littoral 

macrophytes acted as sinks and filter for nutrients and suspended particles and helped 

in maintaining relatively clear water in the limnetic areas (Lindholm et al., 2008). In 

order to understand the influence of the catchment on the geochemistry of the three 

water bodies, it was decided to have detailed study of the chemistry of the overlying 

water column as the sediment chemistry is greatly influenced by the water chemistry.  

The water chemistry in lake ecosystems is controlled mainly by three important 

factors viz. precipitation, evaporation and rock dominance in the catchment (Gibbs, 
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1970; Whitefield, 1983; Kilham, 1990; Catalan et al., 1993). Evaporation-

crystallization in saline lakes has been found to play a key role in hydrochemistry 

(Gibbs, 1970). The pH of natural water is governed to a large extent by the interaction 

of H
+ 

generated by dissociation of H2CO3 and from OH
ˉ 

produced during the 

hydrolysis of HCO3 (Wetzel, 2001). The pH of water in Tso Morari, which is a typical 

endorheic lake, was always alkaline due to high concentration of soda (Na2CO3), 

(Hammer and parker, 1984; Bowman and Sachs, 2008). Moreover high concentration 

of bicarbonates and carbonates of calcium and magnesium also contributed to the 

alkalinity of water which is depicted by significant positive correlation (r= 0.441; p > 

0.01) of pH with alkalinity. The alkaline pH in Tso Khar Lake could be due to 

alkalinity generated by sulfate reduction (Lamers et al., 1998: Last and Ginn, 2009). 

Though the photosynthetic activity of macrophytes increases the pH of the water, 

macrophytic infested fresh water sites in Tso Khar had low pH than saline sites. The 

high pH at saline sites may be due to high concentration of soda (Na2CO3), and 

bicarbonates and carbonates of calcium and magnesium (Wetzel, 2001). Saenger et al. 

(2006) as well as Zheng and Liu. (2009) also reported similar results from some 

inland saline lakes. The pH value of Manasbal lake was alkaline at all the study sites, 

only the bottom water had slight acidic pH which may be attributed to high CO2 and 

other organic acids generated by the decomposition of organic matter in hypoliminion 

(Reimer et al., 2008). The littoral area, which is infested with macrophytes had high 

pH values due to photosynthetic activity of macrophytes and epiphytic algae (Otsuki 

and Wetzel, 1972; Olila and Reddy, 1995; Wetzel, 2001).  

The conductivity of lake is influenced by incoming waters, seasonal rainfall 

pattern, evaporation rates, drainage type and trophic status (Kinnear and Garnett, 

1999). The higher conductivity values in Tso Morari lake sites was due to high values 

of Na
+
, K

+ 
Cl

- 
and Mg

2+
 which get concentrated in lake waters due to evaporation 

(Zhang et al., 2008). Both Tso Morari and Tso Khar being land locked and without 

any outlet the loss of the water is chiefly through evapotranspiration which has 
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resulted in the higher concentration of dissolved salts in the lake over the geological 

period of time (Oduor et al., 2003). The conductivity of Tso Khar was significantly 

higher than the Tso Morari and could be related to much higher contents of Na
+
, K

+, 

Cl
-
, Mg

2+ 
and Ca

2+
 (Rastogi, 1976; Eimanifar and Mohebbi, 2007). The ionic rich 

geothermal springs located in and around the lake also influence the conductivity 

(Alonso, 1999; Zang, 2001ab; Rimmer and Gal, 2003: Santos et al., 2008). This was 

substantiated by significant positive correlation of conductivity with these major ions 

(Table I and II). In comparison to Tso Morari and Tso Khar lakes, the conductivity 

values recorded at Manasbal lake were very low and could be attributed to rapid 

uptake of nutrients by macrophytes and their attached micro flora (Vymazal, 2002). 

Furthermore the continuous flushing of nutrients from the lake through outlet and low 

evaporation rate maintain low value of conductivity in the lake (Whitmore et al., 

1997).  

The mean oxygen concentration of Manasbal (9.4mg/l)) was higher than Tso 

Morari (7.8mg/l) and Tso Khar (6.4mg/l). The dynamics of oxygen distribution in 

inland waters is governed by a balance between inputs from atmosphere, 

photosynthesis and losses from respiration and chemical oxidation (Wetzel, 2001). 

Variability in DO is related to the combined effects of salinity, basin morphometry, 

daily sampling time and nutrient loading (Saenger et al., 2006). The solubility of 

dissolved oxygen decreases with increase in temperature, salinity and with low 

atmospheric pressure at high altitudes (Wetzel, 2001). The DO was uniformly 

distributed in Tso Morari and could be related to turbulent mixing of lake water by 

high velocity winds (Mitamura et al., 2003; Wang et al., 2009) and diurnal thermal 

convection. The dissolved oxygen concentration of saline sites was significantly 

lower than fresh water sites in Tso Khar lake. Hypersalinity is known to partially 

inhibit photosynthesis (Pinckney and Paerl, 1995; Saenger et al., 2006) and thus leads 

to low dissolved oxygen production at saline sites. Similar observations were also 

made by Bowman and Sachs (2008) from the saline lakes in Alberta and 
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Saskatchewan. This is also substantiated by significant negative correlation of DO 

with conductivity (r= -0.601; p= 0.01), TDS (r= -0.440; p= 0.01), Na
+ 

(r= -0.595; p= 

0.01), K
+ 

(r=-0.601; p= 0.01) and Cl
- 
(r= 0.549; p= 0.01) in this lake (Table III). The 

littoral sites of Manasbal lake had high concentration of dissolved oxygen due to 

luxuriant growth of submerged macrophytes which act as main sources of aeration for 

the lake (Srivastava et al., 2008) due to photosynthesis. The bottom water (M5b) of 

the limnetic zone in the lake was anoxic throughout the study period, which seems to 

be related to oxygen consumption by microbial and chemical oxidation, especially 

during thermal stratification (Wetzel, 2001).  

The free CO2 is highly soluble in water and is hydrated to form carbonic acid. 

The free CO2 was almost absent from Tso Morari lake, except stream sites. The 

absence of free CO2 may be due to high pH, low primary production and low 

pollution load. In Tso Khar lake the mean values of free CO2 were significantly 

higher at TK3 which represents the spring site which may be due to dissolution of 

carbonate rocks. Presence of free CO2 at TK2 and TK5 could be related to 

decomposition of organic matter (Yousuf et al., 1983). In contrast to Tso Morari 

(1.8mg/l) and Tso Khar (2.7mg/l), the free CO2 (9.3 mg/l) was present throughout the 

study period in lake Manasbal except during summer months when carbonates were 

present.  

The major source of alkalinity in lakes is the dissolution of carbonate rocks and 

aluminosilicates (Das and Dhiman, 2003). The formation of carbonic acid by the 

reaction of CO2 and H2O in soil accelerates the dissolution of carbonate rocks in the 

catchment and produces calcium bicarbonate which is soluble in water and increases 

the alkalinity of the water (Wetzel, 2001). The water of the Tso Morari Lake as well 

as its streams was alkaline throughout study period. The Ca
2+

 + Mg
2+

: HCO3 ratio of 

the Tso Morari is 0.8 indicating that carbonate weathering is main source of alkalinity 

in the lake. Zhang et al. (2008) also reported similar results from Nam Co lake in 
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Tibetan plateau. The saline sites of Tso Khar lake had significantly high alkalinity 

than the fresh water sites as a result of high concentration of both bicarbonates and 

carbonates. In saline lakes presence of Na2CO3 (Cole, 1983 and Zheng and Liu, 2009) 

and the high sulfate content and its subsequent reduction by sulfur reducing bacteria 

(SBR), generate HCO3which is found to significantly increase the alkalinity of lake 

water (Lamers et al., 1998; Rodriguez et al., 2008; Reimer et al., 2008; Last and 

Ginn, 2009).  

The mean alkalinity values of Mansbal lake (167mg/l) were relatively low as 

compared to Tso Morari (305mg/l) and Tso Khar (1165mg /l). Being a typical marl 

lake alkalinity was chiefly due to bicarbonate ions. However, carbonates were found 

only in summer season in minor quantities and could be attributed to high 

photosynthetic rate of macrophytes and periphyton (Wetzel, 2001). The low values of 

alkalinity at rest of the sites could be attributed to dense macrophytic vegetation 

which use bicarbonate as a carbon source, thus increases pH and consequently shift 

the chemical equilibrium towards the formation of carbonate ions (Stumm and 

Morgan, 1970, 1996) which then precipitate with calcium in the form of calcite that 

significantly leads to decline of alkalinity (Kufel and Kufel, 2002).  

The hardness of water which is mostly governed by the carbonates and 

bicarbonates of calcium and magnesium but in saline lakes other ions like Cl
-
and 

SO4
2-

 also contribute to hardness significantly (Cole, 1983). The stream sites of Tso 

Morari Lake had significantly low values of hardness than Lake Sites. The high 

values of hardness in lake could be due to high concentration of carbonates of 

calcium, magnesium, sulfate and chlorides over the geological period of time due to 

evapotranspiration of the lake water. The hardness was significantly higher in winter 

months as compared to summer months. This may be due to high photosynthetic 

activity of macrophytes and plankton in summer which increases the pH of water and 

accelerates the de-calcification, resulting in decrease of hardness. The hardness of the 
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saline sites of Tso Khar was significantly higher (2691.8 to 2950 mg/l) than fresh 

water and spring sites which is also attributable to high values of magnesium, calcium 

carbonates, Cl
- 
and sulfate at these sites. This is substantiated by significant positive 

correlation of hardness with Ca (r=0.676; p<0.01), Mg (r=0.858; p<0.01) chloride (r 

=0.831; p<0.01) and sulfate (r= 0.631; p<0.01) in this lake (Table II). Compared to 

Ladakh lakes (Tso Morari and Tso Khar), the hardness of Manasbal Lake was much 

less (111 to 256 mg /l), mainly contributed by Ca and Mg bicarbonates. The low 

values are due to well flushing of water as well as due to high density of macrophytes 

which use the most of the salts for their growth and life processes.  

The relatively high contribution of Ca
2+ 

+ Mg
2+

 and low contribution of Na
+
 + 

K
+
 to the total cations in Tso Morari lake suggest that carbonate weathering is the 

major source of ions, while the contribution from silicate weathering is minor (Sarin 

et al., 1989; Pandey et al., 1999). The geochemical evolution in evaporative lakes 

without river outlets is primarily controlled by inflow composition, selective removal 

processes of dissolved species, and concentration processes in the lake basin (Yan et 

al., 2002). Inflow streams around Tso Morari are the major supply of the lake water 

and thus contribute most of the ionic load. Calcium concentration in Tso Morari is 

depleted because of chemical precipitation and biological activities (Reimer et al., 

2008), while enrichment of magnesium and sodium is due to evapo-concentration 

effect (Zang et al., 2008). In Tso Khar lake significant differences were observed in 

mean calcium and magnesium content among the study sites. The cationic progression 

found at saline sites TK1 and TK4 was in the order of Na> K> Mg>Ca, while at sites 

TK2 and TK3- Ca>Mg>Na>K. The saline sites were dominated by magnesium ion, 

whereas fresh water sites were dominated by calcium. The high content of Mg at 

saline sites could be attributed to Mg enrichment due to evaporation and selective 

removal of Ca by precipitation under high pH (Jones and Weir, 1983; Kilham and 

Cloke, 1990). In Manasbal lake the cationic progression was in the order of 

Ca>Mg>Na>K which reflected the dominance of Ca over Mg and could be 
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attributable to Ca rich lime rocks in the catchment (Zutshi, et al., 1980; Jeelani and 

Shah, 2006). 

Sodium and potassium are conservative ions and show little spatial and temporal 

variation (Wetzel, 2001). The high concentration of sodium (mean, 452mg/l) and 

potassium (mean, 141mg/l) in the Tso Morari lake could be due to enrichment of 

these salts by evaporation. Furthermore, the high concentration of sodium in the lake 

could also be related to high rate of weathering of sodium rich metamorphic rocks 

(biotite, kaolinite, actiolite and albite) in its catchment (Steck and Epard, 2008). In 

Tso Khar mean values of Na and K were significantly high at saline sites TK1 

(20356mg/l and 1910 mg/l) and TK4 (17431mg/l and 3426m/l) than fresh water sites. 

The high sodium and potassium content at TK1 and TK4 could be related to 

enrichment by evaporation as has also been observed in many evaporative lakes in 

Tibetan Plateau (Wang and Dou, 1998; Yang et al., 2003). Further, the basin is 

located to geothermally active region and contains number of geothermal springs 

which add large quantities of Na and K ions (Zheng and Liu, 2009). The Manasbal 

lake had low values of sodium (8mg/l) and potassium (2.5mg/l) which could be 

related to low inputs from the rocks in the catchment, low pollution load, continuous 

flushing of water through outlet and lockup in dense macrophytic vegetation (Pandit, 

2002). 

Concentration of chloride in an aquatic system is an index, not only of 

eutrophication, but also of pollution caused by sewage and other waste waters 

(Munawar, 1970; Hasalan, 1991; Berzas-Nevado et al., 2009). The major sources of 

chloride are dissolution of rock minerals, pollution and run off from deicing roads. 

The Tso Morari lake located at high altitude, where human activity in and around the 

lake is negligible and contribution of Cl
- 

by sewage and deicing is a remote 

possibility. Therefore the primary source for Cl
- 
in these habitats is rock weathering 

and enrichment by evaporation as is depicted by high values of Cl
-
 in streams 
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(33mg/l) and lake (168mg/l). The fresh water sites of Tso Khar had significantly low 

concentration of Cl
- 

(81mg/l) than saline water sites (9227mg/l). The sodium and 

chloride perfectly behave as conserved species that remain in solution throughout the 

concentration process of brine, whereas other ions are selectively removed (Eugster 

and Jones, 1979) which leads to Cl
- 

enrichment (Kilham, 1971; Eugster and Jones, 

1979). Furthermore, the re-dissolution of precipitated salts at saline sites is also a 

significant source of Cl
- 

(Friedricha and Oberhanslib, 2004). The Manasbal lake 

recorded low values of Cl
- 

(15mg/l to 29mg/l) with respect to other two lakes. The 

high Cl
-
 content at bottom site is related with decomposition of organic matter and 

infiltration of ground water (Santos, et al., 2008). The littoral zone of Manasbal has 

higher amount of Cl
- 

than limnitic area which is directly attributable to be due to 

runoff from the catchment and decomposition of macrophytes. 

Nitrification rates are regulated by many factors like NH4 availability (Triska et 

al., 1990; Jones et al., 1995; Strauss, 1995), pH (Sarathchandra, 1978), temperature 

(Strauss and Lamberti, 2000), oxygen concentration (Stenstrom and Poduska, 1980; 

Triska et al., 1990; Verhagen and Laanbroek 1991; Strauss and Dodds, 1997), and 

organic carbon availability (Verhagen and Laanbroek, 1991; Strauss and Dodds 

1997). The principal source of nitrate in Tso Morari lake is the leaching from the 

catchment which is popular grazing ground for the domestic and nomadic livestock. 

The stream sites had high nitrate content (375µg/l) during summer months which may 

be due to high nitrification rates at high temperatures and its subsequent leaching, 

while lake sites had high nitrate content during winter (334 µg/l) as compared to 

summer (287 µg/l) which could be attributed to uptake by phytoplankton and 

macrophytes in summer and their release back into lake water after senescence 

(Lander, 1982; Goldshalk and Barko, 1985; Xie, et al., 2004; Shilla et al., 2006). 

Although, salinity and sulfides are reported to limit the nitrification in saline lakes, 

high concentration of nitrate was observed in saline zone of Tso Khar lake. The high 

concentration of nitrate may be due to ground water discharge by springs within and 
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around periphery of the lake, and thus provides a direct conduit for nutrient-enriched 

ground water to move from the aquifer to surface waters (De- Brabandere et al., 2007) 

as is also reflected from higher concentration of nitrate at spring site. The nitrate 

content of Manasbal Lake varied from 139µg/l to 279 µg/l. In Manasbal, the high 

nitrate content was observed in anoxic hypolimnion, a favorable condition for de-

nitrification process (Eriksson, 2001; Wetzel, 2001; Schaller et al, 2004) and could be 

attributed to ground water discharge via springs spread along the bottom of lake 

which act as conduit for nutrient-enriched ground water to move from the aquifer to 

surface waters (Bacchus and Barile 2005; De- Brabandere et al., 2007). Kennedy et 

al. (2009) also attributed rising nitrate concentration in Florida’s oligotrophic 

freshwater ecosystems to Floridian aquifer. The low nitrate content in littoral zones 

may be due to rapid uptake and assimilation by macrophytes and their associated flora 

(Frazer et al., 2001; Notestein et al., 2003 and Hoyer et al., 2004). 

The distribution of ammonia in water is highly variable in lakes and depends 

upon the level of productivity, sewage inflow, decomposition, nitrogen fertilizers and 

organic loading (Bowden, 1987; Heathwaite and Johnes, 1995; Ogato, 2007; 

Lumbreras, et al., 2009). As Tso Morari lake is located in remote area with least 

human interference and very limited agricultural activity, it seems that decomposition 

of organic matter within the lake and ammonia leaching from the catchment is the 

main source of ammonia. In Tso Khar, the saline sites had relatively high 

concentration of ammonia although these sites were least productive and had high pH 

which favors the volatilization of ammonia from the lake (Panigatti and Maine, 2003). 

The high concentration of ammonia at these sites may be linked to ground water 

discharge from the springs to the lake. This was also depicted by high concentration 

of NH3 at spring site (TK3). Similar observations have also been reported by Kazanci 

et al. (2004) from saline Salda lake of Turkey. In Manasbal lake the mean values of 

NH3 were significantly higher at bottom site (M5b) than other sites. The high 

concentration at M5b is due to result of loss of oxidized micro zone at the sediment-
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water interface under anoxic conditions in hypoliminion which releases significant 

ammonia in overlying waters (Wetzel, 2001). Furthermore, the development of 

thermal stratification in lake resulted in anoxic conditions which retards nitrification 

rate (Strauss and Lamberti, 2000), thus leading to high concentration of ammonia in 

hypolimnion. 

Phosphorus is the key nutrient which limits the plant growth in the surface 

waters (Wetzel, 2001; Søndergaard, et al., 2003ab; Mehner et al., 2008). The 

phosphorus content of fresh water mountainous lakes with crystalline bed rock is 

generally low in comparison to lowland lakes with sedimentary rock deposits. The 

mean value of total phosphorus for Tso Morari varied from 120µg/l to 647µg/l. 

According to Smolders et al. (2003) the reduction of sulfate and subsequent formation 

of H2S lead to Fe reduction, which mobilizes large quantities of phosphorus, 

promoting release of phosphate (Lamers et al., 1998; Smolders et al., 2000; Wetzel, 

2001). The sulfate reduction also stimulates the mineralization of organic matter by 

acting as oxidative agent which may further enhance the internal phosphorus loading 

in Tso Morari Lake. This is the main reason why saline lakes are limited by nitrogen 

rather than phosphorus (De Decker and Williams, 1988; Herbst, 1998; Khan, 2003). 

The high total phosphorus content in saline area in Tso Khar may be due to re-

suspension of sediments by strong wave action (Maceina and Soballe, 1990; 

Bengtsson and Hellström, 1992; Kristensen et al., 1992). Søndergaard, et al. (1992) 

also observed that internal phosphorus loading through wind-induced sediment re-

suspension dominated the shallow Lake Arreso, in Denmark. In Manasbal lake, the 

large macrophytic cover and phytoplankton facilitate co-precipitation of phosphorus 

with calcium (Wetzel, 2001; Dittrich et al., 2004) and significantly enhance the 

phosphorous sorption ability of sediments by affecting the contents of organic matter, 

CEC, Ca, Fe, Al, exchangeable Ca, and oxygen supply, (Vincet, 2001; Liu et al., 

2004; Jin et al., 2005 and Wang et al., 2007), thus maintains relatively low total 

phosphorus concentration in the lake. 
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The sulfate content in lakes originates from weathering of sulfate containing 

rocks in the catchment, oxidation of organic sulfur from the terrestrial sources 

(Holmer and Storkholm, 2001) and recycling of reduced sulfur compounds through 

re-oxidation (Bak and Pfennig, 1991 and Urban et al., 1994). The study revealed that 

lake sites of Tso Morari had high concentration of sulfate (289mg/l) than incoming 

streams (39mg/l). The sulfate in incoming stream water subsequently gets enriched in 

the lake waters by evaporation (Zang et al., 2008; Kohfahl et al., 2008). Similarly, 

high concentration of sulfate (196mg/l) in Tso Khar lake could be attributed to sulfate 

enrichment by evaporation and high contribution of sulfate through sulfur springs 

(Zang and Liu, 2009) located within and the periphery of the lake. Furthermore 

significant amount of sulfate is re-dissolved and released from the sediments into 

water column from saline lakes which may have also have raised the sulfate content 

of Tso Khar (Friedrich and Oberhansli, 2004). The low concentration of sulfate in 

Manasbal Lake is related to low concentration of sulfate in the rocks of the catchment 

area and short renewal time of the water in open drainage type lakes which prevents 

the sulfate enrichment (Jeelani and Shah, 2006). 

Aluminosilicate minerals are the most abundant in the earth’s crust (Schlesinger, 

1997) but, owing to their limited solubility, silicates are not the major dissolved ion in 

water (Stumm and Morgan, 1981). The low silicate values in Tso Morari and Tso 

Khar lakes contrary to other elements could be due to locking up of silicates in the 

sediments by the phenomenon of reverse weathering, a major process in closed basins 

resulting in the reduction of silica through time (Von Damm and Edmond, 1984; 

Drever, 1988). However, the littoral and limnitic area of Manasbal lake had 

significantly low silicate content, as compared to hypolimnion. The high 

concentration in hypolimnion may be due to dissolution of silica from the sediments 

(Ryves et al., 2006; Reimer et al., 2008) and reduced uptake due to low diatom 

populations.  
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Concentration of total dissolved solids (TDS) in water varies owing to different 

mineral solubility’s in different geological regions (Connolly et al., 1990). The TDS 

values in Tso Morari lake ranged from 111 to 724 mg/l. The high TDS values in the 

lake could be related to evapo-concentration effect (Zhang et al., 2008), which is 

substantiated by low values of TDS in the tributaries feeding the lake. The TDS 

values showed significant positive correlation with all the cations, conductivity, Cl
-
, 

and SO4
2
in Tso Morari (Table I). In Tso Khar lake, significantly higher (1373mg/L 

and 1130mg/L) values of TDS were reported at saline sites because of high ionic 

enrichment at these sites (Herbst, 1998; Kohfahl et al., 2008). Similar results were 

observed by Bowman and Sachs (2008) from saline lakes in Alberta and 

Saskatchewan. Generally, lakes with higher TDS have Na
+
 and Cl

-
 as the dominant 

ions, while Ca
2+

 and SO4
2-

 are the major ions in lakes with lower TDS (Zhang et al., 

2008) which is also confirmed by the present study. The Manasbal Lake has very high 

macrophytic cover which enhances sedimentation and counteracts resuspension of 

sediment particles, and therefore restricts the return of nutrients from sediments 

(Sóndergaard et al., 1992; Kufel and Kufel, 2002) thus maintaining the low TDS 

values in the lake. 

6.2 Sediment Chemistry 

The influence of sediment composition on the productivity and distribution of 

aquatic macrophytes was recognized many years ago in the studies of Pond (1905), 

Pearsall (1920) and Misra (1938). The studies conducted in a broad variety of aquatic 

systems have confirmed that sediment composition does exert a major influence on 

the growth of submersed aquatic vegetation (Moeller, 1975; Sand-Jensen and 

Sondergaard, 1979; Kiorboe, 1980; Danell and Sjoberg, 1979; Carignan, 1984; Fritz 

et al., 2004; Xiao et al., 2007; Li et al., 2012). Macrophyte species vary in their 

response to sediment conditions (Barko and Smart, 1983, 1986) which may influence 

the species composition of macrophytic communities. It has been reported that 
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changes in water quality due to increased nutrient levels (Roselette, 1991; Coops et 

al., 2007) and high salinity and sulfide content (Haller et al., 1974; Kovacs et al., 

1989; Koch et al., 1990; Lathrop et al., 2003) has a strong negative impact on the 

abundance and species composition of the aquatic vegetation in lakes. During the 

present study, all the three lakes showed variation in sediment characteristics owing to 

their different geological location and lake features.   

The pH is the master variable which determines the availability and mobility of 

nutrients in sediments (Miao et al., 2006; Urban et al., 2009). The high pH (>8) in the 

sediments of Tso Morari and Tso Khar could be attributed to high precipitation rates 

of calcium and magnesium carbonates due to alkalinity production via sulphate 

reduction reactions from saline water (Kilham and Cloke, 1990; Zang et al., 2008; 

Rodriguez et al., 2008). Ryves et al. (2006) also reported that preferential 

precipitation of calcium carbonate with increase in salinity leads to increase in pH. 

The pH of sediments in Manasbal lake was slightly alkaline, except M5 which 

showed significant decrease in pH. The alkaline nature of sediments could be 

attributed to calcium rich rocks in the catchment (Zutshi et al., 1980; Zutshi and 

Wanganeo, 1984) and high precipitation of CaCO3 induced by photosynthetic activity 

of submerged macrophytes (Otsuki and Wetzel, 1972; Wetzel 2001). Conductivity is 

influenced by a variety of factors like catchment geology, weathering rate, 

mineralization, lake type and trophic structure of the lake. In Tso Morari lake, higher 

conductivity values may be related to high concentration of cations and other 

dissolved ions. This is also supported by the significantly positive correlation of 

conductivity with exchangeable cations during the present study (Table IV). In Tso 

Khar lake the conductivity values of saline sites (TK1 and TK4) was significantly 

higher than fresh water sites (TK2 and TK5), which may be due to high concentration 

of Na and K, which are precipitated as halite and carnalite from hypersaline lakes 

(Xhenhao and Wenxuan, 2001). Besides, higher values of Ca, Mg and other soluble 

ions may have also led to the increase in conductivity values which is also 
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substantiated by significant positive correlation with exchangeable cations (Table V). 

The low values of conductivity in Manasbal lake could be related to low amount of 

exchangeable cations in the sediments. Furthermore, the rapid mineralization aided by 

macrophytes and subsequent uptake of released nutrients by the macrophytes may 

have decreased the conductivity value of sediments in Manasbal lake.  

The organic matter content of sediments is dependent on supply of organic 

matter via primary productivity, its subsequent retention in sediments and the rate of 

microbial decomposition (Bianchini, 2006; Rejmankova and Houdkova, 2006). The 

decomposition of organic matter in aerobic sediments is almost complete and 

therefore unlikely to accumulate in lakes like Tso Morari which have fairly high 

dissolved oxygen concentration (Goldshalk and Wetzel, 1976; Farajlla et al., 2000 

Peret and Bianchini, 2004). The low concentration of organic carbon could also be 

attributed to sparse cover and low productivity of macrophytes and other primary 

producers (Last and Ginn, 2009) and short growing season. The hypersaline zone 

(TK1 and TK4) of Tso Khar restricted the growth of macrophytes (Haller et al., 1974) 

which are the major source of organic matter in the lakes (Wetzel, 2001), thus 

responsible for low levels of organic carbon and matter. The decreases in biodiversity 

with increase in salinity (Alceocer and Hammer, 1998; Last and Ginn, 2009) may also 

have decreased the organic matter at saline area of the Tso Khar. In contrast to Tso 

Morari and Tso Khar, the Manasbal lake had significantly high concentration of 

organic carbon and organic matter. The high values of organic carbon in Manasbal are 

attributable to high primary productivity of macrophytes which cover 90% of the lake 

and high organic loading from the catchment. However, the low value of organic 

matter at littoral sites could be related to low depth, high oxygen concentration and 

high temperature which may have accelerated the mineralization rate of organic 

matter at these sites (Heyer and Kalff, 1988; Kucinskiene and Krevs, 2006).   
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Nitrogen and phosphorus are considered two most important elements in the 

functioning of aquatic ecosystems (Ramiez-Olvera et al., 2009). The fresh waters are 

often limited by phosphorus, however, in estuarine saline and other marine 

ecosystems, nitrogen has been identified as a key nutrient limiting primary production 

(De Deckker and William, 1988; Herbst, 1998; Khan, 2003; Carin, 2007). The present 

study revealed low values of NH4-N and NO3-N in Tso Morari which seems to be an 

important factor responsible for patchy distribution of macrophytes in the lake. The 

vegetated sites of the lake had relatively high concentration of NH4-N and NO3-N 

(Roman et al., 2001; Kufel and Kufel, 2002). Exchangeable ammonia and nitrate of 

saline area of Tso Khar lake were higher than fresh water area. The high 

concentration NO3-N at saline area might be due to diffusion of nitrate into the 

sediments from the overlying water column (Revsbech et al., 2005) and from 

groundwater (Reddy and D’Angelo, 1997; Wetzel, 2001). Further, the saline zone has 

high density of arthropods whose decomposition may also have contributed to 

increased levels of NH4-N and NO3-N. The Manasbal lake had relatively high 

concentration of exchangeable NH4-N and NO3-N in comparison to Tso Morari and 

Tso Khar which is related to organic loading and high inputs of autochthonous 

organic matter from the macrophytic vegetation of the lake (Lander, 1982). The 

hypolimnion has significantly high concentration of NH4-N and low concentration of 

NO3-N which could be due to denitrification process and inhibition of nitrification 

rate by organic matter especially lignin (White 1988; Strauss and lamberti, 2000; 

Wetzel, 2001). The high concentration of NO3-N and low NH4-N in littoral area could 

be attributed to high nitrification rate under oxic conditions (Shilla et al., 2006; 

MaCarthy et al., 2007). 

Phosphorus is a key element which limits the growth of macrophytes. Sediments 

are considered as sinks for phosphorus in lakes. The phosphorus retention ability of 

sediments is regulated to various interacting factors like adsorption to clay minerals, 
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co-precipitation with calcium, Mn and Fe; adsorbed to metal oxide (Al, Mn, and Fe), 

oxygen and organic carbon (Olila and Reddy, 1995; Wetzel, 2001; Wang et al., 2009).   

During the present study both exchangeable and total phosphorus in Tso Morari 

lake was low, however the macrophytic sites had relatively high concentration due to 

the sedimentation of suspended load carried by the streams from the catchment 

(Kłosowski et al., 2006). The high productivity of macrophytes adds high amounts of 

organic matter at their seasonal decay, releasing organic phosphorus and nitrogen 

under rapid bacterial degradation (McCormick and Laing, 2003; Palomo et al, 2004) 

which binds to inorganic particles (Krom and Berner, 1981). This fact is also depicted 

by significant positive correlation of phosphorus with organic carbon (r=0.807; 

p<0.01) and organic matter (r=0.805; p<0.01) in Tso Morari lake (Table IV). Similar 

observations were also made by Clark and Watson (2001) from lowland rivers of 

England. In Tso Khar lake, saline sites had significantly low concentration of both 

exchangeable and total phosphorus than fresh water sites. The lowest concentration of 

total phosphorus at saline sites could be attributed to low primary productivity (Khan 

2003) which in turn leads to low inputs of organic matter to sediments. This fact is 

revealed by significant positive correlation of total phosphorus with organic matter 

(Table V).  

The Manasbal lake had high concentration of exchangeable phosphorus and total 

phosphorus than Tso Morari and Tso Khar. The high concentration of phosphorus in 

Manasbal lake could be related to high organic matter by macrophytic production 

(Wang et al., 2007). The relatively low phosphorus in the littoral zone could be 

related to rapid mineralization of organic matter under oxic conditions and subsequent 

uptake of the phosphorus by the macrophytes (Palomo et al., 2004; Srivastava et al., 

2008). Guangwei et al., (2006) also attributed low phosphorus in vegetated sites to 

active assimilation of phosphorus by macrophytes.   
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The nature of rocks in the catchment and the weathering rates are major source 

of source of exchangeable cations in the sediments. The exchangeable cations at all 

the sites in Tso Morari were dominated by magnesium followed by calcium, sodium 

and least values were observed for potassium. The low concentration of Mg and Ca 

could be related to sandy nature of sediments, which retain low quantity of nutrients 

(Chambers et al., 1992; Stone and English, 1993; Clark and Wharton, 2001). In Tso 

Khar lake, the results indicated that saline area had significantly higher values of Na, 

K, Ca and Mg than freshwater sites. Kilham and Cloke (1990) reported significant 

precipitation of CaCO3 and MgCaCO3 in the saline lakes of Tanzania at high pH. 

Almost similar conditions were present at saline sites of Tso Khar lake. The major 

mechanism controlling the water chemistry of the Tso Khar lake is the evapo- 

precipitation (TDS: 1251 mg/l and weight ratio of Na/(Na+Ca) : 0.99) where different 

mineral get precipitated from water column increasing the concentration of different 

cations in the sediments (Gibbs, 1970). The sodium and potassium may be attributed 

to chemical precipitation of halite and crossnite (Xhenhao and Wenxuan, 2001) 

during the evolution process of the brine, while the high content of Ca at saline sites 

could be attributed to selective precipitation of Ca under high pH (Jones and Weir, 

1983) which is reflected by different ionic progression of saline (Na > K >Ca>Mg,) 

and fresh water (Ca> Mg >Na >K) areas of Tso Khar lake. 

The exchangeable cations at all the sites in Manasbal lake were dominated by 

calcium followed by magnesium and sodium and least was recorded for potassium. 

The valley lakes have calcium rich rocks in the catchment and could be possible cause 

of high concentration of calcium in the lake sediments (Zuthsi, et al., 1980; Geelani 

and Shah, 2006). The high concentration of Na and K is found in eutrophic and 

hypereutrophic lakes receiving high sewage load (Bhat, et al., 2001), however, low 

sewage load in Manasbal are possible reasons of low values of Na and K in 

sediments. However, significant positive correlation was found between cations 

(Table VI).  
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6.3 Macrophytes 

The distribution and diversity of macrophytes is influenced by geographical 

factors like altitude (Lacoul, 2004; Lacoul and Freedman, 2006ab), latitude 

(Chambers et al., 2008), size of water body (Ronal and Maltchik, 2006), transparency, 

depth, light (Spence, 1982; Dale, 1986; Wetzel, 2001; Hopson and Zimba, 2003), 

nutrient enrichment (Gacia, 1994; Moller and Martin, 2003; Macmets and Friberg, 

2005) and salinity (Haller et al.,1974; Harper et al.,2003). The influence of water 

chemistry on aquatic plant richness has been described as major predictor of species 

distributions and the highest macrophyte diversity is observed in mesotrophic or 

slightly eutrophic ecosystems (Rørslett, 1991; Vestergaard and Sand-Jensen, 2000, 

Heegaard et al., 2001; Murphy, 2002). As the three lakes were located in different 

altitudinal and climatic zones and has contrasting geochemistry, only one species 

Potamogeton pectinatus was found to be common in all the three lakes. Further, the 

lakes also differed in their salinity content with some parts of Tso Khar lake being 

hyper-saline which was devoid of any macrophytic vegetation. The Tso Morari lake 

was slightly brackish and deep which restricted the macrophytic vegetation to littoral 

zone only. However, the Manasbal lake belongs to fresh water mesotrophic category 

and thus had highest diversity of macrophytes. 

The macrophytic community of Tso Morari was represented by the mono-

specific stands of Potamogeton pectinatus (family Potamogetonaceae). P. pectinatus 

is one the most cosmopolitan submerged macrophytic species (Sculthorpe, 1967) and 

grows in  dense stands with an extensive rootstocks in a wide range of salinity (Van 

Dijk et al., 1992) and altitude (Seimon et al., 2007). The high density of P. pectinatus 

at confluence points of tributaries seems to be due to high nutrient content and loamy 

texture of sediments which are favorable for its optimum growth. The low density and 

abundance of the species at site TM7 could be attributed to sandy texture which has 

low fertility status (Barko et al., 1991). The low macrophytic diversity in the lake is 
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attributable to high altitude of the lake and salinity (Harper et al., 2003; Chambers et 

al., 2008).  

In Tso Khar lake the macrophytic vegetation was represented by association of 

P. pectinatus and R. aquatalis. Both the species belonged to submerged vegetation 

class and were observed only at fresh water area. The high salinity and sulfide content 

restrict the growth of macrophytes in saline area of the Tso Khar and thus renders the 

area without vegetation (Haller et al., 1974; Kovacs et al., 1989; Koch et al., 1990 

Lathrop et al., 2003). Further, the low diversity in the fresh water zone seems to be 

attributable to high altitude of the lake. The IVI of macrophytic community revealed 

the dominance of P. pectinatus over R. aquatalis, which seems to be its strong 

competitive strategy (Grime, 1979), cosmopolitan nature (Sculthorpe, 1967) and 

ability to tolerate wide range of salinity (Van Dijk et al., 1992; Spinke, 1993).  

Manasbal lake belonging to fresh water category and having mesotrophic status 

had highest number of macrophytic species. A total of 37 macrophytic species were 

recorded in the lake which represented all the four life form-classes i.e., emergents 

(40%), rooted floating leaf type (22%), submerged (27%) and free floating (11%). 

The submerged macrophytes cover significant area of the lake, while the emergent 

floating and rooted floating types together constituted less than 20% of the lake area. 

The Sorenson’s similarity index based on species composition indicate that site M1 

had high degree of similarity with site M4 (71%), M3 (67%) and M2 (66%), which 

may be due to their littoral nature and similarity in their sediment and water 

characteristics as was observed during the present study. Further, all the sites have 

almost similar dominance pattern of macrophytes which may also have resulted in 

high similarity between the sites. The central site (M5) which was devoid of any 

macrophytic vegetation did not show any similarity with other sites.  
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The study of IVI values revealed that C. demersum was the dominant species at 

M1, M2 M3 and co-dominant at M4 indicating its absolute dominance over other 

species in the Manasbal lake. At site M4, M. spicatum was most dominant species 

followed by C. demersum. The dominance of C. demersum over other species is 

attributed to variety of life strategies under different environmental condition like it 

grows as free floating mats in polluted lakes (Melzer, 1999; Lombardo and Cooke, 

2003) and descends to greater depths in oligotrophic and mesotrophic lakes (Trapp, 

1995). In the present study the species was growing as free floating at site M2 

indicating the high pollution load, while at rest of sites it grows as submerged. 

Moreover, dominance of C. demersum is due to its high vegetative propagation, 

cosmopolitan nature (Foroughi et al., 2010), lack of true roots, and high surface area: 

volume ratio, which makes it a strong competitor for nutrients (Hernández et al., 

1999). The dominance of M. spicatum at site M4 could be attributed to relatively low 

nutrient status at this site.  

The Shannon’s diversity index showed high diversity of macrophytes at site M4 

(2.14±0.55) and lowest at site M2 (1.53± 0.59). The low diversity at M2 may be 

related to high organic matter concentration (Walker, 1972, Wetzel, 1979, Carpenter, 

1981), high concentration of ammonia and low transparency (Kufel and Kufel, 2002). 

Thiebaut et al. (2002) found that at low phosphate concentrations, species sensitive to 

phosphate enrichment and cosmopolitan species coexist in macrophyte community, 

but at high phosphate concentrations macrophytic community lacks sensitive species 

and are dominated by tolerant species. The present study also confirmed the fact that 

sensitive species like Chara spp and Hydrilla sp. were absent at site M2 due to high 

concentration of phosphorus. However, the reasons for high diversity at site M4 may 

be due to low organic matter, nitrate and phosphate concentration and relatively high 

transparency (Oertli et al., 2000).  
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In the present study it was found that macrophytic species richness in the lakes 

decreased with increase in altitude (Gacia et al., 1994) and salinity. Lacoul and 

Freedman (2006a) also reported linear decrease in species diversity with increase in 

altitude in Nepal Himalayas and has been related to low speciation at high altitudes 

(Jacobsen and Terneus, 2001). Similarly, Harper et al. (2003) reported that the 

hypersalinity of inland waters restrict the growth of macrophytes. Similar results were 

found in saline area of Tso Khar which supports no macrophytic vegetation. As 

Manasbal lake is situated at slightly lower altitude (1580m) it recorded highest species 

richness. Furthermore, the high species richness may be also related to its mesotrophic 

status (Murphy, 2002).  

6.4 Impact of geochemistry on vegetation dynamics in the lakes  

A variety of environmental factors interact, in affecting the species composition, 

distribution and productivity of macrophytic communities. Foremost among these are 

light, water temperature, sediment composition and inorganic carbon availability. 

Light, depth and temperature are important in determining morphology and 

distribution (with altitude, season and depth), thereby influencing productivity and 

species composition as well. Sediments provide an important source of nutrients, 

principally N, P, and micronutrients, which are relatively less available in the upper 

layers of water column of most aquatic systems (Barko et al., 1986). In order to study 

whether geochemistry of the lakes influenced macrophytic vegetation directly or 

through the overlying water column the study sites within each lake were categorized 

into two types. 

1. Vegetative sites:- Sites where macrophytic vegetation was present were grouped 

together under this category. 

2. Non vegetative sites:- Sites where macrophytic vegetation was absent were 

grouped together under this category. 
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Analysis of variation was carried out to see if there was any significant variation 

in the water and sediment characteristics between the two categories (Table VII to 

Table XX).   

6.4.1. Tso Morari Lake 

As only one species of macrophyte (Potamogeton pectinatus) was present in the 

lake the sites could be easily grouped into vegetative and non vegetative sites. Site 

TM2, TM4, TM7 represented macrophytic sites, while site TM6, TM5 and TM5b 

represented non-macrophytic sites. Perusal of the data revealed that the mean values 

of depth, transparency and sulphate showed significant difference between the 

vegetative and non-vegetative sites (Table XIII). Mean depth was significantly (F1, 42 

= 1832.45; p = 0.000) lower at macrophytic sites (4.24±0.34m) than that of non-

macrophytic sites (41.72±0.87m). Although mean water transparency was 

significantly (F1, 42 = 201.846; p = 0.000) higher at non-macrophytic sites 

(15.77±0.91m) than macrophytic sites (3.40±0.25m), the ratio of depth to 

transparency was however, lower for macrophytic sites. As macrophytic vegetation of 

Tso Morari was restricted to littoral zones it appears that macrophytic distribution was 

regulated by the depth, rather than chemistry of water. Water depth is regarded as a 

major factor structuring vegetation (Wetzel, 1979; Spence, 1982), while light is a 

primary factor determining distribution of submerged plants in lakes (Duarte et al. 

1986). This is because submerged plants are able to assimilate nutrients from 

sediment and water (Denny, 1972; Barko and Smart, 1981a) but low transparency 

values may have reduced the light necessary for photosynthesis (Boedeltje et al., 

2005). Similarly, mean sulphate concentration at non-macrophytic sites (344±25mg/l) 

was significantly (F1,42=8.416; p = 0.006) higher than macrophytic sites 

(235±27mg/l). The data revealed that among the water parameters, conductivity, CO2, 

TP, total hardness, Ca, Mg, Na, K, Cl, NO3, Si and TDS had lower mean values at 

macrophytic sites than non-macrophytic sites. Similarly, water temperature, pH, DO, 
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total alkalinity and NH4 had slightly higher mean values at macrophytic sites than 

those of non-macrophytic sites. However, the above parameters did not show any 

significant variation between macrophytic and non macrophytic sites.  

The data on sediment chemistry revealed that the mean values of sediment 

organic carbon, organic matter, NH3-N, exchangeable phosphorus, total phosphorus 

and exchangeable K, were significantly (p < 0.05) higher at vegetative sites when 

compared to non-vegetative sites. The mean values of sediment conductivity, NO3, 

exchangeable Ca, Mg, and Na were statistically insignificant between the vegetative 

non-vegetative sites. Thus the results indicate that sediment nutrient status has 

significant effect on distribution of macrophytes, however, macrophytic vegetation 

inturn also alters the sediment chemistry for their continued existence.    

6.4.2. Tso Khar Lake 

 In Tso Khar lake two species of macrophytes (P. pectinatus and R. aquatalis) 

were recorded during the study period. In this Lake, site TK2 and TK5 represented 

vegetative sites, while TK1 and TK4 represented non-vegetative sites. The results 

depicted that the mean values of conductivity, total alkalinity, total hardness, Ca, Mg, 

Na, K, Cl, NO3, NH4, SO4, and TDS were significantly (p < 0.05) higher at non-

vegetative sites when compared with vegetative sites (Table XV). However, the mean 

values of DO were significantly (F1,34 = 15.57; p = 0.000) lower at non-vegetative 

sites than that of vegetative sites. The mean values of air and water temperature, 

depth, transparency, CO2 and silicate were higher, while pH and TP were lower at 

vegetative sites than that of non-vegetative sites, although the difference was not 

significant (p > 0.05). The results indicate that the macrophytic community of Tso 

Khar is limited by high salt content (Haller, et al, 1974). Further high sulphide content 

which is well known phototoxic compound may have also limited the growth of 

macrophytes (Kovacs et al. 1989; Koch et al., 1990; Lathrop et al., 2003). High 
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concentration of SO4, Na, Cl and other elements in saline environments can directly 

limit the growth and distribution of submerged macrophytes (Barko et al., 1986).  

 The sediment chemistry of the Tso Khar lake showed that the mean values of 

OC, OM exchangeable P and total P were significantly higher at vegetative sites than 

that of non-vegetative sites. Similarly, the mean values of pH, conductivity, NO3, 

exchangeable Ca, Mg, Na and K were significantly higher at non-vegetative sites 

when compared with vegetative sites. The results showed that macrophytic vegetation 

was limited due to high salinity and low organic matter content which may have 

changed the nutrient concentration necessary for macrophytes. 

6.4.3 Manasbal Lake 

In case of Manasbal lake only one site M5, was without any vegetation, while all 

other sites having diverse vegetation. At sites M1, M2 and M3 C. demersum was 

dominant species; while at site M4 M. spicatum was the dominant species. However, 

on comparing the non-vegetative site M5 with other sites the mean values of depth 

and transparency were significantly (p < 0.05) higher than other vegetative sites. The 

mean values of Cl and NO3 were significantly (p < 0.05) lower than other sites except 

site M3, while mean values of silicate were significantly (p < 0.05) higher except site 

M1. The results indicate that macrophytic distribution was mainly limited by depth 

(Spence, 1982; Hpson and Zimba, 2003), while nutrient concentrations had no effect 

on vegetation but they may have altered the composition of different macrophytes as 

was depicted by distribution of macrophytes at different sites.  

As most of the sites in Manasbal lake were covered with macrophytic vegetation 

except site M5 which was located in the centre of the lake, all the sites were analyzed 

separately for sediment chemistry due to variation in the vegetation cover at these 

sites. The non-vegetative site M5 was compared with other vegetative sites (M1, M2, 

M3 and M4). Perusal of the data indicated that except exchangeable Ca and Mg all the 
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parameters showed significant (p < 0.05) variation between the study sites. The mean 

values of total P and exchangeable Na were significantly higher at non-vegetative site 

M5 than other vegetative sites. Similarly, the mean values of conductivity, OC, OM, 

NH3, exchangeable P and exchangeable K were significantly higher at non vegetative 

site M5 when compared to other vegetative sites except site M2. However, the mean 

pH value was significantly (p < 0.05) lower at non-vegetative sites as compared to 

other sites. Many aspects of the sediment type including nutrient availability, organic 

content and redox potential may additionally affect macrophytic plants. For example, 

organic matter additions to sediments negatively influenced the growth of M. 

spicatum. (Barko and Smart, 1983). Similarly, high organic matter at non vegetative 

site which was significantly deep and more transparent than other vegetative sites may 

be due to transport from littoral vegetative sites. Low light availability and anoxic, 

muddy sediments may be key factors hampering growth of macrophytes (Boedeltje et 

al., 2005). 

Overall the results of present study indicate that the structure and composition of 

macrophytes in the three lakes is regulated mainly by altitude and salinity, however,  

changes in depth, transparency, light, texture and nutrient availability especially 

organic matter, N and P, in sediments as well as overlying water column also has a 

major influence on their distribution.     
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7. Conclusions 

It can be concluded that the differences observed in geochemistry of the studied 

lakes are apparently due to differences in climatic condition, rock dominance in 

catchment, land use, drainage, geothermal springs and evapo-crystallization 

processes. Tso Morari and Tso Khar are high altitude (>4500m a.m.s.l) land locked 

lakes located in an arid cold desert of Ladakh which favors the development of saline 

lakes, while the Manasbal is  low  altitude(1600m a.m.s.l) open drainage lake situated 

in the temperate valley of Kashmir which retards salinisation process. The Tso Morari 

is fed by glacial streams, Tso Khar is fed by glacial streams as well as geothermal 

springs and the loss of water is only through evapotranspiration and seepage, while 

the Manasbal is mainly fed by fresh water springs and forms a part of the Jhelum river 

system. Tso Morari is a large and very deep (Zm >110m) brackish water body, Tso 

Khar is very shallow (Zm < 5m) water expanse divided into two distinct parts, one 

fresh and the other salt water and the Manasbal is deep (Zm =12.5m) fresh water body.  

Both Tso Morari and Tso Khar remain ice covered for three to four months during 

winter when the atmospheric temperature may dip down to as low as -40 
o
C, while in 

case of Manasbal lake the temperature never dipped below 4°C.  Accordingly Tso 

Morari can be classified as cold monomictic water body and Manasbal lake as warm 

monomictic lake.   

The high alkaline pH of Tso Khar and Tso Morari was due to enrichment of 

incoming waters as a result of evapo-concentration effect and alkalinity generated by 

sulfate reduction, while in case of Manasbal lake, pH fluctuations were mainly 

influenced by the photosynthetic activity of submerged macrophytes and calcareous 

catchment. The higher conductivity values in Tso Morari and Tso Khar lakes were 

related to the presence of high Na
+
, K

+,
 Cl

-
 and Mg

2+
 content, which was got 

concentrated in lake waters due to evaporation, the much higher ionic content in Tso 

Khar lake being influenced by inflow from by geothermal springs and enrichment 



Chapter 7                                                                                                                                              Conclusions 

 

 

246 
 

process. Turbulent mixing of lake water by high velocity winds and diurnal thermal 

convection maintained the uniform distributed of DO in Tso Morari, whereas partial 

inhibition of photosynthesis by hypersalinity led to very low dissolved oxygen 

production at saline sites of Tso Khar. In case of Manasbal lake the luxuriant growth 

of submerged macrophytes acted as the main source of aeration for the lake. 

The water of the Tso Morari Lake as well as its streams was alkaline as a result 

of carbonate weathering as depicted by Ca
2+

 + Mg
2+

: HCO3 ratio in the Tso Morari. 

The high alkalinity of saline area of Tso Khar was attributable to the sulfate reduction 

and high concentration of soda. The alkalinity of Manasbal lake was chiefly due to 

bicarbonate ions. However, carbonates were found only in summer season in minor 

quantities and could be attributed to high photosynthetic rate of macrophytes and 

periphyton, which use bicarbonate as a carbon source, thus increases pH and 

consequently shifts the chemical equilibrium towards the formation of carbonate ions 

which then precipitate with calcium in the form of calcite that significantly leads to 

decline of alkalinity.   

The geochemical evolution in evaporative lakes without river outlets is primarily 

controlled by inflow composition, selective removal processes of dissolved species, 

and concentration processes in the lake basin. Inflow streams around Tso Morari are 

the major supply of the lake water and thus contribute most of the ionic load. The 

cation composition of the three lakes showed significant difference which reflects 

their catchment characteristics and evapo-crystallization processes. The cation 

progression of Tso Morari was Mg> Ca >Na >K which suggests the lake water to be 

depleted in Ca and enriched with Mg due to selective precipitation of Ca at high pH. 

The cation progression of saline area of Tso Khar was Na> K> Mg>Ca which showed 

that the lake is enriched with Na and K as they behave as perfectly conserved species. 

Further, the basin of this water body is located in geothermally active region and 

contains number of geothermal springs which add large quantities of Na and K ions. 
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The cation progression of Manasbal lake was Ca > Mg > Na > K which reflect 

dominance of Ca over other cations which is relate with the Ca rich lime rocks in the 

catchment and low pollution load.   

The principal source of nitrate and ammonia in Tso Morari lake is the leaching 

from the catchment which is popular grazing ground for the domestic and nomadic 

livestock. The stream sites had high nitrate content during summer months which may 

be due to high nitrification rates at high temperatures and its subsequent leaching. The 

high concentration of nitrate and ammonia in saline zone of Tso Khar lake may be 

linked to ground water discharge from springs within and around periphery of the 

lake, while the low nitrate and ammonia content in Manasbal is due to rapid uptake 

and assimilation by macrophytes and their associated flora. 

The high phosphorus content in Tso Morari and Tso Khar was related to internal 

phosphorus loading enhanced by sulfate reduction in sediments by affecting redox 

potential and stimulating mineralization of organic matter. The re-suspension of 

sediments by strong wave action may have increased the total phosphorus content in 

saline area in Tso Khar. In Manasbal lake, the large macrophytic cover facilitate co-

precipitation of phosphorus with calcium and significantly enhance the phosphorous 

sorption ability of sediments by affecting the contents of organic matter, CEC, Ca, Fe, 

Al, exchangeable Ca, and oxygen supply, thus maintains relatively low total 

phosphorus concentration in the lake. The Tso Morari and Tso Khar lake has high 

concentration of sulfate content than feeding streams and springs which suggest 

sulfate enrichment in these lakes. 

The preferential precipitation of calcium carbonate with increase in salinity leads 

to increase in pH of Tso Morari and Tso Khar. The pH of sediments in Manasbal 

Lake was slightly alkaline. The low concentration of organic carbon and organic 

matter in the Ladakh lakes could be attributed to sparse cover and low productivity of 
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macrophytes and other primary producers and short growing season. In the 

hypersaline zone of Tso Khar the growth of macrophytes gets restrict by partial 

inhibition of photosynthesis. In contrast to Tso Morari and Tso Khar, significantly 

high concentration of organic carbon and organic matter in the Manasbal lake could 

be attributed to high primary productivity of macrophytes which cover 90% of the 

lake and high organic loading from the catchment. The relatively high concentration 

of exchangeable Manasbal NH4-N and NO3-N of Manasbal lake is related to organic 

loading and high inputs of autochthonous organic matter from the macrophytic 

vegetation. 

The exchangeable cations in Tso Morari were dominated by magnesium 

followed by calcium, sodium and potassium. There was high sodium and potassium 

content as compared to Ca and Mg in saline area of Tso Khar, which seems to be 

attributable to chemical precipitation of halite and crossnite during the evolution 

process of the brine. The exchangeable cations at all the sites in Manasbal lake were 

dominated by calcium followed by magnesium and sodium and least was recorded for 

potassium. 

During the investigation 38 macrophytic species, belonging to 29 genera and 23 

families were recorded from the three lakes. Potamogeton pectinatus was the only 

species occurring in all the three lakes. The Tso Morari recorded monospecific strands 

of P. pectinatus in its littoral zone only. The Tso Khar recorded mixed stands of P. 

pectinatus and Ranunculus aquatalis only in its freshwater zone and the saline area 

didn’t support any macrophytic vegetation. The low macrophyte diversity in both 

these waters is attributable to high altitude and salinity which limit speciation and 

restrict macrophytic growth. The macrophytic community of Manasbal Lake was 

represented by all the four life form-classes- emergents (40%), rooted floating leaf 

type (22%), submerged (27%) and free floating (11%). However, the submerged 

macrophytes cover significant area of the lake, while as emergent floating and rooted 
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floating types together constituted less than 20% of the lake area. C. demersum had 

absolute dominance over other species in the lake, which is related to its high 

vegetative propagation, cosmopolitan nature, lack of true roots, and high surface area: 

volume ratio, all these characteristics making it a strong competitor for nutrients. 

Most of macrophytic species found in Manasbal are cosmopolitan and show no 

preference for sediments of a particular fertility due to their similar morphological and 

nutritional requirements. In Manasbal species like Chara spp, M. spicatum, H. 

verticillata preferred high transparency, low concentrations of phosphorus, 

conductivity and organic carbon, whereas C. demersum and P. pectinatus were 

associated with high values of total phosphorous, organic matter and conductivity. 

However, nutrient preferences to community level are more apparent than individual 

species which is reflected by high species diversity and richness at least polluted sites.   

On the whole it may be concluded that the geochemistry of the lake sediments, 

which was in itself influenced by the chemistry of the inflowing water and the evapo-

concentration process in the lakes, governs the occurrence and abundance of the 

various macrophytes taxa in the three lakes. Overall the results of present study 

indicate that the structure and composition of macrophytes in the three lakes is 

regulated mainly by altitude and salinity, however,  changes in depth, transparency, 

light, texture and nutrient availability especially organic matter, N and P, in sediments 

as well as overlying water column also has a major influence on their distribution.     
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8.  SUMMARY   

 High altitude lakes are unique in North-western Himalaya, where the 

association between tectonic, geomorphologic features, altitude and arid 

climate allows the formation of different water bodies with varying depth and 

salinity. However, these lakes have received very little attention due to remote 

location and very high altitude. During the present study geochemistry of Tso 

Morari, Tso Kar and Manasbal lakes and its effects on vegetation dynamics 

were studied during 2004 to 2006. Tso Morari and Tso Khar are situated in 

Ladakh region having desert type of climate where evaporation exceeds 

precipitation and therefore favours development of saline lakes. Manasbal lake 

is a fresh water lake located in Kashmir Valley which experience temperate 

climatic conditions where precipitation exceeds evaporation. 

 Tso Morari is brackish and deep land locked lake, fed by several springs and 

glacial streams originating from high mountain glaciers. The major tributaries 

to the lake include the Gyoma in the Northern end, Korzuk in the North 

western side and Phersey stream from southwest side of the Lake. As a closed-

basin lake, the only loss of the water is through evaporation.  

 Tso Khar is a hyper saline and shallow land locked lake situated at an altitude 

of about 4500 masl in Rapsu valley of Zanaskar range. The basin receives 

water from nearby glaciers mainly in spring and early summer via the 

periodically active Pulong Kha Phu river from the east and the perennial 

Nuruchan Lungpa river from the south. Both rivers enter the freshwater lake 

Startsabuk Tso, while the hyper-saline Tso Kar is only fed by water exchange 

through a small conduit 6 to 8 meters in width and 2.5 km long between both 

lakes. There are number of freshwater and hot springs within and around the 

periphery of the lake basin. 
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 Manasbal is the deepest, fresh water Valley lake of Kashmir situated at an 

altitude of 1590 masl covering an area of 2.8 Km
2
. The Manasbal lake does not 

have any prominent inlet and receives water through springs found in and 

around the lake. A small stream which is dry for most part of the year brings 

water to Manasbal during spring and summer season. The lake is connected to 

River Jhelum through an outlet called Nunnyar. 

Water chemistry 

 On the basis of habitat structure, 7 site in Tso Morari, 5 in Tso Khar and 5 in 

Manasbal were selected to study the water chemistry. Tso Morari being very 

deep can be easily classified as cold monomictic water body, while Tso Khar 

being shallow could not be assigned to any category on the basis of thermal 

stratification. Mansbal lake remains stratified for a period of 8 to 9 months 

from March to November and mix up only during the winter months of 

December to February and hence is categorized as warm monomictic lake. 

 The physico-chemical analysis of the water samples revealed significant 

difference between the lakes. The Water chemistry in lake ecosystems is 

controlled mainly by three important factors viz. precipitation, evaporation and 

rock dominance in the catchment. The three water bodies showed significant 

differences in the transparency. Tso Morari being the deepest had highest 

values of transparency followed by Manasbal and Tso Khar.   

 The pH of the three lakes was alkaline due to presence high quantities of 

carbonates of calcium and magnesium. The alkaline pH of Tso Khar and Tso 

Morari was due enrichment of incoming waters as a result of evapo-

concentration effect and alkalinity generated by sulfate reduction. Whereas in 

Manasbal lake the calcareous catchment and photosynthetic activity of 

submerged macrophytes regulated the alkaline pH of water.  
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 The highest conductivity was found in Tso Khar followed by Tso Morari and 

least in Manasbal. The conductivity of Ladakh lakes was influenced by dry 

climatic conditions, closed drainage, and geothermal springs. The conductivity 

of Manasbal lake was influenced by continuous flushing and high precipitation 

rate of valley. 

 The dissolved oxygen of the lakes showed significant fluctuations. The 

dissolved oxygen of the three lakes decreased in the order of Manasbal> Tso 

Morari> Tso Khar. The high TDS, salinity and low atmospheric pressure of 

Ladakh lakes maintain low dissolved oxygen in the water.  

 The carbon dioxide was absent from the Tso Morari and Tso Khar except in 

streams and springs sites, while the carbon dioxide was always present in the 

Manasbal lake except during extensive photosynthetic rate in summer. The 

alkalinity of Tso Morari and Tso Khar was very high as compared to Manasbal 

lake and was contributed by both carbonates and bicarbonates. In Manasbal 

Lake, the alkalinity was dominated by bicarbonate ion. The hardness of the 

three lakes also showed significant differences. The highest hardness was 

recorded in Tso Khar followed by Tso Morari and Manasbal. The hardness of 

the Ladakh lakes was contributed by Ca and Mg carbonates, sulfate and 

chloride ions, while the hardness of Manasbal lake was solely due to Ca and 

Mg carbonates. 

 The cation composition of the three lakes showed significant difference which 

reflects their catchment characteristics and evapo-crystallization processes. The 

cation progression of Tso Morari was Mg> Ca >Na >K which suggest lake 

water is depleted in Ca and enriched with Mg. The cation progression of saline 

area of Tso Khar was Na> K> Mg>Ca which showed that lake is enriched with 

Na and K and depleted in Mg and Ca. The cation progression of Manasbal lake 

was Ca > Mg>Na >K. The Tso Khar lake had highest Cl concentration than 

Tso Morari and Manasbal lake. 
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 The nitrate content of the three lakes did not show significant variation, except 

at saline sites of Tso Khar which had significantly high concentration of 

nitrate. The ammonia content of Tso Khar was highest followed by Manasbal 

and Tso Morari. The total phosphorus was highest in Tso Morari followed by 

Tso Khar and Manasbal. Due to presence of sulfate which accelerates the 

internal phosphorous loading resulting in high concentration of phosphorous. 

 The Tso Morari and Tso Khar lake has high concentration of sulfate content 

than feeding streams and springs which suggest sulfate enrichment in these 

lakes. The sulfate content of Manasbal lake was lowest of the three lakes. The 

silicate content of the three lakes was almost similar having values below 20 

mg/l. TDS values of the three lakes were significantly different. The saline area 

of Tso Khar lake had TDS value above 1000mg/l followed by Tso Morari and 

least was recorded in Manasbal lake. 

Sediment Chemistry 

 Surface sediments were collected on seasonal basis from the selected sites used 

for water sampling and analyzed for various physicochemical parameters. 

During the present study, all the three lakes showed significant variation in 

sediment characteristics owing to their different geological location and lake 

features.  

 The pH of surface sediments in the lakes remained alkaline throughout study 

period. The Ladakh lakes had high pH (>8), particularly the saline area of Tso 

Khar (> 10). The Manasbal Lake had low pH (<8) values than Ladakh lakes. 

The highest conductivity was found in Tso Khar sediments followed by Tso 

Morari and least was recorded in Manasbal lake.  

 The organic carbon and organic matter of sediments in Tso Morari and Tso 

Khar was low due to low diversity and low productivity of these two lakes as 

compared to Manasbal lake. The nitrate and ammonia concentration of Tso 
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Morari sediments was high at vegetated sites than non vegetated sites, however 

in Tso Khar lake saline sites had high concentration of nitrate and ammonia. 

The Manasbal lake had low concentration of nitrate and ammonia as compared 

to other two lakes. The total phosphorus of the three lakes showed significant 

differences being highest in Manasbal lake followed by Tso Morari and Tso 

Khar.  

 The cations of the three lakes also showed varied patters and differences. The 

high cation concentrations were observed at saline area of Tso Khar, followed 

by Tso Morari and least was recorded in Manasbal lake. However, the cation 

progression was similar Ca>Mg>Na>K in the sediments of Tso Morari, 

Manasbal and fresh water sites of Tso Khar. The cation progression at saline 

area of Tso Khar was Na>K>Ca>Mg. 

Vegetation 

 The macrophytic vegetation survey carried out at different study sites in the 

three lakes during the investigation period resulted in identification of 38 

macrophytic species, belonging to 29 genera and 23 families. 

 As the three lakes were located in different altitudinal and climatic zones, only 

one species Potamogeton pectinatus was found to be present in all the three 

lakes. The macrophytic species richness during the present study decreased 

with increase in altitude and salinity. 

 The macrophytic vegetation of Tso Morari was represented by monospecific 

strands of Potamogeton pectinatus. The macrophytic density was very high at 

confluence sites with silty sediments and low at sandy sites. The macrophytic 

vegetation was restricted to littoral zone only. 

 The macrophytic vegetation of Tso Khar was represented by Potamogeton 

pectinatus and Ranunculus aquatalis. The saline area of the lake does not 
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support any macrophytic vegetation. The community was dominated by the 

Potamogeton pectinatus. 

 The macrophytic vegetation at Manasbal lake was represented by 37 species 

belonging to 22 families and 28 genera.  

 The macrophytic community of Manasbal Lake was represented by all the four 

life form-classes belonging to emergents (40%), rooted floating leaf type 

(22%), submerged (27%) and free floating (11%). However, the submerged 

macrophytes cover significant area of the lake, while as emergent floating and 

rooted floating types together constituted less than 20% of the lake area. 

 The Sorenson’s similarity index based on species composition indicate that site 

M1 had high degree of similarity with site M4 (71%), M3 (67%) and M2 

(66%), which may be due to their littoral nature and similarity in their sediment 

and water characteristics as was observed during the present study. 

 The study of IVI values revealed that Ceratophyllum demersum was the 

dominated species at M1, M2 M3 and co-dominant at M4 indicating its 

absolute dominance over other species in the Mansbal Lake. 

 The Shannon’s Diversity Index showed high diversity of macrophytes at site 

M4 (2.14±0.55) and lowest at site M2 (1.53± 0.59).  

Impact of geochemistry on vegetation dynamics 

 The geochemical environment of the lakes had impact on vegetation dynamics. 

The present study showed that three lakes had significant differences in their 

geochemistry, which is influenced by climatic conditions, catchment 

characteristics and drainage pattern of the lakes. A variety of environmental 

factors interact, in affecting the productivity, distribution and species 

composition of macrophytic communities. Foremost among these are light, 

water temperature, sediment composition and inorganic carbon availability. 

Light, depth and temperature are important in determining morphology and 
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distribution (with altitude, season and depth), thereby influencing productivity 

and species composition as well. 

 The macrophytic vegetation of Tso Morari was restricted to littoral zones and it 

appears that macrophytic distribution was regulated by the depth, rather than 

chemistry of water. The mean values of depth, transparency and sulphate 

showed significant difference between the vegetative and non-vegetative sites 

and hence may be responsible for structuring the vegetation in Tso Morari 

lake.  

 The sediment characteristics also had a significant impact on vegetation. The 

mean values of sediment organic carbon, organic matter, NH3-N, exchangeable 

phosphorus, total phosphorus and exchangeable K, were significantly (p < 

0.05) higher at vegetative sites when compared to non-vegetative sites. 

 The geochemical chemistry of Tso Khar revealed two significant regions in the 

lake, one being saline and other as fresh water. The fresh water sites were 

dominated by potamogeton pectinatus and Runanculus aquatalis and the saline 

area of the lake was devoid of vegetation.  

 The results indicate that the macrophytic community of Tso Khar is limited by 

high salt content, and low concentration of dissolved oxygen and low organic 

matter in the sediments. Further high sulfide content which is well known 

phototoxic compound may have also limited the growth of macrophytes. 

 In Manasbal lake macrophytic species showed broad tolerances to different 

water and sediment variables. The macrophytic distribution was mainly limited 

by depth, while nutrient concentrations had no effect on vegetation but they 

may have altered the composition of different macrophytes as was depicted by 

distribution of macrophytes at different sites.  

 Some species like Chara spp, Myriophyllum spicatum, hydrilla verticillata 

appeared to be associated with high transparency and low concentrations of 

phosphorus, conductivity and organic carbon. Ceratophyllum demersum and P. 
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pectinatus were associated to high values of total phosphorous, organic matter and 

conductivity, while other species seem to be able to grow throughout the range of 

concentrations encountered. 

 Many species are cosmopolitan and show no preference for sediments of a 

particular fertility due to their similar morphological and nutritional requirements, 

therefore makes it very difficult to separate the individual species on the basis 

geochemical parameters of the water and sediments. However nutrient preferences 

to community level are apparent than individual species which is reflected by high 

species diversity and richness at least polluted sites. Further, low light availability 

together with anoxic and muddy sediments are the key factors hampering growth 

of macrophytes. 

 The differences in geochemistry of the studied lakes are apparently due to 

differences in climatic condition, rock dominance in catchment, land use, 

drainage, geothermal springs and evapo-crystallization processes. 

 The geochemical evolution of Ladakh lakes is primarily controlled by inflow 

composition, selective removal processes of dissolved species, and evapo-

crystallization processes in the lake basin. The cation progression of Tso Morari 

was Mg> Ca >Na >K which suggests the lake water to be depleted in Ca and 

enriched with Mg due to selective precipitation of Ca at high pH. The cation 

progression of saline area of Tso Khar was Na> K> Mg>Ca which showed that 

the lake is enriched with Na and K as they behave as perfectly conserved species. 

The cation progression of Manasbal lake was Ca > Mg>Na >K,which reflect 

dominance of Ca over other cations which is relate with the Ca rich lime rocks in 

the catchment and low pollution load. 

 The principal source of nitrate and ammonia in Tso Morari lake is the leaching 

from the catchment which is popular grazing ground for the domestic and 

nomadic livestock. The high concentration of nitrate and ammonia in saline zone 

of Tso Khar lake may be linked to ground water discharge from springs within 

and around periphery of the lake, while the low nitrate and ammonia content in 
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Manasbal is due to rapid uptake and assimilation by macrophytes and their 

associated flora. 

 The high phosphorus content in Tso Morari and Tso Khar was related to 

internal phosphorus loading enhanced by sulfate reduction in sediments by 

affecting redox potential and stimulating mineralization of organic matter. The 

relatively low total phosphorus concentration in Manasbal lake are maintained 

by the large macrophytic which facilitate co-precipitation of phosphorus with 

calcium and significantly enhance the phosphorous sorption ability of 

sediments by affecting the contents of organic matter, CEC, Ca, Fe, Al, 

exchangeable Ca. 

 The low concentration of organic carbon and organic matter in the Ladakh 

lakes could be attributed to sparse cover and low productivity of macrophytes 

and other primary producers and short growing season. In contrast to Tso 

Morari and Tso Khar, significantly high concentration of organic carbon and 

organic matter in the Manasbal lake could be attributed to high primary 

productivity of macrophytes which cover 90% of the lake and high organic 

loading from the catchment. 

 The relatively high concentration of exchangeable Manasbal NH4-N and NO3-

N of Manasbal lake is related to organic loading and high inputs of 

autochthonous organic matter from the macrophytic vegetation whereas, low 

NH4-N and NO3-N  in Tso Morari and Tso Khar are related to  low 

productivity and short growing season. 

 The exchangeable cations in Tso Morari and Tso Khar were influenced by 

selective   precipitation of salts like, calcite, dolomite, halite and crossnite 

during the evolution process of the brine, while the exchangeable cations in 

Manasbal lake were influenced by catchment lithology. 

 During the investigation 38 macrophytic species, belonging to 29 genera and 

23 families were recorded from the three lakes. Potamogeton pectinatus was 
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the only species occurring in all the three lakes. The Tso Morari recorded 

monospecific strands of P. pectinatus in its littoral zone only. The Tso Khar 

recorded mixed stands of P. pectinatus and Ranunculus aquatalis in fresh 

water zone only in its freshwater zone and the saline area didn’t support any 

macrophytic vegetation. The low macrophyte diversity in both these waters is 

attributable to high altitude and salinity which limit speciation and restrict 

macrophytic growth.  

 The macrophytic vegetation at Manasbal lake was represented by 37 species 

belonging to 22 families and 28 genera. The macrophytic community of 

Manasbal Lake was represented by all the four life form-classes-emergents 

(40%), rooted floating leaf type (22%), submerged (27%) and free floating 

(11%). However, the submerged macrophytes cover significant area of the 

lake, while as emergent floating and rooted floating types together constituted 

less than 20% of the lake area. 

 Most of macrophytic species found in Manasbal are cosmopolitan and show no 

preference for sediments of a particular fertility due to their similar 

morphological and nutritional requirements. However species like Chara spp, 

M. spicatum, H. verticillata preferred high transparency, low concentrations of 

phosphorus, conductivity and organic carbon, whereas C. demersum and P. 

pectinatus were associated with high values of total phosphorous, organic 

matter and conductivity. However nutrient preferences to community level are 

apparent than individual species which is reflected by high species diversity 

and richness at least polluted sites species. 

 The geochemistry of the lake sediments, which was in itself influenced by the 

chemistry of the inflowing water and the evapo-concentration process in the 

lakes, governs the occurrence and abundance of the various macrophytes taxa 

in the three lakes. 
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Air 

temperature

Water 

temperature
Depth Transparency pH Cond DO CO2 Alkalinity TH Ca Mg Na K Cl NO3 NH4 TP SO4 SiO2

Water temp. .844(**)

Depth 0.154 -0.017

Transparency .251(*) 0.066 .943(**)

pH 0.081 0.048 0.186 0.191

Cond 0.158 0.102 .520(**) .541(**) .391(**)

DO -.290(*) -.256(*) -.345(**) -.333(**) -0.21 -.328(**)

CO2 -0.171 -0.134 -.270(*) -.290(*) -.660(**) -.481(**) .364(**)

Alkalinity 0.051 0.043 .363(**) .343(**) .441(**) .667(**) -0.101 -.487(**)

Hardness .268(*) 0.184 .520(**) .487(**) .312(**) .694(**) -.301(*) -.405(**) .636(**)

Ca 0.084 0.083 -0.024 -0.039 -0.228 -0.167 -0.134 0.021 -.301(*) 0.075

Mg .243(*) 0.15 .480(**) .478(**) .327(**) .639(**) -.272(*) -.421(**) .601(**) .872(**) -0.019

Na 0.164 0.047 .535(**) .539(**) .484(**) .810(**) -.270(*) -.492(**) .753(**) .667(**) -.287(*) .643(**)

K 0.131 0.039 .381(**) .428(**) 0.179 .408(**) -0.001 -0.194 .405(**) .277(*) -0.208 0.201 .597(**)

Cl 0.02 -0.013 .290(*) .289(*) .364(**) .266(*) -.286(*) -.359(**) .268(*) .309(**) 0.077 .310(**) .419(**) .249(*)

NO3 -0.16 -0.172 0.139 0.08 0.126 0.082 0.06 -0.036 0.081 -0.075 -.254(*) -0.041 0.083 -0.066 -0.045

NH4 0.181 .234(*) -0.117 -0.138 -0.222 -0.155 0.104 0.07 -0.149 0.029 .336(**) 0.008 -.248(*) -0.12 0.194 -0.221

TP -0.027 0.049 .282(*) 0.228 .291(*) .475(**) -0.061 -.355(**) .463(**) .404(**) -0.044 .257(*) .436(**) 0.157 .401(**) 0.086 0.008

SO4 -0.053 -0.119 .620(**) .624(**) .289(*) .664(**) -.240(*) -.414(**) .567(**) .507(**) -0.071 .518(**) .735(**) .463(**) .469(**) 0.063 -0.184 .428(**)

SiO2 0.163 0.188 0.216 0.135 -0.067 .310(**) 0.066 -0.047 .357(**) .276(*) -0.201 .241(*) .327(**) .302(**) -0.074 -0.021 0.215 0.066 0.051

TDS -0.123 -0.208 .555(**) .490(**) .424(**) .560(**) -.278(*) -.459(**) .627(**) .486(**) -0.061 .465(**) .605(**) .270(*) .479(**) 0.162 -.315(**) .421(**) .634(**) 0.107

**  Correlation is significant at the 0.01 level (2-tailed). *  Correlation is significant at the 0.05 level (2-tailed). N=72

Table I. Pearson's correlations coefficients calculated for physico-chemical parameters of water in Tso Morari lake



 Air temp.
Water 

temp.
Depth TransP. pH Cond DO CO2 Talk TH Ca Mg Na K Cl NO3 NH4 TP SO4 SiO2

Water temp. .858(**)

Depth .373(*) .551(**)

Transparency .390(**) .431(**) .588(**)

pH 0.121 .379(*) .381(**) 0.078

Cond 0.006 0.044 -0.04 -0.254 0.218

DO -0.231 -0.21 0.075 0.268 -0.168 -.601(**)

CO2 -0.137 -0.276 -.324(*) -0.106 -.635(**) -.376(*) 0.324

Alkalinity 0.072 -0.001 -0.108 -0.29 0.199 .742(**) -.773(**) -.426(**)

Hardness 0.056 0.084 0.002 -0.265 .297(*) .833(**) -.710(**) -.388(**) .860(**)

Ca 0.175 0.151 -0.094 -0.068 0.209 .649(**) -.558(**) -.312(*) .625(**) .676(**)

Mg 0.043 0.061 -0.202 -.295(*) 0.205 .850(**) -.611(**) -.337(*) .769(**) .858(**) .596(**)

Na 0.01 0.037 0.008 -.312(*) 0.254 .920(**) -.596(**) -.351(*) .719(**) .804(**) .592(**) .758(**)

K 0.053 0.048 0.229 -0.121 0.121 .688(**) -.610(**) -0.275 .578(**) .592(**) .368(*) .360(*) .721(**)

Cl 0.059 0.124 -0.017 0.005 0.268 .826(**) -.549(**) -.315(*) .673(**) .831(**) .658(**) .807(**) .760(**) .475(**)

NO3 0.189 0.153 -.358(*) -.390(**) 0.141 .673(**) -.642(**) -0.272 .606(**) .589(**) .605(**) .783(**) .644(**) 0.239 .492(**)

NH4 -0.232 -0.096 -0.115 -0.074 .366(*) 0.274 -0.14 -0.271 0.19 0.2 .351(*) 0.247 0.205 0.137 0.201 0.266

TP 0.101 -0.113 -0.073 0.002 -0.153 0.169 -.447(**) -0.153 .455(**) 0.203 0.083 0.042 0.215 .498(**) 0.043 0.099 -0.037

SO4 -0.175 -0.174 0.079 -0.175 0.179 .652(**) -.586(**) -.391(**) .592(**) .631(**) 0.289 .424(**) .607(**) .731(**) .530(**) 0.137 0.079 .484(**)

SiO2 0.222 0.159 0.192 -0.029 0.217 -0.171 -0.077 -0.105 -0.011 -0.059 -0.227 -0.117 -0.15 -0.033 -.294(*) -0.147 0.086 0.197 -0.031

TDS 0.013 0.082 0.064 -0.287 0.271 .712(**) -.440(**) -.400(**) .601(**) .678(**) .502(**) .515(**) .704(**) .761(**) .528(**) .439(**) .319(*) 0.239 .616(**) 0.042

**  Correlation is significant at the 0.01 level (2-tailed). *  Correlation is significant at the 0.05 level (2-tailed). N=45

Table II. Pearson's correlations coefficients calculated for physico-chemical parameters  of water in Tso Khar lake



 
Air 

temperature

Water 

temperature
Depth Transparency pH Cond DO CO2 Alkalinity TH Ca Mg Na K Cl NO3 NH4 TP SO4 SiO2

Water temp. .842(**)

Depth .184(*) -0.082

Transparency 0.07 .241(**) .491(**)

pH .394(**) .710(**) -.395(**) .241(**)

Cond -0.078 -.398(**) .269(**) -.387(**) -.505(**)

DO -.354(**) 0.026 -.522(**) .315(**) .515(**) -.501(**)

CO2 -0.038 -.390(**) .469(**) -.276(**) -.745(**) .500(**) -.671(**)

Alkalinity -0.103 -.503(**) .494(**) -.321(**) -.748(**) .621(**) -.680(**) .720(**)

Hardness -0.134 -.536(**) .591(**) -.226(**) -.782(**) .634(**) -.668(**) .850(**) .806(**)

Ca -.391(**) -.574(**) .366(**) -.216(**) -.660(**) .462(**) -.401(**) .704(**) .596(**) .803(**)

Mg -.308(**) -.500(**) .438(**) -0.141 -.616(**) .439(**) -.425(**) .700(**) .587(**) .771(**) .891(**)

Na -.253(**) -.505(**) .386(**) -.285(**) -.587(**) .556(**) -.537(**) .618(**) .614(**) .736(**) .693(**) .708(**)

K -.403(**) -.509(**) 0.103 -.365(**) -.567(**) .433(**) -.363(**) .511(**) .485(**) .524(**) .584(**) .532(**) .672(**)

Cl -0.062 -.205(*) 0.095 -.448(**) -.348(**) .336(**) -.483(**) .458(**) .415(**) .432(**) .451(**) .408(**) .433(**) .472(**)

NO3 -0.163 -.275(**) -0.11 -.503(**) -.342(**) .483(**) -.285(**) .357(**) .360(**) .396(**) .422(**) .360(**) .447(**) .505(**) .443(**)

NH4 0.069 -.376(**) .588(**) -.373(**) -.686(**) .665(**) -.835(**) .777(**) .835(**) .870(**) .622(**) .620(**) .721(**) .515(**) .517(**) .386(**)

TP -.175(*) -.517(**) .282(**) -.412(**) -.698(**) .600(**) -.596(**) .676(**) .654(**) .765(**) .573(**) .555(**) .708(**) .703(**) .518(**) .513(**) .754(**)

SO4 -0.042 -.281(**) .346(**) -.260(**) -.499(**) .364(**) -.512(**) .636(**) .541(**) .644(**) .657(**) .661(**) .524(**) .430(**) .546(**) .289(**) .628(**) .520(**)

SiO2 -0.044 -.418(**) .650(**) -.198(*) -.696(**) .568(**) -.749(**) .739(**) .800(**) .803(**) .628(**) .627(**) .650(**) .471(**) .476(**) .239(**) .885(**) .620(**) .641(**)

TDS .259(**) 0.037 .330(**) -.209(*) -.176(*) .401(**) -.499(**) .329(**) .405(**) .366(**) .167(*) 0.158 .284(**) .224(**) .250(**) .248(**) .521(**) .290(**) .334(**) .484(**)

**  Correlation is significant at the 0.01 level (2-tailed). *  Correlation is significant at the 0.05 level (2-tailed). N=144

Table III. Pearson's correlations coefficients calculated for physico-chemical parameters  of water in Manasbal lake.



 pH Cond OC OM NO3 NH4 ExP TP ExCa ExMg ExNa

Cond -.437(**)

OC -.385(**) .621(**)

OM -.386(**) .624(**) .996(**)

NO3 -.341(*) .328(*) .469(**) .451(**)

NH4 -.397(**) .591(**) .764(**) .758(**) .627(**)

ExP -.466(**) .595(**) .767(**) .750(**) 0.275 .729(**)

TP -.502(**) .496(**) .807(**) .805(**) .327(*) .764(**) .821(**)

ExCa -.568(**) .751(**) .786(**) .781(**) .608(**) .764(**) .667(**) .669(**)

ExMg -.526(**) .718(**) .796(**) .786(**) .561(**) .736(**) .685(**) .624(**) .937(**)

ExNa -.438(**) .649(**) .696(**) .698(**) .475(**) .796(**) .710(**) .669(**) .775(**) .712(**)

ExK -.450(**) .548(**) .672(**) .677(**) .535(**) .777(**) .568(**) .644(**) .713(**) .671(**) .813(**)

**  Correlation is significant at the 0.01 level (2-tailed). *  Correlation is significant at the 0.05 level (2-tailed). N=45

 Table IV. Pearson's correlations coefficients calculated for chemical parameters of sediments in Tso Morari lake



 pH Cond OC OM NO3 NH4 ExP TP ExCa ExMg ExNa

Cond .936(**)

OC -.949(**) -.924(**)

OM -.950(**) -.924(**) 1.000(**)

NO3 .888(**) .955(**) -.887(**) -.886(**)

NH4 -0.139 0.047 0.166 0.167 0.204

ExP -.931(**) -.933(**) .915(**) .915(**) -.893(**) 0.079

TP -.957(**) -.901(**) .955(**) .956(**) -.861(**) 0.22 .941(**)

ExCa .773(**) .893(**) -.769(**) -.769(**) .914(**) 0.259 -.834(**) -.755(**)

ExMg .502(**) .638(**) -.604(**) -.605(**) .628(**) 0.13 -.550(**) -.535(**) .698(**)

ExNa .934(**) .965(**) -.917(**) -.917(**) .937(**) 0.059 -.919(**) -.902(**) .892(**) .610(**)

ExK .933(**) .959(**) -.915(**) -.915(**) .952(**) 0.023 -.926(**) -.901(**) .900(**) .582(**) .969(**)

**  Correlation is significant at the 0.01 level (2-tailed). *  Correlation is significant at the 0.05 level (2-tailed). N=36

Table V. Pearson's correlations coefficients calculated for chemical parameters of sediments in Tso Khar lake



 pH Cond OC OM NO3 NH4 ExP TP ExCa ExMg ExNa

Cond -.477(**)

OC -.328(*) .857(**)

OM -.323(*) .863(**) .997(**)

NO3 .511(**) 0.099 .337(*) .327(*)

NH4 -.530(**) .879(**) .779(**) .779(**) 0.182

ExP -.442(**) .810(**) .736(**) .734(**) 0.218 .854(**)

TP -.572(**) .861(**) .752(**) .754(**) 0.038 .803(**) .878(**)

ExCa -0.098 .537(**) .381(*) .386(*) 0.045 .536(**) .337(*) 0.285

ExMg -0.018 .537(**) .381(*) .391(*) 0.154 .508(**) .352(*) 0.304 .914(**)

ExNa -.559(**) .808(**) .616(**) .615(**) -0.122 .767(**) .677(**) .701(**) .703(**) .611(**)

ExK -.414(**) .867(**) .827(**) .821(**) 0.091 .803(**) .688(**) .699(**) .685(**) .615(**) .829(**)

**  Correlation is significant at the 0.01 level (2-tailed). *  Correlation is significant at the 0.05 level (2-tailed). N=40

Table VI. Pearson's correlations coefficients calculated for chemical parameters of sediments in Manasbal lake.
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Table VII. ANOVA between sites for physico-chemical parameters of 
water in Tso Morari lake 

 

ANOVA

346.151 7 49.450 .586 .765

4559.753 54 84.440

4905.904 61

75.953 7 10.850 .443 .871

1322.724 54 24.495

1398.677 61

21283.873 7 3040.553 4321.933 .000

37.990 54 .704

21321.863 61

2676.936 7 382.419 63.709 .000

324.143 54 6.003

3001.079 61

2.834 7 .405 2.590 .022

8.439 54 .156

11.273 61

21312911 7 3044701.525 27.346 .000

6012453 54 111341.718

27325363 61

15.747 7 2.250 1.462 .200

83.066 54 1.538

98.814 61

472.658 7 67.523 3.462 .004

1053.278 54 19.505

1525.935 61

1036359 7 148051.267 16.627 .000

480827.0 54 8904.204

1517186 61

8789288 7 1255612.639 8.577 .000

7905517 54 146398.467

16694806 61

109119.2 7 15588.457 1.319 .259

638102.5 54 11816.714

747221.7 61

555910.0 7 79415.721 8.244 .000

520213.9 54 9633.591

1076124 61

38205.527 7 5457.932 19.752 .000

14921.183 54 276.318

53126.710 61

5292.106 7 756.015 4.841 .000

8433.587 54 156.178

13725.694 61

2644.426 7 377.775 2.172 .051

9391.913 54 173.924

12036.339 61

386773.1 7 55253.299 1.517 .181

1966948 54 36424.956

2353721 61

1650.437 7 235.777 .415 .889

30654.611 54 567.678

32305.048 61

2064496 7 294928.053 4.592 .000

3468054 54 64223.222

5532550 61

983027.4 7 140432.485 13.333 .000

568746.0 54 10532.333

1551773 61

221.004 7 31.572 .799 .592

2134.238 54 39.523

2355.242 61

2407774 7 343967.669 10.870 .000

1708777 54 31644.022

4116551 61

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Airtemperature

Watertemperature

Depth

Transparency

pH

Cond

DO

CO2

Talk

TH

Ca

Mg

Na

K

Cl

NO3

NH4

TP

SO4

SiO2

TDS

Sum of

Squares df Mean Square F Sig.
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Table VIII. ANOVA between sites for physico-chemical parameters of 
water in Tso Khar lake 

 
 

ANOVA

133.599 4 33.400 .342 .848

3029.151 31 97.715

3162.750 35

71.783 4 17.946 .304 .873

1827.905 31 58.965

1899.688 35

12.074 4 3.019 5.542 .002

16.885 31 .545

28.959 35

1.014 4 .253 1.600 .199

4.909 31 .158

5.923 35

.697 4 .174 1.064 .391

5.078 31 .164

5.775 35

3.32E+09 4 829380191.5 51.667 .000

4.98E+08 31 16052565.67

3.82E+09 35

387.381 4 96.845 3.689 .014

813.841 31 26.253

1201.222 35

26739952 4 6684988.119 16.218 .000

12778235 31 412201.132

39518188 35

47058323 4 11764580.68 29.325 .000

12436511 31 401177.783

59494834 35

171019.7 4 42754.917 8.896 .000

148987.3 31 4806.043

320007.0 35

4163888 4 1040972.076 31.007 .000

1040741 31 33572.301

5204630 35

3.27E+09 4 816455849.6 42.874 .000

5.90E+08 31 19043177.14

3.86E+09 35

95314613 4 23828653.22 18.614 .000

39684379 31 1280141.269

1.35E+08 35

1.81E+08 4 45347932.91 13.426 .000

1.05E+08 31 3377720.294

2.86E+08 35

22972519 4 5743129.767 62.238 .000

2860586 31 92276.965

25833105 35

37388.619 4 9347.155 .590 .672

490847.3 31 15833.783

528235.9 35

211396.5 4 52849.122 .927 .461

1767463 31 57014.940

1978860 35

781588.2 4 195397.043 12.852 .000

471314.6 31 15203.696

1252903 35

49.516 4 12.379 .349 .842

1098.484 31 35.435

1148.000 35

6843558 4 1710889.584 13.042 .000

4066810 31 131187.433

10910369 35

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Total
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Table IX. ANOVA between sites for physico-chemical parameters of 
water in Manasbal lake 

 
 
 
 
 

ANOVA

2853.909 5 570.782 10.507 .000

7496.651 138 54.324

10350.560 143

1282.735 5 256.547 5.200 .000

6807.905 138 49.333

8090.640 143

3665.411 5 733.082 3365.121 .000

30.063 138 .218

3695.474 143

421.199 5 84.240 601.298 .000

19.333 138 .140

440.532 143

51.365 5 10.273 23.444 .000

59.593 136 .438

110.957 141

401071.9 5 80214.379 26.491 .000

417855.0 138 3027.935

818926.9 143

1794.759 5 358.952 75.326 .000

657.615 138 4.765

2452.373 143

5514.056 5 1102.811 45.549 .000

3341.167 138 24.211

8855.222 143

604666.1 5 120933.217 71.176 .000

234470.9 138 1699.065

839137.0 143

386421.1 5 77284.211 85.871 .000

124200.5 138 900.004

510621.6 143

10849.729 5 2169.946 17.823 .000

16801.708 138 121.752

27651.438 143

854.583 5 170.917 19.669 .000

1199.167 138 8.690

2053.750 143

1148.285 5 229.657 37.623 .000

842.375 138 6.104

1990.660 143

91.258 5 18.252 13.783 .000

182.740 138 1.324

273.998 143

2822.583 5 564.517 18.552 .000

4199.167 138 30.429

7021.750 143

282104.6 5 56420.911 16.834 .000

462512.7 138 3351.541

744617.2 143

5267524 5 1053504.867 730.060 .000

199139.4 138 1443.039

5466664 143

1001107 5 200221.328 36.587 .000

755195.3 138 5472.430

1756302 143

206.368 5 41.274 17.654 .000

322.625 138 2.338

528.993 143

2513.479 5 502.696 128.477 .000

539.958 138 3.913

3053.438 143

77212.951 5 15442.590 14.490 .000

147069.2 138 1065.719

224282.2 143

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Table X. ANOVA between sites for physico-chemical parameters of 
sediments in Tso Morari lake 

 

 

 

ANOVA

.488 4 .122 1.213 .323

3.524 35 .101

4.013 39

5017070 4 1254267.579 26.543 .000

1653927 35 47255.062

6670998 39

50.223 4 12.556 17.498 .000

25.114 35 .718

75.338 39

142.143 4 35.536 15.911 .000

78.172 35 2.233

220.315 39

8184.527 4 2046.132 4.128 .008

17347.873 35 495.654

25532.400 39

63333.553 4 15833.388 13.971 .000

39666.222 35 1133.321

102999.8 39

542599.3 4 135649.824 31.747 .000

149551.5 35 4272.899

692150.8 39

2783009 4 695752.307 20.299 .000

1199611 35 34274.593

3982620 39

412.761 4 103.190 6.560 .000

550.533 35 15.730

963.294 39

1197.729 4 299.432 7.372 .000

1421.689 35 40.620

2619.418 39

12.277 4 3.069 6.895 .000

15.579 35 .445

27.856 39

1.535 4 .384 5.877 .001

2.285 35 .065

3.820 39

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

pH

Cond

OC

OM

NO3

NH4

ExP

TP

ExCa

ExMg

ExNa

ExK

Sum of

Squares df Mean Square F Sig.



Appendix II 

 

 

Table XI. ANOVA between sites for physico-chemical parameters of 
sediments in Tso Khar lake 

 
 

ANOVA

22.737 3 7.579 91.439 .000

2.155 26 .083

24.892 29

1.38E+10 3 4602625051 275.191 .000

4.35E+08 26 16725224.36

1.42E+10 29

67.951 3 22.650 83.814 .000

7.026 26 .270

74.978 29

199.851 3 66.617 84.101 .000

20.595 26 .792

220.446 29

377263.8 3 125754.594 106.241 .000

30775.583 26 1183.676

408039.4 29

161.533 3 53.844 .034 .991

40720.333 26 1566.167

40881.867 29

600557.6 3 200185.864 86.569 .000

60123.208 26 2312.431

660680.8 29

1711733 3 570577.553 50.160 .000

295756.7 26 11375.258

2007489 29

1842.990 3 614.330 25.836 .000

618.228 26 23.778

2461.219 29

493.961 3 164.654 9.507 .000

450.309 26 17.320

944.270 29

4569925 3 1523308.384 131.260 .000

301736.9 26 11605.265

4871662 29

309174.0 3 103058.005 146.710 .000

18264.012 26 702.462

327438.0 29

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Table XII. ANOVA between sites for physico-chemical parameters of 
sediments in Manasbal lake 

 
 
 
 
 

ANOVA

3.280 4 .820 33.513 .000

.856 35 .024

4.136 39

606022.8 4 151505.688 13.822 .000

383638.6 35 10961.104

989661.4 39

59.656 4 14.914 13.771 .000

37.904 35 1.083

97.560 39

178.067 4 44.517 13.491 .000

115.491 35 3.300

293.558 39

28773.650 4 7193.413 4.361 .006

57735.125 35 1649.575

86508.775 39

134767.6 4 33691.900 12.728 .000

92649.375 35 2647.125

227417.0 39

107791.4 4 26947.838 8.966 .000

105196.6 35 3005.618

212988.0 39

2127423 4 531855.713 19.988 .000

931292.1 35 26608.346

3058715 39

459.416 4 114.854 1.826 .146

2201.375 35 62.896

2660.791 39

19.804 4 4.951 .797 .536

217.540 35 6.215

237.344 39

1.212 4 .303 12.258 .000

.865 35 .025

2.077 39

.129 4 .032 8.531 .000

.132 35 .004

.262 39

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Table XIII. Descriptive statistics of water samples between vegetative 
and non vegetative sites in Tso Morari Lake  

 

 

Descriptives

24 9.0542 8.41510 1.71772 5.5008 12.6076 -7.00 22.00

20 11.9500 8.51917 1.90495 7.9629 15.9371 -3.00 26.00

44 10.3705 8.48960 1.27986 7.7894 12.9515 -7.00 26.00

24 8.8333 5.27848 1.07746 6.6044 11.0622 1.00 17.00

20 8.2000 4.27169 .95518 6.2008 10.1992 2.00 19.00

44 8.5455 4.80288 .72406 7.0852 10.0057 1.00 19.00

24 4.2375 1.65235 .33729 3.5398 4.9352 2.00 6.90

20 41.7200 3.89664 .87131 39.8963 43.5437 34.50 46.00

44 21.2750 19.09455 2.87861 15.4697 27.0803 2.00 46.00

24 3.4000 1.20362 .24569 2.8918 3.9082 2.00 5.50

20 15.7700 4.06540 .90905 13.8673 17.6727 11.20 23.00

44 9.0227 6.84822 1.03241 6.9407 11.1048 2.00 23.00

24 8.8133 .35510 .07248 8.6634 8.9633 8.05 9.29

20 8.7615 .22481 .05027 8.6563 8.8667 8.00 9.04

44 8.7898 .30076 .04534 8.6983 8.8812 8.00 9.29

24 1446.1667 380.10315 77.58823 1285.6632 1606.6702 488.00 1937.00

20 1533.8000 421.36840 94.22084 1336.5935 1731.0065 1035.00 2390.00

44 1486.0000 397.08988 59.86355 1365.2736 1606.7264 488.00 2390.00

24 7.9167 1.15558 .23588 7.4287 8.4046 6.00 11.00

20 7.2850 1.03785 .23207 6.7993 7.7707 4.40 8.70

44 7.6295 1.13641 .17132 7.2840 7.9750 4.40 11.00

24 .1250 .61237 .12500 -.1336 .3836 .00 3.00

20 .4000 1.78885 .40000 -.4372 1.2372 .00 8.00

44 .2500 1.27817 .19269 -.1386 .6386 .00 8.00

24 371.7917 101.69134 20.75766 328.8512 414.7322 168.00 520.00

20 349.8000 114.96022 25.70589 295.9970 403.6030 180.00 496.00

44 361.7955 107.20803 16.16222 329.2012 394.3897 168.00 520.00

24 866.1667 418.12206 85.34881 689.6092 1042.7241 184.00 1800.00

20 1049.0000 459.74341 102.80175 833.8335 1264.1665 460.00 2100.00

44 949.2727 442.02454 66.63771 814.8850 1083.6605 184.00 2100.00

24 28.4583 17.66101 3.60504 21.0007 35.9159 5.00 86.00

20 74.6500 192.85426 43.12352 -15.6086 164.9086 5.00 892.00

44 49.4545 130.92807 19.73815 9.6488 89.2603 5.00 892.00

24 200.7917 111.87764 22.83693 153.5499 248.0335 66.00 560.00

20 238.2500 117.99950 26.38549 183.0245 293.4755 22.00 485.00

44 217.8182 114.90568 17.32268 182.8837 252.7527 22.00 560.00

24 64.5000 21.39077 4.36637 55.4675 73.5325 2.00 97.00

20 72.1000 12.08261 2.70175 66.4452 77.7548 40.00 89.00

44 67.9545 17.99736 2.71320 62.4828 73.4262 2.00 97.00

24 18.0417 10.12736 2.06724 13.7653 22.3181 1.00 37.00

20 23.8000 19.64045 4.39174 14.6080 32.9920 2.00 77.00

44 20.6591 15.28785 2.30473 16.0112 25.3070 1.00 77.00

24 27.3750 15.39851 3.14321 20.8728 33.8772 2.00 54.00

20 29.8500 10.71779 2.39657 24.8339 34.8661 10.00 46.00

44 28.5000 13.38430 2.01776 24.4308 32.5692 2.00 54.00

24 291.5000 185.36146 37.83675 213.2287 369.7713 115.00 887.00

20 343.1500 178.54272 39.92337 259.5894 426.7106 102.00 664.00

44 314.9773 182.04452 27.44424 259.6307 370.3239 102.00 887.00

24 45.0833 22.66949 4.62739 35.5108 54.6558 6.00 87.00

20 42.0500 23.13911 5.17406 31.2206 52.8794 11.00 86.00

44 43.7045 22.66703 3.41718 36.8131 50.5960 6.00 87.00

24 494.0417 275.11713 56.15805 377.8699 610.2134 100.00 1080.00

20 499.3500 332.35401 74.31662 343.8035 654.8965 128.00 1638.00

44 496.4545 298.83062 45.05041 405.6017 587.3074 100.00 1638.00

24 235.2500 132.86549 27.12106 179.1458 291.3542 23.00 480.00

20 343.5000 110.48482 24.70516 291.7915 395.2085 101.00 520.00

44 284.4545 133.45053 20.11842 243.8819 325.0272 23.00 520.00

24 8.0417 5.22934 1.06743 5.8335 10.2498 1.00 17.00

20 9.1500 8.24797 1.84430 5.2898 13.0102 .00 28.00

44 8.5455 6.70805 1.01128 6.5060 10.5849 .00 28.00

24 461.1667 180.92892 36.93196 384.7671 537.5663 100.00 840.00

20 588.1000 258.83502 57.87727 466.9615 709.2385 100.00 980.00

44 518.8636 226.27392 34.11208 450.0701 587.6572 100.00 980.00

1
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Table XIV. ANOVA between vegetative and non vegetative sites for 
physico-chemical parameters of water in Tso Morari lake  

 
 

ANOVA

91.482 1 91.482 1.277 .265

3007.670 42 71.611

3099.152 43

4.376 1 4.376 .186 .668

987.533 42 23.513

991.909 43

15326.594 1 15326.594 1832.447 .000

351.288 42 8.364

15677.882 43

1669.275 1 1669.275 201.846 .000

347.342 42 8.270

2016.617 43

.029 1 .029 .319 .575

3.860 42 .092

3.890 43

83777.467 1 83777.467 .525 .473

6696479 42 159439.965

6780256 43

4.353 1 4.353 3.572 .066

51.179 42 1.219

55.532 43

.825 1 .825 .499 .484

69.425 42 1.653

70.250 43

5276.001 1 5276.001 .453 .505

488947.2 42 11641.599

494223.2 43

364669.4 1 364669.394 1.906 .175

8036915 42 191355.127

8401585 43

23276.401 1 23276.401 1.370 .248

713836.5 42 16996.107

737112.9 43

15306.837 1 15306.837 1.164 .287

552435.7 42 13153.231

567742.5 43

630.109 1 630.109 1.990 .166

13297.800 42 316.614

13927.909 43

361.728 1 361.728 1.568 .217

9688.158 42 230.670

10049.886 43

66.825 1 66.825 .368 .548

7636.175 42 181.814

7703.000 43

29102.427 1 29102.427 .876 .355

1395927 42 33236.346

1425029 43

100.376 1 100.376 .192 .664

21992.783 42 523.638

22093.159 43

307.401 1 307.401 .003 .954

3839582 42 91418.607

3839889 43

127833.4 1 127833.409 8.416 .006

637955.5 42 15189.417

765788.9 43

13.401 1 13.401 .293 .591

1921.508 42 45.750

1934.909 43

175768.0 1 175768.048 3.644 .063

2025827 42 48233.979

2201595 43
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Table XV. Descriptive statistics of water samples between vegetative 
and non vegetative sites in Tso Khar Lake  

 
 

Descriptives

14 9.7143 10.28388 2.74848 3.7765 15.6520 -7.00 25.00

15 10.0000 8.96023 2.31352 5.0380 14.9620 -5.00 25.00

29 9.8621 9.44807 1.75446 6.2682 13.4559 -7.00 25.00

14 11.3214 7.64503 2.04322 6.9073 15.7355 .00 23.00

15 11.5333 8.17546 2.11089 7.0059 16.0608 .00 23.00

29 11.4310 7.78245 1.44516 8.4707 14.3913 .00 23.00

14 1.0714 1.07305 .28678 .4519 1.6910 .00 2.80

15 1.2667 .82347 .21262 .8106 1.7227 .00 2.60

29 1.1724 .93995 .17454 .8149 1.5299 .00 2.80

14 .2786 .56046 .14979 -.0450 .6022 .00 2.20

15 .5200 .30519 .07880 .3510 .6890 .00 .80

29 .4034 .45551 .08459 .2302 .5767 .00 2.20

14 8.6229 .26134 .06985 8.4720 8.7738 8.25 9.03

15 8.5167 .48692 .12572 8.2470 8.7863 7.55 9.28

29 8.5679 .39137 .07268 8.4191 8.7168 7.55 9.28

14 20775.57 6654.16807 1778.401 16933.5692 24617.5737 11066.00 31000.00

15 1833.2000 1122.58504 289.85021 1211.5331 2454.8669 833.00 5140.00

29 10977.79 10676.34289 1982.547 6916.7295 15038.8568 833.00 31000.00

14 .1429 .53452 .14286 -.1658 .4515 .00 2.00

15 2.1333 5.42305 1.40023 -.8699 5.1365 .00 20.00

29 1.1724 3.98272 .73957 -.3425 2.6874 .00 20.00

14 2107.1429 928.12921 248.05296 1571.2570 2643.0287 144.00 3740.00

15 639.8667 582.47132 150.39345 317.3048 962.4285 68.00 1740.00

29 1348.2069 1061.30463 197.07932 944.5082 1751.9056 68.00 3740.00

14 2824.0714 937.04351 250.43541 2283.0386 3365.1042 1490.00 4672.00

15 555.1333 293.00143 75.65264 392.8745 717.3921 90.00 1160.00

29 1650.4828 1334.91245 247.88702 1142.7092 2158.2563 90.00 4672.00

14 195.1429 104.58479 27.95146 134.7574 255.5283 60.00 410.00

15 77.7333 52.68161 13.60233 48.5592 106.9074 12.00 196.00

29 134.4138 100.15542 18.59839 96.3167 172.5109 12.00 410.00

14 684.9286 381.09084 101.85081 464.8933 904.9639 198.00 1452.00

15 79.1333 46.39715 11.97969 53.4394 104.8272 33.00 177.00

29 371.5862 404.24661 75.06671 217.8190 525.3534 33.00 1452.00

14 19549.29 6790.21706 1814.762 15628.7311 23469.8403 12210.00 39986.00

15 47.3333 23.06100 5.95432 34.5626 60.1041 22.00 99.00

29 9462.0690 10943.82565 2032.217 5299.2603 13624.8776 22.00 39986.00

14 3030.7143 2098.84032 560.93867 1818.8800 4242.5486 1140.00 7250.00

15 20.9333 22.07606 5.70001 8.7080 33.1586 3.00 88.00

29 1473.9310 2094.82009 388.99833 677.1041 2270.7580 3.00 7250.00

14 4613.7857 2857.35852 763.66119 2963.9960 6263.5754 1240.00 9990.00

15 31.3333 21.55613 5.56577 19.3959 43.2707 10.00 82.00

29 2243.5517 3036.71437 563.90370 1088.4474 3398.6561 10.00 9990.00

14 1372.0714 1090.15260 291.35554 742.6361 2001.5068 191.00 2988.00

15 319.9333 193.47590 49.95526 212.7900 427.0767 49.00 746.00

29 827.8621 925.62437 171.88413 475.7734 1179.9508 49.00 2988.00

14 160.7143 69.27807 18.51534 120.7143 200.7143 78.00 345.00

15 94.8000 75.31382 19.44594 53.0926 136.5074 6.00 265.00

29 126.6207 78.66403 14.60754 96.6985 156.5429 6.00 345.00

14 439.3571 314.82415 84.14029 257.5831 621.1312 64.00 1228.00

15 360.8667 185.73248 47.95592 258.0115 463.7219 117.00 807.00

29 398.7586 254.67411 47.29180 301.8858 495.6315 64.00 1228.00

14 349.5714 212.23634 56.72255 227.0298 472.1130 181.00 787.00

15 135.7333 65.04445 16.79441 99.7129 171.7538 37.00 257.00

29 238.9655 186.69407 34.66822 167.9509 309.9801 37.00 787.00

14 10.0000 5.44906 1.45632 6.8538 13.1462 2.00 21.00

15 12.2000 6.80546 1.75716 8.4313 15.9687 4.00 28.00

29 11.1379 6.18018 1.14763 8.7871 13.4887 2.00 28.00

14 1251.5714 474.51477 126.81941 977.5948 1525.5481 905.00 2284.00

15 433.9333 340.36797 87.88263 245.4438 622.4228 100.00 960.00

29 828.6552 579.10444 107.53699 608.3756 1048.9347 100.00 2284.00

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2
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1

2
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Table XVI. ANOVA between vegetative and non vegetative sites for 
physico-chemical parameters of water in Tso Khar lake  

 

ANOVA

.591 1 .591 .006 .937

2498.857 27 92.550

2499.448 28

.325 1 .325 .005 .943

1695.537 27 62.798

1695.862 28

.276 1 .276 .305 .586

24.462 27 .906

24.738 28

.422 1 .422 2.115 .157

5.388 27 .200

5.810 28

.082 1 .082 .524 .475

4.207 27 .156

4.289 28

2.60E+09 1 2598304187 118.253 .000

5.93E+08 27 21972449.85

3.19E+09 28

28.690 1 28.690 1.865 .183

415.448 27 15.387

444.138 28

15589961 1 15589961.31 26.393 .000

15948329 27 590678.868

31538291 28

37279201 1 37279200.58 79.779 .000

12616555 27 467279.802

49895755 28

99822.387 1 99822.387 14.887 .001

181048.6 27 6705.505

280871.0 28

2657498 1 2657498.373 37.407 .000

1918131 27 71041.876

4575629 28

2.75E+09 1 2754085890 124.058 .000

5.99E+08 27 22199965.41

3.35E+09 28

65598072 1 65598072.07 30.924 .000

57273522 27 2121241.548

1.23E+08 28

1.52E+08 1 152060781.5 38.680 .000

1.06E+08 27 3931295.396

2.58E+08 28

8016168 1 8016167.586 13.550 .001

15973686 27 591617.995

23989853 28

31461.570 1 31461.570 5.990 .021

141803.3 27 5251.972

173264.8 28

44612.363 1 44612.363 .680 .417

1771437 27 65608.776

1816049 28

331124.6 1 331124.604 13.865 .001

644806.4 27 23881.717

975931.0 28

35.048 1 35.048 .915 .347

1034.400 27 38.311

1069.448 28

4841094 1 4841094.190 28.733 .000

4549040 27 168482.976

9390135 28

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups
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Cond
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Table XVII. Descriptive statistics of sediment samples between 
vegetative and non vegetative sites in Tso Morari Lake  

 
 
 
 
 
 
 
 
 

Descriptives

25 8.3964 .33940 .06788 8.2563 8.5365 7.80 8.90

15 8.4247 .29768 .07686 8.2598 8.5895 7.85 8.88

40 8.4070 .32076 .05072 8.3044 8.5096 7.80 8.90

25 1695.6000 383.37406 76.67481 1537.3510 1853.8490 930.00 2200.00

15 2068.0000 362.86952 93.69251 1867.0496 2268.9504 1630.00 2700.00

40 1835.2500 413.58339 65.39328 1702.9796 1967.5204 930.00 2700.00

25 2.6972 1.68166 .33633 2.0030 3.3914 .28 6.70

15 2.4800 .70832 .18289 2.0877 2.8723 1.20 3.60

40 2.6158 1.38987 .21976 2.1712 3.0603 .28 6.70

25 4.5620 2.87173 .57435 3.3766 5.7474 .48 11.50

15 4.2667 1.24135 .32052 3.5792 4.9541 2.00 6.20

40 4.4513 2.37678 .37580 3.6911 5.2114 .48 11.50

25 75.6400 28.55970 5.71194 63.8511 87.4289 30.00 134.00

15 76.0667 20.62407 5.32511 64.6454 87.4879 38.00 102.00

40 75.8000 25.58666 4.04561 67.6170 83.9830 30.00 134.00

25 106.7200 56.54093 11.30819 83.3811 130.0589 25.00 203.00

15 80.3333 37.55694 9.69716 59.5350 101.1317 32.00 168.00

40 96.8250 51.39085 8.12561 80.3894 113.2606 25.00 203.00

25 273.9200 148.02982 29.60596 212.8163 335.0237 50.00 480.00

15 196.6000 88.71930 22.90722 147.4689 245.7311 80.00 386.00

40 244.9250 133.21958 21.06386 202.3193 287.5307 50.00 480.00

25 1006.8800 366.22230 73.24446 855.7109 1158.0491 420.00 1630.00

15 774.4667 135.58596 35.00814 699.3817 849.5517 532.00 990.00

40 919.7250 319.55979 50.52684 817.5248 1021.9252 420.00 1630.00

25 17.2080 5.30856 1.06171 15.0167 19.3993 7.20 27.60

15 18.3533 4.42926 1.14363 15.9005 20.8062 10.60 26.00

40 17.6375 4.96989 .78581 16.0481 19.2269 7.20 27.60

25 25.2920 9.25342 1.85068 21.4724 29.1116 10.00 39.00

15 26.8667 6.21722 1.60528 23.4237 30.3096 15.20 35.00

40 25.8825 8.19540 1.29581 23.2615 28.5035 10.00 39.00

25 2.4360 .89437 .17887 2.0668 2.8052 1.20 4.30

15 2.3667 .78437 .20252 1.9323 2.8010 1.30 3.70

40 2.4100 .84514 .13363 2.1397 2.6803 1.20 4.30

25 .9720 .34943 .06989 .8278 1.1162 .50 1.80

15 .9200 .24842 .06414 .7824 1.0576 .50 1.30

40 .9525 .31296 .04948 .8524 1.0526 .50 1.80

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2

Total

1

2
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1

2

Total

1

2
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1

2
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Table XVIII. ANOVA between vegetative and non vegetative sites for 
physico-chemical parameters of sediments in Tso Morari 
lake  

 
 

ANOVA

.007 1 .007 .071 .791

4.005 38 .105

4.013 39

1300142 1 1300141.500 9.199 .004

5370856 38 141338.316

6670998 39

.442 1 .442 .224 .638

74.895 38 1.971

75.338 39

.818 1 .818 .142 .709

219.497 38 5.776

220.315 39

1.707 1 1.707 .003 .960

25530.693 38 671.860

25532.400 39

6527.402 1 6527.402 2.571 .117

96472.373 38 2538.747

102999.8 39

56047.335 1 56047.335 3.348 .075

636103.4 38 16739.564

692150.8 39

506399.6 1 506399.602 5.536 .024

3476220 38 91479.484

3982620 39

12.298 1 12.298 .491 .488

950.996 38 25.026

963.294 39

23.246 1 23.246 .340 .563

2596.172 38 68.320

2619.418 39

.045 1 .045 .062 .805

27.811 38 .732

27.856 39

.025 1 .025 .254 .617

3.794 38 .100

3.820 39

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Cond

OC

OM

NO3

NH4
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ExCa

ExMg

ExNa

ExK

Sum of

Squares df Mean Square F Sig.
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Table XIX. Descriptive statistics of sediment samples between 
vegetative and non vegetative sites in Tso Khar Lake  

 

Descriptives

14 8.2800 .35570 .09507 8.0746 8.4854 7.80 8.90

16 10.0194 .20927 .05232 9.9079 10.1309 9.70 10.40

30 9.2077 .92646 .16915 8.8617 9.5536 7.80 10.40

14 1444.2857 256.11639 68.44998 1296.4085 1592.1629 890.00 1760.00

16 44203.75 6271.81832 1567.955 40861.7339 47545.7661 35700.00 58600.00

30 24249.33 22161.42267 4046.104 15974.1221 32524.5446 890.00 58600.00

14 3.2107 .82414 .22026 2.7349 3.6866 2.10 5.20

16 .2369 .08761 .02190 .1902 .2836 .13 .40

30 1.6247 1.60793 .29357 1.0243 2.2251 .13 5.20

14 5.5036 1.41277 .37758 4.6879 6.3193 3.60 8.90

16 .4044 .15310 .03827 .3228 .4860 .22 .70

30 2.7840 2.75709 .50337 1.7545 3.8135 .22 8.90

14 82.3571 33.17229 8.86567 63.2040 101.5103 32.00 140.00

16 307.1250 33.18006 8.29502 289.4446 324.8054 260.00 380.00

30 202.2333 118.61839 21.65666 157.9405 246.5262 32.00 380.00

14 115.1429 44.15681 11.80140 89.6475 140.6382 48.00 206.00

16 116.8750 32.15768 8.03942 99.7394 134.0106 72.00 176.00

30 116.0667 37.54623 6.85497 102.0467 130.0867 48.00 206.00

14 335.6429 69.68899 18.62517 295.4056 375.8801 232.00 420.00

16 54.6875 23.32015 5.83004 42.2611 67.1139 25.00 103.00

30 185.8000 150.93739 27.55727 129.4391 242.1609 25.00 420.00

14 844.0714 130.69428 34.92952 768.6108 919.5321 630.00 1038.00

16 365.3750 70.44986 17.61247 327.8349 402.9151 236.00 480.00

30 588.7667 263.10411 48.03602 490.5220 687.0114 236.00 1038.00

14 14.8143 4.45004 1.18932 12.2449 17.3837 9.30 24.60

16 30.4875 4.96385 1.24096 27.8424 33.1326 19.60 38.20

30 23.1733 9.21247 1.68196 19.7333 26.6133 9.30 38.20

14 14.0714 4.88694 1.30609 11.2498 16.8931 7.80 23.00

16 20.8812 4.37831 1.09458 18.5482 23.2143 11.20 30.20

30 17.7033 5.70623 1.04181 15.5726 19.8341 7.80 30.20

14 2.7371 .56426 .15081 2.4113 3.0629 1.92 3.50

16 784.1250 144.39708 36.09927 707.1812 861.0688 513.00 947.00

30 419.4773 409.86381 74.83055 266.4317 572.5230 1.92 947.00

14 1.0557 .19864 .05309 .9410 1.1704 .62 1.34

16 203.3750 38.12589 9.53147 183.0591 223.6909 138.00 302.00

30 108.9593 106.25896 19.40014 69.2816 148.6371 .62 302.00

1

2

Total

1

2

Total

1

2

Total

1

2
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1

2
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2
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Table XX. ANOVA between vegetative and non vegetative sites for 
physico-chemical parameters of sediments in Tso Khar lake  

 
 
 

ANOVA

22.590 1 22.590 274.804 .000

2.302 28 .082

24.892 29

1.37E+10 1 1.365E+10 646.910 .000

5.91E+08 28 21103154.21

1.42E+10 29

66.033 1 66.033 206.703 .000

8.945 28 .319

74.978 29

194.147 1 194.147 206.706 .000

26.299 28 .939

220.446 29

377220.4 1 377220.402 342.717 .000

30818.964 28 1100.677

408039.4 29

22.402 1 22.402 .015 .902

40859.464 28 1459.267

40881.867 29

589388.1 1 589388.148 231.481 .000

71292.652 28 2546.166

660680.8 29

1710989 1 1710988.688 161.577 .000

296500.7 28 10589.310

2007489 29

1834.184 1 1834.184 81.905 .000

627.035 28 22.394

2461.219 29

346.257 1 346.257 16.212 .000

598.013 28 21.358

944.270 29

4558900 1 4558900.142 408.135 .000

312761.9 28 11170.067

4871662 29

305633.8 1 305633.764 392.480 .000

21804.263 28 778.724

327438.0 29

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total
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Within Groups

Total

Between Groups

Within Groups

Total
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Within Groups

Total
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Within Groups

Total

Between Groups
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Total
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Cond
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