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Preface 

 

 

The concept of information originated when an attempt was made to 

create a theoretical model for the transmission of information of various kinds. 

Information theory is a branch of Mathematical theory of probability and is 

applied in a wide variety of fields: Communication Theory, Thermodynamics, 

Economics, Cybernetics, Operation Research and Psychology. 

 

Much work has been done on this branch of probability and it had 

acquired a great currency in various research Journals of Statistics. In this light, 

I compiled my dissertation on the topic DIVERGENCE MEASURE IN 

INFORMATION THEORY AND RELIABILITY ANALYSIS  and the chapter wise 

scheme is as follows: 

 

Chapter-I:   gives the basic concepts and preliminary results. This makes the 

rest of the dissertation readable. 

 

Chapter-II: deals with some new generalization of entropy measure. 

 

Chapter-III: throws light on the measure of discrimination between lifetime 

distributions. 

 

Chapter-IV: discusses the cumulative residual entropy and its properties. 

 

Chapter- V: deals with the measure of information and its applications. 

 

The intent of this manuscript is to present a survey of the existing 

literature on divergence measures and reliability. It will be a useful document 

for the future researchers in this area. The area of divergence measure and 

reliability analysis is fertile and there is a lot of scope to work on this concept. 

 
Shabir Ahmad Chopan 
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Chapter – I 

 

 

he word ‗information‘ is very common word used in everyday language. 

Information transmission usually occurs through human voice (as in 

telephone, radio, television, etc.), books, newspapers, letters, etc. In all these 

cases a piece of information is transmitted from one place to another. However, 

one might like to quantitatively assess the quality of information contained in a 

piece of information. Few examples are as follows: 

1. Suppose, one states, ‗It is raining‘. Now the question is ‗Have we 

received much information?‘ Here it may be concluded that if a piece 

of information is presented, which was already known, then, 

obviously, no information has been received. Again, if one states that 

‗The sun will shine the whole day tomorrow‘. In this case 

aninformation has been received without being specific. Since we 

have been informed that something will happen about which we did 

not know, therefore, we do not have to be much surprised by the 

statement that was made. 

2. Suppose, we have come to know from the weather forecast on 

television that ‗The rain will continue for the next two days‘. In this 

case, we have received information more than in the first example 

above because a statement has been made whose truth is not at all so 

surprising. 

T 
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Information theory is a new branch of probability theory with extensive 

potential applications to the communication systems. Like several other 

branches of mathematics, information theory has a physical origin. It was 

principally originated by C.E.Shannon [122], through twooutstanding 

contributions to the mathematical theory of communications. These were 

followed by a flood of research papers speculating upon the possible 

applications of the newly born theory to broad spectrum of research areas such 

as pure mathematics, psychology, economics, biology, etc. 

 The first attempt to develop the mathematical measure for 

communication channels was made by Nyquist {[103], [104]} and Heartley[62]  

The main contributions which really gave birth to the so called information 

theory, came shortly after the second world war from the mathematicians C. E. 

Shannon [122] and N. Wiener [137]. In the paper entitled, ―the mathematical 

theory of communication‖ Shannon made the first attempt to deal with the new 

concept of the amount of information and its main consequences. Perhaps the 

most important theoretical result of information theory is the Shannon‘s 

fundamentaltheorem in which he first set up a mathematical model for 

quantitative measure of average amount of information provided by a 

probabilistic experiment and proved a number of interesting results which 

showed the importance and usefulness measure of information.  

 In the last 40 years, the information theory has been more precise and has 

grown into staggering literature. Some of its terminology even has become part 

of our daily language and has been brought to a point where it has found its 

wide applications in various fields of importance. e.g., The work of Bar-Hillel 

[15], B. Subrahmanyan and Siromoney[14]in Linguistic, Brillouins[23] in 

physics, Theil [132] in economics, Quastler [111] in Psychology, Quastler[110] 

in Biology and Chemistry, Wiener [137] in Cybernetics,Kerridge[78] in 

Statistical estimation, Kapur[73] in Operation Research, Kullback[80] in 

Mathematical Statistics, Zaheerudin[141] in Inference, Zadeh[139] in Fuzzy set 
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theory, Ebrahimi[43] in Survival analysis, Rao[113] in Anthropology, Mei [87] 

in Genetics, Sen [118] in Political Science and Chen [27] in pattern 

recognition.Jaynes[68] first stated the maximum entropy principle explicitly and 

during last three decades, the principle has been applied with the varying degree 

of success in fields such as Thermodynamics and Statistical Mechanics, Design 

of Experiment andContingency Tables, Search theory, Reliability theory, 

Banking, Insurance, Accountancy and Marketing, Transportation problems, etc. 

We restrict ourselves only to those aspects of information theory which are 

closely related to our research work. 

 In the context of reliability and lifetime distributions, there are some 

measures such as the hazard rate function or the mean residual lifetime function 

that have been used to characterize or compare the aging process of a 

component. Cox [29] and Kotz and Shanbhag[79] have shown that both the 

functions determines the distribution function uniquely. Ebrahimi[43] proposed 

an alternative characterization of a lifetime distribution in terms of conditional 

Shannon‘s entropy. Based on the measure of residual entropy, Ebrahimi and 

Pellery[41] and Ebrahimi and Kirmani[40] have studied some ordering and 

aging properties of lifetime distributions. Belzunceet al.[18] extended some 

results given by Nair and Rajesh [93] and Asadi and Ebrahimi [7] to 

characterize a distribution from functional relationships between the residual 

entropy and the mean residual life or hazard rate function. Various 

generalizations of Ebrahimi‘s measure have been proposed by many researchers 

including Abraham and Sankaran[1], Nanda and Paul[95] and Hooda and 

Kumar [66]. Measure of uncertainty in past lifetime distributions have been 

proposed by Crescenzo and Longobadri[30] and generalized by Nanda and Paul 

[93].Ebrahimi and Kirmani[40] and Gupta and Nanda [58] gave an overview of 

some aspects of residual divergence measures and studied some characterization 

theorems under the assumption that the distribution function satisfy the Cox‘s 

proportional hazard rate model. 
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1.1 Information Function and Shannon’s Entropy 

1.1.1 Information Function:Let 
iE be the ith  event with probability of 

occurrence    , the information function may be defined as 

    ii pph log               (1.1.1) 

1.1.2 Shannon’s Entropy:Let   be the sample space belongs torandom events. 

Compose this sample space into a finite number of mutually exclusive events

,,,, 21 nEEE  whose respective probabilities are ,,,, 21 nppp  then the average 

amount of information or Shannon‘s entropy is defined as 

     10,log
1

 


i

n

i

iii pppphEPH        (1.1.2) 

Some important properties of Shannon‘s entropy is given below: 

I) Continuity:  PH iscontinuous P , i.e. the measure should be continuous, 

so that changing the values of the probabilitiesby a very small amount 

should only change the entropy by a small amount. 

II) Symmetry:The measure remains unchanged if the outcomes xi are re-

ordered. 

     .,, 1221 ppHppH   

III) Maximality:The measure should be maximal if all the outcomes are 

equally likely (uncertainty is highest when all possible events are 

equiprobable). 

    









nn
HppH n

1
,,

1
,,max 1   

IV) Additivity:Theadditivity property states that for twoindependent 

probability distributions  ,,,, 21 nppp   ,,,, 21 mqqqQ   

    mn qqqpppH ,,,,,,, 21121   nn ppppH ,,,, 121   
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In addition to the above four basic properties, we have the 

following properties 

v) Expansibility:The value of the entropy function should not change, if an 

impossible outcome is added to the probability scheme, i.e. 

     .,,,0,,,, 21211 mmmm pppHpppH  
 

vi) For the two independent probabilitydistributions 

     ,,,,,,,, 2121 nm qqqQpppP    

 where  


n

j

j

m

i

i qp ,1,1
1

 

then the uncertainty of the joint scheme should be the sum of their 

uncertainties, i.e., 

      .QHPHQPH nmmn   

vii) Normality:The entropy becomes unity for two equally probable events, 

i.e. 

1
2

1
,

2

1









H  

1.1.3 Unit of Information:When the logarithm is taken with the base 2, the 

unit of information is called bit,when the natural logarithm is taken then the 

resulting unit is called Nat and if the logarithm is taken with the base 10, the 

unit of information is known as Heartley.  

It must be noted that the definition of Shannon‘s entropy though defined 

for a discrete random variable can be extended to situations when the random 

variable under consideration is continuous. 
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Let   be a continuous random variable with the density function  xf on 

 , where  ,,I then the entropy is defined as 

     




 dxxfxfXH log             (1.1.3) 

whenever it exists. The measure (1.1.3) is also called differential entropy. It has 

many of the properties of discrete random entropy but unlike the entropy of the 

discrete random variable, the differential entropy may be infinitely large, 

negative or positive, Ash [12]. Also, the entropy of the discrete random variable 

remains invariant under a change of variable. However with a continuous 

random variable the entropy does not necessarily remains invariant. 

1.2 Generalizations of Shannon’s Entropy 

Various generalizations of Shannon‘s entropy are available in the 

literature. Some important generalizations are given below: 

i) Renyi’s Entropy:Renyi[117] generalized the Shannon‘s entropy by 

defining the entropy of order   as 

    10,log
1

1

1

1 




























 




 n

i

i

n

i

i

p

p

PH         (1.2.1) 

and in continuous case 

 
 
 

 10log
1

1

0




 








xf

dxxf
XH          (1.2.2) 

  For  1,  the measure (1.2.1) and (1.2.2) reduces to (1.1.2)and 

(1.1.3) respectively. 

ii) Havrada-Charavat’s Entropy:Havrada-Charavat[    ] introduced the 

entropy as 
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    0 ,1
12

1

1
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n

i

ip

PH          (1.2.3) 

and in continuous case 

      101
1

1

0


















 






 dxxfXH         (1.2.4) 

and is called generalized entropy of type  . When    , the measure 

(1.2.3) and (1.2.4 ) becomes Shannon‘s measure (1.1.2 ) and (1.1.3) 

respectively. 

iii) Varma’s Entropy:Varma[136] introduced the entropies as 

  1   ,1log
1

1

1 









 



 






n

i

ipPH  

(1.2.5) 

and in continuous case 

    1,1log
1

0

1 


 


 



 dxxfXH  

(1.2.6) 

For ,1 ,1  the measure (1.2.5) and (1.2.6) reduces to (1.1.2) and 

(1.1.3) respectively. 

iv) Arimoto’sEntropy:Armito[6] introduced the generalized entropy as 

     101
12

1

1

1

1
































 











n

i

ipPA    (1.2.7) 

and in continuous case 

       101
12

1

0

1

1
































 









 dxxfXA    (1.2.8) 

For    , (1.2.7) and (1.2.8) reduces to (1.1.2) and (1.2.3) respectively. 
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v) Boekee and Lubbe’s Entropy:Boekee and Lubbe[21] introduced the 

generalized entropy as 

     101
1

1

1





























 



Rp
R

R
PH

Rn

i

R

iR    (1.2.9) 

 and in continuous case 

     101
1

1

0


































 



Rdxxf
R

R
XH

R
R

R  (1.2.10) 

 For R 1, (1.2.9) and (1.2.10) reduces to Shannon‘s entropy given in 

(1.1.2) and (1.1.3) respectively. 

vi)  Kapur’s Entropy:Kapur[72] generalized the Shannon‘s entropy as 

   














n

i

i

n

i

i

p

p

PH

1

1

1

, log
1

1








       (1.2.11) 

 where   01   ,   ,1,0  ip  

and in continuous case 

 

 
 

  0   ,1log
1

1

0

0

1

, 














 





dxxf

dxf

XH        (1.2.12) 

For ,1 ,1 the measure (1.2.11) and (1.2.12) reduces to (1.1.2) and 

(1.1.3) respectively. 

vii)  Sharma and Mittal’s Entropy: Sharma and Mittal [123] introduced the 

generalized entropies as 
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 11log)1(exp
12

1

1
1





















 







n

i

ii ppPH  

(1.2.13) 

and in continuous case 

 
 

     11log)1(exp
12

1

0

1































 






 dxxfxfXH  

(1.2.14) 

 Forα =1,(1.2.13) and (1.2.14) reduces to (1.1.2) and (1.1.3) respectively. 

viii)  Sharma and Taneja’s Entropy:Sharma and Taneja[124] introduced the 

generalized entropies as: 

  0log2
1

1  


 


n

i

ii ppPH         (1.2.15) 

 Forα =1, (1.2.15) reduces to (1.1.2). 

      0  ,  ,log
22

1

1
11, 


 








n

i

ii ppPH  

(1.2.16) 

 For ,1 ,1  (1.2.16) reduces to Shannon‘s entropy (1.1.2). 

 For continuous cases, we have the following generalizations 

       


 
0

1 0log2 
 dxxfxfXH  (1.2.17) 

        








0

11
0,,

22

1


 dxxfxfXH  

(1.2.18) 

For α = 1, (1.2.17) reduces to (1.1.3) and for    ,    , (1.2.18) 

reduces to Shannon‘s entropy (1.1.3). 

ix) Kerridge Inaccuracy:Suppose that an experiment asserts that the 

probabilities of n  events are  nqqqQ ,,, 21  , while their true 
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probabilities are  mpppP ,,, 21  , then the Kerridge[78] has proposed 

the inaccuracy measure as 

    



n

i

ii qpQPK
1

log;           (1.2.19) 

When
ii qp  ,,,2,1 ni  then (1.2.19) reduces to Shannon‘s entropy. 

In case of continuous distribution 

       



0

log; dxxgxfgfK           (1.2.20) 

1.3 Joint and Conditional Entropy 

1.3.1  Joint Entropy:The joint entropy  (   ) of a pair of discrete random 

variable (   ) with a joint distribution function  (   ) is defined as 

      
 


Rx Ry

yxpyxpYXH ;log;;             (1.3.1) 

and in continuous case 

       
 


0 0

 ;log;; dydxyxfyxfYXH            (1.3.2) 

where (   ) is the joint density function of the random variable   and  .  

1.3.2  Conditional Entropy:The entropy is meant to measure the uncertainty in 

the realization of  . Now, we want to quantify how much uncertainty does the 

realization of a random variable   have if the outcome of another 

randomvariable   is known. This is called conditional entropy and is given by: 

    
 
 

yx yP

yxP
yxPYXH

,

,
log,|           (1.3.3) 

where ( ) is the marginal distribution of    

And in continuous case 



19 

    
 
 




0

,
log,| dx

yf

yxf
yxfYXH           (1.3.4) 

1.4 The Survival Analysis 

1.4.1 Cumulative Distribution Function:If   is a continuous random variable 

with the probability density function  ( ), then the function 

      txdxxftXPtF

t

X  


,  

is called cumulative distribution function of the random variable    The 

distribution function has the following properties: 

(i) F(t) is non-decreasing function in t, i.e. 

      .0 tftF
dt

d
tF  

 (ii)   0F and   ,1F  which implies that   10  xF . 

 (iii)  ( )is a continuous function of   on the right. 

(iv) It may be noted that 

       .aFbFbXaP   

Similarly  

    

b

a

dttfbXaP . 

1.4.2 Survival Function:The basic quantity employed to describe time-to-

event phenomena is the survival function. This function, also known as 

reliability function is the probability that an individual survives beyond time  . 

If   is a continuous random variable then the survival function which is usually 

denoted by ̅ , is defined by 

   



t

t dxxftXPF           (1.4.1) 
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In the context of equipment or manufactured item failures,
tF is referred to as the 

reliability function. Note that the survival function is a non-increasing function 

with   10 tF and   0tF . 

Thus, we have the following relationship between reliability function and 

distribution function 

 tFFt 1                  (1.4.2) 

Differentiating (1.4.2) both sides with respect to  , we have 

  tfF
dx

d
t   

or 

   tF
dt

d
tf                 (1.4.3) 

1.4.3 The Hazard Rate Function:It is the probability that the item will fail in 

the next    time unit given that the item is functioning properly in time    . In 

other words, failure rate or hazard rate function is defined as the conditional 

probability of failure between (        ) given that there is no failure up to 

time     

    tTtTtPtr
t

F 



 0
lim            (1.4.4) 

or 

  
 
 tF

tf
trF                (1.4.5) 

If  ( ) be the distribution of time to failure and  ( ) be the p.d.f, then we 

have 

 tFFt 1                (1.4.6) 

Therefore  (     ) reduces to  

  
 
 tF

tf
trF




1
             (1.4.7) 
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1.4.4  Distribution with Increasing Failure Rate (IFR) and Decreasing 

Failure Rate (DFR):Its often difficult to single out a specific model to 

characterized behaviour of a system or a device consequently a less 

conventional approach. Where in the failure behaviour is characterized merely 

by property of hazard rate (failure rate) is often to found to be quite useful. Such 

an approach has not only allevaited the task of specifying failure model but also 

initiated the develop of comprehensive theory of reliability. The measure of an 

equipment reliability in frequency with which failure occur in time. A failure 

distribution represents an attempt to discrete mathematically, the length of the 

life of the material or a device, there are many physical causes that individual or 

collectively may be responsible for the failure of the device at any particular 

instance, the hazard function describes the way in which the instance probability 

of death individual change with time. Let  ( ) be the distribution of time to 

failure and  tf  be the p.d.f. then hazard rate is defined as  

  
 
 tF

tf
trF                (1.4.8) 

We have  ̅( )     ( )  then 

  
 
 tF

tf
trF




1
             (1.4.9) 

 tF is called survival function denoted as  tF . The failure rate which is the 

function of time has probabilistic interpretation namely   ttrF   represents the 

probability that a device of age ''t  will fail in interval   ttt   or   ptrF   {a 

device of age ''t  will fail in interval  ttt ,  device of function in time ''t }. 

Now in  considering a life testing model, it is often more informative to consider 

the properties of hazard function then characterized the model, in terms of p.d.f 

or c.d.f. directly the monotonically hazard rate is an important consideration. If

 trF  is Hazard Function (HF), such that 

    2121 , trtrtt FF           (1.4.10) 
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The considering model is said to be increasing failure rate (IFR). 

If  trF  is Failure Function, such that 

    2121 , trtrtt FF           (1.4.11) 

The corresponding model is said to be decreasing failure rate (DFR). 

A decreasing failure rate might be interpreted an improvement of unit 

with age. 

Several alternatives criteria for assisting whether F is (IFR) DFR 

distribution exists. 

1. F is increasing (decreasing) failure rate distribution if 

     tFtFttF  1 is increasing (decreasing) in time     for all 

0t . 

2. F is increasing (decreasing) failure rate, if    tF1log  is concave 

(convex) for all 0t   

1.4.5  Average Failure Rate (AFR):The average failure rate is defined in terms 

of the function 

     







 

x

dtth
x

XA
0

1
          (1.4.12) 

A life testing model is said to have an increasing failure rate average 

(IFRA) if 21 xx  implies    21 xAxA  . On the other hand, a life testing model is 

said to have a decreasing failure rate average (DFRA) if 21 xx  implies 

   21 xAx  . 

1.4.6 The Mean Residual Life: The mean residual life (MRL) is denoted by 

  ( ) and is defined by  

  
   

 xF

dttfxt

tm x
F









1
           (1.4.13) 
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The MRL is the generalization of the mean life of a unit, since 

      xEdtttfm
x

F  


0            (1.4.14) 

One possible interpretation of the MRL involves the conditional 

distribution ofX given xX   in particular for a fixed, consider the 

 
 
 tF

tf
xXtf




1
, function , if xt   and zero otherwise the function 

 xXtf   is the conditional p.d.f. of x given xX   and consequently. The 

MRL is the conditional expectation of xX  given xX  ,     xxXXEx  . 

In other words MRL is the average amount of unused life of unit at age x. A 

lifetime model is said to have a decreasing mean residual life (DMRL), if 21 xx   

implies    21 xmxm FF    On the other hand  a life-testing model is said to have an 

increasing mean residual life (IMRL), if 21 xx  implies    21 xmxm FF  . 

1.4.7 Some Characterization Results 

 We have from (1.4.1) 

     







 

t

t dxxhxF
0

exp  

    tSexp . 

Therefore 
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But, 

     xF
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d
tf t  

     xFth t . 

Thus  
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Dividing (1.4.15) to (1.4.16), we get 
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Thus 

   
 
 tf

tf
th

1
            (1.4.17) 

where    tf
dt

d
tf  . Equation (1.4.11) gives the functional relationship 

between hazard rate function and mean residual life function. It has a pivot role 

in some characterization results of lifetime models by using the information 

theoretic approach. 
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1.4.8 Reversed Hazard Rate Function 

The concept of reversed hazard rate was initially introduced as the hazard 

rate in the negative direction and received the cold reception in the literature at 

the early stage. This was because reversed hazard rate, being the ratio of 

probability density function and the corresponding distribution function, was 

conceived as a dual measure of hazard rate. 

Keilson and Sumita[  ] were among the first to define reversed hazard 

rate and calledit the dual failure function. According to them, hazard rate 

ordering is the uniform stochastic ordering and the reversed hazard rate ordering 

is the uniform stochastic ordering in the negative direction. This has followed 

by Shaked and Shanthikumar[   ],who have presented some nice results 

relating to reversed hazard rate function. Also,whatis important is the inclusion 

of some interestingcharacterizations based on the monotonicity of reversed 

hazard rate function. 

Let   be a continuous random variable with density function  xf ,  

cumulative distribution function  xF and survival function  xR . Then, the 

reversed hazard rate of X  at t is denoted by  t  and is defined as 

   
 
 tF

tf
tF

dt

d
t  log  

The following relationship can be easily obtained 

    







 



t

dxxtF exp . 

1.4.9 Discrete Case 

LetX is a discrete random variabletaking the values nxxx  21  with the 

probability mass function,    jXPjP  , nj ,,2,1   then the survival 

function is defined as 
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n

jk

kPjR             (1.4.18) 

The survival function and the probability mass function are related by 

      1 jRjRjP             (1.4.19) 

The hazard function is defined as 

  
 
 jR

jP
jh               (1.4.20) 

Using (1.4.20), we have 
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jR
jh

1
1


             (1.4.21) 

The survival function is related to the hazard rate function by 

     



n

jk

khjR 1             (1.4.22) 

For discrete lifetimes the cumulative hazard function is defined as 

    



n

jk

khjS              (1.4.23) 

The characterization relationship between survival function, hazard rate 

function and mean residual lifetime can be developed as: 

We have from (1.4.18) 
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khkPjR 1 . 

If   is an integer valued random variable with mean residual life at time k equal 

to ,2,1,0, kmk and 0m  is finite then we have 

   
 




k

j j

j

k m

m

m

m
kR

0

0

1

1
           (1.4.24) 

Also, for any discrete survival function, we have 
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      1 jRjRjP  

   jRjh . 

Therefore, 

  
 
 jR

jP
jh  . 

1.5 Classes of Aging Distributions 

An important characteristic of survival distribution is its aging properties. 

There arenumber of classes that have been suggested in the literature to 

categorize distributions based on their aging properties or their dual. The first 

class is the class of increasing hazard rate (IHR)distributions and the dual class 

of decreasing hazard rate (DHR) distributions. A Survival distribution is said to 

be in the IHR (DHR) class if and only if ( ) is increasing (decreasing) for all  . 

A second more general aging class is the class of increasing (decreasing) 

hazard rate on the average, IHRA (DHRA) distributions. A distribution is said 

tofall in the IHRA (DHRA) class if and only if 

  tR
t

log
1








              (1.5.1) 

is increasing (decreasing) in  . 

The definition arises by declaring a distribution to be in the IHRA class 

when its cumulative hazard rate,   tSlog  is increasing faster than the 

cumulative hazard rate of an exponential random variable. Since the exponential 

distribution reflects a model with no aging, this class is one of distributions for 

which individuals are on the average aging. 

Since (1.5.1) implies that  tR t

1

 is increasing in t , we have that X is in 

IHRA class if and only if    tRtR   . 
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A third aging class is the class of decreasing (increasing) mean residual 

life, DMRL (IMRL) distributions. A distribution is said to be DMRL (IMRL) 

class if 

 
 

 tR

dxxR

tr t




              (1.5.2) 

is increasing (decreasing) in  . 

 This aging class, which include all IHR models, is one where the mean 

remaining life of anindividual of age t is becoming shorter as t increases. 

1.6 Some Mathematical Functions 

1.6.1 Convex Function:A real valued function  xf  defined on (a, b)is said to 

be convex function if for every   such that 10   and for any two points    

and    such that bxxa  21 , we have 

         2121 11 xfxfxxf             (1.6.1) 

If we put = ½, then (1.6.1) reduces to 

 
   

22

2121 xfxfxx
f










 
            (1.6.2) 

which is taken as the definition of convexity. 

Remark 1.6.1:If   0 xf , then  xf  is convex function. 

1.6.2 Strictly Convex Function:A real valued function  xf  defined on (   ) 

is said to be strictly convex function if for every   such that       and for 

any two points    and    in (   )  we have 

         2121 11 xfxfxxf            (1.6.3) 

Remark 1.6.2:If   0 xf , then  xf is strictly convex function. 
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1.6.3 Concave Function:A function  xf is said to be concave if  xf  is 

convex. 

Remark 1.6.3:If   0 xf , then  xf  isconcave function. 

1.6.4  Strictly Concave Function:A function  xf  is said to be strictly concave 

if  xf  is strictly convex. 

Remark 1.6.4:   0 xf , then  xf  is strictly concave function. 

1.6.5 IncreasingFunction:  Let   be an open interval contained in the domain 

of a real function. The function  xf  is an increasing function on   if      in 

 , implies  

    21 xfxf  . 

1.6.6  Decreasing Function:Let   be an open interval contained in the domain 

of a real function. The function  xf  is a decreasing function on   if      in 

 , implies 

   21 xfxf  . 

1.6.7  Maximum of a Function:  A function  xf  is said to have a maximum 

value in an interval  at   ,  if    xfxf 0  for all   in  . 

1.6.8  Minimum of a Function: A function  xf  is said to have a minimum 

value in an interval  at   ,  if    xfxf 0  for all   in  . 

The following theorems gives the working rule for finding the points of 

local maxima or points of local minima. The proof is simple and hence omitted. 

Theorem 1.6.1: (First derivative test) Let  xf be a differentiable function on   

and let       Then 

(a)    is a point of local maximum of  xf  if 

 )   0 xf  
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ii)   ( )   at every point close to the left of    and   0 xf   at 

every point close to the right of   . 

(b)    is a point of local minimum of  xf  if 

i)   00  xf  

ii)   0 xf at every point close to the left of    and   ( )    at 

every point close to the right of   . 

Theorem 1.6.2:  (Second derivative) Let  xf  be a differential function on   and 

let      . Let    ( ) be continuous at   . Then 

 (i)   is a local maximum if both   (  )   and   (  )   . 

(ii)   is a local minimum if both  (  )   and   (  )   . 

1.6.9  Gamma Function:If    , then the integral dxex xn






0

1  which is a 

function of  , is called a Gamma function and is denoted by  ( ). Thus 

   0
0

1  





 ndxexn xn            (1.6.4) 

1.6.10 Properties of Gamma Function:The gamma function has the following 

properties 

 (i) Forn> 1, 

       11  nnn . 

 (ii) When   is a positive integer, then 

     !. 1 nn  

 

1.6.11 Digamma Function:  The logarithmic derivative of the gamma function 

is called digamma function and is given by 
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 log              (1.6.5) 

1.6.12 Beta Function:  Ifm, n>0, then the integral   dxxx
nm 1

1

0

1 1
  ,  which is a 

function of   and   is called the beta function and is denoted by 

     0  ,1;
1

1

0

1 


 nmdxxxnm
nm           (1.6.6) 

1.6.13  Properties of Beta Function:  Following are the properties of Beta 

function 

 (i)  Beta function is symmetric i.e.,    nmnm ;;   . 

 (ii)  If nm   , are positive integers, then 

   
   
 ! 1

! 1 ! 1
;






nm

nm
nm                (1.6.7) 

Following is the relationship between Beta and Gamma functions 
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               (1.6.7) 

1.6.14 Leibniz Integration Rule: The Leibniz integral rule gives a formula for 

differentiation of a definite integral whose limits are the functions of the 

differential variable. It states that 
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(1.6.9) 

It is important to note that, if  ( ) and  ( )are constants, then the last 

two terms of (1.6.9) vanishes. 
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1.7  Some inequalities 

i)  Jensen’s inequality:  IfX is a random variable such that   XE  exists 

and  xf is a convex function, then 

       XEfXfE               (1.7.1) 

with equality iff the random variable   has a degenerate distribution at  . 

ii)  Holder’s Inequality: If niyx ii ,,2,1   ,0,  and ,1
11


qp
1p ,  then the 

following inequality holds 
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ii yxyx
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            (1.7.2) 

iii)  Chebychev’s Inequality:  If    is a random variable with mean   and 

variance   , then for any positive number   

   
2

1

k
kXP               (1.7.3) 

or 

   
2

1
1 

k
kXP   . 

iv)  Bienayne-Chebychev’s Inequality:  Let  xg  be a non-negative function 

of a random variable  , then for any 0k , 

    
  

k

xgE
kxgP              (1.7.4) 

v)   Markov’s Inequality:  If we take  ( )  | | in (1.7.4), then   

   
k

xE
kxP              (1.7.5) 

which is Markov‘s Inequality.  

  Taking,g( )  | |  and replacing   by    in (1.7.4), we get a 

more generalized form of Markov‘s inequality 
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vi)  Log Sum Inequality:For non-negative numbers           and 

          , the log sum inequality is given as 
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with equality, iff
  

  
    where   is a constant. 

1.8  Divergence Measures: 

Kullback and Leibler introduced the idea of relative information. 

Sometimes it is called cross entropy, directed divergence and measure of 

discrimination. The entropy of a random variable is a measure of the uncertainty 

of the random variable; it is a measure of the amount of information required on 

the average to describethe random variable. The relative information is a 

measure of the distance between two distributions, it arises as an expected 

logarithm of the likelihood ratio. According to the second law of 

thermodynamics, for a Markov chain, the relative information decreases with 

time. The relationship between information theory and thermodynamics has 

been discussed extensively by Brillouinsand Jaynes. 

 There exists several divergence measure in the literature of information 

theory, some of them are given here: 

(1) 2x (chi square) divergence  

Pearson introduced the measure as 
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(2) Kullback-Leibler‘srelative information 
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Kullback-Leibler introduced the divergence measure as  
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(3) Relative Jensen-Shannon divergence measure  

Sibson and Lin introduced the divergence measure as  
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(4) J-Divergence measure 

Jeffrey, Kullback and Leibler introduced the divergence measure as  
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(5) Hellinger discrimination measure 

Hellinger introduced the divergence measure as  

   



n

i

ii qpQPh
1

2 

2

1
//            (1.8.5) 

 

  



35 

Chapter II: Some NeChapter-II Generalization of 

Entropy Measure 

 

 

 

 

2.1  Introduction 

he concept of entropy in communication theory was first introduced by 

Shannon [122] and it was then realized that entropy is a property of any 

stochastic system and the concept is now used widely in different disciplines. 

The tendency of the systems to become more disordered over time is described 

by the second law of thermodynamics, which states that the entropy of the 

system cannot spontaneously descrease. Today, information theory is still 

principally concerned with communications systems, but there are widespread 

applications in statistics, information processing and computing. A great deal of 

insight is obtained by considering entropy equivalent to uncertainty, the 

generalized theory of which has well been explained by Zadeh [140]. 

 The uncertainty associated with probability of outcomes, known as 

probabilistic uncertainty, is called entropy, since this is the terminology that is 

well entrenched in the literature. Shannon [122] introduced the concept of 

information theoretic entropy by associating uncertainty with every probability 

distribution  npppP ,,, 21   and found that there is a unique function that can 

measure the uncertainty, is given by 

   10log
1
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n

i

ii pPpPH         (2.1.1) 

T 
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The probabilistic measure of entropy (2.1.1) possesses a number of 

interesting properties. Immediately, after Shannon gave his measure, research 

workers in many fields saw the potential of the application of this expression 

and a large number of other measures of information theoretic entropies were 

derived. Renyi [117] defined entropy of order α as 
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PH >0        (2.1.2) 

which includes Shannon‘s [122] entropy as a limiting case as 1 . 

Zyczkowski [142] explored the relationships between the Shannon‘s [122] 

entropy and Renyi‘s [117] entropies of integer order. 

Havrada and Charvat [63] introduced first non-additive entropy, given by  

  0,1,
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PH         (2.1.3) 

Kapur [72] generalized Renyi‘s [117] measure further to give a measure 

of entropy of order ‗ ‘ and type ‗ ‘ viz. 

   01    ,0  ,0  ,1      log
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PH   (2.1.4) 

The measure (2.1.4) reduces to Renyi‘s [117] measure when ,1  to 

Shannon‘s [122] measure when ,1  .1  When ,1 ,  it gives the 

measures 

  maxlog PPH  . 

Many other probabilistic measures of entropy have been discussed and 

derived by Brissaud [23], Chakrabarti [25], Chen [28], GarbacZewski [55], 
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Herremoes [64], Lavenda [84], Nanda and Paul [96]. Rao Yunmei and Wang 

[115], Sergio [119], Sharma and Taneja [124] etc. The applications of the 

results obtained by various authors have been provided to various fields of 

Mathematical Sciences. In section 2.2 a new generalized probabilistic 

information theoretic measure have been presented. 

2.2  New Generalized Information Theoretic Measure 

In this section, a new generalized information measure for a probability 

distribution  
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iin pppppP
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21 1,0,,,,   and their essential and desirable 

properties have been discussed. This generalized entropy depending upon n real 

parameters n ,,, 21   is given by the following mathematical expression. 
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where 
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,1  ,1   and 0  ,0  ,1  i       (2.2.2) 

If 
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0  then 0,1   . Thus, we see that the proposed measure 

(2.2.1) becomes 
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which is Havorada and Charvat‘s [63] measure of entropy of order  . The measure 

(2.2.3) again reduces to Shannon‘s [122] measure of entropy as  α → 1. Thus, we 

see that the measure proposed in equation (2.2.1) is a generalized measure of 

entropy. Next, we present some important properties of this generalized measure. 

The measure (2.2.1) satisfies the following properties: 
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i) It is continuous function of nppp ,,, 21   so, that it changes by a 

small amount when nppp ,,, 21   change by small amounts. 

ii) It is permutationally symmetric function of nppp ,,, 21   i.e., it 

does not change when nppp ,,, 21   are permuted among 

themselves. 

iii)   .0,,, 1
PH n

n   

iv)  
12

1

0,,,,
1

1

1 1

1
21

1

,,,














n

n

n

n

i

i

n

n

p

pppH




 



   

 PH n

n ,,, 1 
 . 

This property says that entropy does not change by the inclusion 

of an impossible event with probability zero. 

v) Since  PH n

n ,,, 1 
 is an entropy measure, its maximum value must 

occur. To find the maximum value, we proceed as follows: 

let 
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For maximum value, we take 
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which is possible only if nppp  21  thus      
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Hence, we see that the generalized entropy measure (2.2.1) 

possesses maximum value and this value is subject to natural 

constraint 
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21    this result is most 

desirable. 

vi) The maximum value is an increasing function of n. To prove this result 

we have  
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Hence maximum value is an increasing function of n. 
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vii) Recursivity property: 

To prove that the measure (2.2.1) is recursive in nature, we 

consider  

 n
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thus, we have proved that  
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this shows that the measure (2.2.1) possesses recursivity property. 

viii) Additive property: To show that the measure (2.2.1) is additive, we 

consider 
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12 11    

which shows that the generalized entropy (2.2.1) is additive. 

2.3  Interval Entropy 

Information theory has attracted the attention of statisticians. Sunoj              

et al. [130] have explored the use of information measures for doubly truncated 

random variables, which plays a significant role in studying the various aspects 

of a system when it fails between two time points. In reliability theory and 

survival analysis, the residual entropy was considered by Ebrahimi and Pellerey 

[41], which basically measures the expected uncertainty contained in remaining 

lifetime of a system. The residual entropy has been used to measure the wear 

and tear of components and to characterize, classify and order distributions of 

lifetimes by Belzunce et al. [18] and Ebrahimi [42]. The notion of past entropy, 

which can be viewed as the entropy of the inactivity time of a system was 

introduced in Di Crescenzo and Longobardi [34]. 



42 

Let X be a non-negative random variable describing a system failure 

time. We denote the probability density function of X as f(x), the failure 

distribution as )()( xXPxF   and the survival function as ).()( xXPxF   

The Shannon (122) information measure of uncertainty is defined as: 

         



0

loglog dxxfxfXfEXH         (2.3.1) 

where log denotes the natural logarithm. Ebrahimi and Pellerey [41] considered 

the residual entropy of the non-negative random variable X at time t as: 
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tH .log           (2.3.2) 

Given that a system has survived up to time  tHt X,  essentially measures 

the uncertainty represented by the remaining lifetime. The residual entropy has 

been used to measure the wear and tear of systems and to characterize, classify 

and order distributions of lifetimes, (Belzunce et al. [18], Ebrahimi [42] and 

Ebrahimi and Kirmani [40]. Di Crescenzo and Longobardi [34] introduced the 

notion of past entropy and motivated its use in real-life situations. They also 

discussed its relationship with the residual entropy. Formally, the past entropy 

of X at time t is defined as follows: 

  
 
 

 
 

t

X dx
tF

xf

tF

xf
tH

0

.log          (2.3.3) 

Given that the system X has failed at time t,  tH X  measures the 

uncertainty regarding its past lifetime. Now recall that the probability density 

function of  21 tXtX   for all 210 tt   is given by  )()()( 12 tFtFxf  . Sunoj 

et al. [130] considered the notion of interval entropy of X in the interval  21,tt  

as the uncertainty contained in  21 tXtX   which is denoted by:                    
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1
1212

21 log,

t

t

dx
tFtF

xf

tFtF

xf
ttIH        (2.3.4) 

We can rewrite the interval entropy as 
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1

log
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1,
12

21
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dxxrxf
tFtF

ttIH  

   
   

        1122

12

loglog
1

tFtFtFtF
tFtF




  

             1212 log tFtFtFtF   

where      xFxfxr   is the hazard function of X. Note that interval entropy 

can be negative and also it can be  or +∞. Given that a system has survived 

up to time 1t  and has been found to be down at time 2t .  21,ttIH  measures the 

uncertainty about its lifetimes between 1t  and 2t . Misagh and Yari [90] 

introduced a shift-dependent version of  21,ttIH . The entropy (2.2.4) has been 

used to characterize and ordering random lifetime distributions, (Misagh and 

Yari [89] and Sunoj et al. [130]. 

The general characterization problem is to obtain when the interval 

entropy uniquely determines the distribution function. The following 

proposition attempts to solve this problem. We first give definition of general 

failure rate (GFR) functions extracted from Navarro and Ruiz [101]. 

Definition 2.3.1:  The GFRs of a random variable X having density function 

 xf and cumulative distribution function  xF  are given 

by  

 
 

   12

1
211 ,

tFtF

tf
tthX


  and  

 
   12

2
212 ,

tFtF

tf
tthX


 . 

Remark 2.3.1:     GFR functions determine distribution function uniquely 

(Navarro and Ruiz [101]). 
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Proposition 2.3.1: Let X be a non-negative random variable, and assume 

 21,ttIH  be increasing with respect to 1t  and decreasing 

with respect to .2t  Then  21,ttIH  uniquely determines  .xF  

Proof: By differentiating  21,ttIH  with respect to 1t , we have 

 
 

      21121211

1

21 ,log1,,
,

tthttIHtth
t

ttIH X 



 

and 

 
      21221212

2

21 ,log1,,
,

tthttIHtth
t

ttIH
X

X 



 

thus, for fixed 1t and arbitrary  2112 ,, ttht  is a positive solution of the following 

equation. 

      
0

,
log1,

1

21
21 222







t

ttIH
xttIHxxg tXtt

       (2.3.5) 

Similarly, for fixed 2t and arbitrary 1t , we have  212 ,tth as a positive 

solution of the following equation: 

       
0

,
log1,

2

21
21 111







t

ttIH
YttIHYY tXtt        (2.3.6) 

By differentiating g  and   with respect to 2xt and 1Yt , we get  

 
 212

2

2 ,log ttIHxt
xt

xtg






  

and  

 
 .,log 211

1

1 ttIHt
t

Yt










  

Furthermore, second-order derivatives of g and   with respect to 2xt  and 

1Yt  are 0
1


xt  
and 0

1


Yt  
respectively. Then the functions g and   are 
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minimized at points  21,

2

ttIH
ext


  and  21,

1

ttIH
eYt


  respectively. In addition, 

 
 

  


 g
dt

ttIH
g  ,0

,
0

1

21

 

and  
 

  .  ,0
,

0
1

21 



 

t

ttIH

 

So, both 

functions g  and  first descrease and then increase with respect to 2xt and 1Yt  

respectively. Now,  21,ttIH uniquely determines GFRs and by virtue of Remark 

2.3.1 the distribution function.  

The effect of monotone transformations on the residual and past entropy 

has been discussed in Ebrahimi and Kirmani [46] and Di Crescenzo and 

Longobardi [34] respectively. Following proposition gives similar results for 

interval entropy. 

Proposition 2.3.2 

Suppose X be a non-negative random variable with cumulative 

distribution function F and survival function ;F let  ,XY   with  , strictly 

increasing and differentiable function, then for all  

      2

1

1

1

21 ,, ttIHttIH XY

 
     

  XE
tFtF










log{
1

1

1

2

1
 

                                                      1

1

1

1 |log tXXEtF     

       2

1

2

1 |log tXXEtF     

Proof:  Recalling (2.3.1), the Shannon information of X and Y can be expressed 

as: 

      XEXHYH  log            (2.3.7) 

From Ebrahimi and Kirmani [46] and from Di Crescenzo and Longobardi 

[34]. We have 

         1

1

2

1

1   log tXXEtHtH XY

          (2.3.8) 

 210 tt
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and          1

1

1

1

1   log tXXEtHtH XY

          (2.3.9) 

Due to Sunoj et al. [131], there holds: 

           2121 1,, tGtGtGtGHYH         2211 tHtGtHtG YY   

         2221 ,1 ttIHtGtG Y       (2.3.10) 

where G and G denote distribution and survival functions of y respectively. 

Substituting    1, tHYH Y  and  1tHY  in (2.3.7), (2.3.8) and (2.3.9) into terms of 

(2.3.10), we get: 

               211

1

2

1 ,log ttIHtFtFXEXH X

    

        1

1

1

1 log tXXEtF     

        2

1

2

1 log tXXEtF     

            2

1

2

1

1

1

1

1 tHtFtHtF XX

    

             1

1

2

1

2

1

1

1 ,, tFtFtFtFH      

(2.3.11) 

Three terms of the right hand side of (2.3.11) are equal to: 

            2

1

1

1

1

1

2

1 , ttIHtFtF X

    

and the proof is complete. 

Remark 2.3.2:  Suppose    XFX  , then the function   satisfies the 

assumptions of proposition 2.3.2 and uniformly distributed over 

(0, 1), then: 

          XH
tt

tFtFIHttIH XXF
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1

1

1

21)(

1
,,
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      2

1

21

1

1 )(log)(log tFXXfEttFXXfEt    

Remark 2.3.3: For all 10 t , we get      2121 , ttIHttIH XX  

Remark 2.3.4: Let aXY  where 0a , then, we have  

    .log,, 21
21 a

a

t

a

t
IHttIH XaX 








   

2.4  Informative Distance 

In this section, we review some basic definitions and facts for measures 

of discrimination between two residual and past lifetime distributions. Misargh 

and G. Yari [91] measure of discrepancy between two random variables at an 

interval time. 

Let X and Y are two non-negative random variables describing times to 

failure of two systems. We denote the probability density functions of X and Y 

as  xf  and  yg , failure distributions as    xXPxF  and    yYGyG    

and survival functions as    xXPxF   and    yYGyG   respectively, 

with .1)0()0( GF  Kullback–Leibler [82] informative distance between F and 

G is defined by: 

  
 
 

dx
xg

xf
xfI YX log

0

, 


           (2.4.1) 

where log denotes natural logarithm, YXI , is known as relative entropy and it is 

shift and scale invariant. However, it is not metric, since symmetrization and 

triangle inequality does not hold. We point out the Jensen-Shannon divergence 

(JSD) which is based on Kullback-Leibler divergence, with the notable 

differences that is always a finite value and its square root is a metric. (Nielsen 

[102] and Amari et al. [5]). The application of YXI , as an informative distance in 

residual and past lifetimes has increasingly studied in recent years. In particular, 

Ebrahimi and Kirmani [46] considered the residual Kullback-Leibler 
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discrimination information of non-negative lifetimes of the systems X and Y at 

time t as:   

  
 
 

   
   

dx
tGxg

tFxf

tF

xf
tI

t

YX
/

/
log, 



          (2.4.2) 

Given that both systems have survived up to time t,  tI YX ,  
identifies with 

the relative entropy of remaining lifetimes  tXX   and  tYY  . Furthermore, 

the Kullback-Leibler distance for two past lifetimes was studied in Di 

Crescenzo and Longobardi [35] which is dual to (2.4.2) in the sense that it is an 

informative distance between past lifetimes  tXX   and  tYY  . Formally, 

the past Kullback-Leibler distance of non-negative random lifetimes of the 

systems X and Y  at time t  is defined as: 

 
 
 

   
   

dx
tGxg

tFxf

tF

xf
tI

t

YX
/

/
log

0

,           (2.4.3) 

Given that at time t , both systems have been found to be down,  tI YX ,

measures the informative distance between their past lives. 

Along a similar line, Misagh and Yari [91] define a new discrepancy 

measure that completes studying informative distance between two random 

lifetimes. 

Definition 2.4.1 

The interval distance between random lifetimes X and Y  at interval 

 21,tt  is the Kullback-Leibler discrimination measure between the Truncated 

lives  21 tXtX   and  21 tYtY  : 

 
 

   
      
      

x
tGtGxg

tFtFxf

tFtF

xf
ttID

t

t

YX 





 

12

12

12

21, log,
2

1

      (2.4.4) 

Remark 2.4.1: 

Clearly        tItIDtItoID YXYXYXYX ,,,, ,,,  and   YXYX IoID ,, ,    
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Given that both systems X andY have survived up to time 1t and have seen 

to be down at time 2t  21, ,ttID YX  
measures the discrepancy between their 

unknown failure times in the interval  21, tt .  21, ,ttID YX  satisfies all properties 

of Kullback-Leibler discrimination measure and can be rewritten as: 

 
 

   
 

   
 21

1212

21, ,log,
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1

ttIHdx
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xf
ttID X

t

t

YX 


       (2.4.5) 

where  21,ttIH X is the interval entropy of X in (2.3.4). 

An alternative way of writing (2.4.5) is the following: 
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tFtFtFtF
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t

t
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1

log
1

log,
1212

12
21,

   (2.4.6) 

The following example clarifies the effectiveness of the interval 

discrimination measure. 

Example 2.4.1: Suppose X and Y  be random lifetimes of two systems with 

joint density function: 

  xyxyxf 240  ,20  ,4/1,   and that the marginal densities of X and Y  

are     20  ;22/1  xxxf  and    ,48/1 yyg   40  y  respectively. 

Because X  and Y , belongs to different domains, using relative entropy to 

measure the informative distance between X  and Y is not interpretable. The 

interval distance between X  and Y in the intervals (0, 1.5) and (1.5, 2) are 0.01 

and 0.16 respectively. Hence the informative distance between X  and Y  in the 

interval (1.5, 2) is greater than of it in the interval (0, 1.5). In the following 

proposition we decompose the Kullback-Leibler discrimination function in 

terms of residual, past and interval discrepancy measure. 

Proposition 2.4.1 



50 

Let X  and Y are two non-negative random lifetimes of two systems. For 

all  210 tt , the Kullback-Leibler discrimination measure is decomposed 

as follows: 

(2.4.7)
 

where: 

   
 
 

 
 
 2

2
2

1

1
121, loglog,

tG

tF
tF

tG

tF
tFttI VU      
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12
12 log

tGtG

tFtF
tFtF




  

is the Kullback-Leibler distance between two Trivalent discrete random 

variables. Proposition 2.4.1 admits the following interpretation: the Kullback-

Leibler discrepancy measure between random lifetimes of systems X  and Y  is 

composed from four parts: 

i) the discrepancy between the past lives of two systems at time 1t ;  

ii) the discrepancy between residual lifetimes of X  and Y  that have 

both survived up to time 2t ;  

iii) the discrepancy between the lifetimes of both systems in the 

interval  21,tt ;  

iv) the discrepancy between two random variables which determines 

if the systems have been found to be failing before 1t , between 1t

and 2t or after 2t . 

2.5  Results on Interval Based Measures 

In this section, we study the properties of  21,ttID  and point out certain 

similarities with those of  tI YX ,  and  tI YX , . The following proposition gives 

lower and upper bounds for the interval distance. We first give definition of 

likelihood ratio ordering. 

Definition 2.5.1 

                21,2,21,121,12, ,, ttItItFtItFttIDtFtFI VUYXYXYXYX 
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X is said to be larger than Y in likelihood ratio  YX LR   if 
 
 xg

xf

 

is 

increasing in x over the union of the supports of X  and Y . 

Proposition 2.5.1 

Let X  and Y are random variables with common support  ,0  then: 

i) YX LR  implies: 
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        (2.5.1) 

when    xgxf  is decreasing in 0x , then the inequalities in 

(2.5.1)are reversed. 

ii) Descreasing  xg  in 0x , implies: 
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      (2.5.2) 

for increasing  xg  then the inequalities in (2.5.2) are reversed. 

Proof: Because of increasing 
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 from (2.4.4), we have 
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which gives (2.5.1) when 
 
 xg

xf

 

is descreasing, the proof is similar. Furthermore, 

for all 21 txt   descreasing  xg  in 0x  implies      12 tgxgtg  . Then from 

(2.4.5) we get: 

      2121221, ,,log, ttIHtthttID X

Y

YX   

and       2121121, ,,log, ttIHtthttID X

Y

YX   

so that (2.5.2) holds. When  xg  is increasing the proof in similar. 

Remark 2.5.1 

Consider X  and Y  are two non-negative random variables corresponding 

to weighted exponential distributions with positive rates   and   respectively 

and with common positive real weight function   . The densities of X  and Y

are  
 
 

 

h

ex
xf
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 and  
 
 

 

h

ex
xg

x

  respectively, where  h  denotes the 

Laplace transform of    given by    


 
0

0,  dxexh x , therefore, for  

the interval distance between X  and Y at interval  21,tt  is the following: 
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            (2.5.3) 

Remark 2.5.2

 

Let X  be a non-negative random lifetime with density function  xf  and 

cumulative distribution function    tXPtF  . Then the density function and 

cumulative distribution function for the weighted random variable X associated  

to  a  positive  real  function     are  
 
  

 xf
XE

x
xf




 

  
and  
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 , respectively, where       
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Then, from (2.4.6) we have: 

         212121, loglog, tXtXEtXtXEttID XX  


(2.5.4) 

A similar expression is available in Maya and Sunoj [85] for past lifetime. Due 

to (2.5.4) and from non-negativity of  21, ,ttID XX 
 we have: 

       2121 loglog tXtXEtXtXE  
 

which is a direct result of Markov inequality for concave functions. 

Example 2.5.1:  For   1 nxx  and  
 

n

n
h




!1
  the distributions of random 

variables in Remark 2.5.1 called Erlang distributions with scale parameters   

and   and with common shape paramter n. The conditional mean of 

 21 tXtX   is the following: 
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is the incomplete Gamma function. From (2.5.3) we 

obtain: 
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In the following proposition, sufficient condition for  21, ,
1

ttID YX  to be smaller 

than  21, ,
2

ttID YX  is provided. 

Proposition 2.5.2 

 Consider three non-negative random variables 21, XX  and Y  with 

probability density functions 21, ff  and g respectively. YX LR 1  implies 
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Proof: From (2.4.6) we have: 
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where the first inequality comes from the fact that   0, 21, 12
ttID XX and the 

second one follows from the increasing 
 
 xg

xf1 in .0x  

Example 2.5.2: 

Let   0, ttN  be a non-homogeneous Poisson process with a 

differentiable mean function     tNEtM   such that M(t) tends to   as .t  

Let 3,2,1, nRn  denote the time of the occurrence of the n-th event in such a 

process. Then Rn has the following density function: 
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xxf
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tM
xf
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n  

where  

     0,exp1 



 xxM

x
xf  

clearly    xfxfn 1  is increasing in .0x  It follows from proposition (2.5.2) that 

for all .nm   

    21,21, ,,
11

ttIDttID XXXX mn
  

Remark 2.5.3 

 For all 
10 t , we get 
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       21,21, ,, ttIDttID YXYX
 

Remark 2.5.4 

Let aXY   where  0a , 
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Chapter III 

Measure of Discrimination Between Lifetime Distributions 
 

 

 

 

 

3.1  Introduction 

fter the creation of Shannon [122], a number of research papers and 

monographs discussing and extending Shannon‘s original work have 

appeared. Among them Dragomir [38], Kagan, Linnik and Rao [71] and 

Kullback [80] are using and extending results due to information measures. 

Asad et al.[10] proposed a dynamic measure based on differential geometry 

applicable to residual lifetime. This measure has been used for the classification 

and ordering of survival function. Ebrahimi and Kirmani [40], Nanda et al. [96] 

and Asadi et al. [10] gave an overview of some aspects of residual Renyi 

divergence and residual Kullback-Leibler information and residual entropy. 

Further implications and properties of the dynamic measures such as above and 

the uncertainty ordering, proportional hazard model through a measure of 

discrimination between two residual life distributions on the basis of the 

measures that are mentioned in the literature are obtained. In this chapter 

characterization results for residual entropy residual information measures are 

obtained. 

A 
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  In Ebrahimi and Pellery [41] and in Ebrahimi [42] it has been pointed out 

the potentiality of the classical machinery of Shannon information theory as 

suitable tool to measure the uncertainty related to random lifetimes and their 

reliability.  

3.2  Measure of Discrepancy 

Let X  and Y  be absolutely continuous non-negative honest random 

variables that describe the lifetimes of two items. We denote by  tf ,  tF  and 

   tFtF 1  the probability density function (p.d.f), the cumulative 

distribution function (c.d.f) and the survival function of X , respectively and by 

 ,tg   tG  and   tG  the corresponding functions of Y . Moreover, let 

     xFxfxX   and      xGxgxY   be the hazard rate functions of X  and 

Y , respectively, whereas      xFxfxX   and      xGxgxY   will denote 

their reversed hazard rate functions. Without loss of generality we assume that 

densities  tf  and  tg  have support    ,0 . 

As an information distance between F and G, Kullback and Leibler [82] 

proposed the following discrimination measure, also known as relative entropy 

of X  and Y : 

 
 
 




0

, log dx
xg

xf
xfI YX

          (3.2.1) 

where ‗log‘ denotes natural logarithm. Distance (3.2.1) is shift and scale 

invariant. Furthermore, 0, YXI  with equality if and only if    xgxf   a. e. 

However, YXI , is not a metric, as it does not satisfy the triangle inequality and is 

asymmetric. A symmetrized version of YXI , , introduced in Kullback and Leibler 

[82] is defined by .,,,
ˆ

XYYXYX III   

 Ebrahimi and Kirmani [40] have defined the Kullback-Leibler 

discrimination information of X  and Y  at time t  by 



57 

  
 
 

   
   

0,log,  


tdx
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tFxf

tF

xf
tI

t

YX
         (3.2.2)  

According to (3.2.1),  tI YX ,  identifies with the relative entropy of 

 tXtX   and  tYtY  , whereas customary,  BX
 

denotes a random 

variable whose distribution is the same as the conditional distribution of X  

given B . Information measure (3.2.2) is thus useful to compare the residual 

lifetimes of two items that have both survived up to time .t  

Along a similar line, hereafter we shall define a new information measure 

 tI YX , . This is dual to (3.2.2) in the sense that it is an information distance 

between the past lives  tXX   and  tYY  . 

Definition 3.2.1 

 The discrimination measure between the past lives  tXX   and  tYY   is 
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xf
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t

YX
        (3.2.3) 

Given that at time t  two items have been found to be failing,  tI YX ,

measures the discrepancy between their past lives. In analogy with the 

Kullback-Leibler discrimination information, it is   0, tI YX , with equality 

holding if and only if    xgxf   a. e.  From (3.2.3) we have 
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       (3.2.4) 

where  
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X log
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is the past entropy at time t  of X  introduced by Di Creacenzo and Longobardi 

[34]. Another way of representing  tI YX ,  is the following: 
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       (3.2.5) 
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Remark 3.2.1 

 From Equations (3.2.13.2.3), we obtain the following relation between 

the three discrimination measures considered above: 

          
 
 

 
 
 

0,loglog,,,  t
tG

tF
tF

tG

tF
tFtFtItFtII YXYXYX  

In example 3.2.1, we pinpoint the role of the discrimination measure 

between the past lives for the comparison of random lifetimes. 

Example 3.2.1: Assume that X  and Y are the random lifetimes of two items, 

where X is uniformly distributed on (0,1) and Y has probability density 

     .012/1 1ttttg   

With .22    Due to the symmetry of  tg  with respect to 2/1t , 

and due to (3.2.1) it follows that 

 
 

 YXYX II ,, ,   for all    2,2 ,  

so, that the information distance of  X  and Y equals the information distance 

existing between X and Y . Moreover for 0 , from (3.2.5) we have 
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1log
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2
1

1
1,  
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22

1log 







 t

t
        (3.2.6) 

equation (3.2.6) implies that in general  tI YX ,  is not equal to  tI YX ,  for all 

 1  ,0t , as is shown for instance in Fig 3.2.1 

 
Fig. 3.2.1: The discrimination measure is given for t (0,1), with x=1.95 (top) and x = –1.95 (bottom)  
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Hence, even though   YXYX II ,, the information distance between 

 tXX   and  tYY   
is in general different from the information distance 

between  tXX   and  tYY   . 

3.3 Properties of  tI YX ,  

In this section, we study some properties of  tI YX ,  
and point out certain 

similarities with those of  tI YX , . First of all, Equations (3.2.1 – 3.2.3), we 

observe that 

    tILimItILim YX
t

YXYX
t

,
0

,, 
  

Let us now obtain some bounds for  tI YX , . In the following, the terms 

‗increasing‘ and ‗decreasing‘ are used in non-strict sense. We shall also make 

use of some nations of stochastic orders; 

Theorem 3.3.1 

i) If    tgtf  is increasing in t > 0, i.e. ,YX lr  then 

      0,log,  ttttI YxYX           (3.3.1) 

when    tgtf  is decreasing in 0t , i.e. ,YX lr  then the inequality 

in (3.3.1) is reversed.  

ii) If  tg  is decreasing in 0t , then 

      0,log,  ttHttI XYYX 
        (3.3.2) 

Proof: Due to increasingness of    tgtf , from (3.2.3) for all 0t  we have 

  
 
 

   
   

 
 

   
    

tt

YX dx
tGtg

tFtf

tF

xf
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tGxg

tFxf

tF

xf
tI

00

, loglog  

  
 
 t
t

Y

X




log  

which gives (3.3.1). When    tgtf  is descreasing the proof is similar. 

Furthermore, if    tgxg   for all 0 xt , then from (3.2.4) we obtain 
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 tH
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tg
tHdx
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tF

xf
tI XX

t

YX   loglog
0

,  

so that (3.3.2) holds. 

 The assumption that    tgtf  is increasing implies    tt YX    for all 

0t  i.e. .YX rh  So that the right-hand side of (3.3.1) is non-negative for all

0t . 

From (3.2.3), it is not hard to see that 

   
 
 

      0,log ,, 
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       (3.3.3) 

equation (3.3.3) implies that if  tI YX ,  is increasing, then 
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Remark 3.3.1 

Let X  and Y  have weighted distributions corresponding to exponential 

distributions with rates   and  , respectively and with weighted function  .t  

Their densities are then given by 

  
 
 

 
 
 

0, 


t
h

et
tg

h

et
tf

tt







 

        (3.3.4) 

where  h  denotes the Laplace Transform of  t : 

       0,
0

   


  
 dtteth t  

Hence from (3.2.5) and (3.3.4) it follows that for    the 

discrimination measure of the past lives can be expressed as  

  
 
 

 
 

    0loglog,  ttXXE
h

h

tF

tG
tI YX 




      (3.3.5) 

Due to (3.3.4) if     then    tgtf  is decreasing [increasing] in 

0t i.e.  ,YXYX lrlr   which implies  YXYX rhrh 
 
so that log     tFtG  

is increasing [decreasing] in 0t . Hence noting that  tXXE   is increasing 
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for 0t , the first and the third terms at the right-hand side of (3.3.5) exhibit 

different behaviours for all   . Indeed, when   , the first term is 

increasing whereas the third one is decreasing, the opposite occurring when 

  . 

Example 3.3.1: Let X  and Y  be Erlang distributed, with scale parameters   

and  , respectively and with common shape parameter n . Hence, they 

possesses densities (3.3.4) where   1 ntt  and     nnh  !1 . Hence for 

  , equation (3.3.5) becomes   

 
 
 

 
 
   

0
!1

,1
loglog, 




 t

ntF

tn
n

tF

tG
tI YX










          
(3.3.6) 

where   


x

a dyexa
0

1.,   denotes the incomplete Gamma function. Fig 3.3.1 

shows some plots of the discrimination measure (3.3.6) 

 

 

 

 

 

 

 

(a)       (b) 

 
Fig. 3.3.1: The discrimination measure is plotted for t (0,20),  =1, and =1.5,2.0,2.5,3.0                          

(bottom to top), with n=4 in (a) and n=6 in (b) 

The following example shows that the discrimination measure  tI YX ,  is 

not necessarily monotone. 
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Example 3.3.2:   Let 
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be the c.d.f‘s of X  and Y . From Fig 3.3.2 we see that  tI YX ,  is not monotone 

for all  2,0t  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3.3.2: The discrimination measure of the past lives of Example 3.3.1 is sketched for t (0,20).  (b) 

An enlargement of (a) close to t=2, showing the lack of monotonicity. 

Theorem 3.3.2 

 Let us consider three random lifetimes 
21, XX  and Y , with p.d.f.‘s  

and g  and with reversed hazard functions 
21,  and 

Y respectively, if  

i)    tgtf1
 is decreasing for all 0t , i.e. YX lr1 and  

21, ff

(b)
)2 
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ii)    tt 21    for all 0t  i.e. 21 XX rh  then 

   tItI YXYX ,, 21
 ,    0t  

Proof: From definition (3.2.1) and since 

   0
12 , tI XX ,  

we have 
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Next, denoting the p.d.f of  tXXX itti ,  by  
 
 

,:,
tF

xf
xf

i

i
ti    2,1,0  itx  

we are led to 
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1
,1,, loglog

21
 

      tt XEXE ,2,1            (3.3.7) 

where       xgxfx 1log  is increasing in x  due to assumption (i). Hence due 

to Remark (3.3.2) the right-hand side of (3.3.7) is non-positive if tStt XX ,2,1  i.e. 

if 21 XX rh . 

Theorem 3.3.3 

 Let us consider three random lifetimes 
1,YX  and 

2Y with p.d.f‘s 
1, gf  and 

2g respectively. If    tgtg 21
 is increasing for all 0t , i.e. 21 YY lr  then  

   
 
 

0,log
2

1
,, 21

 t
t

t
tItI YXYX




. Where 

1  and 
2 are the reversed hazard rate 

functions of 
1Y  and 

2Y . 

Proof: Making use of (3.2.5) we have   
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0,log
1

log
0 1
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1
,, 21

  tdx
xg

xg
xf

tFtG

tG
tItI

t

YXYX  

since        tgtgxgxg 1212   for all  tx ,0 . The proof immediately follows on 

account that       .2,1,  itGtgt iii  

3.4  Residual Information Measures for Weighted Distributions 

 Let   ,,  be a measure space and f  be a measurable function from 

  to  ,0 , such that 

   .1fd   

The Shannon entropy (or simply the entropy) of f relative to  , is defined by  

   00log       ,log,   fifffwithfdffH 

  

(3.4.1)

 
and assumed to be defined for which ff log  is integrable. If X is any random 

variable with pdf  f, then we refer to H as the entropy of  X  and denotes also it 

by the notation 
XH . In the case   is a version of counting measure, (3.4.1) 

leads us to a specialized version that introduced by Shannon [122] as  

 



n

i

iiX ppH
1

log  

where 0ip  and 



n

i

ip
1

1. One of the important issues in many applications of 

probability theory is finding an appropriate measure of distance between two 

probability distributions. A number of divergence measure for this purpose are 

available in the literature related to various type of information measure. These 

measures have applied in a variety of fields. Consider F and G  be two 

distributions which are absolutely continuous w.r.t measure   and f
F







 and 

g
G







. Some of the divergence measures are given below:  

Kullback-Leibler information: 
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dxf
xg

xf
GFDKL .log,           (3.4.2) 

2  Divergence: 

  
    

 



 d

xf

xgxf
GFD 




2 

2 ,          (3.4.3) 

Bhattacharyya Distance and Hellinger Distance: 

           GFDGFDdxfxgGFD BhHBH ,12,,          (3.4.4) 

 Divergence: 
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xf

xg
GFD 
























2

2

1

2

1

2
1

1

1
,         (3.4.5) 

Relative Jensen-Shannon divergence measure  

Sibsen in (1969) and Lin in (1991) introduced the divergence measure as 

    
 

    












d

xgxf

xf
xfGFDJ

2
log,         (3.4.6) 

J-Divergence measure 

Jeffrey in (1946) introduced the divergence measure 

       
 
 




d
xg

xf
xgxfGFDJ   log,         (3.4.7) 

Hellinger Divergence Measure  

Hellinger in (1909) introduced the divergence measure as 

        


dxgxfGFDh  
2

2
1,          (3.4.8) 

The following results are related to the above measures: 

i) It is easy to see that   2, GFDH
 via Taylor expansion and 

approximation, we can get, 
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   GFDGFDKL ,
2

1
, 2

  

      FGDFGDGFDJ ,,
2

1
, 22    

   GFDGFD H ,4,2 


 and    GFDGFD H ,,2 


 

ii) Sometimes we are interested in the distances that is introduced in (3.4.2) 

to (3.4.8), between the distributions 1FF   and 2FG  . Between the 

corresponding sample distributions which we denote nF 1  and nF 2 , the 

distances are meaningful for arbitrary distributions and have no relation 

to the nature of spaces. 

iii) The chi-squared divergence    GFDGfD ,2,2    on taking 3  in 

(3.4.5). Also, the Hellinger distance    GFDGFDH ,
2

1
,   on taking 

0 m (3.4.5). The Hellinger distance and Bhattacharyya distance are 

symmetric and have all properties of metric. The relative information 

generating function of f  given the reference measure g  is defined as 

     dxxfx
g

f
GFR 



















1

,,         (3.4.9) 

where 1 and the integral is convergent on noting that   .11,, GFR  In 

particular,  1,,GFR  is just Kullback-Leilber information and  1,1.FR  

and  2,1,FR  are Shannon entropy and second order entropy respectively. 

The power divergence measure (PWD) which gathers most of the 

interesting specification is indexed by 

  
 

 
 

 





























 dxxf

xg

xf
GFPWD 1

1

1
,,      (3.4.10) 

the power divergence family implies different well-known divergence measures 

for different values of  . PWD for  1,0,5.0,1,2   implies Neyman Chi-
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square, Kullback-Leibler, Squared Hellinger distance, Likelhihood disparity and 

Pearson Chi-Square divergence respectively. Note that 

  
 

  11,,
1

1
,, 


 


 GFRGFPWD  

3.5 Weighted Residual Entropy 

 If a unit is known to have survived upto an age t , Ebrahimi [42] defined 

residual entropy of the non-negative continuous random variable X  as  

  
 
 

 
 

dx
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xf
tFH

t

loglog, 










          (3.5.1) 

where  tF  is the survival function of X. If we put 0t , then we get  0,XH  is 

the Shannon entropy. Nanda et al. [96] defined 
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(3.5.2)

 

and 

 
 
  
























 



dx
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tFH
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log

1

1
,2           (3.5.3)

 

where  tFH ,1


 and  tFH ,2


 are first kind residual entropy of order   and 

second kind residual entropy of order   of the random variable X  respectively. 

It can be noted that as 1 , then (3.5.2) and (3.5.3) reduce to residual entropy 

that defined in (3.5.1)  tFH ,1


 and  tFH ,2

  can always be made non-negative 

by choosing appropriate  . In the following results we consider  
   
 XE

xfx
xg




  

as a weighted version of f  and  
   

 



t

tF

dxxfx
tA


 

i) Let X and Y  be two non-negative random variables having densities 

f and g  and distribution functions F  and G  and survival functions 

F  and G  respectively as defined in previously then X  is said to have 
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less uncertainty than Y  if    tGHtFH ,,   for all 0t . We write 

.YX LU  

X  is said to be less than Y  in (first kind residual entropy of order 

  YXwritten 1  if     tGHtFH ,, 11

   for all 0t . X is said to be 

less than Y  in (first kind residual entropy of order     

  YXwritten 2  if    tGHtFH ,, 22

   for all 0t . Let    tAx   

for tx  , then    tGHtFH ii ,,    for all i=1,2. That g is a weighted 

version of distribution F . 

ii) X is said to be larger than Y  in likelihood ratio ordering  YX LR  if 

 
 xg

xf
 is a non-decreasing function of  xx .0  non-increasing in x  

implies that YX LR . 

iii) Let YX LR  and  xF  or  xG  be non-decreasing in x . Then it 

follows that YX LU . So, let  x  be non-decreasing and  xF  or 

 xG  be non-decreasing in x , the YX LU . Also let 

     xxxA F /  and  xA  be non-decreasing function of x , 

YX LU .  

iv) If       
 
  








tA

x
xXEx FF


 loglog  for ,0t tx   and  xF  be 

non-decreasing in . then YX LU . 

v) A natural question whether residual entropy like mean residual life 

and hazard rate characterizes survival function or distribution 

function. Ebrahimi [42] proved that   ,0,,  ttXH uniquely 

determine the distribution function  tXH i ,
 is increasing in ,t  then 

 tXH i ,
  uniquely determines  tF  for i = 1, 2 (Nanda et al. [96]). 

vi) A non-negative random variable is said to have decreasing 

(increasing) uncertainty in residual life (DURL (IURL)) if  tXH ,  is 

decreasing (increasing). A non-negative random variable is said to 

have DURL (IURL) of first kind of order    DURLF  if  tXH ,1

 is 

decreasing in .0t  A non-negative random variable is said to have 

DURL (IURL) of second kind of order   (DURL SF(  )) if  tXH ,2
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is decreasing in 0t . In the above definition if we replace the word 

―decreasing‖ by ―increasing‖ then we call them IURLF    and 

IURLS    respectively. 

vii) The first system is very strongly better than second system if YX LU  

and YX LR . So let   x  and    xAx /  be non-decreasing functions 

of x , then    tGHtFH ,,   is increasing in .t  

viii) X is said to be stochastically than  YXY ST  if    xGxF   for all 

0x . Hence for weighted case, if     xExA   for all x , then 

YX ST . 

3.6 Weighted Residual Information Measures 

 In view of Ebrahimi [42], we defined the above measures for the case 

that after the unit has survived for time t so, assume that the set [t,) be the 

suitable support of distributions and F  and G  be two distributions which are 

absolutely continuous w.r.t measure   and f
F







  and  g

G







. We have the 

following definitions: 

Residual Kullback Leibler Information: 
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log,,         (3.6.1) 

Residual 2 – Divergence: 
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Residual Bhattacharyya Distance and Residual Hellinger Distance: 
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Residual α – Divergence: 
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The following results are related to the above measures: 

 It is easy to see that   2,, tGFDH
. via Taylor expansion and 

approximation. We can get      2/1,,,,,,, 2  tGFDtGFDtGFD JKl 

    tFGDtGFD ,,,, 22 
 ,    tGFDtGFD H ,,4,,2 


 

 Sometimes we are interested in the residual distances that is introduced 

in (3.6.1) to (3.6.4), between the distributions 
1

FF   and 
2

FG  . 

Between the corresponding samples distributions which we denote nF
1
 

and nF
2
, the distances are meaningful for arbitrary distributions and have 

no relation to the nature of spaces. Hence, results can be applicable 

similar the case that 0t  for any t , but not easier than the case 0t . 

 The residual chi-squared divergence    tGFDtGFD ,,2,,2 
  on        

taking 3  in (3.4.5) also, the residual Hellinger distance 

   tGFDtGFDH ,,2/1,,   on taking 0  in (3.4.5) the relative 

information generating function of f  given the reference measure g  is 

defined as  
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        (3.6.5) 

where 1  and the integral is convergent on noting that   1,1,, tGFR . 

In particular,  tGFR ,1,,  which is just residual Kullback-Leibler 

information and    0,1,,0,1,, FGRGFR   is residual J–divergence 

between F  and G ,  tFR ,1,1,  and  tFR ,2,1,  are residual Shannon 

[122] entropy and residual second order entropy respectively. 

The residual power divergence measure (PWD) is indexed by  
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,,      (3.6.6) 
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The power divergence family implies different well-known divergence 

measures for different values of   PWD for ,1,0,5.0,1,2   implies residual 

Neyman Chi-square, residual Kullback-Leibler, residual squared Hellinger 

distance, residual likelihood disparity and residual Pearson Chi-square 

divergence respectively. Not that 

  
 

  1,1,,
1

1
,, 


 tGFRtGFPWD 


 

 Let  be an invertible increasing function, then  

  tGFD 1

11 ,,       tGFD    , 11   because 
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      tGFD 1,,   .         (3.6.7) 

It is clear that for residual Kullback-Leibler information (Ebrahimi et al 

[40]), residual 2  divergence, residual Bhattachryya distance, residual Hellinger 

distance as special cases of (3.6.7) the result holds 

  tGFD ,, 11  is independent of t  and only if 
1F  and 

1G  have proportional 

hazard rate. On noting that the only if is easy but for if case, assume that 

  btGFD ,, 11  that b  is constant. It is clear that for residual Kullback-

Leibler information (Ebrahimi et al. [40]) residual 2 divergence, 

residual Bhattacharyya distance, residual Hellinger distance as special 

cases of the above result. Note that the results achieved via the technique 

that applied in the Asadi et al. [10]. 

We can consider  
   
 XE

xfx
xf

1

1
1




 and  

   
 XE

xfx
xg

2

2
1




  as the weighted 

distributions of f . Then, the above measures are expressed as: 

Residual Kullback-Leibler information: 
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where        
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i dxxfxtFtA 1    for i = 1, 2, 

Residual 2 – Divergence: 
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Residual Bhattacharya Distance and Residual Hellinger Distance: 
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Residual  divergence: 
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      (3.6.11) 

 For the case that     1,1 11  tAx  statements in (3.6.8) to (3.6.11). 

Change to simple statements that their calculation is easier than the 

previous statements. 

 For the above residual information measures, for weights like, order 

statistics, record value, proportional hazard rate, reversed proportional 

hazard rate, hazard rate, selection samples, we can find the values of 

these residual measures and some properties of them in special cases 

some of them lead us to calculating the integrals via incomplete gamma 

and incomplete beta functions. 

3.7 Generalized Measures of Discrimination between Past Lifetime 

Distributions 
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The measure (3.2.3) can be generalized in many ways. Here we study 

parametric generalization by introducing a parameter  . Thus we get a class of 

discrimination measures of which (3.2.3) is a particular case. New generalized 

measure has more flexibility application due to infinite values of  . However, 

here we consider the following generalization. 
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It may be noted that (3.7.1) reduces to (3.1.3) when 1  so we may call 

(3.7.1) the discrimination information measure of degree  . 

Consequently, the measure (3.2.4) can also be generalized as follows: 
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where 
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Next we obtain some bounds of  tI YX


,  using the term ―increasing‖ and 

―decreasing‖ in non-strict sense. 

Theorem 3.7.1: 

 If    tgtf /  is increasing in 0t i.e. YX lr , then 
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Proof: From the measure (3.7.1) we have 
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Due to increasing of    ,tgtf  from (3.2.3) for all 0t  we have 
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Hence proved. 

When    tFtf  is decreasing the proof is similar.  

3.8 Applications 

Let X  and Y have weighted exponential distribution with rates   and 

respectively and with weight function  t . Their densities are given by 
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        (3.8.1) 

which  h  denotes the Laplace transform of  t  
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solving the measure (3.2.5) and (3.8.1) Crescenzo and Longobadi [35] expressed the 

discrimination measure of the past lives for    as follows: 
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Next we generalize measure (3.8.1) in the following way: 
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It may be noted that (3.8.3) reduces to (3.8.2) when 1 . 

Example 3.7.1: Let X  and Y  be Erlang distributed, with scale parameter   and   

respectively. With the common shape parameter n hence they possess densities given 

by (3.8.1), where   1 ntt  and      nnh  !1 . 

If we put  
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In case 1 , (3.8.4) reduces to 
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This is clearly indicated in the Fig. 3.8.1 &  3.8.2 
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Fig. 3.8.1: The discrimination measure (3.8.4) for  >  (from top to bottom)  

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.8.2: The discrimination measure (3.8.4) for  >    

The following example shows that discrimination measure  tI YX


,  is not 

necessarily monotone. 

Example 3.8.2: Let 
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be the c.d.f‘s of X and Y . From figure 3.8.3 we see that  tI YX


,  is not monotone 

for all  2,0t . 
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Fig. 3.8.3: The discrimination measure of past lives of example (3.8.2) is plotted for t > 0.   
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Chapter-IV: Cumulative Residual Entropy and its Properties 

 

 

 

 

 

 

 

 

 

 

4.1: Introduction  

et X  be a non-negative random variable with distribution function F and 

density function f  (in the case when X  is continuous) respectively. 

Shannon [122] introduced a measure of uncertainty, associated with the 

probability distribution F , which is also known as the Shannon entropy (or 

‗differential entropy‘ in the continuous case).  The differential entropy of a non-

negative continuous random variable X , is defined as: 

      



0

log dxxfxfXH          (4.1.1) 

The differential entropy plays the central role in information theory and a 

large number of research work are available in the literature in both theory and 

applications. 

 Rao et al. [114] introduced an alternative measure of uncertainty called 

Cumulative Residual Entropy (CRE). This measure is based on the cumulative 

distribution function F  and is defined in the univariate case and for non-

negative variables as follows: 

      



0

log dxxFxFX          (4.1.2)  

 They have obtained several properties of this measure and provided some 

applications of it in reliability engineering and computer vision. Rao [115] 

L 
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developed some new mathematical properties of CRE and gave an alternative 

formula for it. 

 The aim of the present chapter is to show that CRE is connected to some 

well-known reliability measures. In particular in section 4.2, CRE is infact the 

expectation of the mean residual lifetime of X  which plays an important role in 

reliability and survival analysis. In section 4.3 we define a dynamic (Time-

dependent) CRE (DCRE) and show that DCRE is connected to the mean 

residual life function (MRL). In section 4.4 we study some properties of DCRE. 

We give the necessary and sufficient conditions under which DCRE in 

monotone. Further, we show that under some conditions DCRE has a one-to-

one relation with the underlying distribution function. 

4.2 Relation between CRE and mean residual life function 

 The MRL and HR plays important roles in reliability and survival 

analysis to model and analyze the data let X be a continuous random variable 

with survival function FF 1  and density function f. The MRL of X , which 

we denote by mF, is defined as 

    
 

 tF

dxxF

tXtXEtm t
F




  

for t  such that   0tF . It is well-known that MRL  tmF
  determines the 

distribution function F  uniquely. The HR of X , which we denote by  trF , is 

defined as  

  
 
 tF

tf
trF               (4.2.1) 

for t  such that   0tF . It is also well-known that there is a one-to-one relation 

between  trF and the distribution function F . The relation between the MRL

 tmF  and HR  trF  is as follows: 
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 tm

tm
tr

F

F
F

1
            (4.2.2) 

where  tmF
  denotes the derivative of  tmF  with respect to t . 

 Teitler et al [131] have shown that a useful representation of the 

differential entropy in terms of HR is as follows: 

         XrEdxxrxfXH FF log1log1
0

 


. 

In the following theorem we show that, in the case where the underlying 

distribution F  is absolutely continuous the CRE has a direct relation to the 

MRL  tmF . 

Theorem 4.2.1:  Let X be a non-negative continuous random variable with 

MRL function Fm and CRE  X , such that   X  then 

     XmEX F            (4.2.3) 

Proof: We know that 
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 X . 

Hence the proof is complete. 
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Example 4.2.1: 

a) If X  is distributed as exponential with mean  , then it is well-known 

that the MRL function of X  is  (which does not depend on t ). Hence, 

we have    X . 

b) If X is distributed uniformly on (0, a), a > 0, then it can be                       

easily seen that     2tatmF  . From this it can be shown that 

     .
4

1
2 aXaEX   

c) If X  has Pareto distribution with density function  

   









 

otherwise

x
xxf

         0

0,1,0,
1









  

then it can be easily seen that in this case  

 
   


t

tmF
1

1
 

Hence  

    
 211

1













 XEX  

Remark 4.2.1: Classification of distributions with respect to ageing properties 

is a popular theme in reliability theory. A class of distributions which arises in 

the study of replacement and maintenance policies is the class of new better 

(worse) than used in expectation (NBUE) (NWUE) distributions. Let X  be the 

lifetime of a component with a continuous distribution function and the MRL 

function Fm . F is said to be a new better (worse) than used in expectation 

(NBUE) (NWUE) distribution if 

       .00  tmtmF   

If we assume that F  is NBUE (NWUE) then based on representation 

(4.2.3) 

        XmEX F          (4.2.5)  
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This gives an upper (lower) bound for the CRE of the statistical models 

which are in the class of NBUE (NWUE) distributions. That is, when F  is 

NBUE one can easily conclude that the amount of uncertainty of that, based on 

the measure CRE, is at most equal to the mean of F . Also when F is in the 

class of NWUE distributions one can conclude that the amount of uncertainty of 

F , based on measure CRE, is at least equal to the mean of F . 

Rao et al. [114], shown that when X is a non-negative random variable, 

then  

  
 
 XE

XE
X

2

2


 

          (4.2.6) 

It is shown by Hall and Wellner [60] that for a NBUE (NWUE) 

distribution the coefficient of variation (which is defined as the ratio of the 

standard deviation and the mean) is always less than (greater than) unity. This 

implies that 

 
 
 

 XE
XE

XE


2

2

. 

 Hence the upper bound given by Rao et al. [114] is sharper than the 

upper bound in (4.2.5) in the NBUE case. However, it should be pointed out that 

to have the upper bound (4.2.5) one needs only the knowledge of  XE  while 

for using (4.2.6) as a upper bound one needs to have both  XE  and  2XE . To 

illustrate the above results let us consider the following examples. 

Example 4.2.2:  The mixture of distributions arise naturally in many branches 

of statistics and applied probability. Let X  be distributed as the mixture of two 

exponential distributions with mean 1  and 2  respectively. Then the survival 

function of X is given by 

     21 1
 xx

ePPeXF


  

where  1,0P . It is well-known that, the class of NWUE distributions includes 

the class of distributions with decreasing HR. On the other hand X  has a 
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decreasing HR and hence it is in the class of NWUE distributions. Barlow and 

Proschan [16]. Thus based on (4.2.5) we obtain 

     21 1  ppX            (4.2.7) 

where the right-hand side is the mean of X . This shows that for the mixture of 

two exponential distributions, the CRE is at least   21 1  pp  . Based on the 

result (4.2.6) the upper bound of the CRE for this model is given as follows: 

  
 
  21

2

2

2

1

1

1






PP

Pp
X




           (4.2.8) 

Example 4.2.3:  Let X  be distributed as Gamma   ,  with probability density 

function   

 
 

0,0,0,
1 1 


  






xexxf x        (4.2.9) 

for  1,0 . The Gamma distribution has decreasing HR (Barlow and 

Proschan, [16]). Hence for  1,0 . It is also NWUE and the lower bound 

(4.2.5) for the uncertainty CRE is given by 

   . X  

Based on the result (4.2.6) the upper bound for CRE in this case is 

 
 

2

1 



X          (4.2.10) 

Note, on the other hand, that for α >1, the Gamma distribution is NBUE. 

Also it is trival that for      21,1 . This means that the upper 

bound (4.2.6) is sharper than the upper bound (4.2.5). Note also that the upper 

bound in (4.2.10) holds for all values of   ,0 . 

4.3 Dynamic Cumulative Residual Entropy 

 Study of duration is a subject of interest in many branches of science 

such as reliability, survival analysis, actuary, economics, business and many 
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other fields. Let X  be a non-negative random variable denoting a duration such 

as a lifetime where we assume that it has the distribution function F , and the 

probability density function f . Capturing effects of the age t  of an individual 

or an item under study on the information about the residual lifetime is 

important in many applications. e.g., in reliability when a component or a 

system of components is working at time t , one is interested in the study of the 

lifetime of component or system beyond t . In such case, the set of interest is the 

residual lifetime  

 txxt  : . 

Hence the distribution of interest for computing uncertainty and 

information is the residual distribution with survival function 

 
 
 












otherwise

x
tF

xF

xF
t

t

1

, 
         (4.3.1) 

Where F denotes the survival function of X . 

 Ebrahimi [42] defined the concept of dynamic Shannon entropy and 

obtained some properties of that since then several attempts have been made to 

study and extend the concept of dynamic Shannon‘s entropy. Among others, 

Asadi et al. [8] studied the maximum dynamic entropy models. Asadi et al. [9] 

introduced the minimum dynamic discrimination information approach to 

probability modelling. Asadi et al. [10] developed dynamic information 

divergence and entropy of order  , which is also known as Renyi information 

and entropy, respectively. 

Now the CRE for the residual lifetime distribution with survival function 

 xFt  is 

     



t

tt dxxFxFtX log;  
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xF
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xF
log  
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t

F tFtmdxxFxF
tF

loglog
1

        (4.3.2) 

Asadi and Zohrevand [11] introduced a new measure of uncertainty, the 

CRE for the residual lifetime distribution that is, CRE of tX . This function, 

called the dynamic cumulative residual entropy (DCRE) is defined by 

  
 
 

 
 




t x

X

X

X dx
tF

XF

tF

XF
tX log;          (4.3.3) 

It is clear that    00;  X . From (4.3.3) the DCRE can be rewritten as 

     
 

   dxXFXF
tF

tFtetX X

t

X

X

XX log
1

log; 


        (4.3.4) 

It can be easily seen that for each  tXtt ;,0,   possesses all the 

properties of the CRE (4.1.2). It is worth noting that  tX ;  provides a dynamic 

information measure for measuring the information of the residual life 

distribution. We call this as dynamic cumulative residual entropy (DCRE). It is 

clear that    XX  0; . 

Theorem 4.2.2 Let F  be an absolutely continuous distribution function with 

DCRE  tX ;  and the MRL  tmF , such that   tX ;  for all 0t . Then 

     tXXmEtX F    ;  

Proof: The result follows easily using the same steps as used to prove theorem 4.2.1. 

Example 4.2.3: Again Consider Example 4.2.2, then 

a) For the exponential distribution as we have   tmF , we get    tX ; , 

which does not depend on t . 

b) The DCRE for a uniform distribution is  

    
42

;
t

tX
X

EtXxmEtX F



















  

This shows that the DCRE for uniform distribution is a decreasing 

function of t . Hence as t  gets larger the uncertainty gets smaller. 

c) For Pareto distribution we have 
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 211
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t
tX

X
EtXXmEtX F

. 

This shows that the DCRE of the Pareto distribution is an increasing 

function of t . Hence as t  gets larger the uncertainty gets larger. 

4.4 Properties of Dynamic Cumulative Residual Entropy 

Definition 4.4.1: The distribution function F  is said to be increasing 

(decreasing) DCRE of  tX ;  is an increasing (decreasing) function of t . 

The following theorem gives the necessary and sufficient conditions for  

 tX ;  to be increasing (decreasing) DCRE. 

Theorem 4.4.1: The distribution function F is increasing (decreasing) DCRE. If 

and only if for 0t . 

      tmtX F;             (4.4.1) 

Proof: Differentiation of  tX ; in (4.3.2), where we assume that the derivative 

exists with respect to t , implies that 

 
      tmtXtr

t

tX
FF 




;

;



          (4.4.2) 

Which in turn implies the assertion of the theorem. 

Corollary 4.4.1: The distribution function  F  has constant DCRE if and only if 

it is an exponential distribution. 

Proof: An absolutely continuous distribution function F  is both increasing and 

decreasing DCRE if and only if   0;  ttX . Using theorem 4.4.1. This is 

equivalent to saying that for 0, tt  

               tmtX F;  

Now the result follows from example 4.2.1 

Corollary 4.4.2:  An absolute continuous distribution function F  has 

decreasing (increasing) DCRE if and only if the corresponding MRL is 

decreasing (increasing). 
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Proof: To prove the ‗if‘ part, assume that the MRL  tmF  is decreasing 

(increasing) then one can easily see that 

 
   

 
   tm

tF

dxxftm

tX F
t

F





; . 

Hence we have 

 
 

                0;
;





tmtmtrtmtXtr

t

tX
FFFFF 


 

This shows that  tX ;  is decreasing (increasing) the proof of the ‗only 

if‘ part is obtained based on theorem 4.4.1. 

Table 4.4.1 gives some applications of corollary 4.4.2. In the table we 

have presented some well-known statistical models such as Pareto Weibull, 

Gamma, Rayleigh and Half logistic. These models have monotone MRLs and 

consequently from corollary 4.4.2 they have also monotone DCREs. 

Table 4.4.1 

Model MRL DCRE 

Pareto 
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Rayleigh 
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Theorem 4.4.2: Let X  and Y be two non-negative continuous random variables 

with survival functions  tF  and  tG , MRL functions  tmF  and  tmG  and 

HRs  trF  and  trG , respectively. Let for    trtrt GF  ,0  and  tmF  be an 

increasing function of t . Then 

   tYtX :;    

Proof: The assumption that    trtr GF   implies that    tmtm GF  , for all ,t  

0t . Hence 

  
   

 

   

 

   

 tF

dxxfxm

tG

dxxgxm

tG

dxxgxm

tY t

F

t

F

t

G 


:  

   tX ;             (4.4.3)   

where the last inequality is obtained from the fact that    tmtr GF   implies that 

     tYYhEtXXhE   for all increasing function h . 

The following example shows an application of this theorem. 

Example 4.4.2: Let 2,,,1 nXX n , denote the lifetimes of n  independent and 

identically distributed components which are connected in a series system. 

Assume that the sX i '  are distributed as Weibull with survival function 

    10,0,0,   


 tetF t  

Assume  trF  denotes the common HR of the components and  trn  

denotes the HR of the system. Then using the fact that the lifetime of the system 

is  nXXY ,,min 1   we get 

    


   0,0,0, tetF tn

n
 

where nF  denotes the survival function of the system. 

Hence 
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    tr
tt

ntr Fn 
















11

 

for all 0t . On the other hand since  trF , in this case, is a decreasing function 

of t , the common MRL of the components is an increasing function of t . Hence 

based on theorem (4.4.2), we get that  

    tYtX :;   . 

An important question regarding the DCRE is whether it characterizes 

the underlying distribution function uniquely, in the following theorem we show 

that when DCRE  tX ;  is an increasing function of t  then the relation between 

the distribution function F  and  tX ;  is one-to-one. 

Theorem 4.4.3: Let X and Y be two non-negative absolutely continuous 

random variables with survival functions  tF  and  tG , MRL functions  tmF  

and  tmG  and HRs  trF  and  trG , respectively. Let the DCREs  tX ;  and 

 tY;  corresponding to X  and  Y  be increasing functions of t . If for all 0t ; 

   tXtX ;;    then    tGtF  . 

Proof: Under the assumptions that  tX ;  and  tY;  are differentiable with 

respect to t . We get by differentiating both sides of    tYtX ;;    

              tmtYtrtmtXtr GGFF  ;;          (4.4.4) 

If for all values of ,t     trtrt GF  ,0  then    tGtF  and the proof is 

complete. Hence, we assume that there exists some t  such that     trtr GF  . 

Without loss of generality, we assume that     trtr FG  . Using this and 

equation (4.4.4) with tt  , we get  

         tmtYtmtX GF  ;; .         (4.4.5) 

which implies that 

    tmtm GF   



90 

this is a contradiction with the fact that     trtr FG   implies that 

    tmtm GF  . Therefore for all values of t  we have    trtr GF   or 

equivalently    tGtF  . Hence the proof is complete. In the following theorem 

we give characterization of some well-known distributions in terms of DCRE. 

Theorem 4.4.4: Let X be a non-negative absolutely continuous random variable 

with survival function  tF , MRL  tmF , HR  trF , and DCRE  tX ; . Then 

     0,;  CtcmtX F .          (4.4.6) 

If and only if X distributed as 

i) Exponential where c=1 

ii) Power where 0<c<1 

iii) Pareto where c>1. 

Proof:  The ‗if‘ part of the theorem is straight forward to prove. To prove the 

‗only if‘ part of equation (4.4.6) hold. That is  

    
 

     



t

FF tcmdxxFxF
tF

tFtm log
1

log  

Differentiating both sides of this with respect to t  gives    

              
 

   




t

FFFFF dxxFxF
tF

trtFtmtrtFtmtmc log
1

loglog    

(4.4.7) 

                  tFtmtcmtrtFtmtrtFtm FFFFFF logloglog     

(4.4.8) 

on the other hand using equation (4.2.2) we have  

       1 trtmtm FFF  

substituting  tm  from this last equation in (4.4.8) we get 

               tmtrtFtrtmtrtmc FFFFFF  log11  

              tFtmtrtmtcrxF FFFF loglog   
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from this we obtain for any 0x  

     cxrxm FF   

or again using (4.2.2)  

  1 CxmF  

Integrating both sides of this last equation with respect to x  on  t,

yields the following linear form for  tmF  

      FF mtCtm   1 .           (4.4.9) 

Hall and Wellner [60] proved that the MRL function of a continuous 

random variable X  is linear of the form (4.4.9), if and only if the underlying 

distribution is exponential (C=1), Pareto (C>1) or power (0<C<1) this 

completes the theorem. 

Theorem 4.4.5: Let X  and Y be two non-negative absolutely continuous 

random variables with survival functions  tF  and  tG , MRL functions  tmF  

and  tmG , HR  trF and  trG , and DRCEs  tX ;  and  tY; , respectively 

assume that for all 0t  

    tcmtm FG   

where 1c  is real valued. If  tX ;  is an increasing function of t , then  tY;  

is also an increasing function of t  provided that  

 
 
 


 tF

tG

t
lim  

Proof: Using theorem (4.4.1) the assumption that  tX ;  is increasing implies that                         

    tmtX F; . 

Hence to show that  tY :  is increasing in t  we need to show that 

      tcmtmtY FG ;  

To this end we show that 

    tXtY
c

;;
1
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Define the function  t  as follows: 

      
 











C

tY
tXtGt

;
;


  

we show that   0t . Differentiation of  t   with respect to t  gives 

                     tgtm
c

tGtmtXtrtXtgt GFF

1
;;    

 
                 trtmtmtXtrtXtrtG GFFFG  ;;   

            tmtXtrtrtG FGF  ;        (4.4.10) 

since we assume that  tX ;  is increasing from theorem (4.4.1) we obtain 

   tmtX F; . On the other hand from the equality    tcmtm FG   one can 

easily see that 

    
 tcm

C
trtr

F

FG




1
 

since 1C . This equation implies that for all t ,    trtrt GF  ,0 . Therefore 

  0 t  that is  t  is an increasing function of t . Now using the fact 

  0; tX  and the assumption 
 
 


 tF

tG
Lt

t
  

we have 
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1















 




t

G

t

F
tt

dxxgxm
c

dxxfxm
tF

tG
LimtLim  

this implies that   0t . Hence  

    tXty
c

::
1

   

this completes the proof. 

Asadi and Zohrevand [11] showed that for any non-negative random 

variable X , the CRE of X is the expectation of the mean residual lifetime of X

i.e.     XeEX X . They also proved that 

     tXXeEtX x ; .         (4.4.11) 

Moreover, applying theorem 8 in Rao et al. [115] to tX , we have 

     tXHctX ;exp;   

where c  0.2065. 
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Asadi and Zohrevand [11] proposed the following two classes of lifetime 

distributions based on the DCRE function 

Proposition 4.4.1: If X and Y are two non-negative random variables with finite 

means  XE  and  YE , respectively and such that YX ST  then 

      
 
 YE

XE
XEYX log          (4.4.12)  

Proof: Using the log-sum inequality we have 

  
 
 

 
 

 
 

 
 YE

XE
XE

dxXG

dxXF

dxXFdx
XG

XF
XF logloglog

0

0

00






 





 

Hence we obtain 

      dxXFXFX 



0

log  

              
 
 YE

XE
XEdxXGXF loglog

0

 


      (4.4.13) 

Finally, using that GF  , we obtain 

       
 
 YE

XE
XEdxXGXFX loglog

0

 


  

     
 
 YE

XE
XEdxXGXG loglog

0

 


 

   
 
 YE

XE
XEY log  . 

Now using the Weibull distribution we obtain an upper bound for the 

CRE similar to that obtained by Rao et al. [114]. 

Proposition 4.4.2: If X is a non-negative random variable then 

  
 

   XE

XE

X









1

1
11

















       for all  0       (4.4.14) 
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Proof: If Y  is a random variable with a Weibull distribution and reliability 

function    tetG   from (4.4.13) we obtain 

        
 
 YE

XE
XEdxXGXFX loglog

0

 


  

   
 
 

   dxXFX
YE

XE
XE 




0

log


  

   
 
 

 
1

log
1










 XE

YE

XE
XE  

where 
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1







 dxeYE X  

Hence 
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log

1XE
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XEX  

which is maximized for a fixed   at 
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Substituting this value we obtain 
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and using that XX  1log  we get 
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In particular, if we take 1  then we obtain expression similar that 

obtained by Rao et al. [115]. 

Definition 4.4.2: A random variable X is said to be increasing (decreasing) 

DCRE, denoted by IDCRE (DDCRE) if  tX ;  is an increasing (decreasing) 

function of .t  

Definition 4.4.3: A random variable X  is said to be increasing (decreasing) 

failure rate, denoted by IFR (DFR) if  trX  is increasing (decreasing) in t . 

Definition 4.4.4: A random variable X  is said to be increasing (decreasing) 

mean residual life, denoted by IMRL (DMRL), if  teX  is increasing 

(decreasing) in t . 

Asadi and Zohrevand [11] obtained characterizations for the exponential, 

power and Pareto distributions from the following relationship between the 

DCRE and the MRL 

    tcetX X;  

where c is a non-negative real constant. In the following theorem, we extend 

this result to the more general case where c  is a function of t . 

Theorem 4.4.6: Let X  be a non-negative absolutely continuous random 

variable such that      tetctX X;  for 0t , then 

         tc

t

Xc

X edxeXcKte 














 

0

1         (4.4.15) 
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With  0ceK    and   XE  

Proof: If X has survival function  tFX , from  
 
 

 
 

dx
tF

XF

tF

XF
tX

X

X

t X

X




 log;  

we have 

           dxXFXFdxXFtFtFtX X

t

X

t

XXX loglog; 


  

Differentiating with respect to t , we obtain 

         tetXtrtX XX  ;;          (4.4.16) 

which jointly with      tetctX x;  and  
 
 te

te
tr

X

X
X

1


 

give 

         1 tctetcte XX  

solving this linear differential equation we obtain (4.4.14). 

 In the next example we show how to use this general result to obtain new 

characterization results. 

Example 4.4.3: If   battc   for 0t and 0a , from theorem (4.4.6) we 

obtain the general model with mean  residual life function 

  
  bat

at

X Ke
a

eb

a

atb
te 










22

 

If a=0 from theorem (4.4.6) we obtain the characterization results given 

by Asadi and Zohrevand [11] for the exponential, power and Pareto 

distributions. Other characterization results can be obtained from our general 

result by solving the corresponding differential equation. 

The following example shows that DDCRE does not imply DMRL. 

Example 4.4.4: Let X  be a continuous random variable with survival function 

     215 2tt

X etF     for   0t  
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the mean residual life function  teX  of X  has a maximum at 120786.0t (see 

fig 4.4.1). Hence, the function  teX  is increasing to the maximum and it is 

decreasing later. Therefore, X  is not DMRL. However, it can be checked that 

the DCRE at time t  of X  is a decreasing function in t  i.e. X  is DDCRE (see 

Fig. 4.4.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Fig.4.4.1: MRI (continuous line) and DCRE (dashed line) functions of the survival function 

The following example shows that we do not know if the DCRE function 

uniquely determines the distribution when  tX ;  is an increasing function of t . 

Example 4.4.5: Let X  and Y  be two random variables with survival functions 
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The failure rate functions of X are Y given by 
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Note that    trtr YX   in   585786.0,0t  and     trtr YX    in   1,585786.0t  

The mean residual life functions of X and Y  are given by     
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teX  

and 
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teY  

Note that    tete YX    in  154534.0,0t   and     tete YX    in   1,154534.0t fig 

4.4.2. shows the difference of failure rate functions     trtr YX   and the 

difference of mean residual life functions     tete YX  . Thus we have that for 

all  585786.0,154534.0t     trtr YX    and     tete XX  . 

 

 

 

 

 

 

 

Fig.4.4.2: Difference of failure rate function (continuous line) and mean residual life functions 

(dashed line) of the survival functions 

0.4 

0.2 

0.2 

0.4 

 0.6 

  0.8 

1 

0.2 0.4 0.6 0.8 1 



99 

Let X  be a random variable with support S and probability density 

function Xf and let   be a non-negative real function in S such that 

    XwE0   then, a random variable Y is said to the weighted distribution 

associated to X and   if its probability density function is given by    

 
   

  XE

tft
tf X

Y



  

for all St . In this case, Y  is called the weighted random variable associated to 

X  and  . The concept of weighted distribution was formulated by Rao [112] to 

model various situations in which the sampling probabilities are proportional to 

a ‗weighted‘ function  . 

The usefulness of weighted distributions can be seen in Patil and Rao 

[108] and Navarro et al. [97, 98, 99, 100] and in the references therein. The 

reliability (survival) function for the weighted random variable Y associated to 

X and   is given by 

 
  

  
 tF

XE

tXXE
tF XY



 
          (4.4.17) 

From (4.4.17) the dynamic cumulative residual entropy DCRE for the 

weighted random variable Y can be expressed as  

  
 
 

 
 

dx
tF

XF

tF

XF
tY

Y

Y

t Y

Y




 log:  

  
    

    

    

    











t X

X

X

X
dx

tFtXXE

XFXXE

tFtXXE

FXXE








log  

Rao et al. [114] proved that if Y is the equilibrium random variable associated to 

X , then 

  
 





X
YH  log  
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Proposition 4.4.3: Let X  be a non-negative continuous random variable and let 

Y  be the equilibrium random variable associated to X . Then 

1. X DDCRE   Y DURL 

2. X IDCRE   Y IURL 

Proof: We know that if X  be a non-negative continuous random variable and 

let Y  be the equilibrium random variable associated to X  then 

    
 
 te

tX
tetYH

X

X

;
log;


   we also obtain from this 

 
 
 

       
 te

tetXtetX

te

te
tYH

X

XX

X

X

2

;;
;








 

using now (4.4.15) we get 

 
 
 

            
 te

tetXtetXtetr

te

te
tYH

X

XXXX

X

X

2

;;
;








 

then a straightforward calculation gives 

 
     

 
    tetX

te

tetetr
tYH X

X

XXX 


 ;;
2

  

Hence using ― X is DDCRE (IDDCRE) if and only if     

     tetX X;  for all  t .  The Proof is complete. 

 

4.5 Results on the Dynamic Cumulative Past Entropy 

 Let X  be a non-negative random variable with absolutely continuous 

distribution function    tXtFX  Pr  and probability density function  tf X . In 

reliability and survival analysis one usually works with the conditional random 

variable  tXXtXt 
  
which is usually known as ‗inactivity time‘. To 

illustrate the importance of the random variables of the form Xt  we give two 

examples here. First, let us assume that, at time t , one has undergone a medical 

test to check for a certain disease. Let us assume that the test is positive. If we 

denote by X  the age when the patient was infected, then it is known that tX  . 
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Now, the question is, how much time has elapsed since the patient had been 

infected by this disease. The second example arises naturally in life testing. 

Suppose that an item has been put under test by an engineer at time t = 0. 

Usually, in life testing, the items under test are not monitored continuously. 

Assume that when the engineer checks the items at time t , some of them have 

already failed. Then the same question of that of the first example arises 

naturally here. 

The reliability function Xt  is given by 

        
 tF

XtF
tXXtPxXPXF

X

X
tXt


  

for t 0 . The random variable Xt  is related with two relevant ageing 

functions, the reversed failure (or hazard) rate defined by 

  
 
 tF

tf
tr

X

X
X   

and the mean inactivity time (MIT) function defined by 

    
 

 

t

X

X

X dF
tF

tXXtEtK
0

1
  

for t  such that   0tFX . The reversed failure rate of X is related with  tK X  by 

  
 

 tK

tK
tr

X

X
X




1
            (4.5.1) 

these functions are used to define the following classes. 

Definition 4.5.1: A random variable X is said to be increasing (Decreasing) 

reversed failure rate, denoted by IRFR (DRFR) if  trX  is increasing 

(decreasing) in t .     

Definition 4.5.2:  A random variable X is said to be increasing (Decreasing) 

mean inactivity time, denoted by IMIT (DMIT), if  tK X   is increasing 

(decreasing) in it.  

The CRE of Xt  denoted by  tx;  can be called as the dynamic 

cumulative past entropy (DCPE) of X and it is given by 
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t

X

X

X

X dx
tF

F

tF

F
tX

0

log;


           (4.5.2) 

From (4.5.2), the DCPE function can be rewritten as 

      
 

   

t

XX

X

XX dFF
tF

tFtKtX
0

log
1

log;   

where  tK X  is the MIT of X . 

Example 4.5.1: Let X  be a continuous random variable with distribution 

function 
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where 06338.2a  is the unique positive root of the equation 01424  aa . 

This distribution was given by Nanda et al. [94] the mean inactivity time of 

 tKX X,  is 
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It is easy to see that  tK X  is not monotone (see fig 4.5.1) However, it 

can be checked that the DCPE of X  is an increasing function, i.e. X  is IDCPE 

(See fig 4.5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.5.1: MIT (continuous line) and DCPE (dashed line) functions for  t1  of the 

distribution as in example 4.5.1  
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4.6  Testing Goodness-of-Fit for Exponential Distribution Based on 

Cumulative Residual Entropy 

The notion of entropy is of fundamental importance in different areas 

such as physics, probability and statistics, communication theory and 

economics. In information theory, entropy is a measure of the uncertainty 

associated with the random variable. This concept was introduced by Shannon 

[122] Rao et al. [114] introduced a new measure of information that extends the 

Shannon entropy to continuous random variables, and called it cumulative 

residual entropy (CRE). Its definition is valid for both continuous and discrete 

cases. It can easily be computed from sample data and its estimation 

asymptotically converges to the true value. CRE has applications in reliability 

engineering and computer vision. This measure is based on the cumulative 

distribution function (cdf)  F and is defined as follows: 

        dXPXPXCRE
NR

 


log , 

where  NXXX ,,1 
 
and  N ,,, 21    and  X  means that, for every 

i, iiX  , and   NiR iN

N  1,0;,,1   . In reliability theory, CRE is 

based on survival function    xFxF 1   and is defined as   

      dxxFxFXCRE log
0




 . 

Testing for exponentiality still attracts considerable attention and is the 

topic of a good amount of recent research. Many authors provide test statistics 

for detecting departures from the hypothesis of exponentiality against specific or 

general alternatives. Alwasel [4] and Ahmad and Alwasel [2] used the lack of 

memory property of the exponential distribution. Grzegorzewski and 

Wieczorkowski [57] and Ebrahimi and Habibullah [44] make use of the 

maximum entropy principle. Also, since early work of Sukhatme [127] and later 

work by Epstein and Sobel [50, 51, 52] and Epstein [48, 49] considerable 
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attention has been given to testing the hypothesis of exponentiality. Park and 

Park [107] established the entropy-based goodness of fit test statistics based on 

the non-parametric distribution functions of the sample entropy and modified 

sample entropy and compare their performances for the exponential and normal 

distributions. 

4.6.1: Test Statistics and its Properties 

 Suppose X and Y  be two non-negative and absolutely continuous 

random variables with cdf F and G  and pdf f and g , respectively. As an 

information distance between two distribution function F  and G, Kullback and 

Leibler [81] proposed the following discrimination measure, also known as 

relative entropy of X and Y  

  
 
 




0

, .log dx
xg

xf
xfI YX  

To construct a goodness of fit test for exponentiality, we first define a 

new measure of distance between two distributions that is similar to Kullback-

Leibler divergence  KL , but using the distribution function rather than density 

function and called it cumulative Kullback-Leibler  CKL  divergence. 

Definition 4.6.1: If X and Y  be two non-negative and absolutely continuous 

random variables with, respectively cdfs F and G , then CKL  between these 

distributions is defined as  

    
 
 

    



0

log: YEXEdx
xG

xF
xFGFCKL  

where    xFxF 1  and    xGxG 1  are respectively, cumulative residual 

distributions.  

Lemma 4.6.1:   ,0: GFCKL  and equality holds if and only if and only if 

eaGF .,  

Proof: By the log-sum inequality, we have  
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The proof is complete if we use the inequality 0  ,log  xyx
y

x
x

 

and 0   y  and note that in the log-sum inequality, equality holds if and only if 

   xGxF  . 

Let nXXX ,,, 21 
 

be non-negative, independent and indentically 

distributed (iid) random variables from an absolutely continuous cdf F                     

with order statistics    nXX 1 , and with finite 
 
 1

2

1

2 XE

XE
 . Let 

  0,0,1, ,   xexF x  
 , denote an exponential cdf, where   is the 

unknown mean parameter. The aim of this section is testing the hypothesis 

          ,:,,:0 xFxFHvsxFxFH a  . 

Under the null hypothesis   0: 0 FFCKL and large value of  FFCKL :

leads us to reject the null hypothesis 0H in favour of the alternative hypothesis 

aH . Since evaluation of the integral in  FFCKL :
 

requires complete 

knowledge of F and F
 
then  FFCKL :  is not operational. We operationalize 

 FFCKL :  by developing a discrimination information statistics. Toward this 

end,  FFCKL :  is written as 

             


XEdxxFxFFCREFFCKL ;log:
0

 

 

      


 


XEdxxFxFCRE
0

1
 

 
      


 XEXEFCRE 2

2

1
 

    FCRE            (4.6.1) 



106 

The last equality is obtained by noting that 
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2 XE
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 . An estimator of 

 FCRE  is the CRE of the empirical distribution  
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where    xFxF nn 1 . By replacing  FCRE  by  FCRE  and   by 








n

i

i

n

i

i

X

X

1

1

2

2

̂  in (4.6.1), an estimator of  FFCKL :  is obtained as follows: 
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Thus the test statistics is defined as 
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We reject 0H  at the significance level   and favour aH  if  1,nn TT , where 

1,nT  is  1100 - percentile of nT  under 0H . 

The type I error control using the 0.95 percentiles of the nT  statistics was 

evaluated by simulating random samples from a spectrum of exponential 

populations. A selection of the result is presented in table 4.6.1. It can be seen 

that the empirical percentiles given in table 4.6.1 provide an excellent type I 

error control. 
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Table 4.6.1 

Type I error control of nT : 05.0                                                                        

(Simulation estimates based on 100000 replications) 

Exp    
N 

5 15 25 

=2 0.04954 0.05015 0.05020 

=3 0.05026 0.04877 0.04887 

=4 0.04962 0.05059 0.04942 

=5 0.05041 0.04995 0.04925 
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Chapter –V 

Measure of information and its application 

 

 

5.1: Introduction  

easures of information appear everywhere in probability and statistics. 

They also play a fundamental role in communication theory. They have 

a long history since the research work of Fisher, Shannon and Kullback. There 

are many measures each claiming to capture the concept of information or 

simply being measures of (directed) divergence or distance between two 

probability distributions. Also there exist many generalizations of these 

measures. One may mention here the research work of Lindley and Jaynes who 

introduced entropy based Bayesian information and the maximum entropy 

principle for determining probability models respectively. 

Broadly speaking there are three classes of measures of information and 

divergence. Fisher-type, divergence–type and entropy (discrete and differential) 

type measures. Some of them have been developed axiomatically (Shannon‘s 

entropy and its generalizations) but most of them have been established 

operationally in the sense that they have been introduced on the basis of their 

properties. 

There have been several phases in the history of information theory. 

Initially we have (i) the development of generalizations of measures of 

information and divergence (f-divergence, (h – f)-divergence, hypo-entropy, 

etc); (ii) the synthesis (collection) of properties they ought to satisfy, and    (iii) 

attempts to unify them. All this work refers to populations and distributions. 

Later on we have the emergence of information or divergence statistics based on 

data or samples and their use in statistical inference primarily in minimum 

M 
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―distance‖ estimation and for the development of asymptotic tests of goodness 

of fit or model selection criteria. Lately we have a resurgence of interest on 

measures of information and divergence which are used in many places, in 

several contexts and in new sampling situations. 

The measures of information and divergence enjoy several properties 

such a non-negativity, maximal information, sufficiency etc. and statisticians do 

not agree on all of them. There is a body of knowledge known as statistical 

information theory which has made many advances but not-achieved a wide 

acceptance and application. This approach is more operational rather than 

axiomatic as it is the case with Shannon‘s entropy.  

5.2: Classes of Measures 

 As it was mentioned earlier there are three classes of measures of 

information and divergence, Fisher-type, divergence-type and entropy-type 

measures. In what follows assume that  ,xf  is a Probability Density Function 

(pdf) corresponding to a random variable X  and depending on a parameter  . 

At other places X will follow a distribution with pdf 1f  or 2f . 

5.2.1: Fisher-Type Measures  

 The Fisher‘s measure of information introduced in 1925 is given by 
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where 
 
denotes the norm of a matrix. The above is the classical or expected information 

while the observed Fisher information where ̂  an estimate of   is given by: 
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Finally the Fisher information measure is given by: 
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log
  or equivalently by  
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2 loglog
  

where a  and b  are the end points of the interval of support of .X  

 Vajda [134] extended the above definition by raising the score function 

to a power 1, aa  for the purpose of generalizing inference with loss function 

other than the squared one which leads to the variance and mean squared error 

criteria. The corresponding measure for a univariate parameter   is given by: 

     .1, ,log  



 aXfEI

a

V

X 


  

 In case of a vector parameter  , Ferentinos and Papaioannou [54] 

proposed as a measure of information  FP

XI  any eigenvalue or special 

functions of the eigenvalues of Fisher‘s information matrix, such as the trace or 

its determinant. 

 Finally Tukey [133] and Chandrasekar and Balakrishnan [26] discussed 

the following measure of information 

  

 
 












































  VectorX

scalarxfiateuniX

I T

X
















1

2

2

,,var

 

where    and  2   (matrix  for the vector case) are the mean and variance 

of the random variable X . 

5.5.2:  Measures of Divergence 

 A measure of divergence is used as a way to evaluate the distance 

(divergence) between any two populations or functions. Let 1f   and  2f   be two 
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probability density functions which may depend or not on an unknown 

parameter of fixed finite dimension. The most well-known measure of (directed) 

divergence is the Kullback-Leibler divergence which is given by 

    d
f

f
fffI KL

X

2

1
121 log,  

for a measure  . If 1f  is the density of  VUX ,  and 2f  is the product of the 

marginal densities of U  and V , KL

XI  is the well-known mutual or relative 

information in coding theory. 

 The additive and non-additive directed divergences of order  were 

introduced in the 60‘s and the 70‘s (Renyi [117], CSiczar [32] and Rathie and 

Kannappan [116]). The so called order  information measure of Renyi [117] is 

given by 

    


  1,0,log
1

1
, 1

2121 


 dffffI R

X
 

It should be noted that for  tending to 1 the above measure becomes the 

Kullback-Leibler divergence. Another measure of divergence is the measure of 

Kagan [71] which is given by  

       dfffffI K

X 2

2

2121 1,  

Csiszar‘s measure of information (Csiszar [32]) is a general divergence-

type measure, known also as  divergence based on a convex function  . 

Csiszar‘s measure is defined by 

      dfffffI C

X 22121,  

where   is a convex function in  ,  such that   ,        and 

     with   
 

  lim . Observe that Csiszar‘s measure reduces to 
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Kullback-Leibler divergence if    log . If    21   or 

    ,1sgn   1,   . Csiszar‘s measure yields the Kagan (Pearson‘s 

X
2
) and Renyi‘s divergence respectively. 

Another generalization of measures of divergence is the family of power 

divergences introduced by Cressie and Read [31] which is given by 
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where for 1,0  is defined by continuity. Note that the Kullback-Leibler 

divergence is obtained for   tending to 0. 

 One of the most recently proposed measures of divergence is the BHHJ 

power divergence between 1f  and 2f  (Basu et al. [17]) which is denoted by 

BHHJ, indexed by a positive parameter  and defined as 
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 dzzffzfzfffI BHHJ

X . 

Note that the above family which is also referred to as a family of power 

divergence is loosely related to the Cressie and Read power divergence. It 

should be also noted that the BHHJ family reduces to the Kullback-Leibler 

divergence for  tending to 0 and to the standard 2L distance between 1f  and 2f  

for  =1. The above measures can be defined also for discrete settings let 

 mpppP ,,, 21   and  mqqqQ ,,, 21   be two discrete finite probability 

distributions. Then the discrete version of Csiszar‘s measure is given by 

    ii
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X qpqQPI 
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,  while the Creasie and Read divergence is given 

by 
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The discrete version of the BHHJ measure can be defined in a similar fashion. 

5.2.3  Entropy-Type Measures 

Let  mpppP ,,, 21   be a discrete finite probability distribution 

associated with a random variable X . Shannon‘s entropy is defined by 

 ii

S

X ppH log  

It was later generalized by Renyi [117] as entropy of order : 

  


 1,0,log
1

1





i

R

X pH . 

A further generalization along the lines of Csiszar‘s measure based on a 

convex function   known as  entropy was proposed by Burbea and Rao [24] 

and is given by  



K

i

iX pH
1


. Finally, it is worth mentioning the entropy 

measure of Havrda and Charvat [63]: 

 1,0,
1

1













iC

X

p
H  

which for  = 2 it becomes the Gini-Simpson index. Other entropy-type 

measures include the  entropy given by 

 
 

1,0,
21

1
1

1


















 i

X

p
H  

and the paired entropy given by 

      iiii

P

X ppppH 1log1log  

where pairing is in the sense of  ii pp 1, (cf Burbea and Rao [24]). 

5.2.4  Properties of Information Measures 

 The measures of divergence are not formal distance functions. Any 

bivariate function  ,XI  that satisfies the non-negativity property, namely 

  0, XI   with equality iff its two arguments are equal can possibly be used as a 
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measure of information or divergence. The three types of measures of 

information and divergence share similar statistical properties. Several 

properties have been investigated some of which are of axiomatic character and 

others of operational. Here we will briefly mention some of these properties. In 

what follows we shall use XI  for either   KI kX ,,,1   1. The information 

about  k ,,1   
based on the random variable X  or  21, ffI X , a measure of 

divergence between 1f  and 2f . One of the most distinctive properties is the 

additivity property. The weak additivity property is defined as 

 XIfIII YXYX ,,  is independent of Y. 

While the strong additivity is defined by  

 
XYXYX III , . 

Where  
xXYXY

IEI


  is the conditional information or divergence of 

XY .  The sub-additivity and super-additivity properties are defined through the 

weak additivity when the equal sign is replaced with an inequality. 

 YXYX III ,  (sub-additivity) 

and 

 YXYX III ,   (super-additivity). 

Observe that super and sub-additivty are contradictory. Sub-additivity is 

not satisfied for any known measure except Shannon‘s entropy [cf. Papaioannou 

(105)]. Super-additivity coupled with equality iff X and Y independent is 

satisfied by Fisher‘s information number (Fisher‘s shift-invariant information) 

and mutual information (cf. Papaioannou and Ferentinos [106] and Micheas and 

Zografos [88]). Super-addivity generates measures of dependence or correlation 

while sub-additivity stems from the conditional inequality (entropy). 
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Three important inequality properties are the conditional inequality given 

by 

 XYX
II   

The nuisance parameter property given by 

    121,  XX II   

where 1  the parameter of interest and 2  a nuisance parameter and the 

monotonicity property (maximal information property) given by 

   XXT II   

for any statistic  XT . Not that if  XT  is sufficient then the monotonicity 

property holds as equality which shows the invariance property of the measure 

under sufficient transformations. 

Let positive numbers 1  and 2  such that  1 21  . Also let 1f  and 2f  

be two probability density functions. The convexity property is defined as  

     22112211 fIfIffI XXX    

the order preserving property has been introduced by Shiva, Ahmed and 

Georganas [125] and shows that the relation between the amount of information 

contained in a random variable 1X  and that contained in another random 

variable 2X  remains intact irrespectively of the measure of information used. In 

particular, if the superscripts 1 and 2 represent two different measures of 

information then 

 2211

2121 XXXX IIII   

the limiting property is defined by 

       0,  ffIorfIfIiffff nXnXn . 
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Where nf  
is a sequence of probability density functions, f  is the limiting 

probability density function and  nfI  and  ffI n ,  are measures of information 

based on one or two pdfs respectively.  

We finally mention the Ali-Silvey property. If  ,xf  or (simply f ) has 

a monotone likelihood ratio in x  then    
3121

,,321  ffIffI XX  .  

5.3:  Information Measures for Generalized Gamma Family 

The generalized gamma  GG  distribution offers a flexible family in the 

varieties of shapes and hazard functions for modeling duration. It was 

introduced by Stacy [126] difficulties with convergence of algorithms for 

maximum likelihood estimation Hager and Ban [59] inhibited applications of 

the GG  model. Prentice [109] resolved the convergence problem using a 

nonlinear transformation of GG model. However, despite its long history and 

growing use in various applications, the GG  family has been remarkably absent 

in the information theoretic literature. Thus for a maximum entropy  ME  

derivation of GG  is given in Kapur [74] where it is referred to as generalized 

Weibull distribution and the entropy of GG  has appeared in the context of 

flexible families of distributions Nadarajah and Zografos [92]. 

Analysis of duration data is increasingly used in various areas of 

economics and related fields Keifer [76]. In labor economics, examples include 

studies of the duration of unemployment (Lancaster [83], Kiefer [75], 

McDonald and Butler [86], Yamaguchi [138]). Examples in other areas include 

studies of firms survival (Audretsch and Mahmoud [13]), duration that a 

property is on the market (Genesove and Mayer [56]), duration of schooling at 

higher education (Diaz [36]) duration of stages of oilfield exploration (Favero et 

al. [53]) household inter purchase time (Vakratsas and Bass [135]) inter 

purchase time in financial markets (Allenby et al. [3]) and length of the time 

that new movies stay on screens (Blumenthal [20]). 
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Distributions that are used in duration analysis in economics include 

exponential, lognormal, gamma and Weibull. The GG  family which 

encompasses exponential, gamma, and Weibull as subfamilies and lognormal as 

a limiting distribution has been used in economics by Jaggia. Yamaguchi [138] 

and Allenby et al. [3]. Some authors have argued that the flexibility of GG  

makes it suitable for duration analysis while others have advocated use of 

simpler models because of estimation difficulties caused by the complexity of 

GG  parameter structure. Obviously there would be no need to endure the costs 

associated with the application of a complex GG  model if the data do not 

discriminate between the GG  and members of its subfamilies or if the fit of a 

simpler model to the data is as good as that for the complex GG  model. Despite 

its long history and growing use in various applications, the GG  family and its 

properties has been remarkably presented in different papers. Maximum 

likelihood estimation of the parameters and quasi maximum likelihood 

estimators for its subfamily (two-parameter gamma distribution)  can be found 

in [61,65,127,128] some concepts of this family in information theory has 

introduced by Dadpay et al. [33]. 

5.3.1:  Information Properties of GG Family 

 The probability density function of the GG  distribution,   ,,GG  is  

  
 

  0,,,0,,, 1 


  









eYfGG

    (5.3.1) 

where    is the gamma function,   and  are shape parameters and   is the 

scale parameter.  

The GG  family is flexible in that it includes several well-known models 

as subfamilies (Johnson  et al. [70]). The subfamilies of GG  thus for considered 

in the literature are exponential  1  gamma for   1 ,  and Weibull  for 

 1 . The lognormal distribution is also obtained as a limiting distribution 
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when  . By letting 2  we obtain a subfamily of GG  which is known as 

the generalized normal distribution,  ,2GN . The GN  is itself a flexible 

family and includes Half-normal  21 ,                  Rayleigh  1 . 

Maxwell-Bottzmann  23  and Chi ...)2,1,2  KK . Moreover, the GG  

family is more flexible than gamma and Weibull distributions in terms of hazard 

rate function. It allows for nonmonotonicity in the form of single-peaked hazard 

functions (but that it would not be able to ‗handle‘ multi-peaked hazard 

functions). An important property of GG  family for information analysis is that 

the family is closed under power transformation. That is, if Y   ,,GG , then 

 Z=Y
S
   0,,, SSGG S        (5.3.2) 

in particular,  

 X=Y
t
   ,G          (5.3.3)   

where   ,G  denotes the gamma density with shape parameter   and scale 

. 

The power and logarithmic moments of GG  distribution are given by 

     
 

0,,,,, 



 S

tS
YE

S
S

GGS



  

     



S

YE SS

GGS  loglog,,       (5.3.4) 

where  
 











log
 is the digamma function. 

For studying the information properties of GG  family, we consider the 

class of distribution functions 

     2,1,0,:  jTEF jjf        (5.3.5) 
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Where  210 ,,    and   100   T normalizes the density. For a given  , 

   1T , 

      
  ,,,,1 GGE       (5.3.6) 

    log2 T   and     

      



1

loglog,,2  GGE       (5.3.7) 

is the geometric mean.  

5.3.2:  Entropy Properties 

 The entropy of a distribution F in  is given by  

        dffFH ,,log,,
0




 . 

The ME model in (5.3.5) is   ,,** GGGGF  with density (5.3.1). 

Kapur [74] gives a proof for a different parameterization of (5.3.1) refers 

to it as generalized Weibull distribution 

The GG entropy is 

         

















1
logloglogmax* FHGGH

F
 

(5.3.8) 

Nadarajah and Zografos  [92] includes  GGH  among their list of 

entropies of flexible classes of distributions. For specific values of the 

paramaters, (5.3.8) gives entropy expressions for gamma, Weibull, exponential 

and half-normal distributions.  

Entropy ordering of distributions within many parametric families is 

studied in Ebrahimi et al. [45], but GG  is not included. It is clear that the 
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entropy of GG family is ordered by scale parameter . For the entropy orderings 

in terms of the shape parameters, we have  

 
 

0






GGH
     for        1  

 
 

0






GGH
     for       

The first inequality holds for all values of  , and hence  GGH  is increasing in 

 since   0 for 5.1  approximately.  GGH  can be increasing in  only 

when 5.1 . 

5.3.3:  Discrimination Information Properties 

 Suppose that we wish to examine if a distribution F
 

can be 

approximated by a given model F . The measure of information discrepancy 

between F  and F
 
is the Kullback-Leibler discrimination information function 

    
 
  dy
yf

yf
yfFFK



 log:        (5.3.9) 

It is well-known that    FFK : ; the equality holds if and only if 

   Yfyf 
 

for all   in the support of the distributions  FFK :
 

is not 

symmetric and is a measure of directed divergence between F  and F , where 

F
 
is referred to as the reference distribution. Symmetric versions of  FFK :  

include Jeffreys divergence,      ,::, FFKFKKFFJ    (Jeffreys [69]), and 

    FFKFFK :,:min   
referred to as the intrinsic information by Bernardo and 

Rueda [19]. 

Let    ,,GGGGF 
 

be a given GG  distribution. It can be 

shown that the discrimination information function between   ,,GGF   and 

F
 
is given by 
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,,,.loglog: 



GGGGK  

(5.3.10) 

where    



   ,,,,  is the first moment and    ,,  is 

the geometric mean of a GG  distribution with parameters    ,, .  

Although  GGGGK :  is a complicated function of the parameters 

(5.3.10) is a general representation that encompasses discrimination information 

functions between the GG  and its subfamilies, between distributions within 

each subfamily, and between members of different subfamilies. The 

discrimination information between   ,,GG  and a gamma    ,G
 
is given 

by (5.3.10) with   . The discrimination information between   ,,GG  and 

Weibull    ,
 

is given by (5.3.10) with 1 . The discrimination 

information between   ,,GG  and exponential    is given by (5.3.10) with 

   
and 1 .The discrimination information between   ,,GG  and 

generalized normal    ,GN  is given by (5.3.10) with 2/   and  2 .   

5.3.4:  Data Transformation 

Information analysis of the GG  family provides some interesting 

measures in terms of data transformation. Since the GG  family is closed under 

power transformation, by (5.3.2) we can assess the effect of power 

transformation SYZ  by the discrimination information between Y 

  ,,GG  and SY   S

S SGG  11 . In this case, S and 


   S
 in 

(5.3.10). After some simplifications, we find that the information effect of 

transformation is given by 

   
 

 
     








 1,,,,

,,

,,
log:: 




 





s

s

S

S

GG sGGGGKYYK  

(5.3.11) 

Thus, the effect of power transformation is captured through the ratio of 

the power means and the difference between the geometric means of the 
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transformed and original variables. The information function (5.3.11) is a 

general representation of some important power transformation information 

measures for the GG family and subfamilies. 

As a measure of information disparity between the distributions of the 

real data (prior to transformation) and the transformed data,  S

GG YYK :  may be 

interpreted as the loss of information due transformation. A large  S

GG YYK :

indicates the effect of transformation on the distribution in pronounced. 

The information function  YYKGG :  measures the effect of 

transformation (5.3.3) i.e. discrepancy between   ,,GG   and gamma   ,G  

A GN  variable Z   can be obtained from a GG  variable Y  by 2YZ  . 

For 2/S , (5.3.11) gives the effect of this transformation. A gamma variable 

X  can be obtained by the square transformation of a GN  variable Z . The effect 

of this transformation is measured by (5.3.11) with 2  and 2S . However, 

there is no simple relationship between     YYKYYK GGGG :   ,: 22
, and 

 YYKGG : . The simplest information theoretic model in the GG family is the 

exponential distribution  .  The exponential model can be obtained from GG

sequentially in two ways. 

5.3.5:  Exponential Distribution 

 The exponential distribution occurs naturally when describing the lengths 

of the interval times in a homogeneous Poisson process. Exponential variables 

can also be used to model situations where certain events occur with a constant 

probability per unit length, such as the distance between mutations on a DNA 

strand, or between road kills on a given road. In queuing theory the service 

times of agents in a system (e.g. how long it takes for a bank teller etc to serve a 

customer) are often modeled as exponentially distributed variables. Because of 

the memoryless property of this distribution, it is well-suited to model the 

constant hazard rate portion of the bathtub curve used in reliability theory. 
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 Failure rate is the frequency with which an engineered system or 

component fails expressed for example in failures per hour. It is important in 

reliability engineering. By calculating the failure rate for smaller and smaller 

intervals of time t , the interval becomes infinitely small. This results in the 

hazard function, which is the instantaneous failure rate at any point in time. 

  
   

 tRt

ttRtR
th

t .
lim

0 





 

Continuous failure rate depends on a failure distribution  tF , which is a 

cumulative distribution function that describes the probability of failure prior to time t  

      01  ttRtFtTP .  

The hazard function can be defined now as 

  
 
 tR

tf
th   

Many probability distribution can be used to model the failure 

distribution. A common model is the exponential failure distribution, 

  
 
 













t

t

e

e

tR

tf
th . 

For an exponential failure distribution the hazard rate is a constant with 

respect to time. (i.e. the distribution is ‗memoryless‘). For other distributions, 

such  as Weibull distribution or a log-normal distribution, the hazard function 

may not be constant with respect to time.  

5.3.6: Gamma Distribution 

 In probability theory and statistics, the gamma distribution is a two 

parameter family of continuous probability distributions. It has a scale 

parameter   and a shape parameter  . If   is an integer then the distribution 

represents the sum of  independent exponentially distributed random variables 

each of which has a mean of   (which is equivalent to a rate parameter of 1 ). 

The gamma distribution is frequently a probability model for waiting times; for 

instance in life testing, the waiting time until death is a random variable that is 

frequently modeled with a gamma distribution. 



124 

5.3.7:  Weibull Distribution 

 The Weibull distribution is a continuous probability distribution. It is 

named after Waloddi Weibull who described it in detail in 1951, although it was 

first identified by Frehet in 1927 and first applied by Rosin and Rammler in 

1933 to describe the size distribution of particles. The Weibull distribution is 

often used in the field of life data analysis due to its ability to fit the exponential 

distribution and the normal distribution and interpolate a range of shapes in 

between them. 

5.3.8:  Generalized Normal Distribution 

The generalized normal distribution or generalized Gaussion distribution 

is either of parametric continuous probability distributions on the real line. The 

GN family includes the below well-known models as subfamilies. 

5.3.9: Half Normal Distribution 

 The half-normal distribution is the probability distribution of the absolute 

value of a random variable that is normally distributed with expected value 0 

and variance 2 , i.e.  if X  is normally distributed with mean 0  then XY  is 

half-normally distributed. 

5.3.10: Reyleigh Distribution 

 In statistic literature, the Reyleigh distribution is a continuous probability 

distribution. As an example of how it arises, the wind speed will have a 

Rayleigh distribution if the components of the two-dimensional wind velocity 

vector are uncorrelated and normally distributed with equal variance. The 

distribution is named after Lord Rayleigh. 

5.3.11: Maxwell-Baltzmann Distribution  

 The Maxwell-Baltzmann distribution applies to ideal gases close to 

thermodynamic equilibrium, negligible quantum effects and non-relativistic 

speeds. It forms the basis of the Kinetic theory of gases, which explains many 

fundamental gas properties, including pressure and diffusion. The Maxwell-

Baltzmann distribution is usually thought of as the distribution for molecular 
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speeds, but it can also refer to the distribution for velocities, momenta and 

magnitude of the momenta of the molecules, each of which will have a different 

probability distribution function, all of which are related. The Maxwell-

Baltzmann distribution can now most readily be derived from the Baltzmann 

distribution for energies. 

5.3.12: Chi-Square Distribution 

 In probability theory, the chi-square distribution ( 1  in the chi 

distribution) with K  degrees of freedom is the distribution of a sum of squares 

of K  independent standard normal random variables. It is one of the most 

widely used probability distributions in inferential statistics, e.g. in hypothesis 

testing, goodness of fit tests, independence of two criteria of classification of 

qualitative data, Friedman‘s analysis of variance by Ranks, estimating 

variances, estimating the slope of a regression line via, its role in students t-

distribution, analysis of variance problems via its role in the F-distribution and 

so on. The sum of squares of statistically independent unit-variance Gaussian 

variables which do not have mean zero yields a generalization of the chi-square 

distribution called the non-central chi-square distribution. 

5.4: Entropy and its Estimation for Generalized Gamma Distribution 

 The concept of Shannon‘s entropy [122] is the central role of information 

theory, sometimes referred as measure of uncertainty. The entropy of a random 

variable is defined in terms of its probability distribution and can be shown to be 

a good measure of randomness or uncertainty. Henceforth we assume that log is 

to the base 2 and entropy is expressed in bits. For deriving entropy of the 

generalized gamma distribution, we need the following two definitions. 

5.4.1:  Definition 

 The entropy of a discrete alphabet random variable f  defined on the 

probability space  P,,  is defined by 

       afPafPfH
A

P  


log


       (5.4.1) 
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It is obvious that   0fHP . 

5.4.2:  Definition 

 The obvious generalization of the definition of entropy for a probability 

density function f defined on the real line is  

         xfEdxxfxffH loglog  




      (5.4.2) 

provided this integral exists 

Theorem 5.4.1  

 Let X   ,,GG  then 

      


 









1
logloglogGGH   (5.4.3) 

Proof: By definition (5.4.2) we can write 

         YEyfEGGH log loglog,,log    

     


YEYE
1

log         (5.4.4) 

We also know that if X   ,,GG  then 

  
 




















s

XE

S

s          (5.4.5) 

and 

     



s

sXE S  loglog        (5.4.6) 

where   
 











log
 is the digamma function.  

Further, from (5.4.5) and (5.4.6) we have 



127 

i)    
 



F
YE




1
 

ii)     



1

loglog YE  

Then by substitute these relations in (5.4.4) the theorem is provided 

Corollary 5.4.1: For all values of  GGH,  is increasing in  .  

Corollary 5.4.2: For values of  GGH,5.1  is increasing in  . 

We can summarizes the entropy of subfamilies of GG distribution as 

below table: 

Distribution 

name 
      Entropy 

Exponential 1 1   log +1 

Gamma   1          1loglog  

Weibull 1 T    11
1

log1log 


 







  

Generalized 

normal 
  2       










2

1
1loglog  

Half normal 0.5 2 
22   loglog   

Rayleigh 1 2 
22   121log21    

Maxwell 

Boltzmann 
3/2 2   










2

3

2

1

2
loglog 


  

Chi k/2 2   














 














22

1

2

2

2
loglog

KKKk
  

5.4.2:  Entropy Estimation 

Consider another form of (5.2.1) as 
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(5.4.7) 

Then, the likelihood function is given by 
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(5.4.8) 

Consequently, 

         logloglog,,,,log,, 1 nyyLl n  

        yy  log1      (5.4.9)  

where,  
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By taking derivative to parameters we have 
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   (5.4.10) 

By solving this equation and from (5.4.5) and (5.4.6) we have 

    YEy log
1

loglog  


   and    YEy    (5.4.11) 

then by replacement (5.4.11) and (5.4.4) we get 

       

















ˆ

ˆ

ˆ
log1ˆˆˆlogˆlogˆˆˆlogˆ

ty
ytttGGH   (5.4.12) 

From (5.4.9) and (5.4.12) we can write 

     nlGGH /ˆ,ˆ,ˆˆ         (5.4.13) 
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5.5:  Kullback-Leibler Discrimination 

 In information theory, the Kullback-Leibler (KL) divergence (also 

information divergence, discrimination information, or relative entropy) is a 

non-symmetric measure of the difference between two probability distributions 

P  andQ . KL divergence is a special case of a broader class of divergence called 

f-divergences. Originally introduced by soloman  Kullback and Richard Leibler 

[81] as the directed divergence between two distributions, it is not the same as a 

divergence in calculus. Although it is often intuited as a distance metric, the KL 

divergence is not a true metric-for example, the KL from P  to Q  is not 

necessarily the same as the KL from Q  to P . For probability distributions P  

and Q  of a discrete random variable the KL divergence of Q  from P  is defined 

to be 

    
 
 

i iQ

iP
iPQPK log: . 

For distributions P  and Q  of a continuous random variable the 

summations given way to integrals, so that 

   
 
 





 dx
xq

xp
xpQPK log:   

where p  and q  denote the densities of P  and Q . 

Let    ,,GGGG   be a given GG  distribution. Authors showed 

that the discrimination information function between GG  and GG  is given by 

  
 
 

 








 










,,loglog: 



GGGGK

   

     

     ,,   (5.4.14) 

where  









 












,,,, 











 

is the first moment and    ,,
 
is the 

geometric mean of a GG  distribution with parameters    ,, . The 
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discrimination information  GGGGK :
 

is a complicated function of the 

parameters, (5.4.14) is a general representation that encompasses discrimination 

information functions between the GG  and its subfamilies, between 

distributions within each subfamily, and between distributions from different 

subfamilies. The discrimination information between   ,,GG  and Gamma 

   ,  is given by (5.4.14) with .   The discrimination information 

between   ,,GG  and Weibull    ,
 
is given by (5.4.14) with 1 . The 

discrimination information between   ,,GG  and exponential    is given 

by (5.4.14) with    and 1 . The discrimination information between 

  ,,GG    and     ,GN  is given by (5.4.14) with 
2


   and  2 . 
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