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PREFACE 

Bayesian approach to statistical inference exploits the idea that the only 

satisfactory description of uncertainty is by means of probability. Bayesian 

statistics is an approach in which estimates are based on a synthesis of a prior 

distribution and current sample data. When significant prior is available, the 

Bayesian approach shows how to utilize it sensibly. Source of information 

from data is summarized in the form of likelihood while that of non data is 

termed as prior information. Posterior density is the final outcome after 

combining these two sources of information. In this thesis we have tried to 

construct posterior distributions, with its practical applications. The thesis is 

divided into four chapters: 

Chapter I includes introduction to Bayesian statistics, Bayes theorem, 

sequential nature of Bayes theorem, likelihood to Bayesian analysis, marginal 

and conditional inferences, prior and some important types of priors. Normal 

and Laplace methods of approximation for posterior modes and some 

important models like Exponential, Two Parameter Exponential, Gamma and 

Normal distributions are also discussed.  

Chapter II is devoted to the Bayesian estimation for exponential distribution 

under different priors. Laplace and Normal approximations to the posterior 

density of exponential distribution are also discussed. We have also discussed 

Bayesian estimation for two parameter exponential distribution. To illustrate 

the methods, we have developed some programs in S-PLUS for numerical 

and graphical representation of posterior densities. 

Chapter III deals with the estimation of parameters of Gamma distribution 

with complete sample. Normal and Laplace approximation to the posterior 

density of Gamma distribution are also discussed. The methods are illustrated 

with the help of some programs developed in S-PLUS for numerical and 

graphical representation of posterior densities.  

Chapter IV is completely devoted to the Bayesian analysis of  Normal 

distribution. This chapter contains Bayesian estimator and Credible intervals for  the 



parameters of normal distribution, the posterior distribution and the posterior 

predictive distribution for the unknown parameter 2   of the Normal distribution 

are also discussed using different type of prior distribution. Methods proposed in 

this chapter are illustrated numerically in R-software. 
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1.1 Introduction: 

ncertainty plays an important role in our lives. A satisfactory description of 

uncertainty is by means of probability. The probability is a powerful tool of 

maintaining, understanding, and controlling this important feature of our 

appreciation of our environment. Bayesian approach to statistical inference 

exploits the idea that the only satisfactory description of uncertainty is by means of 

probability. Bayesian statistics is an approach in which estimates are based on a 

synthesis of a prior distribution and current sample data. Bayesian statistics 

requires the mathematics of probability and the interpretation of probability which 

most closely corresponds to the standard use of this word in everyday language: it 

is no accident that some of the more important seminal books on Bayesian 

statistics such as the works of de Laplace (1812), Jefferys (1939) and de Finetti 

(1970) are actually entitled ―probability theory‖. Indeed, Bayesian methods (i) 

reduce statistical inference to problems in probability theory, thereby minimizing 

the need for completely new concepts, and (ii) serve to discriminate among 

conventional statistical techniques either providing a logical justification to some ( 

and making explicit the conditions which they are valid) or proving the logical in 

consistency of others.  

Bayesian statistics have been used to deal with a wide variety of problems in 

many scientific and engineering areas. Whenever a quantity is to be inferred, or 

some conclusion is to be drawn, from observed data, Bayesian principles and tools 

can be used.  The idea that forms the basis of the Bayesian approach is as: 

i) Since we are uncertain about the true value of the parameters, we will consider 

them to be random variables. 

ii) The rules of probability are used directly to make inferences about the 

parameters.   

iii) Probability statements about parameters must be interpreted as ―degree of 

belief‖.  The prior distribution must be subjective. 

iv) We revise our beliefs about parameters after getting the data by using Bayes 

theorem. This gives our posterior distribution which gives the relative weights 

to each parameter value after analyzing the data. 

     Bayesian statistics is predictive, unlike conventional frequentist statistics. 

This means we can easily find the conditional probability distribution of the next 

observation given the sample data. Bayesian approach to statistics is very different 

U 



from the classical methodology, it formally seeks use of prior information and 

Bayes theorem provides the basis for making use of this information. When 

significant prior is available, the Bayesian approach shows how to utilize it 

sensibly. This is not possible with the most non-Bayesian approaches. The 

business of statistics is to provide information or conclusions about uncertain 

quantities. The language of uncertainty is possible. Bayesian approach consistently 

uses this language to directly address uncertainty.  

   The classical or frequentists interpret probability as the limit of the success 

ratio as the number of trails ‗n‘ conceptually tends to infinity. Under this 

interpretation the parameter   in a statistical model is treated as an unknown 

constant and the sample of observations is regarded as the random sample from 

some underlying distribution. The classical school believes in Fishers Likelihood 

Principle which claims that all the information about the unknown parameter(s) is 

contained in the sample as summarized by the likelihood function. This principle 

leads to Fishers maximum likelihood estimator. 

On the other hand for Bayesian approach probability is a persons degree of 

belief in a certain proposition ‗A‘ based on the prior (or current) knowledge about A 

and this degree of belief is successively revised or updated as new information is 

available  about the proportion. In Bayesian framework, the parameter is justifiably 

regarded as a random variable and the data once obtained is given or fixed for 

example, in the exponential model the mean life   may be regarded as varying from 

batch to batch overtime and this variation is represented by a probability distribution 

over parameter space  . Thus the basic difference in the two approaches may be 

explained in the single sentence that to a frequentist, the parameter is constant and he 

is suspicious about the data, where as to a Bayesian data is given (or fixed) and he is 

suspicious about the parameter.  Bayesian approach is an excellent alternative to use 

large sample procedures and is likely to be more reasonable for moderate and 

especially small sample sizes where non Bayesian procedures break down (e.g., 

Berger 1985). 

 

 

 

 



1.2 Bayes theorem: 

Bayesian analysis is based upon a theorem first developed by an 18th century 

English mathematician, logician, and clergy man Thomas Bayes (1701-1761). He 

developed the theorem in his study of the theory of logic and inductive reasoning. 

The theorem provides a mathematical basis for relating the degree to which an 

observation (or new information) confirms the various hypothesized causes or state 

of nature. His major mathematical works, including the theorem, were published in 

1763. Later, in 1774 the theorem was proved independently by Laplace. Bayes 

theorem is an essential element of the Bayesian approach to statistical inference is 

the direct qualification of uncertainty in terms of probabilistic statements. Often, we 

begin our analysis with initial or prior probability estimates for specific events of 

interest then, from sources such as a sample, a special report, a product test and so on 

we obtain some additional information about the events. Given this new information 

we update the prior probability values by calculating revised probabilities, referred to 

as posterior probabilities. The steps in this probability revision process are shown in 

the following diagram                                                               

 

                                                                                               

 

 

Suppose that
  nxxxX ,....,, 21

'   is a vector of n observations whose probability 

distribution  θ|XP  depends upon the values of k parameters 
k ,....,, 21

'θ .  

Suppose also that θ  itself has a probability distribution  θP . Then,  

         XPPXPPXP X|,| θθθθ  . 

Given the observed data X, the conditional distribution of θ  is       

  
)(

)()|(
)|(

XP

PXP
XP

θθ
θ                                                                           (1.2.1) 

 Also we can write 

  ;)()|()]|([)( 1 θθθθ dPXPkXPEXP                continuousθ  

                                          );()|( θθ PXP              discreteθ  

Where the sum or the integral is taken over the admissible range of θ , and where E 

indicates averaging with respect to distribution of θ  (e.g., Box and Tiao, 1973; 

Prior 

Information 

Data 

Bayes Theorem Posterior Distribution 



Gelman, Carlin, Stern and Rubin,1995; Lee,1997 and Carlin and Louis,2000). Thus 

we may write (1.2.1) alternatively as 

)()|()|( θθθ PXPXP                                            (1.2.2) 

which is referred to as Bayes theorem. In this expression, )(θP  which tells us what 

is known about θ  without knowledge of data, is called prior distribution of θ , or the 

distribution of θ  a priori the density )|( θXP  is likelihood function of θ  which 

represents the contribution of X(data) to knowledge about θ  (e.g., Berger,1985 and 

Zellner, 1971). Correspondingly, ),|( XP θ which tells us what is known about θ  

given knowledge of the data X, is called the posterior distribution of θ  given X. The 

quantity ‗k‘ is a normalizing constant.  

 The term ‗Bayesian‘ however, came into use only around 1950 and in fact it 

is not clear that Bayes‘ would endorsed the very broad interpretation of probability 

now called ―Bayesian‖. Laplace independently proved a more general version of 

Bayes‘ theorem and put it to good use in solving problems in celestial mechanics, 

medical statistics and, by some accounts, even jurisprudence. 

1.3 Sequential Nature of Bayes’ Theorem: 

Now given the data X, )|( XP in (1.2.2) may be regarded as a function not of X 

but of  . When so regarded, following Fisher (1922), it is called the likelihood 

function of   for given X and can be written as )|( XL  .We can thus write Bayes 

formula as  

)()|()|(  PXLXP                                                                                  

(1.3.1) 

The theorem in (1.3.1) is appealing because it provides a mathematical formulation 

of how previous knowledge may be combined with new knowledge. Indeed the 

theorem allows us to continually update information about a set of parameters   as 

more observations are taken. Thus, suppose we have an initial sample of 

observations X1, then Bayes initial formula gives, 

)|()()|( 11 XLPXP                                                                   

(1.3.2)    

Now suppose we have a second sample of observation X2, distributed 

independently of first sample, then 

)|()|()(),|( 2121 XLXLPXXP   



                            )|()|( 21 XLXP                                                  (1.3.3)       

The expression (1.3.3) precisely of the same form as (1.3.2) except that )X|(P 1

, the posterior distribution for   given X1, plays the role of the prior distribution for 

the second sample. Obviously this process can be repeated any number of times. In 

particular, if we have n independent observations the posterior distribution can, if 

desired, be recalculated after each new observation, so that at the m
th

 stage the 

likelihood associated with the m
th

 observation is combined with the posterior 

distribution of   after m-1 observations to give the new posterior distribution. 

nmXLXXXPXXXP mmm ,.......,2,1:)|(),.......,,|(),........,,|( 12121  
    (1.3.4)   

where )|()()|( 11 XLPXP  .  

Thus, Bayes theorem describes in a fundamental way, the process of learning 

from experience and shows how knowledge about the state of nature represented by 

  is continually modified as new data becomes available (e.g., Box an Tiao,1973). 

1.4 From Likelihood to Bayesian Analysis: 

An informal summary of the likelihood principle may be that inferences from 

data to hypothesis should depend on how likely the actual data are under competing 

hypothesis, not on how likely imaginary data would have been under a single ―null‖ 

hypothesis or any other properties of merely possible data. 

A more precise interpretation may be that inference procedures which make 

inferences about simple hypothesis should not be justified by appealing to 

probabilities assigned to observations that have not occurred. The usual interpretation 

is that any two probability models with the same likelihood function yield the same 

inference for  . Some authors mistakenly claim that frequentist inference, such as 

the use of maximum likelihood estimation (MLE), obeys the likelihood, though it 

does not. Some argue that, although the subject of priors gets more attention, the true 

contention between frequentist and Bayesian inference is the likelihood principle, 

which Bayesian inference obeys, and frequentist inference does not. Some Bayesians 

have argued that Bayesian inference is incompatible with the likelihood principle on 

the grounds that there is no such thing as an isolated likelihood function (Bayarri and 

DeGroot, 1987). They argue that in a Bayesian analysis there is no principled 

distinction between the likelihood function and the prior probability function.  

Although the likelihood principle is implicit in Bayesian statistics, it was 

developed as a separate principle by Barnard (Barnard 1949), and became a focus of 



interest when Birnbaum (1962) showed that it followed from the widely accepted 

sufficiency and conditionality principles (Bernardo and Smith 2000). Using Bayes' 

rule with a chosen probability model means that the data X affect posterior inference 

only through the function )|( XL , which, when regarded as a function of  , for 

fixed X, is called the `likelihood function'. In this way Bayesian inference obeys 

what is sometimes called the `likelihood principle', which states that for a given 

sample of data, any two probability models )|( XL  that have the same likelihood 

function yield the same inference for   (Bernardo and Smith, 2000 and Gelman et.al. 

2004). The likelihood principle, by itself, is not sufficient to build a method of 

inference but should be regarded as a minimum requirement of any viable form of 

inference. This is a controversial point of view for anyone familiar with modern 

econometrics literature. Much of this literature is devoted to methods that do not 

obey the likelihood principle (Rossi, Allenby, and McCulloch, 2005).  

Suppose )|( XL   is the assumed likelihood function. Under MLE estimation, we 

would compute the mode (the maximal value of L, as a function of   given the data 

X) of the likelihood function and use the local curvature to construct the confidence 

intervals.  Hypothesis testing follows using likelihood ratio (LR) statistics. The 

strength of ML estimation rely on its large sample properties, namely that when the 

sample size is sufficiently large, we can assume both normality of the test statistic 

about its mean and that LR tests follows 
2  distributions. These nice features don‘t 

necessarily hold for small samples (e.g., Gianola & Fernando, 1986).  

An alternate way to proceed is to start with some initial knowledge /guess about 

the distribution of the unknown parameter(s), )(P  . From Bayes theorem the data 

(likelihood) augments the prior distribution to produce a posterior distribution, 

)(P)|X(P
)X(P

1
)X|(P                                                                          (1.4.1)   

                (normalizing constant) )(P)|X(P                                             (1.4.2)  

                = constant .likelihood .prior                                                           (1.4.3) 

As )|()|( XLXP   is just the likelihood function. 1/P(X) is constant (with 

respect to ), because our concern is the distribution over . Because of this, the 

posterior is often written as  

)()|()|( 1  PXLXP                                                                           (1.4.4) 



where the symbol     means ―proportional to‖ (equal up to a constant). Note that 

the constant P(X) normalizes )()|(  PXP  to one, and hence can be obtained by 

integration 




 dPXPXP )()|()(                                                                                (1.4.5) 

The dependence of the posterior on the prior (which can easily be assessed by 

trying different prior) provides an indication of how much information on the 

unknown parameter values is contained in the data. If the posterior is highly 

dependent on the prior, then the data likely has little signal, while if the posterior is 

largely unaffected under different priors, the data are likely highly informative. To 

see this taking logs on equation (1.4.4) (and ignoring the normalizing constant) gives 

Log(posterior)=log(likelihood)+log(prior)                                                     

(1.4.6) 

 The Standard Likelihood  

When the integral  d)X|(L  taken over the admissible range of   is finite, then 

occasionally it will be convenient to refer to the quantity 

                 

 



d)X|(l

)X|(l
                                                                      

We shall call this the standardized likelihood that is the likelihood scaled so that 

the area, volume or hyper volume under the curve, surface or hyper surface is one. 

1.5 Prior Distribution and Some Important Types of Priors: 

A prior distribution of a parameter is the probability that represents 

uncertainty about the parameter before the current data are examined. A random 

variable can be thought of as a variable that takes on a set of values with specified 

probability. In frequentist statistics, parameters are not repeatable random things but 

are fixed quantities, which mean that they cannot be considered as random variables. 

In contrast, in Bayesian statistics anything about which we are uncertain, including 

the true value of the parameter, can be thought of as being a random variable to 

which we can assign a probability distribution, known specifically as prior 

information. A fundamental feature of the Bayesian approach to statistics is the use 

of prior information in addition to the (sample) data. A proper Bayesian analysis will 

always incorporate genuine prior information, which will help to strengthen 



inferences about the true value of the parameter and ensure that any relevant 

information about it is not wasted. 

Obviously, a critical feature of any Bayesian analysis is the use of prior. 

According to Diaconis and Ylvisaker (1985), there are three distinct Bayesian 

approaches for the selection of prior distributions. The classical Bayesian approach 

considers flat priors to represent objectivity in the analysis. The modern approach 

allows the priors to have characteristics like closure under sampling (conjugacy) 

(suggested by G.Barnard (1954) and later developed by Raiffa & Schlaifer (1961)) 

and specification of hyper parameter values according to some specific criteria. The 

third approach is followed by subjective Bayesians, depends on elicitation of prior 

distributions based on pre-existing scientific knowledge in the area of investigation. 

Some standard approaches of priors are discussed in brief as: 

i) Non-informative Priors: A prior distribution is non-informative if the prior is 

―flat‖ relative to the likelihood function. Such a prior is also known as ―vague‖, 

―diffuse‖ priors. Thus, a prior )(P   is non-informative if it has minimal impact on 

the posterior distribution of  . Many statisticians favor non-informative priors 

because they appear to be more objective. According to Jeffery (1983), non-

informative priors provide a formal way of expressing ignorance of the value of the 

parameter over the permitted range.  

ii) Informative prior: An informative prior is a prior that is not dominated by the 

likelihood and that has an impact on the posterior distribution. If a prior distribution 

dominates the likelihood, it is clearly an informative prior. On the other hand, the 

proper use of prior distributions illustrates the power of the Bayesian method: 

information gathered from the previous study, past experience, or expert opinion can 

be combined with current information in a natural way. 

iii)Improper prior: A prior  )(P   is said to be improper if  dP )( . For 

example, a uniform prior distribution on the real line, ,1)(P   for  , is an 

improper prior. Improper priors are often used in Bayesian inference since they 

usually yield non-informative priors and proper posterior distributions. Improper 

prior distributions can lead to posterior impropriety (improper posterior distribution). 

To determine whether a posterior distribution is proper, you need to make sure that 

the normalizing constant  dPXL )()|(  is finite for all x. If an improper prior 



distribution leads to an improper posterior distribution, inference based on the 

improper posterior distribution is invalid. 

iv) Conjugate Priors: A prior is said to be a conjugate prior for a family of 

distributions if the prior and posterior distributions are from the same family, which 

means that the form of the posterior has the same distributional form as the prior 

distribution. For example, if the likelihood is binomial, ),(~ nBinX ,  a conjugate 

prior on   is the beta distribution; it follows that the posterior distribution of  is 

also a beta distribution. Other commonly used conjugate prior/likelihood 

combinations include the normal/normal, gamma/Poisson, gamma/gamma, and 

gamma/beta cases. The development of conjugate priors was partially driven by a 

desire for computational convenience—conjugacy provides a practical way to obtain 

the posterior distributions. 

v) Jefferys’ Prior: A very useful prior is Jefferys‘ prior (1961). It satisfies the local 

uniformity property: a prior that does not change much over the region in which the 

likelihood is significant and does not assume large values outside that range. It is 

based on the Fisher information matrix. Jeffrey‘s prior is defined as 

2/1
)()(


 IP  

Where )(I  denotes the Fisher information matrix based on the likelihood function  

)|X(L  : 





















2

2 )|(log
)(

XL
EI  

Jeffrey‘s prior is locally uniform and hence non-informative. It provides an 

automated scheme for finding a non-informative prior for any parametric model

)|( XL . Another appealing property of Jeffreys‘ prior is that it is invariant with 

respect to one-to-one transformations. The invariance property means that if you 

have a locally uniform prior on  and )(  is a one-to-one function of  , 

then  
1

)('.))((


 PP is a locally uniform prior for )( . This invariance 

principle carries through to multidimensional parameters as well. While Jeffreys‘ 

prior provides a general recipe for obtaining non-informative priors, it has some 

shortcomings: the prior is improper for many models, and it can lead to improper 

posterior in some cases; and the prior can be cumbersome to use in high dimensions. 

 

 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_introbayes_sect013.htm#jeff_h_61


1.6 Estimation Techniques: 

The word estimator stands for the function, and the word, estimate stands for a 

value of that function. In estimator we take a random sample from the distribution to 

elicit some information about some unknown parameter  . That is, we repeat the 

experiment n independent times, observe the sample nxxx ,...,, 21 . The function of 

nxxx ,...,, 21  use to estimate  ; say the statistic ),...,,( 21 nxxxU  called an estimator of 

. We want it to be such that the computed estimate ),...,,( 21 nxxxU  is usually close to 

 . 

Thus any statistic whose values are used to estimate )(r   where r(.) is some 

function of the parameter  , is defined to be an estimator )(r  . An estimator is 

always a statistic which is both a random variable and a function.  

1.6.1 Methods of estimation: 

A variety of methods to estimate the unknown parameters have been proposed. 

The common used methods are: 

i) Method of maximum likelihood estimation, 

i) Method of minimum variance, 

ii) Method of moment, 

iii) Method of least square estimation, 

iv) Method of minimum chi-square, and  

v) Bayesian estimation.      

Here we shall discuss only maximum likelihood estimate and Bayesian 

estimation. 

1.6.2 Method of maximum likelihood estimation (MLE) 

The most general method of estimation known is the method of maximum 

likelihood estimators (MLE) which was initially formulated by C.F.Gauss but as a 

general method of estimation was first introduced by Prof.R.A.Fisher in the early 

(1920) and later on developed by him in a series of papers. He demonstrated the 

advantages of this method by showing that it yields sufficient estimators, which are 

asymptotically MVUES‘s. Thus the essential feature of this method is that we look at 

the value of the random sample and then choose our estimate of the unknown 

population parameter, the value of which the probability of obtaining the observed 



data is maximum. If the observed data sample values are 
nxxx ,........,, 21
 we can 

write in the discrete case. 

),...,,(),.......,,( 212211 nnn xxxfxXxXxXP   

which is just the value of joint probability distribution of the random values 

nxxx ,...,, 21  at the sample point nxxx ,...,, 21  since the sample values has been 

observed and are therefore fixed numbers, we regard );...,,( ,21 nxxxf  as the value 

of a function of the parameter  , referred to as the likelihood function. A similar 

definition applies when the random sample comes from a continuous population but 

in that case );...,,( ,21 nxxxf  is the value of joint pdf at the sample point 
nxxx ,...,, 21
 

i.e.; the likelihood function at the sample value nxxx ,...,, 21  
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ixfL
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Since the principle of maximum likelihood consists in finding an estimator of the 

parameter which maximizes L for variation in the parameter. Thus if there exists a 

function ),....,,(ˆˆ
21 nxxx  of the sample values which maximizes L for variation in 

 , then ̂  is to be taken as the estimator of  . ̂  is usually called ML estimators. 

Thus ̂  is the solution if and only if 
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Since L >0, so LogL which shows that L and Log L attains their extreme values at 

the ̂  . Therefore, the equation becomes 
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a form which is more convenient from practical point of view. 

1.6.3 Bayesian method of estimation: 

Bayesian analysis synthesis two sources of information about the unknown 

parameters of interest. The first of these is the sample data, expressed formally by the 

likelihood function. The second is the prior distribution, which represents additional 

information that is available to investigator. Suppose we have a random sample of 

size n say n,21 x....,x,x  which we regard as independent identically distributed 

random variables with distribution function  )|()( XFdf  and pdf )|x(f   and where  



  a labeling parameter, real valued or a vector valued as the case may be. Also we 

assume that we do not know the exact value of parameter   there are cases in which 

one can assume a little more about a parameter. Here   is the parameter space. We 

could assume that   is itself a random variable with distribution function )(F or pdf 

)(P . 

Now suppose n items are put to test and it is assumed that their recorded life 

items from a random sample of size n from a population with pdf )|( xf  to be 

specific we will assume   to be real valued. We agree to regard   itself as random 

variable with a pdf )(P . The joint pdf of )(P  is given by 
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The marginal pdf of (
nxxx ....,, ,21

) is given by 

 


dxxxpxxxp nn )|....,,()....,,( ,21,21  

And the conditional pdf of   given data (
nxxx ....,, ,21

) is given by 
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Thus, prior to obtaining (
nxxx ....,, ,21

) the variations in where represented by )(P  , 

known as prior distribution on   however, after the data (
nxxx ....,, ,21

) has been 

obtained in the light of the new information, the variation in   are represented by

)....,,|( ,21 nxxxP   the posterior distribution of  . The uncertainty about the 

parameter  . Prior to experiment is represented by prior pdf )(P   and the same after 

the experiment is represented by posterior pdf )....,,|( ,21 nxxxP   this process is the 

straight forward application pdf the Bayes theorem. Once the posterior distribution 

has been obtained it becomes the main object of study. 

1.7 Marginal and Conditional inferences:   

Often only a subset of unknown parameter is really of concern to us, the rest 

being nuisance parameter that are of no concern to us. A very strong feature of 



Bayesian analysis is that we can remove the effect of nuisance parameters by simply 

integrating them out of the posterior distribution to generate a marginal posterior 

distribution for the parameters of interest. For example, if   is partitioned as  21,

, with 1  a p dimensional vector and 2  as (k-p) dimensional vector, then the 

marginal posterior density for 1  is given by 
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(1.7.1) 

Similarly, the marginal posterior density for 2  is given by 
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The requirement of orthogonality between nuisance parameter and the parameter 

of interest is not required in this frame work (e.g., Cox and Reid, 1987). Moreover, 

marginal posterior densities are better substitutes of conditional profile likelihoods. 

Conditional inferences for 1  given 2  ; and 2  given 1  can also be made using 

the posteriors 
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and  
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Marginal and conditional inferences procedures are two entirely different things. 

In the former, we ignore one of the components of   by integrating it out from the 

joint posterior  xP | , while in the later we control (or adjust) one of the 

components of  (e.g., Khan 1997). 

 

 

 



1.8 Predictive Distribution: 

It is the pdf (or pmf) of the as yet unobserved observation x  given sample 

information X. let us write )|(),|,()|,( yPyxfyxf   as the joint pdf of x  and 

the parameter  , given the sample information Y.  Here  Yxf ,|   is the conditional 

pdf for x  given   and X, where )Y|(P    is the conditional pdf for   given Y the 

predictor pdf )|( yxf  is obtained as: 

   dypyxfdyxfyxf )|(),|()|,()|(  

In case, the unobserved observation of x  is independent of sample information 

Y, that is x  and y have independent conditional pdf‘s then 

  dypyxfyxf )|()|()|(
 

1.9 Methods of Posterior Modes: 

Asymptotic normality of the posterior is the basic tool of large sample Bayesian 

inference. Under certain regularity conditions, in particular, if the likelihood is a 

continuous function of    and that the maximum likelihood estimate, ̂  of   is not 

the boundary of the parameter space, the unimodal and almost symmetric posterior 

distribution of    approaches normality with mean ̂  and precision )ˆ(I  , Fisher 

Information evaluated at ̂  ,for large sample sizes. It may be noted that for large 

samples, the likelihood dominates the prior distribution and, therefore the knowledge 

of likelihood is enough to obtain the normal approximation. Gelman et.al. (1995) 

give a number of counter examples to illustrate limitations of the large sample 

approximation to the posterior distribution. The Bayesian approach to parametric 

inference is conceptually simple and probabilistically elegant. However its numerical 

implication is not convenient since the posterior distributions are available as 

complicated functions. Although these approximations provide useful results in 

applications, neither gives any account for the cases when the mode is at boundary. 

In the development of new simulation techniques, Laplace‘s method uses 

asymptotic arguments. Laplace‘s method is easier to implement and thus faster than 

the Monte Carlo methods , such as Gibbs sampling(Gelfand and Smith 1990), which 

requires a large number of simulations from the conditional densities. Laplace 

approximations to marginal densities and expectations can provide further insights to 

the problem at hand. 



 

1.9.1 Normal approximation to posterior distribution: 

The numerical implementation of a Bayesian procedure is not always straight 

forward since the involved posterior distribution is complicate functions. One of the 

important steps in simplifying the computations is to investigate the large sample 

behavior of the posterior distribution and its characteristics. The basic result of the 

large sample Bayesian inference is that the posterior distribution of the parameter 

approaches a normal distribution. Relatively little has been written on the practical 

implications of asymptotic theory for Bayesian analysis. The overview by Edwards, 

Lindeman, and Savage (1963) remains one of the best and includes a detailed 

discussion of the principle of ‗stable estimation‘ or when prior information can be 

satisfactorily approximated by a uniform density function. Some good sources on the 

topic from the Bayesian point of view include Lindley (1958), Pratt (1965), and 

Berger and Wolpert (1984). An example of the use of the normal approximation with 

small samples is provided by Rubin and Schenker (1987), who approximated the 

posterior distribution of the logit of the binomial parameter in real application and 

evaluate the frequentists operating characteristics of their procedure. Clogg et al. 

(1991) provide additional discussion of this approach in a more complicated setting. 

Sequential monitoring and analysis of clinical trials in medical research is an 

important area of practical application that has been dominated by frequentists 

thinking but has recently seen considerable discussion of the merits of a Bayesian 

approach; a recent review is provided by Freedman, Spiegel halter and Parmer 

(1994), Khan, A.A (1997) and Khan et al (1996). 

If the posterior distribution  yP |  is unimodal and roughly symmetric, it is 

convenient to approximate it by a normal distribution centered at the mode; that is 

logarithm of the posterior is approximated by a quadratic function, yielding the 

approximation 

     




 

1
ˆ,ˆ~| INyP  

where      
2

2 |logˆ




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I                                                                             (1.9.1) 

if the mode, ̂  is in the interior parameter space, then  I  is  positive; if ̂ is a 

vector parameter, then   I   is a matrix. 



1.9.2 Laplace’s Approximation:  

 Laplace‘s method is a family of asymptotic methods used to approximate 

integrals presented as a potential candidate for the tool box of techniques used for 

knowledge acquisition and probabilistic inference in belief networks with continuous 

variables. The method is promising for computing approximation for Bayes factor 

for use in the context of model selection, model uncertainty and mixtures of pdf‘s. It 

is simple and remarkable method of asymptotic expansion of integrals generally 

attributed to Laplace (Laplace, 1986, 1774, Stigler, 1986) is widely used in applied 

mathematics. This method has been applied by many authors (Lindley, 1961, 1980; 

Mostller and Wallace, 1964; Johnson, 1970; DiCiccio, 1986; Hartigan, 1965; Khan et 

al., 1996; and Tierney and Kadane, 1986 and Yoichi Miyata, 2004) to find 

approximations to the ratios of integrals of the interest, especially in Bayesian 

analysis. If we approximate the integrals involved in the posterior density using 

approximation  
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Where )(I


  stands for determinant of )(I


  then posterior density can be 

approximated with error of order  1nO   i.e.  

             12

1

2 1|ˆlog|logexpˆ2| 


 nOxPxPIXP
k

     

(1.9.2b)                                 

Approximation (1.9.2a) is the well known Laplace‘s approximation of integrals (e.g., 

Tierney and Kadane, 1986). Laplace‘s approximation (1.9.2b) of posterior density 

can be compared with normal approximation which has error of order )( 2

1


nO . 

Perhaps more importantly, Laplace‘s approximation is of order )( 1nO uniformly on 

any neighborhood of the mode. This means that it should provide a good 

approximation in the tails of distribution also (e.g., Tierney and Kadane, 1986; 

Tierney, Kass and Kadane, 1989a; and Wong and Li, 1992). 

1.10 Some Important Distributions: 

i) Exponential distribution: Exponential distribution is widely used as model in the 

areas ranging from studies on the lifetimes of manufactured item (e.g., Davis, 1952; 

Epstein, 1958)to research involving survival or remission times in chronic diseases 



(e.g., Feigl and Zelen, 1965). Let X has an exponential distribution with parameter 

 0  if its probability density function  xf is given by  

  0,;   xexf x  

The distribution is often written using the parameterization 1 , in which the pdf  

Becomes 

  0,exp
1















 x

x
xf                               

whose parameter  is called rate parameter with mean   and variance 2  

respectively. The distribution where  1  is called the standard exponential 

distribution. 

The most important properties of the exponential distribution is the memory less 

property i.e., probability of its surviving an additional h hours is exactly the same as 

the probability of surviving h hours of a new item. 

    yXPxX|yxXP   

where X is the time we need to wait before a certain events occurs. This property 

says that events happens during a time interval of length y is independent of how 

much time has already elapsed (x) without the event happening. 

 The pdf of two parameter exponential distribution is given by 
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ii) Gamma distribution: Gamma distribution has been quite extensively used as a 

lifetime model, though not censored. The gamma distribution is most widely used 

model for precipitation data. It fits a wide variety of lifetime data adequately, besides 

failure process models that lead to it. The gamma distribution has a pdf of the form 
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Where 0,   are parameters 1  is a scale parameter and   is sometimes called 

the index or shape parameter. For 1 , the gamma distribution reduces to the one 

parameter exponential distribution with parameters  has pdf 
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For α =1 the distribution is called the one parameter gamma distribution and has pdf 
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The incomplete gamma distribution is given by:-
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The moments of gamma distribution can be obtained as  
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Gamma distribution does not fit a wide variety of lifetime data adequately, however, 

and there are failure process models that lead to it. It also arises in some situations 

involving the exponential distribution; because of the well known results that the 

sum of independently and identically distributed exponential random variables have 

a gamma distribution. The distribution is also written using the parameterization 

1 , in which the pdf becomes 
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iii) Normal Distribution: A random variable X is normally distributed with location 

parameter   and scale parameter   if its pdf is given by 
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with mean   and variance 2 , 0 .  

The normal distribution curve is bell shape and symmetrical about the line

x . The mode and medium of the normal curve lies at the point x . The area 

under the normal curve within its range  to  in always unity i.e.  
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. One of the greatest reasons behind the extensive 

use & application of normal distribution lies in central limit theorem which states: If 

nxxx ,...,, 21  is a random sample of size n from any population with mean   and 

variance
2 . The distribution of sample mean x  is asymptotically normal with mean 

 and variance n/2  as n . Almost all sampling distributions like Ft ,, 2  etc., 

for their large degrees of freedom conform to normal distributions. 
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2.1 Introduction 

he exponential distribution occupies an important position in the analysis of 

data. In probability theory and statistics, the exponential distribution is a 

family of continuous probability distribution. Historically, the exponential 

distribution was the first lifetime model for which statistical methods were 

extensively developed. It describes the time between events in the Poisson process 

i.e., a process in which events occur continuously and independently at a constant 

rate. Work by Sukhatmi (1937), Epstein and Sobel (1953, 1954, 1955) and Epstein 

(1954, 1960a) Bartholomew (1957), gave numerous results and popularized the 

exponential as a lifetime distribution, especially in the area of industrial life testing. 

Many authors have contributed to the statistical methodology of the distribution. The 

lengthy bibliographies of Mendenhall (1958), Govindarajulu (1964), Johnson and 

Kotz (1970), Johnson, Kotz and Balakrishnan (1994, 1995) and Lawless (2003), 

Ahmad (2006), Ahmed et. al. (2007 & 2010), contains a large number of papers in 

this area.  

A random variable X has an exponential distribution with parameter  0  

if its probability density function  xf is of the form 
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 with mean   and variance 2  respectively. 

2.2 Maximum Likelihood Estimator of Exponential Distribution: 

Let nxxxX ,....,, 21  be a random sample of size n with probability density 

function given as 
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(2.2.1) 

The likelihood function is given as 
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Applying log on both sides we get 
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Differentiating (2.2.2) w.r.t  , and equating to zero, 
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x ˆ                                                                                                     (2.2.3) 

2.3 Bayesian Estimation for Exponential Distribution using Different Priors: 

 A detailed study on the Bayesian method of estimation has been done and 

presented in quite an interesting manner by Lindley (1965, 1971). Kale and Sinha 

(1980, 1983, and 1986) studied the Bayesian estimation of Exponential distribution 

in details. Bernardo and Smith (1994); Carlin and Levis (1996); Balakrishnan and 

Ma (1997); Viet (1986) and, Berger (1982, 1988), Ahmad (2006), Ahmed et. al 

(2007) & Ahmad & Bhat (2010) added more results to Bayesian estimation for 

Exponential distribution. 

Sinha (1986) obtained the Bayes estimator of one parameter exponential 

distribution 
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If  xf ,  is treated as a function of  , then it will be likelihood of   for single  

observation. A straight forward computation gives the Fisher information. 
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Hence Jeffrey‘s prior  
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g , which is an improper (or quasi) prior since 
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Let us consider a more general class of priors, 
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If  nxxx ,....,, 21  is a random sample from (2.2.1), then the likelihood function on this 

is given by 
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Hence the posterior distribution of  is given by  
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Bayes estimator of   is given by  
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which is the maximum likelihood as well as the uniformly minimum variance 

unbiased estimator (UMVUE) of  . 
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This is well known minimum mean- square error (MSE) of   . 

Consider another class of priors given by 
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Note that by putting a=0, we get the results obtained earlier in (2.3.3). 

We now consider an inverted Gamma Prior (Raffier & Schlaifer, 1961) as the 

prior distribution of   . Such a prior is given by  
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The Posterior distribution for   is given by 
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Thus Bayes estimator of   is given by 
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This is the same estimator considered before with b=c=1. 

2.4 Laplace’s Approximation for Exponential distribution:  

A simple and remarkable method of asymptotic expansion of integrals 

generally attributed to Laplace (Laplace, 1986, 1774, Stigler, 1986) is widely used in 

applied mathematics. This method has been applied by many authors (Lindley, 1961, 

1980; Mostller and Wallace, 1964; Johnson, 1970; DiCiccio, 1986; Hartigan, 1965; 

Khan et al., 1996; and Tierney and Kadane, 1986 and Yoichi Miyata, 2004) to find 

approximations to the ratios of integrals of the interest, especially in Bayesian 

analysis. 

The likelihood function of exponential distribution is 
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Now we consider a more general class of priors, 
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To construct the approximation, we need posterior mode 
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The Laplace‘s approximation to the posterior of exponential distribution is given by 
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For c=0,   1g  (2.4.3) becomes 
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For c=3,   3/1g  , we have 
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Laplace approximation is also discussed by Ahmad (2006) & Ahmad et.al. (2007). 

 

 

2.5 Normal Approximation for Exponential distribution: 

Let nxxx ,.......,, 21  
be iid observations from an exponential distribution 
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 The likelihood function is given by 
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We consider a more general class of priors, 
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The posterior distribution is given by 
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To construct the approximation, we need the second derivatives of the log-posterior 

density, 
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The second derivative of the log-posterior density is 
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Thus, the posterior distribution can be approximated as 
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For c=0,   1g   (uniform prior), we have 
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For c=1,    /1g  (Jeffrey‘s prior), we have 
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For c=2,   2/1g  , we have 
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For c=3,   3/1g  ,  we have 
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Now, consider another class of priors given by 
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The log-posterior density of  is given by  
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The second derivative of the log posterior density is 
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The second derivative at the mode ̂ is then
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Thus, the posterior distribution can be approximated as 
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By putting a=0, we have the results as obtained earlier in (2.5.3) 

Now, consider an inverted gamma as the prior 
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The posterior density of   is given by 
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The second derivative of the log-posterior density is 

 
232

2
1)(2)|(log













 bnaxnxP  

 
232

2
1)(2)|(log

)(















bnaxnxP
I  

The second derivative at the mode ̂ is then 

)(

)1)(1(

)(

)1)((2
)ˆ(

2

3

3

axn

bnbn

axn

bnaxn
I











   
2

3

)(

)1(
)(

axn

bn
I








                                                                                    (2.5.8)

 





       
3

21

)1(

)(
)(















bn

axn
I

 

Thus, the posterior distribution can be approximated as 
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(2.5.9) 

For b=c-1, the result is same as in (2.5.3). 

2.6 Bayesian Estimation for Two Parameter Exponential Distribution: 

The pdf of two parameter exponential distribution is given by 
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The likelihood function is given by 
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where )1(x is the first order statistic in the sample ),...,,( 21 nxxxX  such that 

)()2()1( ..... nxxx 
 
and 





n

i

i xxS

1

)1( )( . 

Bayesian estimator of & under Jeffery‘s prior  

0c;
1

),(g
c




  

Thus joint posterior distribution of &   is given as  
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Where K is a normalizing constant and is given by 
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For   1,,0  gc  (uniform prior), (2.6.4) becomes  
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2.7 Marginal Posterior densities for  and  : 

 
The marginal posterior density of   is given by 
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The marginal posterior density of   is given by 
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2.8 Posterior estimates of and  :  

The posterior estimate of   is given by 
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The Posterior estimates of    is given by 
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Example 2.1 (Deshpande and Puorhit 2005): 

 Following are the time in days between successive earthquakes worldwide. 

An earthquake is included in the data set if its magnitude was at least 7.5 on Richter 

scale, or if over 1000 people were killed. Recordings start on 16th of December 1902 

and ends on 14th march 1997.There were 63 earthquakes recorded altogether, and so 

62 waiting times. 

840,157,145,44,33,121,150,280,434,736,584,887,263,1901,695,294,562,721,76,710,

46,402,194,759,319,460,40,1336,335,1334,454,36,667,40,556,99,304,375,567,139,7

80,203,436,30,384,129,9,209,599,83,832,328,246,1617,638,937,735,38,365,92,82,2

20. 

In order to find the Bayesian estimates for above example of univariate exponential 

distribution,  we have developed the programmes in S-PLUS and R software and the 

results are given in tables 2.1 and 2.2. 

# Bayes estimates with different priors. 

# S-PLUS 

 bayesexp.est<-function(x) 

 { 

 n<-length(x) 

 C<-c(0,1,2,3) 

 estimate<-(n*mean(x))/(n+C-2) 

 return(estimate) 

 } 

time<- 

c(840,157,145,44,33,121,150,280,434,736,584,887,263,1901,695,294,562

,721,76,710,46,402,194,756,319,460,40,1336,335,1334,454,36,667,40,55

6,99,304,375,567,139,780,203,436,30,384,129,9,209,599,83,832,328,246

,1617,638,937,735,38,365,92,82,220) 

bayesexp.est(time) # To get the output.   



Table: 2.1: Bayes estimates of Exponential distribution with different priors. 

 Prior  Bayes Estimate  

1 451.40 

1/theta 444.00 

1/theta^2 436.84 

1/theta^3 429.90 

# Posterior density of Exponential Distribution using different priors in R 

Software.  

# Prior=1. 

time<-

c(840,157,145,44,33,121,150,280,434,736,584,887,263,1901,695,294,562

,721,76,710,46,402,194,756,319,460,40,1336,335,1334,454,36,667,40,55

6,99,304,375,567,139,780,203,436,30,384,129,9,209,599,83,832,328,246

,1617,638,937,735,38,365,92,82,220) 

   pos.exp<-function(theta=200) 

   { 

   n<-length(time) 

   C<-0    

   pos<-(n+C)*log(theta)+sum(time)/theta 

   return(pos) 

   } 

library(stats4) 

fit<-mle(pos.exp) 

summary(fit) 

> summary(fit) 

Maximum likelihood estimation 

Call: 

mle(minuslogl = pos.exp) 

Coefficients: 

      Estimate Std. Error 

theta 436.5486   55.40446 

-2 log L: 877.866 

# Prior=1/theta. 



pos.exp<-function(theta=200) 

   { 

   n<-length(time) 

   C<-1    

   pos<-(n+C)*log(theta)+sum(time)/theta 

   return(pos) 

   } 

library(stats4) 

fit<-mle(pos.exp) 

summary(fit) 

Maximum likelihood estimation 

Call: 

mle(minuslogl = pos.exp) 

Coefficients: 

      Estimate Std. Error 

theta 429.6785   54.10542 

-2 log L: 890.009 

# Prior=1/theta^2 

pos.exp<-function(theta=200) 

   { 

   n<-length(time) 

   C<-2    

   pos<-(n+C)*log(theta)+sum(time)/theta 

   return(pos) 

   } 

library(stats4) 

fit<-mle(pos.exp) 

  summary(fit) 

Maximum likelihood estimation 



Call: 

mle(minuslogl = pos.exp) 

Coefficients: 

      Estimate Std. Error 

theta  423.012   52.85375 

-2 log L: 902.1204 

# Prior=1/theta^3. 

pos.exp<-function(theta=200) 

   { 

   n<-length(time) 

   C<-3    

   pos<-(n+C)*log(theta)+sum(time)/theta 

   return(pos) 

   } 

library(stats4) 

fit<-mle(pos.exp) 

 Maximum likelihood estimation 

Call: 

mle(minuslogl = pos.exp) 

Coefficients: 

      Estimate Std. Error 

theta 416.5415   51.64886 

-2 log L: 914.2005  summary(fit) 

 

 

 



Table 2.2: Posterior mode and Posterior standard error of Exponential distribution with different 

priors. 

Prior  Posterior mode Posterior Standard 

error 

1 436.5486 55.40446 

1/theta 429.6785 54.10542 

1/theta^2 423.012 52.85375 

1/theta^3 416.5415 51.64886 

 

# Comparing Normal Approximation of Exponential Distribution with different 

priors in S-PLUS and R. 

Norm.app<-function(x) 

{ 

n<-length(x) 

theta<-seq(200,700,length=1500) 

plot(theta,dnorm(theta,mean=mean(x),sd=sqrt((mean(x))^2/n)), 

xlab="theta",ylab="p(theta|x)",ylim=c(0,0.008), 

main="Posterior Density for Time with different Priors",     

sub="Figure 2.1:Comparing Normal Approximation with different 

priors",type="l",col=3) 

lines(theta,dnorm(theta,mean=(n*mean(x)/(n+1)),sd=sqrt((n*mean(x))^2

/(n+1)^3)),col=4) 

lines(theta,dnorm(theta,mean=(n*mean(x)/(n+2)),sd=sqrt((n*mean(x))^2

/(n+2)^3)),col=5) 

lines(theta,dnorm(theta,mean=(n*mean(x)/(n+3)),  

sd=sqrt((n*mean(x))^2/(n+3)^3)),col=6) 

} 

time<-

c(840,157,145,44,33,121,150,280,434,736,584,887,263,1901,695,294,562

,721,76,710,46,402,194,756,319,460,40,1336,335,1334,454,36,667,40,55

6,99,304,375,567,139,780,203,436,30,384,129,9,209,599,83,832,328,246

,1617,638,937,735,38,365,92,82,220) 



Norm.app(time) 

leg.names<-

c("Prior=1","Prior=1/theta","Prior=1/theta^2","Prior=1/theta^3") 

legend(locator(1),leg.names,fill=3:6) 

 

# Comparing Laplace’s Approximation of Exponential Distribution with different 

priors in S-PLUS and R . 

Lap.app<-function(x) 

{ 

n<-length(x) 

theta<-seq(200,700,length=1500) 

ptheta0<-(1/sqrt(2*pi))*(n^.5/mean(x))* 

exp(sum(x)/theta+n)*exp(n*log(mean(x)/theta)) 

plot(theta,ptheta0, xlab="theta",ylab="p(theta|x)",ylim=c(0,0.008), 

main="Posterior Density for Time with Prior=1", 

Posterior Density for Time with different Priors

Figure 2.1:Comparing Normal Approximation with different priors
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sub="Figure 2.2:Comparing Laplace's Approximation with different 

priors", type="l", col=3) 

ptheta1<-(1/sqrt(2*pi))*((n+1)^1.5)/(n*mean(x))*exp(-

sum(x)/theta+n+1)* exp((n+1)*log(n*mean(x)/((n+1)*theta))) 

lines(theta,ptheta1,col=4) 

ptheta2<-(1/sqrt(2*pi))*((n+2)^1.5)/(n*mean(x))*exp(-

sum(x)/theta+n+2)* 

           exp((n+2)*log(n*mean(x)/((n+2)*theta))) 

lines(theta,ptheta2,col=5) 

ptheta3<-(1/sqrt(2*pi))*((n+3)^1.5)/(n*mean(x))* 

         exp(-

sum(x)/theta+n+3)*exp((n+3)*log(n*mean(x)/((n+3)*theta))) 

lines(theta,ptheta3,col=6) 

} 

Lap.app(time) 

leg.names<-

c("Prior=1","Prior=1/theta","Prior=1/theta^2","Prior=1/theta^3") 

legend(locator(1),leg.names,fill=3:6) 



 

# Comparison between Normal and Laplace’s Approximation of Exponential  

distribution with different priors in  S-PLUS and R . 

Norm.lap<-function(x) 

{ 

n<-length(x) 

theta<-seq(200,700,length=800) 

plot(theta,dnorm(theta,mean=mean(x),sd=sqrt((mean(x))^2/n)),xlab="th

eta",ylab="p(theta|x)", 

     ylim=c(0,0.008),main="Posterior Density for Time with Prior=1", 

     sub="Figure 2.3:Comparison between Normal and Laplace's  

Approximation",type="l",col=3) 

ptheta0<-(1/sqrt(2*pi))*(n^.5/mean(x))*exp(-

sum(x)/theta+n)*exp(n*log(mean(x)/theta)) 

lines(theta,ptheta0,col=4) 

Posterior Density for Time with Prior=1

Figure 2.2:Comparing Laplace's Approximation with different priors
theta

p
(t

h
e

ta
|x

)

200 300 400 500 600 700

0
.0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

Prior=1
Prior=1/theta
Prior=1/theta^2
Prior=1/theta^3



plot(theta,dnorm(theta,mean=(n*mean(x)/(n+1)),sd=sqrt((n*mean(x))^2/

(n+1)^3)),xlab="theta",        

     ylab="p(theta|x)", ylim=c(0,0.008),main="Posterior Density for 

Time with Prior=1/theta", 

     sub="Figure 2.4: Comparison between Normal and Laplace,s 

Approximation",type="l",col=3) 

ptheta1<-(1/sqrt(2*pi))*((n+1)^1.5)/(n*mean(x))*exp(-

sum(x)/theta+n+1)* exp((n+1)*log(n*mean(x)/((n+1)*theta))) 

lines(theta,ptheta1,col=4) 

plot(theta,dnorm(theta,mean=(n*mean(x)/(n+2)),sd=sqrt((n*mean(x))^2/

(n+2)^3)),xlab="theta", ylab="p(theta|x)", 

ylim=c(0,0.008),main="Posterior Density for Time with 

Prior=1/theta^2", 

     sub="Figure 2.5: Comparison between Normal and Laplace's 

Approximation",type="l",col=3) 

ptheta2<-(1/sqrt(2*pi))*((n+2)^1.5)/(n*mean(x))*exp(-

sum(x)/theta+n+2)* 

           exp((n+2)*log(n*mean(x)/((n+2)*theta))) 

lines(theta,ptheta2,col=4) 

plot(theta,dnorm(theta,mean=(n*mean(x)/(n+3)),sd=sqrt((n*mean(x))^2/

(n+3)^3)),xlab="theta", 

ylab="p(theta|x)", ylim=c(0,0.008),main="Posterior Density for Time 

with Prior=1/theta^3", 

sub="Figure 2.6: Comparison between Normal and Laplace's 

Approximation",type="l",col=3) 

ptheta3<-(1/sqrt(2*pi))*((n+3)^1.5)/(n*mean(x))* 

         exp(-

sum(x)/theta+n+3)*exp((n+3)*log(n*mean(x)/((n+3)*theta))) 

lines(theta,ptheta3,col=4) 

} 

Norm.lap(time) 



leg.names<-c("Normal Approximation","Laplace's Approximation") 

legend(locator(1),leg.names,fill=3:4) 

 

 

 

Posterior Density for Time with Prior=1

Figure 2.3:Comparison between Normal and Laplace's  Approximation
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Figure 2.4: Comparison between Normal and Laplace,s Approximation
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Posterior Density for Time with Prior=1/theta 2̂

Figure 2.5: Comparison between Normal and Laplace's Approximation
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Figure:  2.6: Comparison between Normal and Laplace's Approximation 
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Example 2.2 (Grubbs, F.E., 1971): Nineteen military personnel carriers failed in 

services for one reason or the other at the following mileages: 162, 200, 271, 302, 

393, 508, 539, 629, 706, 777, 884, 1008, 1101, 1182, 1463, 1603, 1984, 2355 and 

2880 miles. Numerical and graphical illustrations are implemented in S-PLUS 

Software for two parameter exponential distribution. Posterior estimates of  and  

are given in Table 2.3. The graphical representation for marginal posterior densities 

of  and  are shown in Figures 2.7 and 2.8 respectively. Moreover, we have 

developed the function for estimating parameters  and  of two parameter 

exponential distribution under different priors. Also, functions for graphical 

representation of the marginal densities of  and  under different priors were also 

developed in S-PLUS.   

    The posteriors of  and   are plotted in figures 2.7 & 2.8 respectively. The 

posteriors   are quite robust for varying c in the prior 











c
p

1
),(  while the 

posteriors of   are less robust. 

Program for estimating parameters   and   of two parameter exponential 

distribution in S-PLUS.   

 Mu.theta<-function(x) 

  { 

  n<-length(x) 

  C<-c(0,1,2) 

  x1<-min(x) 

  s<-sum(x-x1) 

  estimate1<-x1-(s/(n*(n+C-3))) 

  estimate2<-s/(n+C-3) 

  list(mu=estimate1,theta=estimate2) 

   } 

> x<-c(162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 

884, 1008, 1101, 1182, 1463, 1603, 1984, 2355,2880 ) 

>  Mu.theta(x) 

 

 

 



 

Table 2.3: Posterior estimates of   and   under different priors using S-PLUS. 

Prior Posterior mean of    Posterior mean of   

1 109.7993 
991.8125 

 



1

 
112.8700 933.4706 

2

1

  
115.5994 881.6111 

 

Function for graphical representation of the marginal density of   under 

different priors in S-PLUS. 

mu.plot<-function(x) 

{ 

n<-length(x) 

x1<-min(x) 

s<-sum(x-x1) 

mu<-seq(0,160) 

pmu<-(n*(n-2))*(s^(n-2))/((s+n*(x1-mu))^(n-1)) 

plot(mu,pmu,xlab="mu",ylab="p(mu|x)",ylim=c(0,0.022), 

main= "Posterior density of mu under different priors", 

sub="Figure: 2.7",type="l",lty=1,col=2) 

pmu1<-(n*(n-1))*(s^(n-1))/((s+n*(x1-mu))^(n)) 

lines(mu,pmu1,lty=2,col=3) 

pmu2<-(n*(n))*(s^(n))/((s+n*(x1-mu))^(n+1)) 

lines(mu,pmu2,lty=3,col=4) 

} 

> x<-c(162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 

884, 1008, 1101, 1182, 1463, 1603, 1984, 2355,2880 ) 

> Mu.plot(x) 

> leg.names<-c("Prior=1","Prior=1/theta","Prior=1/theta^2") 

> legend(locator(1),leg.names,col=2:4)  

  

  



 

Function for graphical representation of the marginal density of   under 

different priors. 

theta.plot<-function(x) 

{ 

n<-length(x) 

x1<-min(x) 

s<-sum(x-x1) 

theta<-seq(50,1700) 

ptheta<- (s^(n-2))*(exp(-s/theta))/((gamma(n-

2))*(theta^(n-1))) 

ptheta1<- (s^(n-1))*(exp(-s/theta))/((gamma(n-

1))*(theta^(n))) 

ptheta2<- (s^n)*(exp(-

s/theta))/((gamma(n))*(theta^(n+1))) 

plot(theta,ptheta,xlab="theta",ylab="p(theta|y)",ylim=c(0

,.0022), 

main= "Posterior density of theta under different 

priors",sub="Figure: 2.8",type="l",lty=1, col=2) 

lines(theta,ptheta1,lty=2,col=3) 

lines(theta,ptheta2,lty=3, col=4) 

} 

>x<-c(162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 

884,1008, 1101,1182, 1463, 1603, 1984, 2355,2880 ) 



>theta.plot(x) 

 >leg.names<-

c("Prior=1","Prior=1/theta","Prior=1/theta^2") 

 legend(locator(1),leg.names,col=2:4) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER – 3 

POSTERIOR 

APPROXIMATIONS 

TO 

GAMMA DISTRIBUTION  
 

 

 

 

 

 

 

 



3.1 Introduction: 

amma distribution has been quite extensively used as a lifetime model, 

though not nearly as much as the weibull distribution. The gamma 

distribution is most widely used model for precipitation data. It does fit a wide 

variety of lifetime data adequately, besides failure process models that lead to it. It 

also arises in some situations involving the exponential distribution; because of the 

well known result that sums of independent and identically distributed (iid) 

exponential random variables have a gamma distribution. Inference for gamma 

model has been considered by Engelhard and Bain (1978), choa and Glaser (1978) 

and others for complete data case. Prentice (2002); Lawless (2003); Zaman et al. 

(2005); Jamali et al. (2006); Saal et al. (2008); S.P.Ahmad (2006) & Ahmad et al. 

(2011) has made significant contributions. 

The gamma distribution has pdf of the form 
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where 0,  are the parameter,  is a scale parameter and   is sometimes called the 

index or shape parameter.   Is the well known gamma function which for integral 

values of equals )1(  . The gamma distribution with 1  reduces to the one 

parameter exponential distribution & has pdf of the form 
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The gamma distribution with 𝛼 = 1 is called the one parameter gamma distribution 

and has pdf 
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The moments of a r.v X following gamma distribution can be obtained as  
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The hazard function of Gamma can be increasing, decreasing or constant 

depending on α > 1, α < 1 or α = 1 respectively. The exponential distribution the 

hazard rate is constant (1/α) and, therefore, the gamma distribution immediately 

provide a generalization of the exponential distribution in their distribution. 

For the integral value of β, gamma distribution arises as a sum of β independent 

identically distributed exponential random variables. Therefore, if β items were test 

and it was assumed that the failure time distribution in exponential with parameter α, 

then the total time on test( or total of life times) would be a gamma variable with 

parameter β and α. In failure censored case, with the experiment terminating at the (β 

– α) the failure, the total time on test would be distributed as gamma with parameters 

(β – α) & α. 

3.2 Estimation of parameters of gamma distribution with complete sample: 

Let n21 x,.......,x,x  be an iid samples from gamma distribution (3.1.1), and the 

likelihood function is given by 
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(3.2.1) 

Case I: when   is known: 

We will first consider the case when   is known and the only unknown parameter is 

 . 

Taking log on both sides of equation (3.2.1) we get 
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From (3.2.1) and (3.2.3) it immediately follows 
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which is independent of the unknown parameter  α. Thus ̂  or equivalently the total 

time 


n

1i

ix  is sufficient for α. In the gamma model we may note that the mean life 

is   and if we are interested in estimating  , then the MLE and UMVUE of  are 

identical and are given by the sample mean  


n

1i

ix
n

1
. 

Case ii:-we consider the case when  &  are both unknown: 

 Let n21 x,.......,x,x  be an iid sample from gamma distribution (3.1.1), and then 

likelihood is defined as 
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are arithmetic and geometric means, 

respectively. 

The log-likelihood is given by 
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Differentiating )5.2.3(  with respect to  we have 
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Equation (3.2.5) can be written as 
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Differentiating equation (3.2.5) w.r.t  and equating to zero we have 
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is termed as tri-gamma function. These functions can be 

approximated well as 
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These values are required to implement Newton‘s method of optimization. 

However, this method is difficult to implement as compared to a very close 



approximation discussed by Johnson and Kotz (1970). The maximum estimate of 

can be approximated as 
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


x

s  . If the value of s ranges from 0 to 0.55722, then value of 


  is 

given by (3.2.9) and if it lies between 0.55722 and 17, then it is given by (3.2.10). 

Once 


  is obtained, we can find 
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For large values of  , we can use the approximation 
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These estimates are essentially needed for starting iterations. The expression for the 

variance covariance matrix  of these estimates could be obtained by using the 

asymptotic properties of MLE. Using the general theory of MLE, one can show that 

asymptotically   ˆ,ˆ  is distributed as bivariate normal with mean  &  

respectively and the variance covariance matrix is given by 
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 is called the gamma function. 
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If n21 x,.......,x,x  are independently and identically distributed as (3.1.1), it 

follows that 
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For large sample X  is asymptotically normal with that same mean and variance 
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  respectively. 

3.3 Approximation of Gamma Distribution Based on Posterior Modes:                                                                 

In many areas of application, simple models suffice for most practical purposes 

but there are occasions when the complexity of the scientific questions at issue and 

the data available to answer them warrant the development of more sophisticated 

models, which depart from standard forms. For such models, approximations to the 

posterior distribution of model parameters are useful in their own right and as a 

starting point for more exact methods. We make use of Normal and Laplace‘s 

methods of approximation as discussed by Rubin and Schenker (1987) and Tierney 

and Kadane (1986). 

From (3.2.5) the log-likelihood is defined as:  
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We follow the standard approach of Box and Tiao (1973), Gelman et al. (1995), 

we assume that a priori  and k are approximately independent, so that 

)()(),(  ggg . Where )(g   and )(g   are priors for   and  . 

Using Bayes theorem, the posterior density )|,( xP   is given by  
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The log-posterior is given by 
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The posterior mode is obtained by maximizing (3.3.2) with respect to   and  . The 

score vector of log posterior is given by 
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Consequently, modal variance   can be obtained as 
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)|,( xP   can be used for drawing inference about  and   simultaneously. 

Using normal approximation, we can write directly a bivariate normal approximation 

of (3.3.1) as  
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Similarly, we can write Bayesian analog of likelihood ratio criterion as 
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Using Laplace‘s approximation, we can write (3.3.1) as 

     )],(),(exp[|),(|)2()|,( 2

1

1





  llIxP  

The marginal Bayesian inference about  and   is to be based on marginal posterior 

densities of these parameters. Marginal posterior for  can be obtained after 

integrating out )|,( xP   with respect to , i.e. 
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Similarly, marginal posterior of  can be obtained as  
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We can write normal approximation of marginal posterior )|( xp   as 
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Bayesian analog of likelihood ratio criterion can also be defined as a test criterion as 

 2
111

T ~)!(I)( 


 

Laplace‘s approximation of marginal posterior density )|( xp   can be given by  
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Similarly, )|( xP   can be approximated and results corresponding to normal and 

Laplace‘s approximation can be written as  
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The results can be seen in Ahmad(2006)  &  Ahmad et al. (2011) 

Example 3.1: The numerical and graphical illustration of posterior densities of the 

parameters of interest conveys a very convincing and comprehensive picture of 

Bayesian data analysis. We have developed several programs using S-PLUS and R 

softwares for gamma distribution. These programmes illustrate the strength of 

Bayesian methods in various practical situations. Soil samples were collected from 

rice growing areas as well as from orchards of Kashmir valley and were analyzed 

from some relevant parameters. Ahmad et.al, 2011 studied available Potassium in the 



soil of Kashmir valley. The posterior mode and standard errors of parameters  and 

  of gamma distribution are presented in Table 3.1. Graphical display of posterior 

for  and   using Normal approximation are shown in Figures 3.1 to 3.6, whereas 

Laplace‘s approximation for  and   are shown in Figures 3.7 to 3.12. Figures 3.13 

to 3.15 and 3.16 to 3.18 contains Normal approximation of posterior in addition to 

Laplace‘s approximation for parameters  and k respectively. The graph shows that 

the two approximations are in close agreement. 

# Bayesian Analysis of Gamma Distribution with different Priors in SPLUS. 

# Prior=1. 

library(Mass,first=T) 

n<-length(x) 

ngam1<-deriv3(~-log(x^(k1))+y/alpha+b*log(alpha)+lgamma(b), 

              c("alpha","b"),function(x,alpha,b)NULL) 

y<-dbmdata$Potassium 

y<-as.vector(x) 

fitgam1<-ms(~ngam1(x,alpha,b),start=c(alpha=66,b=12),data=dbmdata) 

post.std<-sqrt(diag(summary(fitgam1)$Information)) 

summary(fitgam1) 

post.std 

> summary(fitgam1) 

Final value: 8382.159 

Solution: 

           Par.          Grad. Hessian.alph  Hessian.b  

alpha 60.055763 -1.113207e-013     1.197854  23.428226 

    b  3.070571 -2.176259e-011    23.428226 540.775513 

Information: 

          alph          b  



alph  5.468549 -0.2369160 

   b -0.236916  0.0121132 

Convergence: RELATIVE FUNCTION CONVERGENCE. 

Computations done: 

  Iterations Function Gradient  

      8       10        9 

> post.std 

[1] 2.338493 0.110060 

# Prior=1/b. 

library(Mass,first=T) 

n<-length(x) 

ngam1<-deriv3(~-log(x^(k-1))+x/alpha+b*log(alpha)+lgamma(b)-

log(1/b)/n,c("alpha","b"),function(x,alpha,b)NULL) 

y<-dbmdata$Potassium 

y<-as.vector(x) 

fitgam1<-ms(~ngam1(x,alpha,b),start=c(alpha=66,b=12),data=dbmdata) 

post.std<-sqrt(diag(summary(fitgam1)$Information)) 

summary(fitgam1) 

post.std 

> summary(fitgam1) 

Final value: 8383.281 

Solution: 

           Par.     Grad. Hessian.alph  Hessian.b  

alpha 60.133015  4.540118e-014     1.193243  23.398128 

    b  3.066626 -8.013770e-012    23.398128 541.480975 

Information: 



           alph          b  

alph  5.4891249 -0.2371925 

   b -0.2371925  0.0120962 

Convergence: RELATIVE FUNCTION CONVERGENCE. 

Computations done: 

 Iterations Function Gradient  

     8       10        9 

> post.std 

[1] 2.3428882 0.1099827 

# Prior=1/(alpha*b). 

library(Mass,first=T) 

n<-length(x) 

ngam1<-deriv3(~-log(x^(k-1))+x/alpha+b*log(alpha)+lgamma(b)-   

             

log(1/(alpha*b))/n,c("alpha","b"),function(x,alpha,b)NULL) 

y<-dbmdata$Potassium 

y<-as.vector(x) 

fitgam1<-ms(~ngam1(x,alpha,b),start=c(alpha=66,b=12),data=dbmdata) 

post.std<-sqrt(diag(summary(fitgam1)$Information)) 

summary(fitgam1) 

post.std 

Final value: 8387.376 

Solution: 

           Par.          Grad. Hessian.alph  Hessian.b  

alpha 60.041875 -3.260959e-013     1.198685  23.433645 

    b  3.070571 -3.199555e-011    23.433645 540.669544 



 

Information: 

           alph          b  

alph  5.4636845 -0.2368065 

   b -0.2368065  0.0121132 

Convergence: BOTH X- AND RELATIVE FUNCTION CONVERGENCE  

Computations done: 

 Iterations Function Gradient  

      9       11        9 

> post.std 

[1] 2.337453 0.110060 

Table 3.1:  Posterior mode and Posterior standard error of Gamma distribution 

with different priors. 

Prior 
Posterior mode Posterior Standard error 

        

1 
60.065413 3.070154 2.3420626 0.1101784 

1/b 60.14267 3.06621 2.3464633 0.1101011 

1/b*alpha 60.051520 3.070153 2.3410191 0.1101783 

 

Normal Approximation to parameters alpha and k of Gamma Distribution 

using 

different priors in S-PLUS and R.  

# Normal Approximation of alpha of Gamma Distribution with different priors in S-PLUS  

and R. 

Norm.app<-function(x) 

{ 

n<-length(x) 



alpha<-seq(52,68,length=150) 

plot(alpha,dnorm(alpha,mean=60.14267,sd=2.3420626),xlab="alpha", 

     ylab="p(alpha|y)",main="Posterior Density for Potassium with 

     Prior=1",sub="Figure 3.1: Normal Approximation",type="l", 

     col=4) 

plot(alpha,dnorm(alpha,mean=60.14267,sd=2.3464633),xlab="alpha", 

     ylab="p(alpha|x)",main="Posterior Density for Potassium with 

     Prior=1/b",sub="Figure 3.2: Normal Approximation",type="l", 

     col=4) 

plot(alpha,dnorm(alpha,mean=60.051520,sd=2.3410191),xlab="alpha", 

     ylab="p(alpha|x)",main="Posterior Density for Potassium with 

     Prior=1/(alpha*b)",sub="Figure 3.3: Normal Approximation", 

     type="l",col=4) 

} 

Norm.app(dbmdata$Potassium) 

# Normal Approximation of k of Gamma Distribution with different priors. 

# S-PLUS and R.  

Norm.app<-function(x) 

{ 

n<-length(x) 

k<-seq(2.5,3.7,length=150) 

plot(b,dnorm(b,mean=3.070154,sd=0.1101784),xlab="b",ylab="p(b|x)", 

     main="Posterior Density for Potassium with Prior=1", 

     sub="Figure 3.4: Normal Approximation",type="l",col=4) 

plot(x,dnorm(b,mean=3.06621,sd=0.1101011),xlab="b",ylab="p(b|x)", 

     main="Posterior Density for Potassium with Prior=1/b", 



     sub="Figure 3.5: Normal Approximation",type="l",col=4) 

plot(b,dnorm(b,mean=3.070153,sd=0.1101783),xlab="b",ylab="p(b|x)", 

     main="Posterior Density for Potassium with Prior=1/(alpha*b)", 

     sub="Figure 3.6: Normal Approximation",type="l",col=4) 

} 

Norm.app(dbmdata$Potassium) 

Posterior Density for Potassium with Prior=1

Figure 1: Normal A pproximation
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Figure 2: Normal A pproximation
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Figure 3: Normal A pproximation
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Figure 4: Normal A pproximation
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Figure 5: Normal A pproximation
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Figure 6: Normal A pproximation
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Laplace’s Approximation to parameters alpha and k of Gamma Distribution 

using different priors in S-PLUS and R.  

# Laplace’s Approximation of alpha of Gamma Distribution with different priors. 

# S-PLUS and R.  

Lap.app<-function(x) 

 { 

 alpha<-seq(52,68,length=9) 

 dk<-c(468.8552,486.7220,504.5719,522.4035,540.2163,558.0095, 



       575.7837,593.5376,611.2709) 

 Lest<-8382.265 

 Lestb<-c(8389.484,8386.146,8383.925,8382.674,8382.265,8382.593, 

          8383.563,8385.097,8387.125) 

 palpha<-1/sqrt(2*pi)*sqrt( 98.59129/db)*exp(-(Lestb-Lest)) 

 plot(spline(alpha,palpha,n=5*length(alpha),xmin=min(alpha), 

      xmax=max(alpha)),xlab="alpha",ylab="p(alpha|x)", 

      main="Posterior Density for Potassium with Prior=1", 

      sub="Figure 3.7: Laplace's Approximation",type="l",col=4) 

 db1<-c(468.8675,486.7355,504.5867,522.4197,540.2338,558.0289, 

        575.8045,593.5600,611.2952) 

 Lest1<-8383.386 

 Lestb1<-c(8390.729,8387.359,8385.107,8383.825,8383.388,8383.687, 

           8384.631,8386.140,8388.142) 

 palpha1<-1/sqrt(2*pi)*sqrt( 98.35003/db1)*exp(-(Lestb1-Lest1)) 

 plot(spline(alpha,palpha1,n=5*length(alpha),xmin=min(alpha), 

     xmax=max(alpha)),xlab="alpha",ylab="p(alpha|x)", 

     main="Posterior Density for Potassium with Prior=1/b", 

     sub="Figure 3.8: Laplace's Approximation",type="l",col=4) 

 dk2<-c(468.8675,486.7354,504.5866,522.4196,540.2339,558.0290, 

        575.8044,593.5601,611.2952) 

 Lest2<-8387.482 

 Lestb2<-c(8394.680,8391.348,8389.132,8387.886,8387.482,8387.815, 

           8388.790,8390.329,8392.362) 

 palpha2<-1/sqrt(2*pi)*sqrt( 98.66004/db2)*exp(-(Lestk2-Lest2)) 

 plot(spline(alpha,palpha2,n=5*length(alpha),xmin=min(alpha), 



      xmax=max(alpha)),xlab="alpha",ylab="p(alpha|x)", 

main="Posterior Density for Potassium with Prior=1/(alpha*b)", 

      sub="Figure 3.9: Laplace's Approximation",type="l",col=4) 

 } 

Lap.app(dbmdata$Potassium) 

# Laplace's Approximation of k of Gamma Distribution with different priors. 

# S-PLUS and R. 

Lap.app<-function(x) 

 { 

 b<-seq(2.5,3.7,length=13) 

 dalpha<-c(0.646208,0.726896,0.814036,0.907876,1.008664,1.116648, 

           1.232073,1.355196,1.486258,1.625509,1.773195,1.929566, 

           2.094865) 

 Lest<-8382.265 

 Lestalpha<-c(8389.725,8392.500,8388.448,8385.477,8383.477,8382.471, 

              8382.301,8382.941,8384.339,8386.446,8389.222,8392.626, 

              8396.622) 

 pk<-1/sqrt(2*pi)*sqrt( 98.59129/dalpha)*exp(-(Lestalpha-Lest)) 

 plot(spline(b,pb,n=5*length(b),xmin=min(b),xmax=max(b)), 

      xlab="b",ylab="p(b|x)",main="Posterior Density for Potassium 

with Prior=1",sub="Figure3.10:Laplace's Approximation",  

type="l", col=4) 

dalpha1<-c(0.646208,0.726896,0.814036,0.907876,1.008664,1.116648, 

           1.232073,1.355196,1.486258,1.625509,1.773195,1.929566, 

           2.094865) 

 Lest1<-8383.386 



 Lestalpha1<-

c(8398.641,8393.456,8389.441,8386.507,8384.573,8383.570, 

               

8383.433,8384.104,8385.532,8387.670,8390.475,8393.907, 

               8397.930) 

 pb1<-1/sqrt(2*pi)*sqrt( 98.59129/dalpha1)*exp(-(Lestalpha1-Lest1)) 

 plot(spline(b,pb1,n=5*length(b),xmin=min(b),xmax=max(b)), 

      xlab="b",ylab="p(b|x)",main="Posterior Density for Potassium 

with Prior=1/b",sub="Figure 3.11: Laplace's Approximation", 

type="l",col=4) 

  dalpha2<-c(0.646760,0.727492,0.844679,0.908567,1.009405,1.117441, 

            1.232920,1.356099,1.487218,1.626528,1.774276,1.930709, 

            2.096072) 

 Lest2<-8387.482 

 Lestalpha2<-

c(8402.942,8397.717,8393.665,8390.694,8388.726,8387.689, 

            8387.519,8388.158,8389.556,8391.663,8394.439,8397.843, 

            8401.840) 

 pb2<-1/sqrt(2*pi)*sqrt( 98.59129/dalpha2)*exp(-(Lestalpha2-Lest2)) 

 plot(spline(b,pb2,n=5*length(b),xmin=min(b),xmax=max(b)), 

      xlab="b",ylab="p(b|x)",main="Posterior Density for Potassium 

with Prior=1/(alpha*b)",sub="Figure 3.12: Laplace's 

Approximation", type="l",col=4) 

} 

Lap.app(dbmdata$Potassium) 
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Figure 7: Laplace's A pproximation
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Figure 8: Laplace's A pproximation
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Figure 9: Laplace's A pproximation
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Figure 10: Laplace's A pproximation
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Figure 11: Laplace's A pproximation
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Figure 12: Laplace's A pproximation
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Comparing Normal and Laplace's Approximation of alpha of Gamma Distribution 

with different  

# Comparing Normal and Laplace's Approximation of alpha of Gamma distribution with 

different priors. 

# S-PLUS and R.  

Norm.Lap<-function(x) 

{ 

n<-length(x) 

alpha<-seq(52,68,length=9) 

plot(spline(alpha,dnorm(alpha,mean=60.14267,sd=2.3420626 ), 

      

n=5*length(alpha),xmin=min(alpha),xmax=max(alpha)),xlab="alpha", 

      ylab="p(alpha|x)",main="Posterior Density for Potassium with 

      Prior=1",sub="Figure 3.13: Comparison between Normal and  

      Laplace's Approximation",type="l",col=3) 



db<-c(468.8552,486.7220,504.5719,522.4035,540.2163,558.0095, 

      575.7837,593.5376,611.2709) 

Lest<-8382.265 

Lestb<-c(8389.484,8386.146,8383.925,8382.674,8382.265,8382.593, 

         8383.563,8385.097,8387.125) 

palpha<-1/sqrt(2*pi)*sqrt( 98.59129/db)*exp(-(Lestb-Lest)) 

lines(spline(alpha,palpha,n=5*length(alpha),xmin=min(alpha), 

      xmax=max(alpha)),col=4) 

plot(spline(alpha,dnorm(alpha,mean=60.14267,sd=2.3464633), 

      

n=5*length(alpha),xmin=min(alpha),xmax=max(alpha)),xlab="alpha", 

      ylab="p(alpha|x)",main="Posterior Density for Potassium with 

     Prior=1/b",sub="Figure 3.14: Comparison between Normal and  

     Laplace's Approximation",type="l",col=3) 

db1<-c(468.8675,486.7355,504.5867,522.4197,540.2338,558.0289, 

       575.8045,593.5600,611.2952) 

Lest1<-8383.386 

Lestb1<-c(8390.729,8387.359,8385.107,8383.825,8383.388,8383.687, 

           8384.631,8386.140,8388.142) 

palpha1<-1/sqrt(2*pi)*sqrt( 98.35003/dk1)*exp(-(Lestb1-Lest1)) 

lines(spline(alpha,palpha1,n=5*length(alpha),xmin=min(alpha), 

      xmax=max(alpha)),col=4) 

plot(spline(alpha,dnorm(alpha,mean=60.051520,sd=2.3410191 ), 

     

n=5*length(alpha),xmin=min(alpha),xmax=max(alpha)),xlab="alpha", 

     ylab="p(alpha|x)",main="Posterior Density for Potassium with 

     Prior=1/(alpha*b)",sub="Figure 3.15: Comparison between Normal  



     and Laplace's Approximation",type="l",col=3) 

 db2<-c(468.8675,486.7354,504.5866,522.4196,540.2339,558.0290, 

         575.8044,593.5601,611.2952) 

 Lest2<-8387.482 

 Lestb2<-c(8394.680,8391.348,8389.132,8387.886,8387.482,8387.815, 

           8388.790,8390.329,8392.362) 

 palpha2<-1/sqrt(2*pi)*sqrt( 98.66004/db2)*exp(-(Lestb2-Lest2)) 

 lines(spline(alpha,palpha2,n=5*length(alpha),xmin=min(alpha), 

       xmax=max(alpha)),col=4) 

 } 

Norm.Lap(dbmdata$Potassium) 

leg.names<-c("Normal Approximation","Laplace's Approximation") 

legend(locator(1),leg.names,fill=3:4) 



priors using S-PLUS and R. 

Posterior Density for Potassium with
      Prior=1

Figure 13: Comparison between Normal and 
      Laplace's A pproximation
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Figure 14: Comparison between Normal and 
     Laplace's A pproximation
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Figure 15: Comparison between Normal 
     and Laplace's A pproximation
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Comparing Normal and Laplace's Approximation of k of Gamma Distribution with 

different priors using S-PLUS and R. 

# Comparing Normal and Laplace's Approximation of k of Gamma Distribution  

   with different priors. 

# S-PLUS and R. 

Norm.Lap<-function(x) 

{ 

n<-length(x) 

k<-seq(2.5,3.7,length=13) 

plot(spline(b,dnorm(b,mean=3.070154,sd=0.1101784),n=5*length(b), 

     xmin=min(b),xmax=max(b)),xlab="b",ylab="p(k|x)",main="Posterior 



     Density for Potassium with Prior=1",sub="Figure 3.16: 

Comparison 

     between Normal and Laplace's Approximation",type="l",col=3) 

dalpha<-c(0.646208,0.726896,0.814036,0.907876,1.008664,1.116648, 

          1.232073,1.355196,1.486258,1.625509,1.773195,1.929566, 

          2.094865) 

Lest<-8382.265 

Lestalpha<-c(8389.725,8392.500,8388.448,8385.477,8383.477,8382.471, 

             8382.301,8382.941,8384.339,8386.446,8389.222,8392.626, 

             8396.622) 

pb<-1/sqrt(2*pi)*sqrt( 98.59129/dalpha)*exp(-(Lestalpha-Lest)) 

lines(spline(k,pb,n=5*length(b),xmin=min(b),xmax=max(b)),col=4) 

plot(spline(b,dnorm(b,mean=3.06621,sd=0.1101011),n=5*length(b), 

     xmin=min(b),xmax=max(b)),xlab="b",ylab="p(b|x)",main="Posterior     

     Density for Potassium with Prior=1/b",sub="Figure 3.17: 

     Comparison between Normal and Laplace's 

Approximation",type="l", 

     col=3) 

dalpha1<-c(0.646208,0.726896,0.814036,0.907876,1.008664,1.116648, 

           1.232073,1.355196,1.486258,1.625509,1.773195,1.929566, 

           2.094865) 

 Lest1<-8383.386 

 Lestalpha1<-

c(8398.641,8393.456,8389.441,8386.507,8384.573,8383.570, 

               

8383.433,8384.104,8385.532,8387.670,8390.475,8393.907, 

               8397.930) 



 pk1<-1/sqrt(2*pi)*sqrt( 98.59129/dalpha1)*exp(-(Lestalpha1-Lest1)) 

 lines(spline(b,pb1,n=5*length(b),xmin=min(b),xmax=max(b)),col=4) 

plot(spline(b,dnorm(b,mean=3.070153,sd=0.1101783),n=5*length(b), 

     xmin=min(b),xmax=max(b)),xlab="b",ylab="p(b|x)",main="Posterior    

   Density for Potassium with Prior=1/(alpha*b)",sub="Figure 3.18: 

Comparison between Normal and Laplace's Approximation”, type="l", 

   col=3) 

dalpha2<-c(0.646760,0.727492,0.844679,0.908567,1.009405,1.117441, 

            1.232920,1.356099,1.487218,1.626528,1.774276,1.930709, 

            2.096072) 

 Lest2<-8387.482 

 Lestalpha2<-

c(8402.942,8397.717,8393.665,8390.694,8388.726,8387.689, 

            8387.519,8388.158,8389.556,8391.663,8394.439,8397.843, 

            8401.840) 

 pb2<-1/sqrt(2*pi)*sqrt( 98.59129/dalpha2)*exp(-(Lestalpha2-Lest2)) 

 lines(spline(b,pb2,n=5*length(b),xmin=min(b),xmax=max(b)),col=4) 

} 

Norm.Lap(dbmdata$Potassium) 

leg.names<-c("Normal Approximation","Laplace's Approximation") 

legend(locator(1),leg.names,fill=3:4) 



 

 

 

 

 

 

 

 

Posterior Density for Potassium with Prior=1 

Figure 3.16: Comparison between Normal and Laplace's Approximation 
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Figure 3.17:Comparison between Normal and Laplace's Approximation 
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Figure 3.18: Comparison between Normal and Laplace's Approximation 
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4.1 Introduction: 

ormal distribution plays a very important role in the statistical theory as 

well as methods. The names of the great mathematician such as Gauss, 

Laplace, Legendre & others are associated with the discovery & use of the 

distribution of errors of measurement. The earliest published derivation of the normal 

distribution was an approximation to a binomial distribution by de-Morvie in 1733. 

In 1774 Laplace obtained the normal distribution as an approximation to hyper-

geometric distribution and advocated tabulation of the probability integral )(x .The 

work of Gauss in 1809, 1816 respectively established techniques based on the normal 

distribution which became standard methods used during the nineteenth century. 

Davir (1952) has shown that the normal distributions give quite a good fit for the 

failure time data. In 1961 Bazovsky discussed the use of the normal distribution in 

life testing & reliability problems. 

The pdf of the normal distribution with location parameter   and scale 

parameter  in given by 
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with mean   and variance 2 . 

4.2 Maximum likelihood estimate of normal distribution:- 

Let nxxx ,.......,, 21 be a random sample of size n from normal population with pdf 















 ;;

2

)(
exp

2

1
)(

2

2

x
x

xf

 

And the likelihood function is given as
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The log likelihood is given as
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Case1: when 2  is known, the likelihood equation for estimating   is: 
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Case2: when    is known, the likelihood for estimating 2  is   
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Case 3: Both unknown: The likelihood equation for simultaneous estimation of   

and 2   are; 
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4.3 Bayesian Estimation for the Parameters of Normal distribution: 

Consider two parameter normal distribution 
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Where   is the location parameter and   is the scale parameter. The standard 

argument as given in Box & Tiao (1973) leads to the quasi prior 0,
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 which we consider here. 

The likelihood function is given by 
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Posterior is given by 
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The marginal posterior of      is given by integrating out   in (4.3.1) we have 
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(4.3.3) 

Bayes estimator of   is given by 
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(4.3.4) 

Bayes estimator of 2  is  
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If we put c=4 in (4.3.5) we observe that MLE of 2  coincides with 2̂  

and for c=3, the UMVUE of 2  is the same as Bayes estimate for 2 . 

Marginal of   is given by  
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Bayes estimator of   is given by  
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(4.3.7) 

4.4 Bayesian intervals for parameter of normal distribution: 

The joint posterior of   and 2   is given by 
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where k is normalizing constant. 

Putting c=2 in the (4.4.1) we have 
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Integrating out   and restoring the normalizing constant k, the marginal 

posterior density for 2  is given by 
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(4.4.3) 

Similarly we obtain the marginal posterior of   
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from (4.8.3) it follows 2A   is distributed as 2  with (n-1) degrees of freedom 

4.5 Normal Approximation for normal distribution: 

The pdf of normal distribution is given by 
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The likelihood function is given by 
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Therefore posterior density is given by 
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4.6 Selection of Prior Distribution for Normal Distribution: 



Let us consider the normal distribution with known mean  & unknown 

variance
2 . Bernardo (2005) gave an objective Bayesian decision theoretic solution 

to point estimation of the normal variance with mean as unknown & behavior of 

solution found is compared from both a Bayesian & a frequentists perspective. Sinha 

(1998) has obtained 95% predictive intervals for various sets of hyper parameters 

using sample size n=100 from Mendenhall & Harder (1958) mixture model. Lee 

(1997) derived a suitable conjugate prior (universe chi-squared distribution) for the 

normal variance with mean as known quantity. Evans (1964) derived some general 

forms of estimators of the variance of normal distribution. Using Bayesian methods 

& the conditions under which they lead to previously proposed Geodman (1960) 

estimators.  

We use the following informative priors for find the posterior distribution for the 

unknown parameter variance 2 and also find the posterior predictive distributions 

under these informative priors which are given below: 

1) Inverse chi-square distribution (conjugate prior).  

2) Inverse gamma distribution (conjugate prior). 

3) Levy distribution.  

4) Gumbel type=II distribution. 

Let nxxx ,.....,, 21  be a random sample from the normal distribution with 

parameters mean  (known) and variance 2 (unknown). 

The likelihood function of the sample observations nxxxX ,.....,,: 21  is 
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4.7 The Posterior Distribution of 2  Using Inverse Chi-Squared Distribution as 

prior: 

It is assumed that the prior distribution of 2  is an inverse chi-squared 

distribution with hyper parameters 'b'and'a' 11  which is given below: 
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The density kernel is 
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Now the posterior distribution of the parameter 2  for the given data n21 x,.....,x,x:X
 

is 
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which is the density kernel of the inverse chi-squared distribution with parameters:

.wbandna 1111   So the posterior distribution of parameter 2  for the 

given data is an inverse chi-squared distribution having parameters 11 and   where 

11 and   have already been defined above. 

4.8 The Posterior Distribution of 
2  Using Inverted Gamma Distribution as 

Prior: 

Now the prior distribution of 2  is assumed to be the inverted gamma 

distribution with the hyper parameters 'b'and'a' 22   having the following pdf 
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Now the posterior distribution of the parameter 2  for given data nxxxX ,...,,: 21  is   
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(4.8.2)                    

Which is the density kernel of the inverted gamma distribution with the parameters 
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given data is an inverted gamma  22 ,  where 22 and   has been defined above. 

4.9 The Posterior Distribution of 
2  Using Levy Distribution as Prior: 

Third prior distribution is assumed to be Levy distribution with hyper parameter 'b' 3  

which has the following pdf 
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Now the posterior distribution of the parameter 2  for given data n21 x,.....,x,x:X  is 
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Which is the density kernel of the inverted gamma distribution with the parameters 
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given data is an inverted gamma  33 ,  where 33 and   has been already 

defined above. 

4.10 The Posterior Distribution of 2  Using Gumbel Type-II Distribution as 

Prior: 

The Gumbel Type-II distribution with the hyper parameters 'b'and'a' 44  is supposed 

to be the fourth prior distribution of 2  which is: 
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For making the conjugate prior, we take 14 a  then the prior is: 
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Now the posterior distribution of the parameter 2  for given data n21 x,.....,x,x:X  is   
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Which is the density kernel of the inverted gamma distribution with the parameters 
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  so the posterior distribution of parameter 2  for the 

given data is an inverted gamma  44 ,  where 44 and   has been already 

defined above. 

4.11 The Posterior Predictive Distribution: 

We observe that there are two types of posterior distributions which are derived 

under all priors. So we now derive posterior predictive distributions under these 

posterior distributions i.e. inverted gamma and inverse chi-squared distributions. 

a) The Posterior Predictive Distribution under the Prior Inverse Chi-squared 

Distribution: 

The posterior predictive distribution for 1nXY  given that n21 x,.....,x,x:X
 

under posterior inverse chi-squared distribution is: 
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(4.11.1) 

which is the probability density function of t-distribution i.e. 
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Hence X|Y  has the t-distribution with three parameters 1,11 wandv,u  
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b)The Posterior Predictive Distribution under the Prior Inverted Gamma 

Distribution: 

The posterior predictive distribution for 1 nXY given that nxxxX ,.....,,: 21  



under posterior inverted gamma distribution is: 
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which is the probability density function of t-distribution i.e. 
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Hence X|Y  has the t-distribution with three parameters 222 ,, wandvu  

where 0;,2 2
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c)The Posterior Predictive Distribution under the Prior Levy Distribution: 

The posterior predictive distribution for 1 nXY given that nxxxX ,.....,,: 21  

under posterior inverted gamma distribution is: 
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Which is the probability density function of t-distribution i.e. 
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Hence X|Y  has the t-distribution with three parameters 333 wand,v,u  
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d)The Posterior Predictive Distribution under the Prior Gumbel Type-II 

Distribution: 

The posterior predictive distribution for 1 nXY given that nxxxX ,.....,,: 21  

under posterior inverted gamma distribution is: 
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4.12 Comparison of priors with respect to posterior variances: 

The variances of the posterior distributions are calculated and are given in Table 

4.2.1, 4.2.2, 4.2.3: 

1. For the posterior inverse chi-square distribution we have 
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2. For the posterior inverted gamma distribution we have 
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4.13 Comparison using the posterior predictive variances: 

The posterior predictive variances using different prior distributions are 

given in the tables 4.2.4, 4.2.5 and 4.2.6. 

The posterior predictive variances under inverse chi-square as prior distribution is                       
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typeII distributions as priors is  
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Example 4.1: Simon new comb set up an experiment in 1882 to measure the speed 

of light. Newcomb measured the amount of time required for light to travel a 

distance of 7442 meters. The measurements are given below: 

28,  26,  33,  24,  34,  -44,  27,  16,  40, -2, 29,  22,  24,  21,  25,  30,  23,  29,  31,  19, 24,  20,  36,  32,  

36,  28,  25,  21,  28,  29,  37,  25,  28,  26,  30,  32,  36,  26,  30,  22,  36,  23,  27,  27,  28,  27,  31,  

27,  26,  33,  26,  32,  32,  24,  39,  28,  24,  25,  32,  25, 29,  27,  28,  29,  16,  23. 

We apply the normal model, assuming that all 66 measurements are independent 

draws from a normal distribution with mean   and variance 2 . We use the 

following programme for obtaining the posterior mode and posterior standard error  

for   and    under different priors and are shown in table 4.1.1.  

#Bayesian analysis of normal distribution with different priors in R. 

#Prior=1. 

pos.normal<-function(theta,x) 

{ 

z<-(x-theta[1])/theta[2] 

n<-length(x) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1) 

pos<-pri+lik 

return(pos) 

} 

speed<-

c(28,29,24,37,36,26,29,26,22,20,25,23,32,27,33,24,36,28,27,32,

28,24,21,32,26,27,24,29,34,25,36,30,28,39,16,-

44,30,28,32,27,28,23,27,23,25,36,31, 

24,16,29,21,26,27,25,40,31,28,30,26,32,-2,19,29,22,33,25) 

out<-nlm(pos.normal,x=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 



[1] 212.0851 

$estimate 

[1] 26.21211 15.08062 

$hessian 

              [,1]          [,2] 

[1,]  5.804110e-01 -9.987634e-05 

[2,] -9.987634e-05  5.801214e-01 

> std.err 

[1] 1.312599 1.312927 

#Prior=1/sigma. 

pos.normal<-function(theta,x) 

{ 

z<-(x-theta[1])/theta[2] 

n<-length(x) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/theta[2]) 

pos<-pri+lik 

return(pos) 

} 

out<-nlm(pos.normal,x=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 214.7947 

$estimate 

[1] 26.21211 14.96764 

$hessian 

              [,1]          [,2] 

[1,]  0.5892058182 -0.0001023543 



[2,] -0.0001023543  0.5978357346 

> std.err 

[1] 1.302766 1.293329 

#Prior=1/sigma^2. 

pos.normal<-function(theta,x) 

{ 

z<-(x-theta[1])/theta[2] 

n<-length(x) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/(theta[2]^2)) 

pos<-pri+lik 

return(pos) 

} 

out<-nlm(pos.normal,x=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 217.4969 

$estimate 

[1] 26.21211 14.85718 

$hessian 

              [,1]          [,2] 

[1,]  0.5979996113 -0.0001043341 

[2,] -0.0001043341  0.6158139449 

> std.err 

[1] 1.293152 1.274310 

# Prior=1/sigma^3. 

pos.normal<-function(theta,x) 

{ 



z<-(x-theta[1])/theta[2] 

n<-length(x) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/(theta[2]^3)) 

pos<-pri+lik 

return(pos) 

} 

out<-nlm(pos.normal,x=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 220.1917 

$estimate 

[1] 26.21211 14.74913 

$hessian 

              [,1]          [,2] 

[1,]  0.6067937002 -0.0001066644 

[2,] -0.0001066644  0.6340591994 

> std.err 

[1] 1.283747 1.255842 

# Prior=1/sigma^4. 

pos.normal<-function(theta,x) 

{ 

z<-(x-theta[1])/theta[2] 

n<-length(x) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/(theta[2]^4)) 

pos<-pri+lik 

return(pos) 



} 

out<-nlm(pos.normal,x=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 222.8793 

$estimate 

[1] 26.21212 14.64341 

$hessian 

             [,1]         [,2] 

[1,]  0.615586710 -0.000110063 

[2,] -0.000110063  0.652567967 

> std.err 

[1] 1.274546 1.237904 

 

Table 4.1.1: Posterior mode and Posterior standard error of parameters of 

Normal distribution with different priors. 

Prior Posterior mode 

mu 

Posterior Std.err 

Mu 

Posterior mode 

sigma 

Posterior Std.err 

sigma 

1 26.21211 1.312599 15.08062 1.312927 

1/sigma 26.21211 1.302766 14.96764 1.293329 

1/(sigma^2) 26.21211 1.293152 14.85718 1.274310 

1/(sigma^3) 26.21211 1.283747 14.74913 1.255842 

1/(sigma^4) 26.21211 1.274546 14.64341 1.237904 

 

Example: 4.2 (simulation): We generated a sample of size 30, 60, 100 from normal 

pdf with parameter   and 2  to represent small, moderate and large sample sizes. 

Also we have taken different values for parameters and hyper parameters. 

Programme for simulation in R-software: 

# Simulations in R Software for posterior variance 

 Posterior  variance of sigma^2 under chi-square as a prior 

sim.var <-function(a1,b1,mu,x){ 



n<-length(x); w<-sum((x-mu)^2) 

alpha1<-(a1+n);beta1<-b1+w 

pvc<-2*(beta1^2)/(((alpha1-2)^2)*(alpha1-4))  

return(pvc) 

 } 

a1=b1=5 

mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4)) 

x3<-rnorm(30,20,sqrt(6));x4<-rnorm(30,20,sqrt(8)) 

cbind(sim.var(a1,b1,mu,x1),sim.var(a1,b1,mu,x2),sim.var(a

1,b1,mu,x3),sim.var (a1,b1,mu,x4)) 

Posterior variance of sigma^2 under inverted gamma as a prior 

sim.var <-function(a2,b2,mu,x){ 

n<-length(x); w<-sum((x-mu)^2) 

alpha2<-(a2+n/2);beta2<-(2*b2+w)/2 

pvg<-(beta2^2)/(((alpha2-1)^2)*(alpha2-2))  

return(pvg) 

 } 

a2=b2=5 

mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4)) 

x3<-rnorm(30,20,sqrt(6));x4<-rnorm(30,20,sqrt(8)) 

cbind(sim.var(a2,b2,mu,x1),sim.var(a2,b2,mu,x2),sim.var(a

2,b2,mu,x3),sim.var (a2,b2,mu,x4)) 

 Posterior variance of sigma^2 under levy distribution as a prior 

sim.var <-function(a3,b3,mu,x){ 

n<-length(x); w<-sum((x-mu)^2) 

alpha3<-(1+n/2);beta3<-(b3+w)/2 

pvl<-(beta3^2)/(((alpha3-1)^2)*(alpha3-2))  

return(pvl) 

 } 

A3=b3=5 

mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4)) 



x3<-rnorm(30,20,sqrt(6));x4<-rnorm(30,20,sqrt(8)) 

cbind(sim.var(a3,b3,mu,x1),sim.var(a3,b3,mu,x2),sim.var(a

3,b3,mu,x3),sim.var (a2,b2,mu,x4))  

 Posterior variance of sigma^2 under Gumbel type II distribution as a prior 

sim.var <-function(a4,b4,mu,x){ 

n<-length(x); w<-sum((x-mu)^2) 

alpha4<-(1+n/2);beta4<-(2*b4+w)/2 

pvgb<-(beta4^2)/(((alpha4-1)^2)*(alpha4-2))  

return(pvgb) 

 } 

a4=b4=5 

mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4)) 

x3<-rnorm(30,20,sqrt(6));x4<-rnorm(30,20,sqrt(8)) 

cbind(sim.var(a4,b4,mu,x1),sim.var(a4,b4,mu,x2),sim.var(a

4,b4,mu,x3),sim.var (a4,b4,mu,x4)) 

The results obtained using above programme are presented in tables 4.2.1 : 4.2.2; 

4.2.3 for different values of hyper parameters, n and mean. 

Table 4.2.1:Variances of the posterior distribution of 
2 using different priors with 

n=30,60&100 mean=20, variances V1=2, V2=4 & V3=6. 

Size 2  Hyper        

Parameters      

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy Prior Gumbel 

Type-II 

Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

 

V1 

5 0.18889 0.14535 0.25304 0.29984 

10 0.14535 0.09637 0.29984 0.40534 

15 0.11654 0.07045 0.35060 0.52671 

20 0.09637 0.05482 0.40534 0.66396 

25 0.08162 0.04453 0.46404 0.81708 

30 0.07045 0.03731 0.52671 0.98607 

35 0.06175 0.03200 0.59335 1.17094 

40 0.05482 0.02795 0.66396 1.37167 

45 0.04918 0.02478 0.73853 1.58829 

50 0.04918 0.02222 0.81708 1.82077 

 

 

 

 

5 0.94822 0.66542 1.27028 1.37267 

10 0.66542 0.37790 1.37267 1.58936 



 

 

 

60 

 

 

 

V2 

15 0.49165 0.24371 1.47903 1.82192 

20 0.37790 0.17095 1.58936 2.07035 

25 0.29968 0.12723 1.70365 2.33466 

30 0.24371 0.09894 1.82192 2.61484 

35 0.20235 0.07956 1.94415 2.91089 

40 0.17095 0.06568 2.07035 3.22281 

45 0.14656 0.05539 2.20052 3.55061 

50 0.14656 0.04753 2.33466 3.89428 

 

 

 

 

 

100 

 

 

 

 

 

V3 

5 0.40182 0.29359 0.53830 0.60564 

10 0.29359 0.17886 0.60564 0.75224 

15 0.22503 0.12236 0.67696 0.91471 

20 0.17886 0.09025 0.75224 1.09305 

25 0.14626 0.07015 0.83149 1.28727 

30 0.12236 0.05665 0.91471 1.49736 

35 0.10428 0.04710 1.00190 1.72332 

40 0.09025 0.04005 1.09305 1.96516 

45 0.07913 0.03468 1.18818 2.22287 

50 0.07913 0.03047 1.28727 2.49645 

 

 

 

 

 

Table 4.2.2:Variances of the posterior distribution of 
2 using different priors with 

n=30,60&100 mean=25, variances V1=2, V2=4 & V3=6. 

Size 2  Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy Prior Gumbel    Type-

II Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

 

V1 

5 0.2523937 0.1097682 0.2946667 0.4012673 

10 0.1899811 0.07588661 0.3450102 0.4596842 

15 0.1494729 0.05722005 0.3993219 0.5220694 

20 0.121592 0.04559845 0.4576019 0.5884228 

25 0.10151 0.03774458 0.5198501 0.6587445 

30 0.086512 0.03211649 0.5860666 0.7330344 

35 0.0749788 0.02790248 0.6562513 0.8112926 

40 0.0658896 0.02463815 0.7304043 0.8935191 

45 0.058579 0.02204008 0.8085255 0.9797138 

50 0.0525954 0.01992622 0.890615 1.069877 

 

 

 

 

 

60 

 

 

 

 

 

V2 

5 0.5914351 0.2691619 0.9145326 0.6001036 

10 0.4868972 0.1956175 0.9443692 0.6490119 

15 0.4072712 0.1488878 0.9746847 0.699836 

20 0.3453757 0.1174243 1.005479 0.7525757 

25 0.2964068 0.09525345 1.036752 0.8072311 

30 0.257062 0.07904755 1.068505 0.8638023 



35 0.2250157 0.06683971 1.100736 0.9222892 

40 0.1985958 0.05740935 1.133446 0.9826918 

45 0.1765768 0.04996766 1.166635 1.04501 

50 0.1580456 0.043987 1.200303 1.109244 

 

 

 

 

 

100 

 

 

 

 

 

V3 

5 0.7697074 0.7045608 0.5548802 0.7478029 

10 0.6774931 0.555792 0.5655727 0.7727143 

15 0.6001549 0.4479326 0.5763672 0.7980339 

20 0.5347553 0.3676098 0.5872638 0.8237616 

25 0.4790326 0.3064124 0.5982624 0.8498975 

30 0.4312254 0.2588601 0.609363 0.8764415 

35 0.3899469 0.2212718 0.6205657 0.9033937 

40 0.3540953 0.1911091 0.6318705 0.9307541 

45 0.322787 0.1665803 0.6432772 0.9585227 

50 0.2953072 0.1463948 0.654786 0.9866994 

 

 

 

 

 

 

 

 

 

Table 4.2.3:Variances of the posterior distribution of 
2 using different priors with 

n=30,60&100 mean=30, variances V1=2, V2=4 & V3=6. 

Size 2  Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy Prior Gumbel    Type-

II Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

 

V1 

5 0.2092032 0.1791297 0.5126912 0.4455196 

10 0.1596833 0.115501 0.5784639 0.5723825 

15 0.1271546 0.0826537 0.6482048 0.7151184 

20 0.1045247 0.06324058 0.721914 0.8737273 

25 0.08806729 0.05067085 0.7995914 1.048209 

30 0.07566947 0.04198114 0.8812371 1.238564 

35 0.06605869 0.03567106 0.9668511 1.444792 

40 0.05842996 0.03091072 1.056433 1.666893 

45 0.05225295 0.0272086 1.149984 1.904867 

50 0.04716612 0.02425725 1.247502 2.158714 

 

 

 

 

 

 

5 0.3433044 0.3144186 0.3779776 0.606197 

10 0.2858744 0.2269046 0.3972446 0.6553481 

15 0.2417584 0.1715936 0.4169906 0.706415 



 

 

60 

 

 

V2 

20 0.2071842 0.1345361 0.4372154 0.7593976 

25 0.1796133 0.1085437 0.4579192 0.8142958 

30 0.1572906 0.08962644 0.479102 0.8711098 

35 0.1389733 0.07543399 0.5007636 0.9298395 

40 0.1237629 0.06451246 0.5229042 0.9904849 

45 0.1109973 0.05592516 0.5455237 1.053046 

50 0.1001806 0.04904738 0.5686221 1.117523 

 

 

 

 

 

100 

 

 

 

 

 

V3 

5 0.9624093 0.5631733 0.775842 0.7773726 

10 0.8457255 0.4458316 0.7884762 0.8027677 

15 0.7479776 0.3605443 0.8012124 0.828571 

20 0.6654127 0.2968758 0.8140506 0.8547825 

25 0.5951436 0.2482518 0.8269909 0.8814021 

30 0.534923 0.2103816 0.8400332 0.9084299 

35 0.4829835 0.1803789 0.8531775 0.9358659 

40 0.4379213 0.15625 0.8664239 0.96371 

45 0.3986116 0.1365856 0.8797724 0.9919623 

50 0.3641455 0.120369 0.8932228 1.020623 

 The results obtained using above programme are presented in tables 

4.2.1, 4.2.2; 4.2.3 for different values of hyper parameters, n and mean. In the above 

Tables 4.2.1, 4.2.2 and 4.2.3, it is observed that the values of the posterior 

predictive variances under inverted gamma distribution using different values of 

hyper parameters are less as compare to other priors which means we can prefer the 

prior inverted gamma distribution as a prior for the variance of normal distribution. 

 

 

# Simulations in R Software for predictive distribution 

 Predictive Posterior  variance of sigma^2 under chi-square as a prior 

pre.var <-function(a1,b1,mu,x){ 

n<-length(x) 

w<-sum((x-mu)^2) 

alpha1<-(a1+n) 

beta1<-b1+w 

pvc<-beta1/(alpha1-2)  

return(pvc) 

 } 

a1=b1=5 



mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4));x3<-

rnorm(30,20,sqrt(6)) 

cbind(pre.var(a1,b1,mu,x1),pre.var(a1,b1,mu,x2),pre.var(a

1,b1,mu,x3)) 

 Predictive Posterior variance of sigma^2 under inverted gamma as a prior 

pre.var <-function(a2,b2,mu,x){ 

n<-length(x) 

w<-sum((x-mu)^2) 

alpha2<-a2+n/2 

beta2<-(2*b2+w)/2 

pvg<-beta2/(alpha2-1)  

return(pvg) 

 } 

a2=b2=5 

mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4));x3<-

rnorm(30,20,sqrt(6)) 

cbind(pre.var(a1,b1,mu,x1),pre.var(a1,b1,mu,x2),pre.var(a

1,b1,mu,x3)) 

 Predictive Posterior  variance of sigma^2 under levy distribution as a prior 

 

pre.var <-function(a3,b3,mu,x){ 

n<-length(x); w<-sum((x-mu)^2) 

alpha3<-(1+n/2);beta3<-(b3+w)/2 

pvl<-(beta3)/(alpha3-1)  

return(pvl) 

 } 

a3=b3=5 

mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4)) 



x3<-rnorm(30,20,sqrt(6));x4<-rnorm(30,20,sqrt(8)) 

cbind(pre.var(a3,b3,mu,x1),pre.var(a3,b3,mu,x2),pre.var(a

3,b3,mu,x3),pre.var (a2,b2,mu,x4)) 

 Predictive Posterior variance of sigma^2 under Gumbel type II distribution as 

a prior 

 

pre.var <-function(a4,b4,mu,x){ 

n<-length(x); w<-sum((x-mu)^2) 

alpha4<-(1+n/2);beta4<-(2*b4+w)/2 

pvgb<-(beta4)/(alpha4-1)  

return(pvgb) 

 } 

a4=b4=5 

mu<-20 

x1<-rnorm(30,20,sqrt(2));x2<-rnorm(30,20,sqrt(4)) 

x3<-rnorm(30,20,sqrt(6));x4<-rnorm(30,20,sqrt(8)) 

cbind(pre.var(a4,b4,mu,x1),pre.var(a4,b4,mu,x2),pre.var(a

4,b4,mu,x3),pre.var (a4,b4,mu,x4)) 

 

 

Table: 4.2.4:Variances of the posterior predictive distribution of 
2 using different priors with 

n=30,60&100 mean=20, variances V1=2, V2=4 & V3=6. 

Size 2  Hyper Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel     

Type-II Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

 

V1 

5 1.849804 1.583599 2.587101 2.541914 

10 1.737988 1.462016 2.753768 2.875247 

15 1.652175 1.382358 2.920435 3.20858 

20 1.58424 1.326129 3.087101 3.541914 

25 1.529123 1.284318 3.253768 3.875247 

30 1.483509 1.252009 3.420435 4.20858 

35 1.445135 1.226294 3.587101 4.541914 

40 1.412405 1.20534 3.753768 4.875247 

45 1.384158 1.187939 3.920435 5.20858 

50 1.359532 1.173256 4.087101 5.541914 

 

 

 

 

 

 

5 3.884797 2.994491 3.69685 3.484049 

10 3.672679 2.738787 3.780183 3.650716 

15 3.489619 2.541198 3.863516 3.817383 



 

 

60 

 

 

V2 

20 3.330028 2.383933 3.94685 3.984049 

25 3.189665 2.255791 4.030183 4.150716 

30 3.065252 2.149368 4.113516 4.317383 

35 2.954217 2.059573 4.19685 4.484049 

40 2.854512 1.982793 4.280183 4.650716 

45 2.764487 1.916388 4.363516 4.817383 

50 2.682798 1.858389 4.44685 4.984049 

 

 

 

 

 

100 

 

 

 

 

 

V3 

5 5.095442 4.361218 5.162707 5.377846 

10 4.905839 4.076369 5.212707 5.477846 

15 4.733014 3.836028 5.262707 5.577846 

20 4.574835 3.630519 5.312707 5.677846 

25 4.429517 3.452781 5.362707 5.777846 

30 4.295551 3.297542 5.412707 5.877846 

35 4.171658 3.160783 5.462707 5.977846 

40 4.056743 3.039391 5.512707 6.077846 

45 3.949864 2.930913 5.562707 6.177846 

50 3.850207 2.833392 5.612707 6.277846 

 

 

 

 

 

 

 

 

 

Table 4.2.5:Variances of the posterior predictive distribution of 
2 using different priors with 

n=30,60&100 mean=25, variances V1=2, V2=4 & V3=6. 

Size 2  Hyper Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel Type-

II Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

 

V1 

5 2.650895 1.960673 1.96791 2.257561 

10 2.433672 1.760533 2.301244 2.424228 

15 2.266966 1.629407 2.634577 2.590894 

20 2.13499 1.536847 2.96791 2.757561 

25 2.027916 1.46802 3.301244 2.924228 

30 1.939302 1.414836 3.634577 3.090894 

35 1.864755 1.372506 3.96791 3.257561 

40 1.80117 1.338015 4.301244 3.424228 

45 1.746295 1.309369 4.634577 3.590894 

50 1.698456 1.2852 4.96791 3.757561 

  5 3.053136 2.941562 3.436798 3.638667 



 

 

 

 

60 

 

 

 

 

V2 

10 2.90217 2.692644 3.603464 3.72200 

15 2.771884 2.500298 3.770131 3.805334 

20 2.658302 2.347206 3.936798 3.888667 

25 2.558404 2.222465 4.103464 3.97200 

30 2.469859 2.118866 4.270131 4.055334 

35 2.390834 2.031455 4.436798 4.138667 

40 2.319873 1.956712 4.603464 4.22200 

45 2.255802 1.892069 4.770131 4.305334 

50 2.197663 1.835609 4.936798 4.388667 

 

 

 

 

 

100 

 

 

 

 

 

V3 

5 4.488128 4.329209 4.77395 4.838322 

10 4.326641 4.047072 4.87395 4.888322 

15 4.179445 3.80902 4.97395 4.938322 

20 4.044722 3.605468 5.07395 4.988322 

25 3.920953 3.429423 5.17395 5.038322 

30 3.806853 3.275662 5.27395 5.088322 

35 3.701333 3.140206 5.37395 5.138322 

40 3.603458 3.019969 5.47395 5.188322 

45 3.512428 2.912524 5.57395 5.238322 

50 3.427549 2.815932 5.67395 5.288322 

 

 

 

 

 

 

 

 

 

Table 4.2.6:Variances of the posterior predictive distribution of 
2 using different priors with 

n=30,60&100 mean=30, variances V1=2, V2=4 & V3=6. 

Size 2  Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel Type-II 

Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

V1 

5 2.628931 1.816164 1.894188 1.967029 

10 2.414598 1.64613 2.060854 2.300362 

15 2.250109 1.456092 2.227521 2.633695 

20 2.119890 1.397619 2.394188 2.967029 

25 2.014240 1.352435 2.560854 3.300362 

30 1.926805 1.316472 2.727521 3.633695 

35 1.853249 1.287169 2.894188 3.967029 

40 1.790510 1.262833 3.060854 4.300362 

45 1.736366 1.242299 3.227521 4.633695 



 50 1.689163 1.223460 3.394188 4.967029 

 

 

 

 

 

60 

 

 

 

 

 

V2 

5 3.336274 3.154604 3.688514 3.696962 

10 3.164489 2.878373 3.771848 3.863629 

15 3.016237 2.664922 3.855181 4.030295 

20 2.886991 2.495032 3.938514 4.196962 

25 2.773317 2.356603 4.021848 4.363629 

30 2.67256 2.241636 4.105181 4.530295 

35 2.582637 2.144634 4.188514 4.696962 

40 2.501891 2.061689 4.271848 4.863629 

45 2.428983 1.989953 4.355181 5.030295 

50 2.362827 1.927298 4.438514 5.196962 

 

 

 

 

 

100 

 

 

 

 

 

V3 

5 4.991427 4.64504 5.04143 5.190872 

10 4.806638 4.336139 5.09143 5.290872 

15 4.638203 4.075503 5.14143 5.390872 

20 4.484042 3.85264 5.19143 5.490872 

25 4.342414 3.659894 5.24143 5.590872 

30 4.211851 3.491546 5.29143 5.690872 

35 4.091105 3.34324 5.34143 5.790872 

40 3.979108 3.211597 5.39143 5.890872 

45 3.874944 3.093959 5.44143 5.990872 

50 3.777817 2.988204 5.49143 6.090872 

 The results obtained using above programme are presented in tables 4.2.4 ; 

4.2.5; 4.2.6 for different values of hyper parameters, n and mean. In the above 

Tables 4.2.4, 4.2.5 and 4.2.6, it is observed that the values of the posterior 

predictive variances under inverted gamma distribution using different values of 

hyper parameters are less as compare to other priors which means we can prefer the 

prior inverted gamma distribution as a prior for the variance of normal distribution. 
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