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Preface: 

Bayesian data analysis is practical method for making inferences from data 

using probability models for quantities we observe and for quantities about we 

wish to learn. Bayesian approach is an excellent alternative to use large sample 

procedure and is likely to be more reasonable for moderate and especially small 

sample sizes where non Bayesian procedures break down. Bayesian data analysis 

combines Bayesian probability theory with statistical data analysis to make 

predictions about future events based on our current information. Source of 

information from data is summarized in the form of likelihood while that of non 

data is termed as prior information. Posterior density is the final outcome after 

combining these two sources of information. In this thesis we have tried to 

construct posterior distributions, with its practical applications. The thesis is 

divided into five chapters: 

Chapter I includes introduction to Bayesian data analysis, Bayes theorem, 

sequential nature of Bayes theorem, likelihood, marginal and posterior 

distribution, predictive distribution, highest posterior density and some important 

probability models like Binomial, Poisson and Normal distributions.  

Chapter II is devoted to the introduction of prior and different types of prior. 

Some important loss functions such as squared- error loss function, weighted 

SELF, quadratic SELF, linear loss, absolute loss, zero-one loss, risk function are 

discussed. Estimation techniques and large sample approximations like Laplace, 

Lindely and normal approximations are also discussed.  

Chapter III deals with the Bayesian analysis of parameters of binomial 

distribution under different priors. Normal, Lindely‟s approximation to the 

posterior density of binomial distribution are also discussed. Some programmes in 

S-PLUS and R softwares have been developed for numerical and graphical 

representation of posterior densities and credible interval under different priors.  

Chapter IV deals with the Bayesian estimation of Poisson distribution under 

different priors, comparisons of different priors are done with respect to posterior 

variance, Bayesian point estimates, using coefficient of skewness. We have also 

discussed posterior distribution under different double priors. Computer 

programmes in R-software are developed to illustrate numerical data. 



Chapter V is completely devoted to the Bayesian analysis of normal 

distribution. This chapter contains Bayesian estimator and Credible intervals for 

parameters of normal distribution, the posterior distribution and the posterior 

predictive distribution for the unknown parameter 2  is discussed using different 

type of prior distribution. Methods proposed in this chapter are illustrated 

numerically  in R-software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER – 1 

INTRODUCTION 

TO 

BAYESIAN DATA ANALYSIS 

 

 

 

 

 



1.1 Introduction: 

xperiments are performed commonly in three steps; first, the experiment 

must be designed; second, the data must be gathered; and third, the data 

must be analyzed. These three steps are highly idealized, and no clear boundary exists 

between them. The problem of analyzing the data is one that should be faced early in 

the design phase. Gathering the data in such a way as to learn the most about a 

phenomenon is what an experiment is all about.  

In many experiments it is essential that one should does the best possible job 

in analyzing the data. This could be true because no more data can be obtained, or one 

is trying to discover a very small effect. Furthermore, thanks to modern computers, 

sophisticated data analysis is far less costly than data acquisition, so there is no excuse 

for doing the best job of analysis that one can.  

By Bayesian data analysis, we mean practical methods for making inferences 

from data using probability models for quantities we observe and for quantities about 

which we wish to learn. The essential characteristic of Bayesian methods is their 

explicit use of probability for quantifying uncertainty in inferences on statistical data 

analysis. 

The process of Bayesian data analysis can be idealized by dividing it into three 

steps: 

a) Setting up a full probability model – a joint probability distribution for all 

observable and unobservable quantities in a problem. The model should be 

consistent with knowledge about the underlying scientific problem and the 

data collection process. 

b) Conditioning on observed data: Calculating and interpreting the appropriate 

posterior distribution-the conditional probability distribution of unobserved 

quantities of ultimate interest, given the observed data. 

c) Evaluating the fit of model and implications of the resulting posterior 

distributions. 

 Great advances in all these areas have been made in the last twenty-five years. A 

primary motivation for believing Bayesian thinking is that it facilitates a common 

sense interpretation of statistical conclusions. 

  Bayesian statistics requires the mathematics of probability theory and the 

interpretation of probability which most closely corresponds to the standard use of 

E 



this word in everyday language: it is no accident that some of the more important 

seminal books on Bayesian statistics such as the works of the Laplace (1812), Jefferys 

(1939) and De Finetti (1970) are actually entitled “probability theory”. Bayesian 

approach to statistics is very different from the classical methodology, it formally 

seeks use of prior information and Bayes theorem provides the basis for making use 

of this information. When significant prior information is available, the Bayesian 

approach shows how to utilize it sensibly. This is not possible with the most non-

Bayesian approaches. The business of statistics is to provide information or 

conclusions about uncertain quantities. The language of uncertainty is probability. 

Bayesian approach consistently uses this language to directly address uncertainty. The 

classical or frequentists interpret probability as the limit of the success ratio as the 

number of trails „n‟ conceptually tends to infinity. Under this interpretation the 

parameter   in a statistical model is treated as an unknown constant and the sample of 

observations ),...,,( 21 nyyyY   is regarded as the random sample from some 

underlying distribution. The classical school believes in Fishers Likelihood Principle 

which claims that all the information about the unknown parameter(s) is contained in 

the sample as summarized by the likelihood function. This Principle leads to Fishers 

maximum likelihood estimator. 

  On the other hand for Bayesian approach probability is a person‟s degree of 

belief in a certain proposition „A‟ based on the prior (or current) knowledge about A 

and this degree of belief is successively revised or updated as new information is 

available  about the proportion. In Bayesian framework the parameter is justifiably 

regarded as a random variable and the data once obtained is given or fixed. For 

example, in the exponential model the mean life   may be regarded as varying from 

batch to batch overtime and this variation is represented by a probability distribution 

over parameter space  . Thus the basic difference in the two approaches may be 

explained in the single sentence that to a frequentist, the parameter is constant and he 

is suspicious about the data, where as to a Bayesian data is given (or fixed) and he is 

suspicious about the parameter.  Bayesian approach is an excellent alternative to use 

large sample procedure and is likely to be more reasonable for moderate and 

especially small sample sizes where non Bayesian procedures break down (e.g., 

Berger, 1985). 



In the Bayesian framework we assign degrees of beliefs for different events 

the approach is also called the subjective probability opposed to objective probability 

approach that the frequentists use. The difference between these models is easily 

illustrated by an example from real life. Consider that two football teams A and B are 

playing against each other. What kind of probability could we assign to event „A‟ 

win? The Bayesian would assign his own subjective probability (belief) to the event 

where as the frequentist would make statistical analysis about the games these teams 

have played against each other. 

  Bayesian data analysis combines Bayesian probability theory with statistical 

data analysis to make predictions about future events based on our current 

information. Bayesian data analysis can also be defined as a practical method for 

making inference from data using probability models for quantities we observe and 

for quantities about which we wish to learn by sitting up a full probability model, 

conditioning on observed data and evaluating the fit of the model e.g. we can make a 

prediction whether team B is going to win or not using Bayesian approach. The 

probability is encoded in the model which contains all relevant observable and 

unobservable (latent) quantities and this model is then fitted to the available data. 

After this part we make predictions about future events based on our model. 

1.2 Bayes Theorem: 

  Bayes theorem is an essential element of the Bayesian approach to statistical 

inference. The central feature of Bayesian inference is the direct quantification of 

uncertainty in terms of probabilistic statements. Often, we begin our analysis with 

initial or prior probability estimates for specific events of interest then, from sources 

such as a sample, a special report, a product test and so on we obtain some additional 

information about the events. Given this new information we update the prior 

probability values by calculating revised probabilities, referred to as posterior 

probabilities. The steps in this probability revision process are shown in the following 

diagram. 

                                                               

 

 

The origin of Bayes theorem has a fascinating history. It is named after the 

Rev. Thomas Bayes, a priest who never published a mathematical paper in his 

lifetime. The paper in which the theorem appears was posthumously read before the 

Prior probability                                                           New information                                              Application of Bayes theorem Posterior probabilities 

 



royal society by his friend Richard Price in 1764. Stigler suggests it was first 

discovered by Nicolas Saunderson, a blind mathematician/optician who, at age 29, 

became lucasian Professor of mathematics at Cambridge (the position earlier held by 

Issac Newton). More details are discussed in Stigler, 1983. 

a) Bayes Theorem for Events: 

The probability of an event „A‟ depends upon the available information about 

the event „A‟. For example, if we have a die having two faces with the number 6 and 

if the event „A‟ is that any number other than 6 appears on the die then p(A)=2/3 and 

it isn‟t 5/6 (when the die is considered a fair one and having distinct numbers on its 

faces). In order to represent the prior information that the die had two faces with the 

number 6 and denote the event „B‟ then we should have used the notation )|( BAP

instead of p(A). 

Bayes theorem is the basic rule for incorporating the prior information that the 

event „B‟ has occurred and influences evaluation of the probability for the event „A‟. 

The simplest form of the Bayes theorem 

0)(;
)(

)()|(
)|(  BP

BP

APABP
BAP  

Follows easily from the definition of conditional probability  

)|()()()|()( BAPBPBAPBAPAP   

It provides a mechanism of the process of learning by experience. The 

connection between )|( BAP  and )|( ABP  together with the initial probability P(A) 

is the basis for the process of acquiring knowledge. In general given two events A and 

B, the inductive reasoning consists in applying Bayes theorem which answers how the 

information about the occurrence of event B influences P(A). The posterior 

probability )|( BAP  is proportional to the initial (prior) probability P(A)and the so 

called likelihood )A|B(P . This is the process by which we learn from experience in 

the sense that experience gives us information that can modify our initial belief 

according to the factor )(/)|( BPABP . 

 

 

 

 

 



b) Generalized Bayes Theorem For Events: 

  It states that, if 
kAAA ,...,, 21

 are k mutually exclusive and exhaustive events 

and B is another independent event such that )|( iABP  is the conditional probability 

of B given that Ai has already occurred, then 

ki

APABP

APABP
BAP

k

i

ii

ii
i ,...,2,1:

)()|(

)()|(
)|(

1






 

 Proof: Let 
kAAA ,..,, 21  constitutes a partition of the sample space S   

        i.e., jiAAandAAAS jik  ; ...21
 

The events 
kAAA ,...,, 21

 are mutually exclusive and exhaustive events (since the union 

of the disjoint sets equal to the sample space S). 

Furthermore, suppose the prior probability of the event Ai is positive  

i.e.:                    kiAP i ,....,2,1;0)(    

Suppose an event B can occur only if one of the mutually exclusive and exhaustive 

events ),...,,( 21 kAAA  occurs 

We have by definition of conditional probability       

                        
)(

)(
)|(

i

i

i
AP

ABP
ABP




 
                        )|()()( iii ABPAPABP   

and  )|( )()( BAPBPBAP ii       

but  )()( BAPABP ii                     

or     
)(

)|()(
)|(

BP

ABPAP
BAP ii

i                                                                      (1.2.1)  

Since „B‟ can occur only if A1 or A2 or …….Ak occurs it follows that „B‟ is the union 

of „k‟ mutually exclusive events 

i.e.,   )(....)()( 21 kABABABB    

Since A1,A2,...,Ak are mutually exclusive and exhaustible events 

)(...)()()( 21 kABPABPABPBP    



or  




k

i

iABPBP

1

)()(                                                                             (1.2.2) 

Using equation (1.2.1) and (1.2.2) we obtain 





k

i

ii

ii
i

APABP

APABP
BAP

1

)()|(

)()|(
)|(  

The conditional probability )|( BAP i
 is often called the posterior probability 

because it represents a probability computed after the sample information is taken into 

account i.e. a probability which has undergone revision via Bayes rule. The 

probability before revision by Bayes rule is called prior probability. 

c) Bayes Theorem for Random Variables: 

Suppose that ),.....,,( 21 n

T yyyY   is a vector of n observations whose 

probability distribution θ)|(YP  depends upon the value of k Parameter 

),.....,,( 21 k

T θ . Suppose that θ  itself has a probability distribution )(θP . Then  

)()|(),()()|( YPYPYPPYP θθθθ                                                        (1.2.3) 

Given the observed data Y, the conditional distribution of θ  is 

            
)(

)()|(
)|(

YP

PYP
YP

θθ
θ                                                                               (1.2.4) 

 Also we can write 

1)]|([)(  kYPEYP θ  ;)()|( θθθ dPYP
                         

continuousθ  

                                               );()|( θθ PYP                      discreteθ  

  where the sum or the integral is taken over the admissible range of θ , and 

where )](f[E θ is the mathematical expectation of )(f θ  with respect to the distribution 

)(P θ . Thus we may write (1.2.4) alternatively as 

)()|()|( θθθ PYPkYP                                      (1.2.5) 

The statement of (1.2.4) or its equivalent (1.2.5) is usually referred to as Bayes 

theorem. In this expression, )(θP  which tells us what is known about θ  without 

knowledge of data, is called prior distribution of θ , or the distribution of θ  a priori. 

The density )|( θYP  is likelihood function of θ  which represents the contribution of 

Y(data) to knowledge about θ  (e.g., Berger,1985 and Zellner, 1971). Finally, 

)|( YP θ , which tells us what is known about  given knowledge of the data, is called 



the posterior distribution of θ  given Y, or the distribution of θ  a posteriori. The 

quantity k is merely a “normalizing” constant necessary to ensure that the posterior 

distribution )Y|(P θ  integrates or sums to one. 

1.3 Sequential Nature of Bayes Theorem: 

Now given the data Y, )|( θYP  in (1.2.5) may be regarded as a function not of 

Y but of θ . When so regarded, following Fisher (1922), it is called the likelihood 

function of θ  for given Y and can be written as )|( YL θ .We can thus write Bayes 

formula as  

)()|()|( θθθ PYLYP                                                                               (1.3.1) 

The theorem in (1.3.1) is appealing because it provides a mathematical 

formulation of how previous knowledge may be combined with new knowledge. 

Indeed the theorem allows us to continually update information about a set of 

parameters θ  as more observations are taken. Thus, suppose we have an initial 

sample of observations Y1, then Bayes initial formula gives. 

  )|()()|( 11 YLPYP θθθ                                                                     (1.3.2) 

Now suppose we have a second sample of observation Y2, distribution 

independently of first sample, then 

 )|()|()(),|( 2121 YLYLPYYP θθθ   

                                  )|()|( 21 YLYP θθ                                                  (1.3.3) 

The expression (1.3.3) is precisely of the same form as (1.3.2) except that 

)|( 1YP θ , the posterior distribution for θ  given Y1, plays the role of the prior 

distribution for the second sample. Obviously this process can be repeated any 

number of times. In particular, if we have n independent observations the posterior 

distribution can, if desired, be recalculated after each new observation, so that at the 

m
th

 stage the likelihood associated with the m
th

 observation is combined with the 

posterior distribution of θ  after m-1 observations to give the new posterior 

distribution. 

nmYLYYYPYYYP mmm ,....,2:)|(),....,,|(),...,,|( 12121   θθθ                          (1.3.4) 

where     )|()()|( 11 YLPYP θθθ    

Thus, Bayes theorem describes in a fundamental way, the process of learning 

from experience and shows how knowledge about the state of nature represented by θ  

is continually modified as new data becomes available (e.g. Box and Tiao, 1973). 



1.4 From Likelihood to Bayesian Analysis: 

The method of maximum likelihood and Bayesian analysis are closely related. 

Suppose )|( YL θ  is the assumed likelihood function. Under ML estimation, we would 

compute the mode (the maximal value of L, as a function of θ  given the data Y) of 

the likelihood function and use the local curvature to construct the confidence 

intervals.  Hypothesis testing follows using likelihood ratio (LR) statistics. The 

strength of ML estimation rely on its large –sample properties, namely that when the 

sample size is sufficiently large, we can assume both normality of the test statistic 

about its mean and that LR tests follows 2  distributions. These nice features don‟t 

necessarily hold for small samples (e.g, Gianola and Fernando, 1986).  

An alternate way to proceed is to start with some initial knowledge /guess 

about the distribution of the unknown parameter (s), )(θP . From Bayes theorem the 

data (likelihood) augment the prior distribution to produce a posterior distribution, 

   )()|(
)(

1
)|( θθθ PYP

YP
YP                                                              (1.4.1)  

               = (normalizing constant) )()|( θθ PYP                                 (1.4.2) 

                           = constant .likelihood .prior                                                       (1.4.3)  

As )|()|( YLYP θθ   is just the likelihood function. 1/P(Y) is constant (with respect 

to θ ), because our concern is the distribution over θ . Because of this, the posterior is 

often written as  

)()|()|( θθθ PYLYP                                                                          (1.4.4)     

where the symbol    means “proportional to” (equal up to a constant). Note that the 

constant P(Y) normalizes )(P)|Y(P θθ  to one, and hence can be obtained by 

integration 


θ

θθθ dPYPYP )()|()(                                                                         (1.4.5)                       

The dependence of the posterior on the prior (which can easily be assessed by 

trying different prior) provides an indication of how much information on the 

unknown parameter values is contained in the data. If the posterior is highly 

dependent on the prior, then the data likely has little signal, while if the posterior is 

largely unaffected under different priors, the data are likely highly informative. To see 

this taking logs on equation (1.4.4) (and ignoring the normalizing constant) gives 

Log (posterior) =log (likelihood) +log (prior)                                         (1.4.6)  



The Standard Likelihood  

When the integral θθ dYL )|(  taken over the admissible range of θ   is finite, 

then occasionally it will be convenient to refer to the quantity 

                          

 θθ

θ

dYl

Yl

)|(

)|(
                                                                                (1.4.7)  

We shall call this the standardized likelihood that is the likelihood scaled so that the 

area, volume or hyper volume under the curve, surface or hyper surface is one. 

1.5 Marginal posterior distribution:   

Often only a subset of the unknown parameter is really of concern to us, the 

rest being nuisance parameter that are of no concern to us. A very strong feature of 

Bayesian analysis is that we can remove the effect of nuisance parameters by simply 

integrating them out of the posterior distribution to generate a marginal posterior 

distribution for the parameters of interest. For example, suppose the mean and 

variance of the data coming from a normal distribution are unknown, but our real 

interest is in the variance. Estimating the mean introduces additional uncertainty into 

our variance estimate. This is not fully captured in standard classical approaches but 

under Bayesian analysis, the posterior marginal distribution for 2 is simply 

  dypYP )|,()|( 22
 

The marginal posterior may involve several parameters (generating joint marginal 

posteriors). Write the vectors of unknown parameters as )1 n ,(θ  where n  is the 

vector of nuisance parameters. Integrating over  
n   gives the desire marginal as 






n

nn dypYP )|,()|( 11
 

The requirement of orthogonality between nuisance parameters and the parameters of 

interest is not required in this framework (e.g., Cox and Reid, 1987). Moreover, 

marginal posterior densities are better substitutes of conditional profile likelihoods, of 

Cox and Reid (1987). 

1.6 Summarizing the posterior distribution: 

If our mindset is to use some sort of point estimator (as is usually done in 

classical statistics); there are a number of candidates, we could follow maximum 



likelihood and use the mode of the distribution (its maximal value), with

)]|([maxˆ yp  
. We could take the expected value of   given the posterior 

  dyPYE )|(]|[ˆ  

Another candidate is the median of the posterior distribution, where the 

estimator satisfies  5.0)|ˆPr()|ˆPr(  YY  

and hence 

 










ˆ

ˆ

2/1)|()|( dYPdYP  

However, using any of the above estimators or even all three simultaneously 

loses the full power of the Bayesian analysis, as the full estimator is the entire 

posterior density itself. If we cannot obtain the full form of the posterior distribution, 

it may still be possible to obtain one of the three above estimators. 

It is to be noted that under the squared loss function, the Bayesian estimator of 

𝜃 is defined as the posterior expectation of 𝜃, given the data 
'

,21 )...,,( nyyyY   




 dYPYE )|()|(
 

and under weighted squared loss function, the Bayesian estimator 𝜃 given data by 

'
,21 )...,,( nyyyY   is given by  

,
)Y|)((E

)Y|)((E
a




  

provided the expectations exists. Where    is the weight associated with loss 

function. 

1.7 Predictive Distribution: 

It is the pdf (or pmf) of the as yet unobserved observation x given sample 

information Y. let us write )|(),|()|,( YPYxfYxf   as the joint pdf of x  and the 

parameter  , given the sample information Y.  Here    Yxf ,|   is the conditional 

pdf for x  given  and Y, where )|( YP    is the conditional pdf for  given Y the 

predictor pdf )|( Yxf  is obtained as: 

   dYpYxfdYxfYxf )|(),|()|,()|(  



In case, the unobserved observation of x  is independent of sample information Y, that 

is x  and y have independent conditional pdf‟s then 

  dYpxfYxf )|()|()|(  

1.8 Bayes Rule: 

  We have some prior information suggesting, that some values of  are more 

probable than other. Then the average risk associated with d, with respect to prior 

distribution )(P  is  

   








 dPdFdLdPdRdgr )()(),()(),(),(  

and Bayes rule suggests choosing that d for which r(g,d) is minimum i.e Bayes rule 

states that choose Dd*    if 

                              Dddgrdgr  );,(),( *   

A decision function d which minimizes r(g,d) is called Bayes solution of the decision 

problem w.r.t the prior density )(P  . 

The resulting minimum of r(g,d) is called a Bayes risk relative to P(.). In order 

to apply the Bayes rule, we have to assume that the elements of  are the values of 

random variable ̂ , whose density )(P   is known. In the problem of the estimation of 

a parameter  , with the loss function proportional to the squared error, Bayes rule 

w.r.t. a given prior distribution is to estimate  by posterior mean. 

To fix the idea, let )|( yf  be the pdf of Y and )(P   be the prior density of 

  the joint density of Y and   is 

)|()(),(  yfPYh    

Hence the posterior distribution of   given Y=y, has the density  

 


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)()|(

)()|(
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Thus when the loss function is proportional to the squared error, the posterior 

expected loss, given Y=y is 

  dyPdL )|(),(  



To find the action d that minimize this expression, we may set the derivative w.r.t. d 

in  dyPdL )|(),(   equal to zero, i.e. 

0)|(),( 




 dyPdL
d

 

The solution will be Bayes estimator. It may be noted that if loss function is 

squared error, a Bayesian decision rule w.r.t. a given prior distribution of   is to 

estimate the mean of the posterior distribution of  , given the observation. 

1.9 Highest posterior density (HPD): 

Once the posterior distribution )|( YP   is obtained we may ask, “How likely 

is it that  lies within a specified interval ]c,c[ 21 ?” This is not the same as the 

classical confidence interval interpretation for  . Since   is a constant and it is 

meaningless to make a probability statement about a constant. Posterior intervals 

based on non informative priors were called credible intervals by Edwards, Lindeman 

and Savage (1963) and Bayesian confidence intervals by Lindley (1965). It is an 

interval which contains a certain fraction of the degree of belief. The interval ]c,c[ 21  is 

said to be a )1(  credible interval for  if  

 

2

1

1)|(

c

c

dYP                                                                                (1.9.1) 

For the shortest credible interval we have to minimize 12 ccI  subject to 

the condition (1.9.1) which requires 

)|()|( 21 YcPYcP                                                                              (1.9.2) 

An interval ]c,c[ 21  which simultaneously satisfies (1.9.1) and (1.9.2) is called 

the shortest )1(   credible interval. An equal tail  1  credible interval ]c,c[ 21  for 

  is given by 

2
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An interval which simultaneously satisfies the following conditions: 

i) For a given probability content, P the interval should be as short as possible. 



ii) The posterior density at every point inside the interval be greater than that for 

every point outside it so that the interval includes more probable values of the 

parameter and excludes less probable values is called the Highest posterior Density or 

HPD – interval (Box and Tio,1973).  

For a unimodal but not necessarily symmetrical posterior density, the shortest 

credible and the HPD-intervals are one and same. (Evans, 1976). However the 

situation becomes more complicated for the multimodal posterior distribution. The 

highest mode is determined and the HPD-credible interval is constructed around it. 

The obtained HPD interval may not be unique. It may happen that the HPD region is a 

union of two disjoint intervals. Such situations occur when we consider posterior 

distributions obtained from mixtures of prior densities. An approximation to HPD 

credible interval may be obtained through the use of the normal approximation of the 

posterior distribution. 

It is critical to note that there is profound difference between a confidence 

interval (CI) from classical (frequentists) statistics and a Bayesian interval. The 

interpretation of a classical confidence interval is that if we repeat the experiment a 

large number of times and construct CIs in the same fashion, that )1(   of times the 

confidence interval will enclose the (unknown) parameter. With a Bayesian 

confidence interval, there is a )1(   probability that the interval contains the true 

value of the unknown parameter. Often the CI and the Bayesian intervals have 

essentially the same value, but again the interpretational difference remains. The key 

point is that the Bayesian prior allows us to make direct probability statements about 

 , where under classical statistics we can only make statements about the behavior 

of the statistic if we repeat an experiment a large number of times. 

1.10 Some Important Probability Distributions: 

i)Binomial distribution: This distribution is also known as the Bernoulli distribution 

after the Swiss mathematician James Bernoulli (1654-1705) who discovered it in 

1700 and was first published in 1713, eight years after his death. This distribution can 

be used under the following conditions: 

i) The random experiment is performed repeatedly a finite and fixed of times. In 

other words n, the number of trials is finite and fixed. 

ii) The outcome of the random experiment (trial) results in the dichotomous 

classification of events. In other words, the outcome of the trial may be classified 

 



into two mutually disjoint categories called success (the occurrence of the event ) 

and failure (the non-occurrence of event) 

iii) All the trials are independent, i.e. the result of any trial, is not affected in any way 

by the preceding trials and does not affect the result of succeeding trials. 

iv) The probability of success (happening of event) in any trial is   and is constant 

for each trial. 1  Is then termed as the probability of failure (non-occurrence of 

the event and is constant for each trial. More precisely, we expect a binomial 

distribution under the following conditions; 

a) n the number of trials is finite. 

b) Trials are independent. 

c)   , the probability of success is constant for each trial, and then ( 1 ) is 

the probability of failure in any trial. 

If y denotes the number of successes in trials satisfying the above conditions, 

then y is a random variable which can takes the values 0,1,2,…,n; since in n trials 

we may get no success (all failures), one success, two success,..., or all the n  

successes. 

We are interested in finding the corresponding probabilities of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

0,1,2 ,….,n  successes the general expression for the probability of r successes are 

given by; 

      nrCrYPrP
rnr

r
n ,....,1,0;1 



 

ii) Poisson Distribution: Poisson distribution was discovered by the French 

mathematician and Physicist Simeon Denis Poisson (1781-1840) who published it in 

1837. He derived it as a limiting case of binomial distribution. If a dichotomous 

variable y is such that the constant probability p of success for each trail is very small 

and the number of trails n is indefinitely large and is np  is finite, the probability of 

y successes is given by 
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where    is known as parameter of Poisson distribution.  The mean and variance of 

Poisson are same i.e.   the only parameter in Poisson distribution. 

iii) Normal distribution: A random variable X is normally distributed with location 

parameter   and scale parameter   if its pdf is given by 
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with mean   and variance 2 . 

 The normal distribution curve is bell shape and symmetrical about the 

line y . The mode and medium of the normal curve lies at the point y . The area 

under the normal curve within its range  to  in always unity i.e.  
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. One of the greatest reasons behind the extensive use & 

application of normal distribution lies in central limit theorem which states: If 

nyyy ,...,, 21  is a random sample of size n from any population with mean   and 

variance 2 . The distribution of sample mean y  is asymptotically normal with mean 

 and variance n/2  as n . Almost all sampling distributions like Ft ,, 2  etc., 

for their large degrees of freedom conform to normal distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER – 2 

PRIOR DISTRIBUTION AND 

ESTIMATION TECHNIQUES  

 

 

 

 

 

 

 

 

 

 

 



2.1 Introduction:  

he fundamental part of any Bayesian analysis is the prior distribution. 

The prior distribution )(P   represents all that is known or assumed 

about the parameter  usually the prior information is subjective and is based on a 

person‟s own experience and judgment, a statement of one‟s degree of belief 

regarding the parameter, design information and personal opinions. The other critical 

feature of the Bayesian analysis is the choice of a prior. The key here is that when the 

data have sufficient signal, even a bad prior will still not greatly influence the 

posterior. In a sense, this is an asymptotic property of Bayesian analysis in that all but 

pathological priors will be overcome by sufficient amounts of data. We can check the 

impact of the prior by seeing how stable to posterior distribution is to different 

choices of priors. If the posterior is highly dependent on the prior, then the data (the 

likelihood function) may not contain sufficient information. However, if the posterior 

is relatively stable over a choice of priors, then the data indeed contains significant 

information.  

Prior distribution may be categorical in different ways. One common 

classification is a dichotomy that separated “proper” and “improper” priors. A prior 

distribution is proper if it does not depend on the data and the value of integral 






 dP )(  or summation  )(P  is one. If the prior does not depend on the data and 

the distribution does not integrate or sum to one then we say that the prior is 

improper. Other classification of prior is either based on properties or on 

distributional forms as under: 

i. Uniform prior: 

In a state of ignorance the prior distribution is accepted as being uniform. It 

appears that great minds like Gauss, Bernoulli and Laplace used the principle in some 

form or other in their work. It is claimed that Bayes himself used uniform prior in his 

revolutionary work. 

The apparent success with uniform prior subscribed to the senore‟s idea that 

perhaps the uniform prior is the final answer. Jeffery‟s (1961) makes an interesting 

comment that there is no more need for such an idea than to suggest that an oven 

which cooked roast beef once cannot cook anything other than roast beef. One should 

T 



be cautious before invoking the uniform prior theory, for a careless and mechanical 

use of this principal may lead to contradiction and confusion. 

ii. Non informative prior (NIP): 

One class of prior distribution is called non-informative prior and as the name 

suggests, it is prior that contains no information about  . Non informative priors are 

also called priors of ignorance Box and Tiao (1973) provides a thorough discussion of 

non informative priors for one or more parameters. 

Rather than a state of a complete ignorance, the non informative prior refers to 

the case when relatively little (or very limited) information is available a priori. In 

other words, a priori information about the parameter is not substantial relative to the 

information expected to be provided by the sample of empirical data. A prior 

probability distribution that represents perfect ignorance or indifference would 

produce a posterior probability distribution that represents what one should need 

about the parameter  on the basis of the evidence (data) Y alone. Such a prior is 

called “neutral” or non informative priors by Royall (1997). According to Jeffery‟s 

(1983), non -informative priors provide a formal way of expressing ignorance of the 

value of the parameter over the permitted range. 

If the prior is non informative, we should assign the same density to each 

  , which of course implies that prior )(P   is uniform given by ),k(P  .                                                            

The non informative prior often leads to a class of improper prior, improper in 

the sense that .1)( 


dP The derivation of non informative prior is 

mathematically very closely associated with variance stabilizing transformations 

(Bartlett, 1937) and Fishers information (fisher, 1922, 1925). 

iii. Natural conjugate prior (NCP): 

Raiffa and Schlaifer (1961) presented a formal development of conjugate prior 

distribution, intuitively, a conjugate prior distribution; say )(P   for given sampling 

distribution, say )|( Yf  is such that the posterior distribution )|( YP   and the prior 

)(P   are members of the same family of distributions.  

Let ),...,,( 21 nyyyY   be a data from some family of distribution )|( Yf  

which combines basic information. Such a function is known as sufficient statistic. 

Sufficient statistic exists for a number of standard distributions.  



As in frequencies frame work, sufficient statistic plays an important role in 

Bayesian interference in constructing a family of prior distribution known as natural 

conjugate prior (NCP) .The family of prior distribution )(P ,   is called a 

natural conjugate family if the corresponding posterior distribution belongs to the 

same family as )(P  . 

The below given table has shown the conjugate priors for several common 

likelihood functions. 

                  Conjugate prior for common likelihood functions 

Likelihood Conjugate priors 

Binomial Beta 

Multinomial Dirichlet 

Poisson Gamma   

Normal  𝜇 Unknown, 𝜎2  known Normal 

Normal 𝜇 Known,  𝜎2 unknown Inverse chi-square 

Multivariate normal    unknown, v known Multivariate normal 

Multivariate normal    known, v  unknown Inverse Wishart 

 

iv. Jeffrey’s Invariant Prior (1946, 1961):    

In situations where we only have limited data available and we have no expert 

knowledge available. We should be able in such situations to choose a suitable prior 

which should obey the invariant property under parameter transformation. The Jeffery 

prior was designed to solve the invariance under the parameter transformation 

problem. According to the Jeffery principal the following equation should hold: 
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where )(h   is a one to one parameter transformation. This states that a rule for 

determining a prior should yield an equivalent transformed. From the above 

formulation we can derive the general formula of the Jeffery prior, which is given as  
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where )(I  is the Fisher information for the parameter  . When there are multiple 

parameters I is the Fisher information matrix, the matrix of the expected second 

partials 
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In this case, the Jeffery prior becomes 

   )](Idet[)(P θθ                      

             Jeffery prior for the common probability distribution 

Probability Distribution  
 

Jeffery’s prior 

Normal Unknown, 2  known )(P  = constant 

Normal Known, 2  unknown 




1
)(P  

Normal  , 2 Both unknown     PP)|(P)(P),(P  

Exponential Distribution 




1
)(P  

Binomial Distribution with n independent draws 2/12/1 )1()(P    

Weibull ),(     |)(),( 21 PpPP  




1
),(P  

Negative Binomial Distribution 2/11 )1()(P    

Uniform Distribution i.e. ),0(U~X   




1
)(P  

                                                                                                                                                                                                         

v. Maximal information prior (MIP): 

Zellner (1977) used the information theoretic approach to define maximal 

information prior. Let   dyfyfI y )|(log)|()(  be a measure of information 

in the pdf )|y(f  . The prior average information is defined as 

    dPII yy )()()(
 

where )(P 
 is a prior density of   and      dPP log  measures the information 

in prior )(P  . 
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is defined as a measure of gain in information, the maximal information prior is the 

one that maximizes G for varying )(P   subject to the condition  1)( dP                       

vi. Asymptotically locally invariant prior (ALIP): 

Hartigan (1964) derived a family of prior densities to represent our ignorance 

about  using invariance techniques similar to those suggested by Jeffery‟s (1946). 

He named this asymptotically locally invariant (ALI) prior. The ALI priors are easy to 

derive for exponential family of distributions. 

Hartigan (1964) point out that in some instances, the posterior distribution 

based on the ALI prior may lead to a chi-square having a degree of freedom contrary 

to the usual rule of assigning the degree of freedom to chi-square. 

vii. Dirichlets prior (DP): 

Dirichlets prior distribution is  
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is a generalization of the 

beta –prior. 
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viii. Haldane’s prior (1931): 

Halden‟s prior is given as  

11 )1()(  P ,   ]1,0[  

which is an improper density. We get if we put 0   in Beta prior. 

2.2 Loss Function (Lf):  

The word “loss” is used in place of “error” and the loss function is used as a 

measure of the error or loss. Let   be an unknown parameter of some distribution 

)|y(f   and suppose that   is estimated by some statistics TYT )( . Let ),( TL   



represents the loss incurred when the true value of the parameter is   where   is 

estimated by the statistics T. 

Loss function is a measure of the error and presumably would be greater for 

large error than for small error. We would want the loss to be small or we want the 

estimate to be close to what it is estimating. Our objective is to select an estimator T= 

L( y1,y2,...,yn) that makes this error or loss small. Loss depends on sample and we 

cannot hope to make the loss small for every possible sample but can try to make the 

loss small on the average. Our objective is to select an estimator that makes the 

average loss (risk) small and ideally select an estimator that has the small risk. 

Some Important Loss Functions are as under: 

a) Squared-Error Loss Function:  

The squared error loss function (SELF) was proposed by Legendre (1805) and 

Gauss to develop least squares theory. Later, it was used in estimation problems when 

unbiased estimators of   were evaluated in terms of the risk function )T,(R   which 

becomes nothing but the variance of the estimator. It was also observed that SELF is a 

convex loss function and therefore, restricts the class of estimators by excluding 

randomized estimator. The SELF is given as 

2)(),( TTL  .  

b) Weighted SELF: 

A generalization of squared-error loss, which is of interest, is  

                             2))((),( TWTL   

This loss is called weighted squared-error loss and has the attractive feature of 

allowing the squared error, 2)( T  to be weighted by a function of – . 

c) Quadratic SELF: 

Other variant of square error loss is quadratic SELF. If ),...,,( 21
 pθ  is a 

vector to be estimated by ),...,,( 21
 ptttT , and Q  is pxp positive definite matrix, 

and then )()(),( TQTTL  θθθ  is called quadratic loss. When Q is diagonal, this 

reduces to  
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and is natural extension of squared-error loss to the multiparametric situation. 

d) Linear Loss: 

  When utility function is approximately linear (as is often the case over a 

reasonable segment of the reward space), the loss function will tend to be linear. Thus 

of interest is the linear loss 

TTCTL  ),(),( 1                     

and       TTCTL  );(),( 2   

The constants C1 and C2 reflect the effect of over and over estimating  . By 

suitably choosing C1, C2  any fractile of the posterior distribution will be a Bayes 

estimator (Box and Tiao, 1973).  

If  C1 and C2 are functions of  , the above loss function is called weighted linear loss 

function. 

e) Absolute Loss:  

TTL  ),(  

is called the absolute loss function. As per De Groot (1970) for such a loss function, 

Bayesian estimator is the posterior median. 

f) Zero –One loss:  

0),(  TL                          iff CT   

and          

1),(  TL                           iff CT   

where c is the small positive constant. 

As per Raiffa and Schlaifer (1961), Bayes estimator for such a loss function is 

mode of posterior distribution. The risk function )T,(R  , associated with the 

estimator T is defined as the expected value of the loss function. The loss is Zero if 

the decision is made correct about T and the loss is one if the decision about T is 

made incorrect. 

  dyyfTLTLETR y )|(),()],([),(  

           CTP   

            = P[incorrect decision about T] 

 



2.2.1 Risk Function: 

The risk function ),( TR   associated with an estimator T is defined as the expected 

value of the loss function and is given by 

    dyyfTLTLETR y )|(),(),(),(
 

Bayes risk associated with an estimator T is defined as the expected value of 

the risk function )T,(R   with respect to the prior distribution )(p  of   and is 

given by 

 ),(),( TRETR    

                   
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Bayesian risk of an estimator is an average risk, which is a real number. Risk 

can be used as a guide. A good decision would be that minimizes the risk for all 

values of   in . For two estimators ),...,,( 2111 nyyytT   and  

),...,,( 2122 nyyytT   estimator T1 is defined to be better estimator than T2 if 

 ),()( 21 RtRt  

Thus, risk and loss functions are used to assess the goodness of estimators. 

2.3 Estimation Techniques: 

 The word estimator stands for the function, and the word, estimate stands for 

a value of that function. In estimator we take a random sample from the distribution to 

elicit some information about unknown parameter  . That is, we repeat the 

experiment n independent times, observe the sample,and we try to estimate the value 

of  , using the observations nyyy ,...,, 21 . The function of nyyy ,...,, 21  used to 

estimate ; say the statistic ),...,,( 21 nyyyU  called an estimator of  . We want it to be 

such that the computed estimate ),...,,( 21 nyyyU  is usually close to  . 

Thus any statistic whose values are used to estimate )(r   where r(.) is some function 

of the parameter  , is defined to be an estimator )(r  . An estimator is always a 

statistic which is both a random variable and a function.  

 



2.4 Methods of estimation: 

A variety of methods to estimate the unknown parameters have been proposed. 

The common used methods are: 

i) Method of maximum likelihood estimation, 

i) Method of minimum variance, 

ii) Method of moment, 

iii) Method of least square estimation, 

iv) Method of minimum chi-square, and  

v) Bayesian estimation.      

These methods are described are follows: 

i) Method of maximum likelihood estimation (MLE): 

The most general method of estimation known is the method of maximum 

likelihood estimators (MLE) which was initially formulated by C.F.Gauss but as a 

general method of estimation was first introduced by Professor. R. A. Fisher in the 

early (1920) and later on developed by him in a series of papers. He demonstrated the 

advantages of this method by showing that it yields sufficient estimators, which are 

asymptotically MVUES. Thus the essential feature of this method is that we look at 

the value of the random sample and then choose our estimate of the unknown 

population parameter, the value of which the probability of obtaining the observed 

data is maximum. If the observed data sample values are ),...,,( 21 nyyy  we can write 

in the discrete case. 

)...,,(),...,,( ,212211 nnn yyyfyYyYyYP   

which is just the value of joint probability distribution of the random values 

),...,,( 21 nyyy  at the sample point ),...,,( 21 nyyy  since the sample values has been 

observed and are therefore fixed numbers, we regard );...,,( ,21 nyyyf  as the value 

of a function of the parameter  , referred to as the likelihood function. A similar 

definition applies when the random sample comes from a continuous population but 

in that case );,...,,( 21 nyyyf  is the value of joint pdf at the sample point 

),...,,( 21 nyyy  i.e.; the likelihood function at the sample value ),...,,( 21 nyyy  
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Since the principle of maximum likelihood consists in finding an estimator of 

the parameter which maximizes L for variation in the parameter. Thus if there exists a 

function ),...,,(ˆˆ
21 nyyy  of the sample values which maximizes L for variation in 

 , then ̂  is to be taken as the estimator of  . ̂  is usually called ML estimators. 

Thus     is the solution if and only if 
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
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 L
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L
                                                                            (2.4.2) 

Since L >0, so LogL which shows that L and Log L attains their extreme values at the 

̂  . Therefore, the equation becomes 
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L
                                                             (2.4.3) 

a form which is more convenient from practical point of view. 

ii)Method of minimum variance [minimum variance unbiased estimators (MVUE)]: 

If a statistic ),....,,( 21 nyyyTT  , based on sample of size n such that: 

a) T is unbiased for )(r   , for all   and  

b) It has the smallest variance among the class of all unbiased estimators of )(r  , 

Then T is called the minimum variance unbiased estimator (MVUE) of )(r  . More 

precisely, T is MVUE of )(r   if  

 )(rE  

and   )'()( TVarTVar  where T  is any other unbiased estimator of )(r   

Crammer-Rao in equality provides a lower bound )()]([ 2  Ir , to the 

variance of an unbiased estimator of )(r  , where )(I   is the information on  , 

supplied by the sample. 

        An unbiased estimator t of r (Ɵ) for which Crammer-Rao lower bound is attained 

is called a minimum variance bound (MVB) estimator. 

      The method of minimum variance involves estimates which (i) are unbiased and 

(ii) have minimum variance. 

    If 




n

i

iyfL

1

),( , is likelihood function of a random sample n observations 

),...,,( 21 nyyy  from a population with probability function ),( yf , then the problem is 

to find a statistic ),...,,( 21 nyyytt   such that 
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is minimum, where 




dy  represents the n-fold integration 
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ndydydy ....... 21
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Thus, we have to minimize V(t) subject to the condition E(t). 

(iii) Method of moments (substitution principle) (MM): 

One of the simplest and oldest methods of estimation is the substitution principle. 

The method of moments was discovered and studied in detail by Karl Pearson. The 

method of moments is special case when we need to estimate some known function of 

finite number of unknown moments. 

     Let ),...,,;( 21 kyf   be density function of the parent population with k 

parameters k ,..,, 21 . If 'r denotes the rth moment about origin, then 
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r ,....,2,1),,...,,;( 21                                                        (2.4.7) 

In general ',...,',' 21 k will be functions of the parameters k ,...,, 21 . Let 

niyi ,...,3,2,1,   n be a random sample of size n from the given population. The 

method of moments consists in solving the k-equation (i) for k ,...,, 21  in terms of 

',...,',' 21 k  and then replacing these moments. 

krr ,...,3,2,1;'    by the sample moments 

e.g. kimmm kiki ,...,2,1);',...,','()ˆ,...,ˆ,ˆ(ˆˆ
2121                           (2.4.8) 

where im  is the ith moment about origin in the sample. 

Then by the method of moments k ˆ,...,ˆ,ˆ
21  are the estimators of                               

respectively. 

 

 



(iv) Method of least square estimation (LSE): 

The principle of least square is used to fit a curve of the form  

     ),...,,;( 20 naaayfy   

where sai '  are unknown parameters, to a set of n sample observations        

niyx ji ,...,3,2,1);,(   from a bivariate population.  It consists in minimizing the sum 

of squares of residuals viz., 
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Subject to variations in naaa ,...,, 20  

The normal equations for estimating naaa ,...,, 20  are given by 
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                                                                          (2.4.9) 

(v) Methods of minimum chi-square (MC): 

If the observations are grouped in „k‟ mutually exclusive classes with 

frequencies ),...,,( 21 kfff  with  
i

i nf . Suppose the unknown probabilities of these 

classes are k21 p,.....,p,p which depends on the parameter ),...,,( 21 k . The 

problem is to estimate   The expected frequencies of this k -classes will be 

knpnpnp ,...,, 21 . If measure of discrepancy between the set of observed frequencies 

and the corresponding expected frequencies are provided by 2  defined as 
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The measure of discrepancy is a function of unknown parameters .          

),.......,( 1

2

I  

The method of minimum 
2  is to take that estimate of j  which minimizes

2 . 

Thus we solve the equation 
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Let ̂   be the solution of equation (I) and satisfy 
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Then ̂  will be minimum 
2  estimate of  . 

2.5 Bayesian method of estimation: 

Suppose we have a random sample of size n say nyyy ,...,, 21                                          

which we regard as independent identically distributed random variables with 

distribution function )|()( YFdf  and pdf )|y(f   and where 𝜃 a labeling parameter, 

real valued or vector valued as the case may be. Also we assume that we do not know 

the exact value of parameter 𝜃. There are cases in which one can assume a little more 

about the unknown parameter  . Here   is the parameter space. We could 

assume that 𝜃 is itself a random variable with distribution function )(F 
 or pdf )(P   

Now suppose n items are put to test and it is assumed that their recorded life times 

from a random sample of size n from a population with pdf )|y(f  .To be specific we 

will assume 𝜃 to be real valued. We agree to regard 𝜃 itself as random variable with a 

pdf )(P  . The joint pdf of )(P   is given by 
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1

21 













 



n

n

i

in yyyLyfyyyP  

The marginal pdf of nyyy ,...,, 21  is given by  
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and the conditional pdf of 𝜃 given data nyyy ,...,, 21  is given by 
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  Thus, prior to obtaining the data nyyy ,...,, 21  the variations in 𝜃 where 

represented by )(P  , known as prior distribution on 𝜃 however, after the data             

nyyy ,...,, 21  has been obtained in the light of the new information, the variation in 𝜃 

are represented by ),...,,|( 21 nyyyP   the posterior distribution of 𝜃. The uncertainty 



about the parameter 𝜃 Prior to experiment is represented by prior pdf )(P and the 

same after the experiment is represented by posterior pdf ),...,,|( 21 nyyyP  . This 

process is the straight forward application of the Bayes theorem. Once the posterior 

distribution has been obtained it becomes the main object of study. 

2.6 Large sample approximations:  

In many areas of application, simple models suffice for most practical 

purposes but there are occasions when the complexity of the scientific questions at 

issue and the data available to answer them warrant the development of more 

sophisticated models, which depart from standard forms. For such models, 

approximations to the posterior distribution of model parameters are useful in their 

own right and as a starting point for more exact methods. The approximations that we 

describe are relatively easy to compute, understand and can provide valuable 

information about the fit of the model. Some important methods of approximation are 

given below 

a) Normal approximation to posterior distribution: 

The numerical implementation of a Bayesian procedure is not always straight 

forward since the involved posterior distribution is complicate functions. One of the 

important steps in simplifying the computations is to investigate the large sample 

behavior of the posterior distribution and its characteristics. The basic result of the 

large sample Bayesian inference is that the posterior distribution of the parameter 

approaches a normal distribution. Relatively little has been written on the practical 

implications of asymptotic theory for Bayesian analysis. The overview by Edwards, 

Lindeman, and Savage (1963) remains one of the best and includes a detailed 

discussion of the principle of „stable estimation‟ or when prior information can be 

satisfactorily approximated by a uniform density function. Some good sources on the 

topic from the Bayesian point of view include Lindley (1958), Pratt (1965), and 

Berger and Wolpert (1984). An example of the use of the normal approximation with 

small samples is provided by Rubin and Schenker (1987), who approximated the 

posterior distribution of the logit of the binomial parameter in real application and 

evaluate the frequentists operating characteristics of their procedure. Clogg et al., 

(1991) provide additional discussion of this approach in a more complicated setting. 

Sequential monitoring and analysis of clinical trials in medical research is an 

important area of practical application that has been dominated by frequentists 



thinking but has recently seen considerable discussion of the merits of a Bayesian 

approach; a recent review is provided by Freedman, Spiegel halter and Parmer (1994), 

Khan, A.A (1997) and Khan et al., (1996). 

If the posterior distribution  yP |  is unimodal and roughly symmetric, it is 

convenient to approximate it by a normal distribution centered at the mode; that is 

logarithm of the posterior is approximated by a quadratic function, yielding the 

approximation 
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if the mode, ̂  is in the interior parameter space, then  I  is  positive; if ̂ is a vector 

parameter, then   I   is a matrix. 

b)Lindley’s Approximation (1980): 

Many times the integrals appearing in Bayes estimation cannot be expressed in a 

closed form when the chosen prior distribution is conjugate priors. In particular, we 

come across evaluation of posterior expected value of  )(U   which involves ratio of 

the integrals 




 d)(P)Y|(L)(U  and 


 d)(P)Y|(L . 

Lindley (1980) considered evaluation of the ratio of the integrals                                
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 d)(P)Y|(L  which is nothing but ]Y|)(U[E  .Let us 

consider the case of a scalar parameter  of the distribution having pdf (pmf) )|Y(f  . 

Suppose the likelihood function has a unique maximum ̂ maximum likelihood 

estimate of  . 

We have, 
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Then, Lindley‟s approximation, for large n of  Y|)(UE   is given by   
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c) Laplace Approximation: 

A simple and remarkable method of asymptotic expansion of integrals 

generally attributed to Laplace (Laplace, 1986, 1774, Stigler, 1986) is widely used in 

applied mathematics. This method has been applied by many authors (Lindley, 1961, 

1980; Mostller and Wallace, 1964; Johnson, 1970; DiCiccio, 1986; Hartigan, 1965; 

Khan et al., 1996; and Tierney and Kadane, 1986 and Yoichi Miyata, 2004) to find 

approximations to the ratios of integrals of the interest, especially in Bayesian 

analysis. If we approximate the integrals involved in the posterior density using 

approximation  
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                                        (2.6.1)            

where )(I


  stands for determinant of )(I


  then posterior density can be approximated 

with error of order  1nO   i.e.  
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                     (2.6.2)                       

approximation (2.6.2) is the well known Laplace‟s approximation of integrals (e.g., 

Tierney and Kadane, 1986). Laplace‟s approximation (2.6.2) of posterior density can 

be compared with normal approximation which has error of order )n(O 2

1


. Perhaps 

more importantly, Laplace‟s approximation is of order )n(O 1 uniformly on any 

neighborhood of the mode. This means that it should provide a good approximation in 

the tails of distribution also (e.g., Tierney and Kadane, 1986; Tierney, Kass and 

Kadane, 1989a; and Wong and Li, 1992). 

 



 

 

 

 

 

 

 

CHAPTER – 3 

BAYESIAN ESTIMATION FOR 

BINOMIAL DISTRIBUTION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.1 Introduction: 

inomial distribution is also known as the Bernoulli distribution after the Swiss 

mathematician James Bernoulli (1654-1705) who discovered it in 1700 and was 

first published in 1713, eight years after his death. This distribution can be used under 

the following conditions: 

v) The random experiment is performed repeatedly a finite and fixed of times. In 

other words n, the number of trials is finite and fixed. 

vi) The outcome of the random experiment (trial) results in the dichotomous 

classification of events. In other words, the outcome of the trial may be classified 

into two mutually disjoint categories called success (the occurrence of the event) 

and failure (the non-occurrence of event). 

vii) All the trials are independent, i.e. the result of any trial, is not affected in any way 

by the preceding trials and does not affect the result of succeeding trials. 

viii) The probability of success (happening of event) in any trial is   and is 

constant for each trial. 1  Is then termed as the probability of failure (non-

occurrence of the event and is constant for each trial. More precisely, we expect a 

binomial distribution under the following conditions: 

d) n the number of trials is finite. 

e) Trials are independent. 

f)  , the probability of success is constant for each trial, and then 1  is the 

probability of failure in any trial. 

If y denotes the number of successes in trials satisfying the above conditions, then 

y is a random variable which can takes the values 0,1,2,…,n; since in n trials we may 

get no success (all failures), one success, two success,…., or all the n  successes. 

We are interested in finding the corresponding probabilities of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

0,1,...,n successes the general expression for the probability of y successes are given 

by: 
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                                             (3.1) 

Maximum Likelihood Estimation of Binomial Distribution: 

Let nyyy ,...,, 21 be a random sample of size n having the probability mass 

function given in (3.1) we have  

    nyCYf
yny

y

n ,....,2,1,0;1| 


 

Then the Likelihood function is given by 
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Applying log on both sides 
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The Mle of   is the solution of equation  
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3.2 Bayes Estimation of Binomial Distribution under Different Types of Priors: 

i) Binomial distribution under conjugate prior: 

Let nyyy ,...,, 21 be a random sample of size n having probability mass 

function as       nyCyYPYf
yny

y
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Then the likelihood function       yny
y

nYL
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                                    (3.2.1) 

The conjugate prior for   is  
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where  and,  are hyper parameters. 

Using Bayes theorem, the posterior distribution of   is given by 
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The prior and posterior distribution belongs to the family of Beta distribution. 

 Observe that 

The maximum of  y|l   is 
n

yˆ   and that of )(P   is given by 
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Since    y|P;1,0a   synthesizes and compromises by favoring values between the 

maximum of  p and that of  y|l  .    

The posterior mean of   is given by  
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The form of B̂  and the  var  of prior distribution suggests that k  can be 

interpreted as the prior sample size. Alternatively it can as be interpreted as since B̂  

the m.l.e for data obtained by supplementing the real data (y successes in n trials) by 

“fictitious data” consisting of   successes in k  trials. The quantities  and k  

need not be integers. Here k  plays the role of the prior sample size. 

 The mode of the  y|P   can be regarded as Bayesian m.l.e. Consider  
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is a convex combination of  mle̂ and expression involving  and . If 

  m ˆ,1,min  is formally the Bayes estimate corresponding to the prior Beta 

 1,1  . This implies m̂ can be regarded as a Bayes estimate under SELF biased 

on loss certain prior information than the B̂  w.r.t Beta  , . Since m̂  has prior 

sample size 2  rather than   

ii) Binomial Distribution under Jeffery’s prior: 

We have for  ,nbin~Y  
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Hence the Jeffery‟s prior becomes  
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Thus the posterior distribution by Bayes theorem is  
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Hence the posterior distribution is 
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Hence the Bayes estimate of   under Self is given by 
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which is the Bayes estimate of  . 

iii) Binomial Distribution under Asymptotically Locally Invariant Prior (ALIP): 

We have for  ,nB~Y  
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This is Hartigan‟s prior suggested by Haldane(1931). 

Then by Bayes theorem posterior distribution is given by 

          y|lpy|p   

              yny11 11y|p
   

            1yn1y 1y|p
   

       

     1yn1y 1ky|p
   



where    yn,yBd1k
1

0

1yn1y1  
  

Thus the posterior is  
 

  1yn1y 1
yn,yB

1
y|p

 


  

The Bayes estimate of   under SELF is as under 

  
    dy|pˆ

1

0
B

 

        


 
 





 



d
yn,yB

1ˆ
1

0

1yn1y

B
 

        
 

  


 
 d1

yn,yB

1ˆ 1
0

1yn11y
B

 

        
 
 

   
   yny1n

nyn1y

yn,yB

yn,1yBˆ
B











 

        


n

yˆ
B   

This is the Bayes estimate under (ALIP). 

3.3 Improper Marginal posteriors: 

Let  ,nB~Y  where both n and   are unknown. Suppose n and  have independent 

uniform prior distribution 
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The marginal posterior distribution of   is 
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Thus marginal posterior distribution of   and x  are  both improper. Thus one 

has to be cautious in using non-informative prior for more than one parameter case. 

3.4 Predictive density: 

Let  ,mB~X  be a future number of successes independent of already observed

 ,nB~Y . Then 
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where y*  and yn*  . 

It is known as Beta-binomial distribution with 
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where r  is known prior sample size.  
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. This prior information is roughly equivalent to the information. That if you observed 

a random sample of about 86 individuals out of the population, you would believe that 

out of the 86 between 1 and 2 were successes. The prior sample size measures the 

strength of the prior information. 

3.5 Estimation of sample size: 
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Then  fr Bayes risk of  f . 
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If c is the cost per observation, then total risk cost is 
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3.6 Estimation of n: 

Suppose ryyy ,...,, 21  are r independent  ,nB  random variables. Given the 

observations ryyy ,...,, 21  the objective is to estimate n. Suppose for example, that the 

Apex Appliance Company wishes to estimate the number of a certain type of 

appliance in use in a certain service area. Suppose further that the company believes 

that the weekly total of defective appliances sent in for repair (irrespective of age) 

arises with a binomial probability   about whose value they have some prior 

knowledge .Then a count y of the number of defective appliances received during a 

routine week could be used to caste light on the population size n. In general, then if 

we have a characteristic with binomial behavior and only the success (or failures) 

become apparent, we can use these alone to provide information on the population 

size (Draper and Smith 1971). Adopting their notations, the likelihood can be written 

as: 

   
 








r

i ii

trnt

yny

n
ynL

1
!!

!
1|,                                                     (3.6.1) 

where  ',..,, 21 ryyyy   is a column vector of positive integers and 




r

i

iyt

1

 is the 

total number of success in the r observation. We now discus the cases   known and  

unknown separately. 



  is known : when   is known, let  np  denote the prior distribution of n. Without 

further knowledge of n, the discrete uniform distribution provides a reasonable form 

for  np  

  Nn
N

np  1;
1

                                                                                                      

 

         

elsewhere,0                                                                                                            (3.6.2) 

where N is a large predetermined integer (for example if n were the number of 

local people of a certain type involved in a certain binomial process, N could be the 

local population) the posterior distribution for n is then 

     
 






r

i i

rn

xn

n
npynP

1
!

!
1,|                                                      (3.6.3) 

The domain of  ,y|nP  is a set of n such that Nyyyn ,...,2,1, maxmaxmax   where

 ryyyy ,...,,max 21max  . 

The mode of the posterior distribution  ,y|nP  given in expression (3.6.3) 

denoted by n̂  provides an estimate of n. n̂  therefore is the integer satisfying the 

following inequalities: 

    ,|ˆ,|1ˆ ynPynP  and     ,|ˆ,|1ˆ ynPynP  

or alternatively n̂  is the solution of the simultaneous inequalities: 

          r
r

i

i

r

r

i

i nynandnyn  


11ˆ1ˆ1ˆˆ

11

 

which is identical to the maximum likelihood solution (Feldman and Fox, 1968), as 

expected. 

In addition to providing an estimate for n. the posterior distribution could also 

caste some light on the precession of the estimate. A closed form of the estimator for 

n may not seem feasible. But a numerical solution can be obtained by using the 

following recurrence formula. For  maxmax ...,2,1,0, ynjjyn          

    ,,|,| max jkcyjyPynP 
                                                               

(3.6.4) 

01  jifkwhere j                                                                                    
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Thus, the normalizing constant c in expression (3.6.4) is the reciprocal of the sum of 

the sk j '  i.e. 


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1
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jk

c                                                                                        (3.6.6)       

as for as the point estimation is concerned, an estimate for n can be obtained 

irrespective of the predetermined integer N. If a confidence interval with a specified 

confidence coefficient  is desired, then the value of N is needed. A 100 -percent 

confidence interval for n is given by 

  maxmax , yly
                                                                                     (3.6.7)

 

where  andl  are integers such that  
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j

yjyP                                                                           (3.6.8) 

Since andl  in expression (3.6.7) are the integers satisfying the condition, they are 

chosen such that the summation on the left hand side of (3.6.8) is approximately equal 

to   and 1  is roughly equally divided to the two tails. Therefore 100 -percent 

confidence interval for n may not be unique. 

To determine a suitable value of N for computing a confidence interval for n, we 

adopt the scheme given below. 

 Let 
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j

i

ij ks

0

                                                                                                      (3.6.9) 

be the jth partial sum of the sequence ,...,, 210 kkk  for a given   is defined to be the 

smallest integer such that jj sk |
    

                                                              (3.6.10) 

Therefore, the required integer N is equal to 1max  jy  the criterion stated in the in 

equality (3.6.10) suggests that the posterior probabilities, beyond the value of N, will 

not contribute significantly. 

Example: r=1 

Suppose   is known to be 0.2 the only success count shows that ten successes 

have been detected i.e. y=10. Hence, maxy  is also equal to 10. When   is known n̂ = 

integer part of |y   which is clearly sensible. Since y=10 and =0.2, |y =10/0.2=50. 

Thus n̂  =50. 



Using the criterion (3.6.10) for ,005.  N is found to be 81. A 95-percent confidence 

interval for n is [30, 77] where the confidence coefficient, 95-percent is only 

approximation. 

  is unknown: When   is unknown, assume that n and   are independent. Let n have 

the same prior probability distribution as stated in (3.6.2). Suppose that the prior 

probability distribution for   is in the form of beta distribution parameter 21 vandv . 

Let )(P   denote the prior probability distribution of   . Thus  

  10,1)(
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P                                                                (3.6.11) 

which can represent a uniform prior 121  vv  or conjugate prior representing 

information from a prior sample otherwise the joint posterior is then 
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The marginal distribution of n can be obtained by integrating expression (3.6.12) with 

respect to  from  0 to 1. Therefore, 
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Again the mode n of expression (3.6.13) would provide an estimate of n. similarly, if 

n= jy max  for j= max,....2,1,0 yN   

    ,|| max jkcyjyPynP 
                                                              (3.6.14)
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is a recurrence formula for calculating jk . The normalizing constant c in expression 

(3.6.14) can be computed in exactly the same manner as before. It should be noted 

that analytical results are easy to obtain using a suitable computer programs if 

necessary. 

Clearly the distributions are such that consideration of small values of r is less 

difficult than consideration of large values. 



Example: r=1 Suppose   is unknown. An initial   is found to be 0.2. Assume that 

the only success count gives ten successes. If  in criterion (3.6.10) is chosen to be 

0.005, then the estimates at various levels of certainty are presented in below table. 

            Estimates of n when r=1 and θ  is unknown 

 n N 95% confidence interval 

5,2 21  vv  29 or 30 106 [17,102] 

17,5 21  vv  41 or 42 100 [23,96] 

37,10 21  vv  45 or 46 93 [26,89] 

77,20 21  vv  47 or 48 88 [27,83] 

 

When the initial estimate of   is made with high certainty, such as 

77,20 21  vv  the point estimate of n is almost identical to the result given in 

example 1, in which   is known. However, with   unknown, confidence intervals are 

not as tight. 

3.7 Bayes estimation of /1 : 

Reliable estimation of /1  is difficult when   is close to 0, where a small 

change in   will cause a large change in /1 . There is no unbiased estimator for /1 . 

This problem arises when estimating the size of certain animal population. 

 Suppose a lake contains an unknown number N of some species of fish. A 

random sample of size k is caught, tagged and released again. Later a sample of size n 

is obtained and the number Y of tagged fish in the sample is noted. Let us assume that 

each caught fish is immediately returned to the lake. 

The n fish in the sample constitutes n Bernoulli trails with probability 

N/k  of success. The population size N is /k . 

Posterior distribution of  is Beta ( yny  , ) the Bayes estimate under SELF is 
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when prior is Beta ( , ). 

If Haldanes nil prior is used 0,0  ; 
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3.8 Lindely Approximation of Binomial Distribution: 
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Let us consider the uniform prior i.e   1P  

To construct the approximation, we need the second derivatives of the log-posterior 

density, 
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Also, the 95% approximate HPD credible interval for   under uniform prior i.e 
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96.1,96.1  

Example 3.1(Hoff, P.D. (2009): Each female of age 65 or over in1998 General social 

survey was asked whether or not they were generally happy. Let yi=1,if the 

respondent i reported being generally happy & let yi=0 otherwise.Suppose 129 

individuals were surveyed out of which 118 individuals reported being generally 

happy & remaining 11 do not report being generally happy. We have developed 

various programs for MLE and Bayes estimates of this example in R software and the 

results are given in table 3.1.1.  

# Mle of binomial distribution is given by 

library(stats4) 

binomNLL <- function(theta, y, n) { 

 -sum(dbinom(y, prob = theta, size = n, log = TRUE)) 

 } 



y<-118 

est <- optim(par = 0.5, fn = binomNLL, n=129, method = "BFGS",y=y) 

est 

$par 

[1] 0.9147252 

$value 

[1] 2.080956 

$counts 

function gradient  

      51        9  

$convergence 

[1] 0 

# Posterior mean, variance and credible interval of binomial distribution under 

natural conjugate prior 

Post.mav<-function(a,b,y,n){ 

 pm.theta<-(a+y)/(a+b+n) 

 pvar.theta<-(a+y)*(b+n-y)/((a+b+n)*(a+b+n+1)^2) 

 ci<-qbeta(c(0.025,0.975),a+y,b+n−y) 

 list(Posterior.mean=pm.theta,Posterior.variance=pvar.theta,Credible.interval=ci) 

 }  

> Post.mav(1,1,118,129) 

$Posterior.mean 

[1] 0.9083969 

$Posterior.variance 

[1] 0.0006256177 

$Credible.interval 

[1] 0.8536434 0.9513891 

# Posterior mean,variance and credible interval of binomial distribution under 

Jeffrey’s prior 

Post.mav<-function(y,n) 

 { 

 pm.theta<-(y+0.5)/(n+1) 



 pvar.theta<-(y+0.5)*(n-y+0.5)/((n+2)*(n+1)^2) 

 ci<-qbeta(c(0.025,0.975),y+0.5,n−y+0.5) 

 list(Posterior.mean=pm.theta,Posterior.variance=pvar.theta,Credible.interval=ci) 

 } 

> Post.mav(118,129) 

$Posterior.mean 

[1] 0.9115385 

$Posterior.variance 

[1] 0.0006155427 

$Credible.interval 

[1] 0.8572894 0.9538477 

# Posterior mean, variance and credible interval of binomial distribution under 

ALIP prior 

 Post.mav<-function(y,n) 

 { 

 pm.theta<-y/n 

 pvar.theta<-y*(n-y)/((n+1)*n^2) 

 ci<-qbeta(c(0.025,0.975),y,n−y) 

 list(Posterior.mean=pm.theta,Posterior.variance=pvar.theta,Credible.interval=ci) 

  } 

> Post.mav(118,129) 

$Posterior.mean 

[1] 0.9147287 

$Posterior.variance 

[1] 0.0006000009 

$Credible.interval 

[1] 0.8610175 0.9563177 

 

 

 

 



Table 3.1.1: Posterior mean, variance and credible 

interval of binomial distribution under different priors. 

Type of 

Prior 

Posterior 

Mean 

Posterior 

variance 

Credible  Interval 

Conjugate 

Prior 

0.9083969 0.000625617

7 

0.8536434,0.9513891 

Jeffrey’s 

Prior 

0.9115385 0.000615542

7 

0.8572894,0.9538477 

ALIP 0.9147287 0.000600000

9 

0.8610175,0.9563177 

 

Graphical representation of Beta Posterior under two 

different sample sizes in S-Plus: 

par(mar=c(3,3,1,1),mgp=c(1.75,.75,0),oma=c(0,0,.5,0)) 

par(mfrow=c(2,2)) 

theta<-seq(0,1,length=100) 

a<-1; b<-1 

n<-5 ; y<-1 

plot(theta,dbeta(theta,a+y,b+n-y),type="l",ylab= 

expression(paste(italic("p("),theta,"|y)",sep="")), 

xlab=expression(theta),lwd=2) 

mtext(expression(paste("beta(1,1) prior, ", 

italic("n"),"=5",italic(sum(y[i])),"=1",sep=""))) 

 #abline(v=c((a+y-1)/(a+b+n-

2),(a+y)/(a+b+n)),col=c("black","gray"),lty=c(2,2)) 

lines(theta,dbeta(theta,a,b),type="l",col="gray",lwd=2) 

legend(.45,2.4,legend=c("prior","posterior"),lwd=c(2,2),c

ol=c("gray","black"), bty="n") 

a<-3; b<-2 

n<-5 ; y<-1 

plot(theta,dbeta(theta,a+y,b+n-y),type="l",ylab= 

expression(paste(italic("p("),theta,"|y)",sep="")), 

xlab=expression(theta),lwd=2) 

# expression(italic(paste("p(",theta,"|y)",sep=""))), 

xlab=expression(theta),lwd=2) 



mtext(expression(paste("beta(3,2) prior, ", 

italic("n"),"=5 ",italic(sum(y[i])),"=1",sep=""))) 

#abline(v=c((a+y-1)/(a+b+n-2), (a+y)/(a+b+n)) , 

col=c("green","red")) 

lines(theta,dbeta(theta,a,b),type="l",col="gray",lwd=2) 

a<-1 ; b<-1 

n<-100; y<-20 

plot(theta,dbeta(theta,a+y,b+n-y),type="l",ylab= 

expression(paste(italic("p("),theta,"|y)",sep="")), 

xlab=expression(theta),lwd=2) 

# expression(italic(paste("p(",theta,"|y)",sep=""))), 

xlab=expression(theta),lwd=2) 

mtext(expression(paste("beta(1,1) prior, ", 

italic("n"),"=100 ",italic(sum(y[i])),"=20",sep=""))) 

 #abline(v=c((a+y-1)/(a+b+n-2), (a+y)/(a+b+n)) , 

col=c("green","red") ) 

lines(theta,dbeta(theta,a,b),type="l",col="gray",lwd=2) 

a<-3 ; b<-2 

n<-100; y<-20 

plot(theta,dbeta(theta,a+y,b+n-y),type="l",ylab= 

expression(paste(italic("p("),theta,"|y)",sep="")), 

xlab=expression(theta),lwd=2) 

# 

expression(italic(paste("p(",theta,"|y)",sep=""))),xlab=e

xpression(theta),lwd=2) 

mtext(expression(paste("beta(3,2) prior, ", 

italic("n"),"=100 ",italic(sum(y[i])),"=20",sep=""))) 

#abline(v=c((a+y-1)/(a+b+n-2), (a+y)/(a+b+n)) , 

col=c("green","red")) 

lines(theta,dbeta(theta,a,b),type="l",col="gray",lwd=2) 

dev.off() 



 

Figure: 3.1 

 

# Graphical representation of Posterior distribution and 

95% credible interval under different Priors. 

a<-1 ; b<-1 #prior 

n<-129 ; y<-118 #data 

theta.support<-seq(0.8,1.0,length=1500) 

plot(theta.support, dbeta(theta.support, a+y, b+n-y), 

type="l",xlab="theta", 

ylab="p(theta|y)" ) 

qbeta( c(.025,.975), a+y,b+n-y) 

abline(v=qbeta( c(.025,.975), a+y,b+n-y)) 

 

                                                      Figure: 3.2 
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a<-1 ; b<-1 #prior 

n<-129 ; y<-118 #data 

theta.support<-seq(0.8,1.0,length=1500) 

plot(theta.support, dbeta(theta.support, y+0.5, n−y+0.5), 

type="l",xlab="theta", 

ylab="p(theta|y)" ) 

qbeta(c(0.025,0.975),y+0.5,n−y+0.5) 

abline(v=qbeta( c(.025,.975), a+y,b+n-y)) 

 

                                                           Figure 3.3 

a<-1 ; b<-1 #prior 

n<-129 ; y<-118 #data 

theta.support<-seq(0.8,1.0,length=1500) 

plot(theta.support, dbeta(theta.support, y+0.5, n−y+0.5), 

type="l",xlab="theta", 

ylab="p(theta|y)" ) 

qbeta(c(0.025,0.975),y,n−y) 

abline(v=qbeta( c(.025,.975), a+y,b+n-y)) 

qbeta(c(0.025,0.975),y,n−y) 



 

                                                              Figure 3.4 

par(mar=c(3,3,1,1),mgp=c(1.75,.75,0)) 

a<-1;b<-1#Prior 

n<-129;y<-118 

theta.support<-seq(0.8,1.0,length=5000) 

plot(theta.support, dbeta(theta.support, a+y, b+n-y), 

type="l", xlab=expression(theta),     

      ylab=expression(paste(italic("p("),theta,"|y)"))) 

pth<-dbeta(theta.support, a+y, b+n-y) 

pth<-pth 

ord<- order(-pth) 

xpx<-cbind(theta.support[ord], pth[ord]) 

xpx<-cbind(xpx,cumsum(xpx[,2])/sum(xpx[,2])) 

hpd<-function(x,dx,p){ 

md<-x[dx==max(dx)] 

px<-dx/sum(dx) 

pxs<--sort(-px) 

ct<-min(pxs[cumsum(pxs)< p]) 

list(hpdr=range(x[px>=ct]),mode=md) } 

tmp<-hpd(xpx[,1],xpx[,2],.5)$hpdr 

lines( x=c(tmp[1],tmp[1],tmp[2],tmp[2]), 

y=dbeta(c(0,tmp[1],tmp[2],0),a+y,b+n-y) 

,col=gray(.75),lwd=2 ) 

tmp<-hpd(xpx[,1],xpx[,2],.75)$hpdr 



lines( x=c(tmp[1],tmp[1],tmp[2],tmp[2]), 

       y=dbeta(c(0,tmp[1],tmp[2],0),a+y,b+n-y) 

,col=gray(.5),lwd=2 ) 

tmp<-hpd(xpx[,1],xpx[,2],.95)$hpdr 

lines( x=c(tmp[1],tmp[1],tmp[2],tmp[2]), 

      y=dbeta(c(0,tmp[1],tmp[2],0),a+y,b+n-y) 

,col=gray(0),lwd=2 ) 

tmp<-qbeta( c(.025,.975), a+y,b+n-y) 

lines( x=c(tmp[1],tmp[1],tmp[2],tmp[2]), 

y=dbeta(c(0,tmp[1],tmp[2],0),a+y,b+n-y) 

,col=gray(0),lwd=2 ,lty=2 ) 

legend(0.95, 14, c("50% HPD","75% HPD","95% HPD","95% 

quantile-based"), 

col=c(gray(.75),gray(.5),gray(0),gray(0)),lty=c(1,1,1,2),

lwd=c(2,2,2,2),bty="n") 

 

 

                                                              Figure 3.5 

Graphical representation of binomial distribution with 

different values of n and  in S-PLUS 

par(mar=c(3,3,1,1),mgp=c(1.75,.75,0)) 

par(mfrow=c(1,2)) 

n<-10 

theta<-.2 



 plot(0:n,dbinom(0:n,n,theta), 

type="h",lwd=2,xlab=expression(italic(y)), 

 

ylab=expression(paste("Pr(",italic("Y=y"),"|",theta==.2,i

talic(", n="),"10)",sep=""))) 

 #MTEXT(EXpression( 

 # italic(paste("n=",10,", ",theta==0.2))),side=3,cex=.8) 

 n<-10 

 theta<-.8 

 plot(0:n,dbinom(0:n,n,theta), 

type="h",lwd=2,xlab=expression(italic(y)), 

 

ylab=expression(paste("Pr(",italic("Y=y"),"|",theta==.8,i

talic(", n="),"10)",sep=""))) 

 #mtext(expression( 

 # italic(paste("n=",10,", ",theta==0.8))),side=3,cex=.8)

 

                                                          Figure 3.6 

par(mar=c(3,3,1,1),mgp=c(1.75,.75,0)) 

 par(mfrow=c(1,2)) 

 n<-100 

 theta<-.2 

 plot(0:n,dbinom(0:n,n,theta), type="h",lwd=2,xlab=expression(italic(y)), 

 ylab=expression(paste("Pr(",italic("Y=y"),"|",theta==.2,italic(", n="),"100)",sep=""))) 



 n<-100 

 theta<-.8 

 plot(0:n,dbinom(0:n,n,theta), type="h",lwd=2,xlab=expression(italic(y)), 

 ylab=expression(paste("Pr(",italic("Y=y"),"|",theta==.8,italic(", n="),"100)",sep=""))) 

 

                                                               Figure 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER – 4 

BAYESIAN ESTIMATION FOR 

POISSON DISTRIBUTION  

 

 

 

 

 

 

 

 

 

 

 

 

 



4.1 Introduction: 

oisson distribution was discovered by the French mathematician and Physicist 

Simeon Denis Poisson (1781-1840) who published it in 1837. Poisson 

distribution is a limiting case of the binomial distribution under the following 

conditions: 

i) n, the number of the trials is indefinitely large, i.e. n  

ii) The constant probability of success for each trial is indefinitely, i.e. 0                           

iii) n  (say) is finite  

Thus 
nn


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 11,  where   is a positive real number. The probability of y in a 

series of n independent trial is: 
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We want the limiting form of (4.1.1) under above conditions. Hence  
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which is the required probability function of Poisson distribution.   is known as 

parameter of Poisson distribution. Thus a random variable Y is said to follow a Poisson 

distribution of it assumes only non-negative values and its probability mass function is 

given by 
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4.2 Maximum likelihood estimate for Poisson distribution: 

The likelihood function of the Poisson distribution is given as  
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Applying log on both sides of above equation we have 
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The maximum likelihood estimate of  (called ̂  hereafter) is obtained by taking the 

derivative of  

           

  ttanconslogynY|Llog

n

1i

i  


 

Differentiating with respect to   and finally setting the derivative equal to zero and 

solving for . 
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In order to ascertain this is indeed the maximum likelihood estimate, we would 

also take the second order derivative. It can be shown that the second order derivative 

satisfies the criteria for global optimality for . 

4.3 Bayes Estimator for Poisson distribution: 

The pmf of Poisson distribution is 
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Where   is now treated as a random variable. A straight forward computation gives 

Fisher information.  
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P  which an improper (or quasi) prior since 
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The posterior distribution of   is given by 
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and the Bayes estimator of   is 
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For c=1,   2
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P  (Jeffery‟s prior) we have  
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which is the maximum likelihood as well as the unique minimum variance unbiased  

estimator (UMVUE) of  . 

For c=0,   1P  (uniform prior), we have  
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We note that for n quite large as compared to 321
ˆ,ˆ,ˆ, c  well all be numerically 

very close to each other. Thus, the effect of the prior distribution on actual estimators 

is rather small when the sample size is large this fact is well exhibited by equation  
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Showing thereby that in large samples the choice of the constant c (i.e. the 

choice of the prior distribution is not very crucial). 

 

 



4.4 Comparison of non-informative priors for number of defects (possion) 

model: 

Now, we consider the Bayesian analysis of the model for the number of defects. 

We considered the two non-informative priors (Jeffrey and uniform) and will study 

their performance using different distribution performance measures. The posterior 

distribution and posterior productive distribution for the parameter of the model for 

the number of defects will also be derived using the above said prior. 

Posterior distribution of parameter using Jeffery prior (JP) usually, the distribution 

of the discrete time-to failure system follows the Poisson distribution so the 

probability mass function (pmf) of the Poisson distribution for a random variable Y 

having parameter  is 
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 The likelihood function for a simple random of size n is given by 
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Here the parameter  is unknown. In the situations where one does not have much 

information about the parameter, Jeffrey (1946, 1961) suggested a non- informative 

prior (NIP). This defines the density of the parameter proportional to the square root 

of the determinant of the Fisher information matrix. Symbolically the Jeffrey prior 

distribution  jp  is given by     Ip j   where  
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In this case the Jeffrey prior becomes 

                   ]det[  Ip j                                                                          (4.4.3) 

The likelihood function from (4.4.2) is 
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Setting the derivate equal to 0 and finally solving for   we get 
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Which is the likelihood estimate of  . 

Then  ijI  is given by  
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(4.4.5) 

The Jeffrey prior for a Poisson distribution with parameter   is   2/1jp . 

The posterior distribution of parameter  for given data  nyyyY ,...,, 21  using 

equation (4.4.2) and (4.4.5) is 
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Where k is normalizing constant and given by 
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Then from equation (4.4.6) 
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(4.4.7) 

which is the density function of gamma distribution with parameter n and 


n

i
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1 2

1
.  

So the posterior distribution of   given data is gamma (n, 


n

i
iy

1 2

1
). 

The following data of size 10 is generated from Poisson distribution with 

parameter !2  1, 2, 3,1,2,0,5,3,1 and 2. The sum of all the 10 observations is 20 

( 10,20..

1




nyei

n

i

i ). So the posterior distribution of parameter   for the given 

data  1021 ,...,, yyyY  , using equation (4.4.6) is the gamma distribution with 

parameters 50.2010  and  and i.e. gamma (10, 20.50). 

4.5 The posterior distribution of the parameter using the uniform prior (UP):  

Laplace (1774, 1812) found that it worked exceptionally well to simply choose 

always the prior for   to be constant   1P  on the parameter space. The uniform 

prior (non-informative prior) distribution of  

   0,1P                                                                                         (4.5.1) 

The posterior distribution of parameter   for given data  n,21 y......,y,yY   using 

equation (4.4.2) and (4.4.3) is  
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From equations (4.5.2) we have 
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which is the density function of Gamma distribution with parameters  


n

i
iyn

1
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posterior mode 
n
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i

1 , of the gamma distribution using uniform prior is equal to its 

classical counter parts the maximum likelihood estimator (MLE) and the uniformly 

minimum variance unbiased estimator (UMVUE). Hence for the data considered 

above, the posterior distribution of the parameter   for given data  1021 ,...,, yyyY   

using equations (4.5.3) is a gamma distribution with parameters 00.21,00.10   

i.e. gamma (10, 21). 

4.6 Comparison of non informative priors with respect to posterior variance: 

The posterior variances of parameter   using two non informative priors are 

given in the following table  

                             Posterior Variance of Parameter   

 

 

          Variance using 

                NIP 

       JP UP 

  0.2050 0.2100 

From the above table it is obvious that var( ) using Jeffrey prior is equal to 

var( ) using uniform prior. That is both priors are approximately equally efficient. So 

either of them can be used as a non informative prior and hence robustness with 

respect to the choice of non-informative prior is observed. However it is reasonable to 

prefer the uniform prior being simpler as compared to Jeffrey prior. 

4.7 Comparison based on Bayesian point estimates: 

The Bayesian estimates of   are presented in table classical counterparts are 

also given in the table. From table we conclude that both posterior mode and posterior 

mode posterior mean using the two priors are almost same as the MLE and UMVUE. 

                            

 

 



                                       Bayesian point estimates using NI priors: 

Bayesian estimates Classical counterpart (MLE UMVUE) 

JP  

2.05 

 

2.00 

 

UP 

 

2.10 

 

2.00 

 

       JP 

 

1.95 

 

2.00 

 

       UP 

 

2.00 

 

2.00 

 

4.8 Comparison of prior using coefficient of Skewness: 

This section provides the comparison of priors using coefficient of Skeweness. 

The coefficient of Skewness is calculated from the posterior distributions and is 

discussed below. The coefficient of the posterior distribution is given by



1

2y1 . 

                   Coefficient of Skewness for posterior distribution:  

  Posterior 

parameters 

Coefficient of 

skewness 

 ,  1  

JP (10.00,20.50) 0.4417 

UP (10.00,21.50) 0.4365 

From above table we observe that 01  , therefore the posterior distribution 

based on the Jeffrey‟s and the uniform priors are not symmetrically, rather they 

both are slightly positively and almost equally skewed. However, because of the 

simplicity the uniform prior may be preferred to the Jeffrey‟s prior. 

 

4.9 Comparison of priors using Bayes estimator: 

Bayes decision is a decision '' *d  which minimizes risk function and '' *d  is 

the best decision. If decision is the choice of the estimator then the Bayes decision is 

the Bayes estimator. The below given Bayes estimator based on non informative prior 

for different loss function. 

 



Loss function

 Y,L   

Bayes 

estimator 
*d  

Prior Posterior 

parameters

 ,  

Bayes 

estimator
*d  

Classical 

estimates 
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
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
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Jeffery‟s 

prior 

(10,20.50) 1.85 2.00 

Uniform 

prior 

(10,21) 1.90 2.00 
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
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JP (10,20.50) 1.95 2.00 

UP (10,21) 2.00 2.00 

 2

3 dL   




 

JP (10,20.50) 2.05 2.00 

UP (10,21) 2.10 2.00 

From the above table we see that Bayes estimator for different loss function

321 Land,L,L using two priors are almost equal to UMVUE and MLE. 

4.10 On the double prior selection for the parameter of Poisson distribution: 

Sometimes it may happen that for a single true unknown parameter, different prior 

information is available; usually we use one informative prior to incorporate that prior 

knowledge and ignoring the other information. So to include two different kind of 

information in the analysis, two different priors are selected for a single unknown 

parameter of Poisson distribution. Here we will make use of three double priors 

namely Gamma-chi-square distribution, gamma-exponential distribution, chi-square-

exponential distribution and one as prior: Gamma distribution for the unknown 

parameter of the Poisson model. 

Let  n,21 y......,y,yY 
 
be a random-sample, drawn from the passion distribution 

having unknown parameter  . The likelihood function of the sample observations 

 nyyyY ......,, ,21 is  
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where 0  is unknown parameter. 

4.11 Posterior distribution of the unknown parameter of Poisson distribution 

under Gamma-chi-square distribution as a double prior: 

It is assumed that the prior distribution of   is Gamma distribution with hyper 

parameters '''' 11 banda  which is given below; 
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Similarly, the second prior distribution is assumed to be the chi-square distribution 

with hyper parameter 1c .  The pdf of the prior is; 
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Now we define the double prior for  by combining these two priors which is as 

follows; 
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Now the posterior distribution of  for given data „Y‟ is 
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Hence from equation (4.11.3) we have 
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Hence the posterior distn of   for data is Gamma distribution with parameter         
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4.12 Gamma exponential distribution as a double prior: 

It is assumed that the double prior distribution of   is Gamma distribution with 

hyper parameter 'b'and'a' 22 and exponential distribution with hyper parameter 2c  

which is given below: 
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Now the posterior distribution of   for the given data „Y‟ is: 

    2221 1

2 |
cab

y
n eeeYp

n

i

i
 


   

    
0,|

1)(

2
1

2

22 





 

n

i

iya
cnb

ekYp                                              (4.12.2) 

 
where  

 









  dek

n

i

iya
cnb

1)(

0

1 1

2

22  

Hence from equation (4.12.2) we get 

 
   

1)(

1
2

22
2

1

2

221

2

|






 













 

n

i

i

n

i

i ya
cnb

n

i
i

ya

e

ya

cbn
Yp                                (4.12.3) 

This is the probability density function of Gamma distribution with parameter
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4.13 Chi-square- exponential distribution as a double prior: 

Now it is assumed that the double prior distribution of  is chi-square distribution 

with hyper parameter 3a  and the exponential distn with hyper parameter '' 3c   which is 

given below;  
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Now the posterior distribution of for the given data „Y‟ is: 
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Then from equation (4.13.1) we get  
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which is the pdf of Gamma distribution with parameters 
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 so the posterior distribution of   for given 

data is Gamma distribution having parameters  33 and . 

4.14 Gamma distribution as prior: 

The single prior distribution of   is Gamma distribution with hyper parameters 

4a  and 4b which is given below: 
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Now the posterior distribution of  for the given data „Y‟ is 
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This is the Gamma distribution with parameters 
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So the posterior distribution of   for given data is Gamma distribution having 

parameter 44 and . The Gamma distribution is a natural conjugate prior for   of 

Poisson distribution (see Gelman et.al (1995) and Bernardo and smith (1994). 

4.15 Comparison of priors with respect to posterior variances: 

The variances of the posterior distribution under all of assumed informative priors 

are calculated by assuming different sets of values hyper parameter, which are given 



in tables 4.3.1, 4.3.2, 4.3.3 the variance of posterior distribution under all assumed 

priors is 
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4.16 The posterior predictive distribution: 

Since we have observed that there is only type of posterior distribution derived 

under all the priors i.e. Gamma distribution. We now derive predictive distribution 

under this posterior distribution. 

4.17 Posterior predictive distribution under Gamma chi-square prior: 

The posterior predictive distribution for 1 nYX  given  nyyyY ......,,: ,21  
under 

Gamma-chi-square distribution is      

     
     




0

11 ||| dYPxPYxP                                                               (4.17.1) 

   



 

 

d
x

ee
YxP

x

0 1

1

1
1

!
|

111

                                                    (4.17.2) 

    





 






de
x

YxP
x

0

11

1

1
1

11

1

!
|  

  
 

 
,......2,1,0,

1!
|

1

1

1

1

1

1
1 














x
x

x
YxP

x
                                      

(4.17.3) 

This is probability mass function of Poisson-Gamma distribution i.e 

  .....2,1,0;0,1,,~| 1111  xPGYX  

Where 11 and  are given in (4.11.4) 

4.18 The posterior predictive distribution Gamma-exponential prior: 

The posterior predictive distribution for 1 nYX  given  nyyyY ,...,,: 21  
under 

Gamma exponential prior: 
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This is the probability mass function of Poisson-Gamma distribution i.e 

  .....2,1,0;0,1,,~| 2222  xPGYX  

Where 22 and  are given in (4.12.3) 



 

4.19 Posterior predictive distribution under chi-square exponential prior: 

The posterior predictive distribution of 1 nYX  given  nyyyY ,...,,: 21  under chi-

square exponential prior:  
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This is also the probability density function of Poisson-Gamma distribution i.e. 

  .....2,1,0;0,1,,~| 3333  xPGYX  

where 33 and  are given in (4.13.2)  

4.20 Posterior predictive distribution under Gamma prior: 

Now, we consider the posterior predictive distribution of 1nYX   given       

 nyyyY ......,,: ,21  
under Gamma prior is 
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which is the pmf of Poisson-Gamma distribution i.e.           

  .....2,1,0;0,1,,~| 4444  xPGYX  

where 44 and  are given (4.14.2) 

4.21 Comparison of prior using the posterior predictive distribution variances: 

The posterior predictive variances using different prior distribution are given in 

the tables 4.3.4; 4.3.2; and 4.3.3 

For the posterior predictive (Poisson-Gamma) distribution we have 
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4.22 Normal Approximation of Possion Distribution: 

Suppose  nyyyY ,.......,, 21


 is a random sample from Poisson distribution 

with unknown parameter  , then  
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The likelihood function is given by  
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We consider a more general class of priors,   0,
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To construct the approximation we need the second derivatives of the log-posterior 

density, 
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From which the posterior mode is readily obtained as 
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The second derivative of the log posterior density is 
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and hence negative of the hessian is 
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Therefore, the large sample approximate posterior distribution is  
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(4.22.1) 



For c=0,   1P (uniform prior), we have from (4.22.1) 
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Now consider another class of prior (Gamma prior) given by 

  0,'0;1   baeP ba  

The log posterior density of   is given by 
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From which the posterior mode is readily obtained as 
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The second derivative of the log posterior density is 
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And hence, negative of the hessian is 

  
 






















 



1
1|log

1

22
by

YP
I

n

i

i
 



The second derivative at the mode ̂ is then    
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Therefore, the large sample approximate posterior distribution is  
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Thus 95% approximate HPD credible interval for   when general class of priors 
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4.23 Laplace Approximations For Poisson Distribution:
 

The probability density function of Poisson distribution is 
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The likelihood function of Poisson distribution is 
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 Consider gamma as priors 
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Thus Posterior ∝ likelihood x prior 
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To construct the Laplace approximation, we need posterior mode 


  and )(I
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log-posterior density. 
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The posterior mode of this density is readily obtained as 
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For y ˆ;0,&1  which is same as MLE of Poisson distribution 

The second derivative of the log-posterior density at mode θ  is 
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The Laplace‟s approximation to the posterior of Poisson distribution is given by 
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4.24 Lindely Approximation for Possion Distribution: 

Suppose  nyyyY ,.......,, 21  is a random sample from Poisson distribution 

with unknown parameter   then the pmf of Poisson distribution is  
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And the likelihood function is  
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We consider here that the prior distribution of   is lognormal with density 
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Where ),(   are known hyper parameter.  

Since    tconsYnL

n

i

i tanlog

1

 


 

  
 

01 





L
L  gives Y̂  

  
y

n

y

yn
Y

L

n

i

i
















 22

1
ˆ2 ˆ

|  

  
233

1
ˆ3

22

ˆ

2

|
y

n

y

yn
Y

L

n

i

i












 


n

y
Y

n

i

i



































1

2

1
ˆ

2

ˆ
|  

Further 

    tcons tanloglog
2

1 2





  

    



1

 

   


















y

y

log
1

1
| ˆ1

 

Hence,  
2

2

2~

log
1

1
|

n

y

y

n

n

yy

y
yYE 












  































2~ n

1
O

ylog
1

n

1
yY|E  

4.25 Bayesian Estimation of Prior Distribution Function of the Possion Model: 

The distribution function of a Poisson distribution with parameter  obtained 

by repeated integration by parts is given by 
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1 dyyea ay , the complete gamma function. The relationship (4.25.1) between 

the two prominent distributions, one discrete and other continuous turns out to be 

significant in many studies, especially in the study of stochastic point process. In 

certain situations, the Poisson distribution gives a very good approximation to the 

binomial distribution. 

The gamma distribution is the natural conjugate prior for   of a Poisson model 

(Gelman et al, 1995). A family of priors is the conjugate if the choice of a prior in that 

family generates a posterior that belongs to a same family. We here consider a gamma 

prior,  ,G  as describing the prior uncertainty about the parameter   having the pdf 
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where   and   are the prior parameters. The parameter   is the shape parameter 

while  is a scale parameter. 

We now will derive Bayes estimator of  t,F   under the prior (4.25.2 ) and also 

report the MLE of  t,F  . The likelihood function for a random sample 

 nyyyY ,.......,, 21   of size n from a Poisson distribution is given by 
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(4.25.3) 

Combining the likelihood function (4.25.3) and the prior (4.25.2) the posterior of   is    
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where n'   and T'  . The posterior pdf (4.25.4) is also gamma,  ,','G   

showing that the posterior distribution has the same functional from as the prior, and, 

hence the gamma priors are closed under sampling. 

The Bayes estimator of   t,F    under the squared error loss function is 
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In order to evaluate (4.25.5), we use result on the Laplace transformation of the 

incomplete gamma function,(Erdelyi,1953) 
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 is the Gauss hyper 

geometric function. Setting 1tq,'p,'a   in (4.25.6), the Bayes estimator, 

 t,*F   of  t,F   in (4.25.5) takes the form: 
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 ttF  in (4.25.7) we the following relationship 

between the Gauss hyper geometric function and the gamma function Abramowitz 

stegun (1972), 
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It is well-known that the MLE   of a Poisson distribution is y  and hence by the 

invariance property, the MLE of  t,F   in (4.25.1) is 
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4.26 Estimation of the left truncated  t,F  : zero class missing: 

When cy   in a Poisson distribution cannot be observed or are missing and the 

remaining probabilities at  ,......,1,ccy  adjusted so that  
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the left truncated Poisson distribution below c. The probability function of the Poisson 

distribution truncated at 0y  is given by 

 
 

0,.....;2,1,0,
!1











y
ye

e
yf

y

                                                      (4.26.1) 

Using the negative binomial expansion, namely, 
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The likelihood function can be written as 
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Combining the prior (4.25.2) and the likelihood function (4.26.2), the posterior pdf of

  is, 
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The Bayes estimator of   under the squared error loss function is 
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The distribution function  t,F0   with zero class missing is given by     
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Thus the Bayes estimator of  t,F0   under squared error loss function is  
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where k is given by (4.26.4). Using   1
e1

 , the equation (4.26.7) takes the form 
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The first integral within the double summation of (4.26.8) is a complete 

gamma function which can easily be seen as

 
'

ij'

'


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
. Similarly the second integral 

becomes

 
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1ij'

'





. The third integral within the double summation can be 

evaluated by using the Laplace transformation of the incomplete gamma function as 

in (4.7.6) by setting 1tq,p,ija ''  . Hence the third integral takes the form
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Finally, the equation (4.26.8) becomes  
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We note that the mean of the possion distribution truncated at y=0 is
 



e1
. Hence 

the MLE of the   for the given truncated sample can be obtained by solving the 

equation numerically; 
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                                                                         (4.26.11) 

where *y  is the truncated sample mean (Irwin, 1959) has given an explicit expression 

for ̂  of (4.26.11) as 
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(4.26.12) 

Again by the invariance property, the MLE of  t,F0   in (4.26.6) is 
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where
*

0y is the solution of equation (4.26.6) for ̂ . 

Example 4.1(Gelman et al, 1995): Suppose we have information on deaths of 

passengers in the airline accidents from 1976 to 1985  

 Year:  1976    1977    1978    1979    1980    1981    1982    1983   1984    1985  

Passenger deaths: 734  516    754   877  814   362   764      809    223      1066 

We have developed some programmes for MLLE and Bayes estimates for the above 

example in R software 

#Program for MLE of Poisson distribution. 

library(stats4) 

post.pois<-function(theta,y){ 

return(length(y)*theta-sum(y)*log(theta)-sum(log(y))) 

} 

y<-c(734,516,754,877,814,362,764,809,223,1066) 

opt <- optim(par = 552, fn = post.pois, method = 

"BFGS",y=y) 

$par 

[1] 691.9003 

$value 

[1] -38391.95 

$counts 

function gradient  

       8        6  

$convergence 

[1] 0 

$message 

NULL 

# Bayes estimates of Poisson distribution.  

bayes.est<-function(y) 

 { 

 n<-length(y) 

 C<-c(0,1) 

 estimate<-(sum(y)-(C/2)+1)/n 



 return(estimate) 

 } 

y<-c(734,516,754,877,814,362,764,809,223,1066) 

bayes.est(y=y) # To get the output.   

 [1] 692.00 691.95 

 Example 4.2 (Birth rates): 

 The Poisson distribution provides a realistic model for many random phenomena. 

Since the values of a Poisson random variable are non negative integers, any random 

phenomena for which a count of some sort is of interest, is a candidate for modeling 

by assuming a Poisson distribution. 

Over a course of the 1990s the General Social Survey gathered data on the 

educational attainment and number of children of 155 women who were 40 years of 

age at the time of their participation in the survey. Let 
1,11,21,1 ,...,, nYYY denote the 

number of children for n1 women without college degrees and 
2,22,22,1 ,...,, nYYY  denote 

the number of children for n2 women with college degrees. The group sums and 

means are as follows: 

Less than bachelor‟s:   95.1,217,111 1

1

1,1

1

 


YYn
n

i

i
 

Bachelors or higher:              50.1,66,44 1

1

2,2

2

 


YYn
n

i

i
 

Posterior means, variances are obtained from their gamma posterior distributions by 

using the following program  in R software and are presented in table 4.2.1. 

# Posterior mean and variance under gamma chi-square as a double prior 

Post.mav<-function(a1,b1,c1,n,sy){ 

pmgc<-(a1+c1/2+sy-1)/(n+b1+1/2) 

pvgc<-(a1+c1/2+sy-1)/((n+b1+1/2)^2) 

list(Posterior.mean=pmgc,Posterior.variance=pvgc) 

 } 

 Post.mav(2,2,2,111,217) 

# Posterior mean and variance under gamma exponential as a double prior 

 Post.mav<-function(a2,b2,c2){ 

 n<-111;sy1<-217  

 pmge<-(a2+sy1)/(n1+b2+c2) 



pvge<-(a2+sy1)/((n1+b2+c2)^2) 

 list(Posterior.mean=pmge,Posterior.variance=pvge) 

 } 

 Post.mav(2,2,2) 

# Posterior mean and variance under chi-square exponential as a double prior 

 Post.mav<-function(a3,b3,c3){ 

n<-111;sy1<-217  

pmce<-(a3/2+sy1)/(n1+c3+1/2) 

pvce<-(a3/2+sy1)/((n1+c3+1/2)^2) 

list(Posterior.mean=pmce,Posterior.variance=pvce) 

 } 

Post.mav(2,2,2) 

# Posterior mean and variance under gamma prior 

 Post.mav<-function(a,b){ 

 n<-111;sy1<-217  

pmg<-(b+sy1)/(a+n1) 

pvg<-(b+sy1)/((a+n1)^2) 

list(Posterior.mean=pmg,Posterior.variance=pvg) 

 } 

 Post.mav(2,2,2) 

Table 4.2.1:  

Type of Prior Less than bachelor’s Bachelors or higher 

Posterior 

Mean 

Posterior 

variance 

Posterior 

Mean 

Posterior 

variance 

Uni fo rm Pr io r  1.963964 0.01769337 1.522727 0.03460744 

J e f f r ey‟ s  P r io r  1.959459 0.01765279 1.511364 0.03434917 

Ga mma  d i s t r i bu t ion  1.938053 0.01715091 1.478261 0.03213611 

Ga mma  –Chi-square distribution 1.929515 0.01700014 1.462366 0.03144872 

Ga mma  -Exponential distribution  1.904348 0.01655955 1.416667 0.02951389 

Chi-square-Exponential distribution.  1.920705 0.01692251 1.440860 0.03098624 

 We observe that the posterior mean for group1(less than bachelors) under all 

assumed priors is more than that of group2 (bachelors or higher).The posterior 

variance of group1(less than bachelors) is less than the posterior variance of group2 

(bachelors or higher) under all assumed priors. 



Also the posterior variance under all the assumed priors is calculated by 

assuming the value of hyper parameters to be 2. The posterior variances under the 

double prior Gamma -Exponential distribution are less as compared to other 

assumed priors, which shows that this prior is efficient as compared to other priors 

and this less variation in posterior distribution helps in making more precise Bayesian 

estimation of the true unknown parameter λ of Poisson distribution. 

Example 4.3 (Simulation): We have generated a sample of size 30, 60, 100 from 

Poisson pmf with parameter   to represent small, moderate and large sample sizes. 

Also we have taken different values for parameter   and hyper parameters. 

Programme for simulation in R-software for posterior variance under different 

Priors: 

sim.var<-function(y,ai,bi,ci){ 

n<-length(y) 

pvgc<-(ai+ci/2+sum(y)-1)/((n+bi+1/2)^2) 

pvge<-(ai+sum(y))/((n+bi+ci)^2) 

pvce<-(ai/2+sum(y))/((n+ci+1/2)^2) 

pvg<-(bi+sum(y))/((ai+n)^2) 

list(pvgc=pvgc,pvge=pvge,pvce=pvce,pvg=pvg) 

} 

y<-rpois(100,2) 

sim.var(y,2,2,2) 

# Simulations in R Software for posterior predictive variance of the posterior 

distribution  under different Priors: 

pre.var<-function(y,ai,bi,ci){ 

n<-length(y) 

pvgc<-(ai+ci/2+sum(y)-1)/(n+bi+1/2)*(1+1/( n+bi+1/2)) 

pvge<-(ai+sum(y))/(n+bi+ci)*(1+1/( n+bi+ci)) 

pvce<-(ai/2+sum(y))/(n+ci+1/2)*(1+1/( n+ci+1/2)) 

pvg<-(bi+sum(y))/(ai+n)*(1+1/( ai+n)) 

list(pvgc=pvgc,pvge=pvge,pvce=pvce,pvg=pvg) 

} 

 

 



Table 4.3.1: Variances of the posterior distribution using different priors with 

n=30. 

Size λ 
Hyper 

Parameters 

ai=bi=ci 

Gamma Chi-

Square 

Distribution   

Gamma 

Exponential 

distribution 

Chi-Square 

Exponential 

distribution 

Gamma 

distribution 

 

 

 

30 

 

 

 

 

2.0 

2 0.06248 0.05709 0.06153 0.06445 

5 0.05594 0.04312 0.05276 0.05632 

8 

 
0.05059 0.03402 0.04587 0.04986 

10 

 
0.04755 0.02960 0.04206 0.04625 

 

5.0 

2 

 
0.13538 0.12370 0.13443 0.13964 

5 0.11704 0.09125 0.11386 0.11918 

8 0.10254 0.07041 0.09782 0.10318 

10 0.09449 0.06040 0.08901 0.09437 

8.0 

2 
0.23195 

 
0.21193 

0.23109 

 

0.23925 

 

5 0.19797 0.15500 0.19480 
0.20244 

 

8 

 
0.17136 0.11862 0.16663 0.17382 

10 

 
0.15668 0.10120 0.15119 0.15812 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.3.2: Variances of the posterior distribution using different priors with 

n=60. 

Size λ 
Hyper 

Parameters 

ai=bi=ci 

Gamma Chi-

Square 

Distribution   

Gamma 

Exponential 

distribution 

Chi-Square 

Exponential 

distribution 

Gamma 

distribution 

 

 

 

60 

 

 

 

 

2.0 

2 0.02944 0.02807 0.02918 0.02991 

5 0.02785 0.02408 0.02692 0.02792 

8 

 
0.02642 0.02094 0.02493 0.02616 

10 

 
0.02555 0.01921 0.02374 0.02510 

 

5.0 

2 

 
0.07756 0.07397 0.07731 0.07882 

5 0.07167 0.06244 0.07074 0.07242 

8 0.06649 0.05349 0.06500 0.06682 

10 0.06337 0.04859 0.06156 0.063469 

8.0 

2 0.11929 0.11376 0.11904 0.12122 

5 0.10966 0.09571 0.10873 0.11100 

8 

 
0.10123 0.081717 0.09973 0.10207 

10 

 
      0.09617 0.07406 0.09436 0.09673 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.3.3: Variances of the posterior distribution using different priors with 

n=100. 

Size λ 
Hyper 

Parameters 

ai=bi=ci 

Gamma Chi-

Square 

Distribution   

Gamma 

Exponential 

distribution 

Chi-Square 

Exponential 

distribution 

Gamma 

distribution 

 

 

 

100 

 

 

 

 

 

2.0 

2 0.01875 0.01821 0.01865 0.01893 

5 0.01810 0.01652 0.01774 0.01814 

8 

 
0.01749 0.01508 0.01690 0.01740 

10 

 
0.01711 0.01423 0.01637 0.01694 

 

 

 

5.0 

2 

 
0.04606 0.04474 0.04597 0.04652 

5 0.04388 0.04024 0.04353 0.04417 

8 0.04187 0.03641 0.04128 0.04200 

10 0.04062 0.03416 0.03988 0.04066 

 

 

8.0 

2 0.07471 0.07257 0.07462 0.07545 

5 0.07093 0.06512 0.07057 0.07147 

8 

 
0.06744 0.05878 0.06685 0.06781 

10 

 
0.06527 0.05506 0.06453 0.06553 

 

The posterior variances under the double prior Gamma- exponential 

distribution are less as compared to other informative priors, which show that this 

prior is efficient as compared to the other prior and this less variation in posterior 

distribution helps in making more priors Bayesian estimation of true unknown 

parameter   of Poisson distribution. The results obtained using above programme are 

presented in tables 4.3.1;4.3.2;4.3.3 for different values of hyper parameters, n and  . 

 

 

 

 

 

 

 



Table 4.3.4: Posterior Predictive Variances of the posterior distribution using 

different priors with n=30. 

Size λ 
Hyper 

Parameters 

ai=bi=ci 

Gamma Chi-

Square 

Distribution   

Gamma 

Exponential 

distribution 

Chi-Square 

Exponential 

distribution 

Gamma 

distribution 

 

 

 

30 

 

 

 

 

2.0 

2 2.09325 1.99827 2.06153 2.12695 

5 2.04185 1.76812 1.92601 2.02775 

8 

 
1.99865 1.59924 1.81211 1.94459 

10 

 
1.97348 1.50960 1.74577 1.89625 

 

5.0 

2 

 
4.53538 4.32958 4.50366 4.60839 

5 4.27197 3.74125 4.15612 4.29061 

8 4.05059 3.30954 3.86405 4.02423 

10 3.92165 3.08040 3.69394 3.86937 

8.0 

2 7.77041 7.41782 7.73869 7.89550 

5 7.22614 6.35500 7.11029 7.28816 

8 

 
6.76876 5.57514 6.58222 6.77908 

10 

 
6.50236 5.16120 6.27465 6.48312 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.3.5: Posterior Predictive Variances of the posterior distribution using 

different priors with n=60. 

Size λ 
Hyper 

Parameters 

ai=bi=ci 

Gamma Chi-

Square 

Distribution   

Gamma 

Exponential 

distribution 

Chi-Square 

Exponential 

distribution 

Gamma 

distribution 

 

 

 

60 

 

 

 

 

2.0 

2 1.86944 1.82495 1.85318 1.88475 

5 1.85228 1.70979 1.79028 1.84331 

8 

 
1.83664 1.61305 1.73296 1.80558 

10 

 
1.82697 1.55671 1.69750 1.78224 

 

5.0 

2 

 
4.90931 4.79248 4.89305 4.94953 

5 4.75083 4.41938 4.68882 4.76449 

8 4.60642 4.10595 4.50274 4.59602 

10 4.51707 3.92343 4.38761 4.49183 

8.0 

2 7.57529 7.39502 7.55904 7.63735 

5 7.29287 6.79571 7.23087 7.32639 

8 

 
7.03553 6.29224 6.93185 7.04325 

10 

 
6.87631 5.99906 6.74684 6.86816 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.3.6: Posterior Predictive Variances of the posterior distribution using 

different priors with n=100. 

Size λ 
Hyper 

Parameters 

ai=bi=ci 

Gamma Chi-

Square 

Distribution   

Gamma 

Exponential 

distribution 

Chi-Square 

Exponential 

distribution 

Gamma 

distribution 

 

 

 

100 

 

 

 

 

 

2.0 

2 1.94070 1.91244 1.93085 1.95030 

5 1.92805 1.83471 1.88978 1.92290 

8 

 
1.91611 1.76508 1.85100 1.89703 

10 

 
1.90851 1.72256 1.82633 1.88057 

 

 

 

5.0 

2 

 
5.01430 4.94129 5.00445 5.03912 

5 4.91343 4.69686 4.87516 4.92263 

8 4.81819 4.47792 4.75308 4.81267 

10 4.75760 4.34423 4.67541 4.74272 

 

 

8.0 

2 7.65444 7.54299 7.64459 7.69233 

5 7.47779 7.15537 7.43952 7.49932 

8 

 
7.31100 6.80819 7.24589 7.31713 

10 

 
7.20488 6.59618 7.12270 7.20124 

 

The results obtained using above programme are presented in tables 4.3.4; 4.3.5; 

4.3.6 for different values of hyper parameters, n and  . 

In the tables 4.3.4; 4.3.5; and 4.3.6 It is observed that the values of the posterior 

predictive variances computed under the double prior Gamma- exponential 

distribution using different values of hyper parameters are less as compared to the 

other priors, which means we can prefer the prior Gamma- exponential as a suitable 

double prior for the unknown parameter  of Poisson distribution. Further this less 

variation in the posterior predictive distribution will help us in closely estimating the 

true probabilities of the future observations. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER – 5 

BAYESIAN ESTIMATION FOR 

NORMAL DISTRIBUTION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.1 Introduction: 

he normal distribution plays a very important role in the statistical theory 

as well as methods. The names of the great mathematician such as 

Gauss, Laplace, Legendre & others are associated with the discovery & use of the 

distribution of errors of measurement. The earliest published derivation of the 

normal distribution was an approximation to a binomial distribution by de-Morvie 

in 1733. In 1774 Laplace obtained the normal distribution as an approximation to 

hyper-geometric distribution and advocated tabulation of the probability integral

)(y .The work of Gauss in 1809, 1816 respectively established techniques based 

on the normal distribution which became standard methods used during the 

nineteenth century. Davis (1952) has shown that the normal distributions give quite 

a good fit for the failure time data. In 1961 Bazovsky discussed the use of the 

normal distribution in life testing & reliability problems. 

The pdf of the normal distribution with location parameter   and scale parameter 

  in given by 
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with mean   and variance 2 , 0   

5.2 Maximum likelihood estimate of normal distribution: 

Let n,21 y,.....,y,yY   be a random sample of size n with pdf  
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Then likelihood is given by 
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The log likelihood is given by 
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Case 1: when 
2  is known, the likelihood equation for estimating   is: 
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Case 2: when    is known, the likelihood equation for estimating 
2  is  
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Case 3: Both unknown: The likelihood equation for simultaneous estimation of   

and  
2    are; 
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5.3 Bayesian Estimation for the Parameters of Normal distribution:- 

Consider two parameter normal distribution 
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where   is the location parameter and   is the scale parameter. The standard 

argument as given in Box & Tiao (1973) leads to the quasi prior 0,
1

),( 


P   

or class of priors 0c,
1

)c|,(P
c




  which we consider here. 
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The joint Posterior distribution of  &  is given by 
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The marginal posterior of      is given by integrating out   in (5.3.2) we have 
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Bayes estimator of   is given by 
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Bayes estimator of 2  is  
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(5.3.5) 

If we put c=4 in (4.5) we observe that MLE of 
2  coincides with 

2̂  

and for c=3, the UMVUE of 
2  is the same as Bayes estimate for 

2 . 

Now, the marginal distribution of   is given by    
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Bayes estimator of   is given by  
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(5.3.7) 

5.4 Bayesian intervals for parameter of normal distribution: 

The joint posterior of   and 2   is given by 
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where k is normalizing constant. 

Putting c=2 in the (5.4.1) we have 
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(5.4.2) 

Integrating out   and restoring the normalizing constant k, the marginal posterior 

density for 
2  is given by 
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Similarly we obtain the marginal posterior of   
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from (5.4.3) it follows 2A   is distributed as 2  with (n-1) degrees of freedom. 

For 1  equal tail credible interval   2121 TT;T,T   must satisfy the conditions 
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where  v,k2  = upper 100% point of a 2  distribution with v  degrees of 

freedom. 
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Thus the )1(   equal tail credible interval of  2 is 
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which is the same as the classical )1(   confidence interval. The posterior 

distribution of 
2  in    (5.4.3) is unimodal. Hence the shortest credible interval & 

the HPD interval are the same. 

The )1(  -HPD interval  21 H,H  must simultaneously satisfy  
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It follows from (5.4.4) that  
 

nA

y1n 
 follows Student‟s t-distribution with (n-

1) degrees of freedom. Also the posterior distribution of   is unimodal and 

symmetric about y . Hence the )1(  equal-tail credible, shortest credible & the 

HDP intervals for    are identical. Such an interval  21 H,H  must satisfy the 

condition. 
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where   %100m,kt   point of student‟s t- distribution with m degrees of freedom. 

Here again we observe that the )1(  -HDP intervals of   is the same as the 

classical )1(  confidence interval for  . 

Example:we generated a random sample of size n=20 from a normal dist with   

=20, 2  =3. For this sample x  =20.50, A=1733.25. 

We want to construct the 90% credible & HPD intervals for   & 2 . 

The 90% equal tail credible limits for 21 T,T are given by (5.4.5): 
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The width of the interval .37.11Ic   The 90% of the HPD (as well as the shortest 

credible) limits 21 HandH which satisfies (5.5.6);(5.5.7) are given by



.38.14H,77.4H 21  The width of the interval CH I61.9I   as anticipated. The 

90% HPD (as well as the equal- tail & the shortest credible) limits for   are given 

by (5.5.8) 
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90% equal tail credible interval for  12.17,75.52   

90% HPD & shortest credible for  38.14,77.42   

90% HPD & shortest credible & equal-tail credible interval for 

 67.21,1933  

5.5 Normal Approximation for normal distribution: 

The pdf of normal distribution is given by 
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The likelihood function is given by 
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Therefore posterior density is given by 
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Therefore the posterior density of  yP |, 2

 

is given by 
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5.6 Selection of Prior Distribution for Normal Distribution: 

Let us consider the normal distribution with known mean   & unknown 

variance 2 . Bernardo (2005) gave an objective Bayesian decision theoretic 

solution to point estimation of the normal variance with mean as unknown & 

behavior of solution found is compared from both a Bayesian & a frequentists 

perspective. Sinha (1998) has obtained 95% predictive intervals for various sets of 

hyper parameters using sample size n=100 from Mendenhall & Harder (1958) 

mixture model. Lee (1997) derived a suitable conjugate prior (universe chi-squared 

distribution) for the normal variance with mean as known quantity. Evans (1964) 

derived some general forms of estimators of the variance of normal distribution. 

Using Bayesian methods & the conditions under which they lead to previously 

proposed Geodman (1960) estimators.  

We use the following informative priors for find the posterior distribution 

for the unknown parameter variance
2 and also find the posterior predictive 

distributions under these informative priors which are given below: 

1) Inverse chi-square distribution (conjugate prior).  

2) Inverse gamma distribution (conjugate prior). 

3) Levy distribution.  

4) Gumbel type=II distribution. 

Let nyyy ,.....,, 21  be a random sample from the normal distribution with 

parameters mean  (known) and variance 
2 (unknown). 

The likelihood function of the sample observations  nyyyY ,.....,,: 21  
is  
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5.7 The Posterior Distribution of 
2  Using Inverse Chi-Squared Distribution 

as prior: 

It is assumed that the prior distribution of 
2  is an inverse chi-squared 

distribution with hyper parameters 'b'and'a' 11  which is given below: 
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The density kernel is 
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(5.7.2) 

Now the posterior distribution of the parameter
2  for the given data 

nyyyY ,.....,,: 21  is 
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which is the density kernel of the inverse chi-squared distribution with parameters:

.wbandna 1111   So the posterior distribution of parameter 2  for the 

given data is an inverse chi-squared distribution having parameters 11 and   where 

11 and   have already been defined above. 

 

 



5.8 The Posterior Distribution of 2  Using Inverted Gamma Distribution as 

Prior: 

Now the prior distribution of 2  is assumed to be the inverted gamma distribution 

with the hyper parameters 'b'and'a' 22   having the following pdf 
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Now the posterior distribution of the parameter 
2  for given data n21 y,.....,y,y:Y  

is   
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(5.8.2)             

which is the density kernel of the inverted gamma distribution with the parameters 
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2  for 

the given data is an inverted gamma  22 ,  where 22 and   has been defined 

above. 

5.9 The Posterior Distribution of 
2  Using Levy Distribution as Prior: 

Third prior distribution is assumed to be Levy distribution with hyper 

parameter 'b' 3  which has the following pdf 
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Now the posterior distribution of the parameter 2  for given data n21 y,.....,y,y:Y  

is  
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which is the density kernel of the inverted gamma distribution with the parameters 

 
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
  so the posterior distribution of parameter 2  for the 

given data is an inverted gamma  33 ,  where 33 and   has been already 

defined above. 

5.10 The Posterior Distribution of 
2  Using Gumbel Type-II Distribution as 

Prior: 

The Gumbel Type-II distribution with the hyper parameters 'b'and'a' 44  is 

supposed to be the fourth prior distribution of 
2  which is: 
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For making the conjugate prior, we take 14 a  then the prior is: 
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Now the posterior distribution of the parameter 
2  for given data n21 y,.....,y,y:Y  

is  
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which is the density kernel of the inverted gamma distribution with the parameters 

 
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n 4
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
  so the posterior distribution of parameter 2  for the 

given data is an inverted gamma  44 ,  where 44 and   has been already 

defined above. 

5.11 The Posterior Predictive Distribution: 

We observe that there are two types of posterior distributions which are 

derived under all priors. So we now derive posterior predictive distributions under 

these posterior distributions i.e. inverted gamma and inverse chi-squared 

distributions. 

a) The Posterior Predictive Distribution under the Prior Inverse Chi-squared 

Distribution: 

 The posterior predictive distribution for 1 nYX given that nyyyY ,.....,,: 21  



under posterior inverse chi-squared distribution is: 
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which is the probability density function of t-distribution i.e. 
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Hence  YX |  has the t-distribution with three parameters 1,11 wandv,u  
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b) The Posterior Predictive Distribution under the Prior Inverted Gamma 

Distribution: 

The posterior predictive distribution for 1 nYX given that nyyyY ,.....,,: 21  



under posterior inverted gamma distribution is: 
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which is the probability density function of t-distribution i.e. 
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Hence Y|X  has the t-distribution with three parameters 222 wand,v,u  

where 0;,2 2
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c) The Posterior Predictive Distribution under the Prior Levy Distribution: 

The posterior predictive distribution for 1nYX 
 
given that n21 y,.....,y,y:Y

 

under posterior inverted gamma distribution is: 
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which is the probability density function of t-distribution i.e. 
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Hence YX |  has the t-distribution with three parameters 333 wand,v,u  

where 0;,2 3
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d) The Posterior Predictive Distribution under the Prior Gumbel Type-II 

Distribution: 

The posterior predictive distribution for 1 nYX
 
given that nyyyY ,.....,,: 21  

under posterior inverted gamma distribution is: 
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5.12 Comparison of priors with respect to posterior variances: 

The variances of the posterior distributions are calculated and are given in 

Table 5.2.1, 5.2.2, 5.2.3: 

1. For the posterior inverse chi-square distribution we have 
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2. For the posterior inverted gamma distribution we have 
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 5.13 Comparison using the posterior predictive variances: 

The posterior predictive variances using different prior distributions are 

given in the tables 5.2.4, 5.2.5 and 5.2.6. 

The posterior predictive variances under inverse chi-square as prior distribution is                       
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typeII distributions as priors is  
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 Example 5.1(Gelman et al, 1995): Simon Newcomb set up an experiment in 1882 to 

measure the speed of light. Newcomb measured the amount of time required for light 

to travel a distance of 7442 meters. The measurements are given below: 

28,  26,  33,  24,  34,  -44,  27,  16,  40, -2, 29,  22,  24,  21,  25,  30,  23,  29,  31,  19, 24,  20,  

36,  32,  36,  28,  25,  21,  28,  29,  37,  25,  28,  26,  30,  32,  36,  26,  30,  22,  36,  23,  27,  

27,  28,  27,  31,  27,  26,  33,  26,  32,  32,  24,  39,  28,  24,  25,  32,  25, 29,  27,  28,  29,  16,  

23. 

We apply the normal model, assuming that all 66 measurements are independent 

draws from a normal distribution with mean   and variance 2 . We use the following 

programme for obtaining the posterior mode and posterior standard error  for   and    

under different priors and are shown in table 5.1.1.  

#Bayesian analysis of normal distribution with different priors in R. 

#Prior=1. 

pos.normal<-function(theta,y) 

{ 

z<-(y-theta[1])/theta[2] 

n<-length(y) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1) 

pos<-pri+lik 

return(pos) 

} 

speed<-

c(28,29,24,37,36,26,29,26,22,20,25,23,32,27,33,24,36,28,2

7,32,28,24,21,32,26,27,24,29,34,25,36,30,28,39,16,44,30,2

8,32,27,2823,27,23,25,36,31,24,16,29,21,26,27,25,40,31,28

,30,26,32,     -2,19,29,22,33,25) 

out<-nlm(pos.normal,y=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 



> out 

$minimum 

[1] 212.0851 

$estimate 

[1] 26.21211 15.08062 

$hessian 

              [,1]          [,2] 

[1,]  5.804110e-01 -9.987634e-05 

[2,] -9.987634e-05  5.801214e-01 

> std.err 

[1] 1.312599 1.312927 

#Prior=1/sigma. 

pos.normal<-function(theta,y) 

{ 

z<-(y-theta[1])/theta[2] 

n<-length(y) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/theta[2]) 

pos<-pri+lik 

return(pos) 

} 

out<-nlm(pos.normal,y=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 214.7947 

$estimate 



[1] 26.21211 14.96764 

$hessian 

              [,1]          [,2] 

[1,]  0.5892058182 -0.0001023543 

[2,] -0.0001023543  0.5978357346 

> std.err 

[1] 1.302766 1.293329 

#Prior=1/sigma^2. 

pos.normal<-function(theta,y) 

{ 

z<-(y-theta[1])/theta[2] 

n<-length(y) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/(theta[2]^2)) 

pos<-pri+lik 

return(pos) 

} 

out<-nlm(pos.normal,y=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 217.4969 

$estimate 

[1] 26.21211 14.85718 

$hessian 

              [,1]          [,2] 

[1,]  0.5979996113 -0.0001043341 



[2,] -0.0001043341  0.6158139449 

> std.err 

[1] 1.293152 1.274310 

# Prior=1/sigma^3. 

pos.normal<-function(theta,y) 

{ 

z<-(y-theta[1])/theta[2] 

n<-length(y) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/(theta[2]^3)) 

pos<-pri+lik 

return(pos) 

} 

out<-nlm(pos.normal,y=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 220.1917 

$estimate 

[1] 26.21211 14.74913 

$hessian 

              [,1]          [,2] 

[1,]  0.6067937002 -0.0001066644 

[2,] -0.0001066644  0.6340591994 

> std.err 

[1] 1.283747 1.255842 

# Prior=1/sigma^4. 



pos.normal<-function(theta,y) 

{ 

z<-(y-theta[1])/theta[2] 

n<-length(y) 

lik<- n*log(theta[2])+sum(z^2) 

pri<--log(1/(theta[2]^4)) 

pos<-pri+lik 

return(pos) 

} 

out<-nlm(pos.normal,y=speed,c(15,12),hessian=T) 

std.err<-sqrt(diag(solve(out$hessian))) 

> out 

$minimum 

[1] 222.8793 

$estimate 

[1] 26.21212 14.64341 

$hessian 

             [,1]         [,2] 

[1,]  0.615586710 -0.000110063 

[2,] -0.000110063  0.652567967 

> std.err 

[1] 1.274546 1.237904 

 

 

 

 

 



Table 5.1.1: Posterior mode and Posterior standard error of parameters of 

Normal distribution with different priors. 

Prior  Posterior mode 

Mu 

Posterior Std.err 

Mu 

Posterior mode 

sigma 

Posterior Std.err 

sigma 

1 26.21211 1.312599 15.08062 1.312927 

1/sigma 26.21211 1.302766 14.96764 1.293329 

1/(sigma^2) 26.21211 1.293152 14.85718 1.274310 

1/(sigma^3) 26.21211 1.283747 14.74913 1.255842 

1/(sigma^4) 26.21211 1.274546 14.64341 1.237904 

 

Example: 5.2 (simulation): We generated a sample of size 30, 60, 100 from normal 

pdf with parameter   and 2  to represent small, moderate and large sample sizes. 

Also we have taken different values for parameters and hyper parameters. 

Programme for simulation in R-software: 

# Simulations in R Software for posterior  variance 

# Posterior  variance of sigma^2 under chi-square as a prior 

sim.var <-function(a1,b1,mu,y){ 

n<-length(y); w<-sum((y-mu)^2) 

alpha1<-(a1+n);beta1<-b1+w 

pvc<-2*(beta1^2)/(((alpha1-2)^2)*(alpha1-4))  

return(pvc) 

 } 

a1=b1=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4)) 

y3<-rnorm(100,20,sqrt(6)) 

cbind(sim.var(a1,b1,mu,y1),sim.var(a1,b1,mu,y2),sim.var(a

1,b1,mu,y3)) 

 Posterior variance of sigma^2 under inverted gamma as a prior 

sim.var <-function(a2,b2,mu,y){ 

n<-length(y); w<-sum((y-mu)^2) 

alpha2<-(a2+n/2);beta2<-(2*b2+w)/2 

pvg<-(beta2^2)/(((alpha2-1)^2)*(alpha2-2))  



return(pvg) 

 } 

a2=b2=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4)) 

y3<-rnorm(100,20,sqrt(6)) 

cbind(sim.var(a2,b2,mu,y1),sim.var(a2,b2,mu,y2),sim.var(a

2,b2,mu,y3)) 

# Posterior  variance of sigma^2 under levy distribution as a prior 

sim.var <-function(a3,b3,mu,y){ 

n<-length(y); w<-sum((y-mu)^2) 

alpha3<-(1+n/2);beta3<-(b3+w)/2 

pvl<-(beta3^2)/(((alpha3-1)^2)*(alpha3-2))  

return(pvl) 

 } 

a3=b3=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4)) 

y3<-rnorm(100,20,sqrt(6)) 

cbind(sim.var(a3,b3,mu,y1),sim.var(a3,b3,mu,y2),sim.var(a

3,b3,mu,y3)) 

# Posterior  variance of sigma^2 under Gumbel type II distribution as a prior 

sim.var <-function(a4,b4,mu,y){ 

n<-length(y); w<-sum((y-mu)^2) 

alpha4<-(1+n/2);beta4<-(2*b4+w)/2 

pvgb<-(beta4^2)/(((alpha4-1)^2)*(alpha4-2))  

return(pvgb) 

 } 

a4=b4=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4)) 



y3<-rnorm(100,20,sqrt(6)) 

cbind(sim.var(a4,b4,mu,y1),sim.var(a4,b4,mu,y2),sim.var(a

4,b4,mu,y3)) 

Table5.2.1: Variances of the posterior distribution of 2 using different priors with n=30,60&100 

mean=20, variances V1=2, V2=4 & V3=6. 

Size 2  

Hyper        

Parameters      

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma 

Prior 

Levy Prior 

Gumbel 

Type-II 

Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

 

 

 

V1 

5 0.18889 0.14535 0.25304 0.29984 

10 0.14535 0.09637 0.29984 0.40534 

15 0.11654 0.07045 0.35060 0.52671 

20 0.09637 0.05482 0.40534 0.66396 

25 0.08162 0.04453 0.46404 0.81708 

30 0.07045 0.03731 0.52671 0.98607 

35 0.06175 0.03200 0.59335 1.17094 

40 0.05482 0.02795 0.66396 1.37167 

45 0.04918 0.02478 0.73853 1.58829 

50 0.04918 0.02222 0.81708 1.82077 

 

 

 

 

 

60 

 

 

 

 

 

V2 

5 0.94822 0.66542 1.27028 1.37267 

10 0.66542 0.37790 1.37267 1.58936 

15 0.49165 0.24371 1.47903 1.82192 

20 0.37790 0.17095 1.58936 2.07035 

25 0.29968 0.12723 1.70365 2.33466 

30 0.24371 0.09894 1.82192 2.61484 

35 0.20235 0.07956 1.94415 2.91089 

40 0.17095 0.06568 2.07035 3.22281 

45 0.14656 0.05539 2.20052 3.55061 

50 0.14656 0.04753 2.33466 3.89428 

 

 

 

 

 

100 

 

 

 

 

 

V3 

5 0.40182 0.29359 0.53830 0.60564 

10 0.29359 0.17886 0.60564 0.75224 

15 0.22503 0.12236 0.67696 0.91471 

20 0.17886 0.09025 0.75224 1.09305 

25 0.14626 0.07015 0.83149 1.28727 

30 0.12236 0.05665 0.91471 1.49736 

35 0.10428 0.04710 1.00190 1.72332 

40 0.09025 0.04005 1.09305 1.96516 

45 0.07913 0.03468 1.18818 2.22287 

50 0.07913 0.03047 1.28727 2.49645 

 

 

 

 

 

 



Table 5.2.2:Variances of the posterior distribution of 2 using different priors with n=30,60&100 

mean=25, variances V1=2, V2=4 & V3=6. 

Size 2  

Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel    

Type-II Prior 

 

 

 

 

30 

 

 

 

 

V1 

5 0.2523937 0.1097682 0.2946667 0.4012673 

10 0.1899811 0.07588661 0.3450102 0.4596842 

15 0.1494729 0.05722005 0.3993219 0.5220694 

20 0.121592 0.04559845 0.4576019 0.5884228 

25 0.10151 0.03774458 0.5198501 0.6587445 

30 0.086512 0.03211649 0.5860666 0.7330344 

35 0.0749788 0.02790248 0.6562513 0.8112926 

40 0.0658896 0.02463815 0.7304043 0.8935191 

45 0.058579 0.02204008 0.8085255 0.9797138 

50 0.0525954 0.01992622 0.890615 1.069877 

 

 

60 

 

 

V2 

5 0.5914351 0.2691619 0.9145326 0.6001036 

10 0.4868972 0.1956175 0.9443692 0.6490119 

15 0.4072712 0.1488878 0.9746847 0.699836 

20 0.3453757 0.1174243 1.005479 0.7525757 

25 0.2964068 0.09525345 1.036752 0.8072311 

30 0.257062 0.07904755 1.068505 0.8638023 

35 0.2250157 0.06683971 1.100736 0.9222892 

40 0.1985958 0.05740935 1.133446 0.9826918 

45 0.1765768 0.04996766 1.166635 1.04501 

50 0.1580456 0.043987 1.200303 1.109244 

 

100 

 

V3 

5 0.7697074 0.7045608 0.5548802 0.7478029 

10 0.6774931 0.555792 0.5655727 0.7727143 

15 0.6001549 0.4479326 0.5763672 0.7980339 

20 0.5347553 0.3676098 0.5872638 0.8237616 

25 0.4790326 0.3064124 0.5982624 0.8498975 

30 0.4312254 0.2588601 0.609363 0.8764415 

35 0.3899469 0.2212718 0.6205657 0.9033937 

40 0.3540953 0.1911091 0.6318705 0.9307541 

45 0.322787 0.1665803 0.6432772 0.9585227 

50 0.2953072 0.1463948 0.654786 0.9866994 

 

 

 

 

 

 

 

 

 



Table 5.2.3: Variances of the posterior distribution of 2 using different priors with 

n=30,60&100 mean=30, variances V1=2, V2=4 & V3=6. 

Size 2  

Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel    

Type-II Prior 

 

 

 

 

30 

 

 

 

 

 

V1 

5 0.2092032 0.1791297 0.5126912 0.4455196 

10 0.1596833 0.115501 0.5784639 0.5723825 

15 0.1271546 0.0826537 0.6482048 0.7151184 

20 0.1045247 0.06324058 0.721914 0.8737273 

25 0.08806729 0.05067085 0.7995914 1.048209 

30 0.07566947 0.04198114 0.8812371 1.238564 

35 0.06605869 0.03567106 0.9668511 1.444792 

40 0.05842996 0.03091072 1.056433 1.666893 

45 0.05225295 0.0272086 1.149984 1.904867 

50 0.04716612 0.02425725 1.247502 2.158714 

 

 

60 

 

 

V2 

5 0.3433044 0.3144186 0.3779776 0.606197 

10 0.2858744 0.2269046 0.3972446 0.6553481 

15 0.2417584 0.1715936 0.4169906 0.706415 

20 0.2071842 0.1345361 0.4372154 0.7593976 

25 0.1796133 0.1085437 0.4579192 0.8142958 

30 0.1572906 0.08962644 0.479102 0.8711098 

35 0.1389733 0.07543399 0.5007636 0.9298395 

40 0.1237629 0.06451246 0.5229042 0.9904849 

45 0.1109973 0.05592516 0.5455237 1.053046 

50 0.1001806 0.04904738 0.5686221 1.117523 

 

 

100 

 

 

V3 

5 0.9624093 0.5631733 0.775842 0.7773726 

10 0.8457255 0.4458316 0.7884762 0.8027677 

15 0.7479776 0.3605443 0.8012124 0.828571 

20 0.6654127 0.2968758 0.8140506 0.8547825 

25 0.5951436 0.2482518 0.8269909 0.8814021 

30 0.534923 0.2103816 0.8400332 0.9084299 

35 0.4829835 0.1803789 0.8531775 0.9358659 

40 0.4379213 0.15625 0.8664239 0.96371 

45 0.3986116 0.1365856 0.8797724 0.9919623 

50 0.3641455 0.120369 0.8932228 1.020623 

 

The results obtained using above programme are presented in tables 5.2.1 

:5.2.2; 5.2.3 for different values of hyper parameters, n and mean. In the above 

Tables 5.2.1, 5.2.2 and 5.2.3, it is observed that the values of the posterior 

predictive variances under inverted gamma distribution using different values of 

hyper parameters are less as compare to other priors which means we can prefer the 

prior inverted gamma distribution as a prior for the variance of normal distribution. 

 

 

 



# Simulations in R Software for predictive distribution 

# Predictive Posterior  variance of sigma^2 under chi-square as a prior 

pre.var <-function(a1,b1,mu,y){ 

n<-length(y) 

w<-sum((y-mu)^2) 

alpha1<-(a1+n) 

beta1<-b1+w 

pvc<-beta1/(alpha1-2)  

return(pvc) 

 } 

a1=b1=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4));y3<-

rnorm(100,20,sqrt(6)) 

cbind(pre.var(a1,b1,mu,y1),pre.var(a1,b1,mu,y2),pre.var(a

1,b1,mu,y3)) 

# Predictive Posterior  variance of sigma^2 under inverted gamma as a prior 

pre.var <-function(a2,b2,mu,y){ 

n<-length(y) 

w<-sum((y-mu)^2) 

alpha2<-a2+n/2 

beta2<-(2*b2+w)/2 

pvg<-beta2/(alpha2-1)  

return(pvg) 

 } 

a2=b2=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4));y3<-

rnorm(100,20,sqrt(6)) 



cbind(pre.var(a1,b1,mu,y1),pre.var(a1,b1,mu,y2),pre.var(a

1,b1,mu,y3)) 

# Predictive Posterior  variance of sigma^2 under levy distribution as a prior 

pre.var <-function(a3,b3,mu,y){ 

n<-length(y); w<-sum((y-mu)^2) 

alpha3<-(1+n/2);beta3<-(b3+w)/2 

pvl<-(beta3)/(alpha3-1)  

return(pvl) 

 } 

a3=b3=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4)) 

y3<-rnorm(100,20,sqrt(6)) 

cbind(pre.var(a3,b3,mu,y1),pre.var(a3,b3,mu,y2),pre.var(a

3,b3,mu,y3)) 

 # Predictive Posterior  variance of sigma^2 under Gumbel type II distribution 

as a prior 

pre.var <-function(a4,b4,mu,y){ 

n<-length(y); w<-sum((y-mu)^2) 

alpha4<-(1+n/2);beta4<-(2*b4+w)/2 

pvgb<-(beta4)/(alpha4-1)  

return(pvgb) 

 } 

a4=b4=5 

mu<-20 

y1<-rnorm(30,20,sqrt(2));y2<-rnorm(60,20,sqrt(4)) 

y3<-rnorm(100,20,sqrt(6)) 

cbind(pre.var(a4,b4,mu,y1),pre.var(a4,b4,mu,y2),pre.var(a

4,b4,mu,y3) 

 

 



5.2.4: Variances of the posterior predictive distribution of 2 using different priors with 

n=30,60&100 mean=20, variances V1=2, V2=4 & V3=6. 

Size 2  

Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel     

Type-II Prior 

 

 

 

 

30 

 

 

 

 

 

V1 

5 1.849804 1.583599 2.587101 2.541914 

10 1.737988 1.462016 2.753768 2.875247 

15 1.652175 1.382358 2.920435 3.20858 

20 1.58424 1.326129 3.087101 3.541914 

25 1.529123 1.284318 3.253768 3.875247 

30 1.483509 1.252009 3.420435 4.20858 

35 1.445135 1.226294 3.587101 4.541914 

40 1.412405 1.20534 3.753768 4.875247 

45 1.384158 1.187939 3.920435 5.20858 

50 1.359532 1.173256 4.087101 5.541914 

 

60 

 

V2 

5 3.884797 2.994491 3.69685 3.484049 

10 3.672679 2.738787 3.780183 3.650716 

15 3.489619 2.541198 3.863516 3.817383 

20 3.330028 2.383933 3.94685 3.984049 

25 3.189665 2.255791 4.030183 4.150716 

30 3.065252 2.149368 4.113516 4.317383 

35 2.954217 2.059573 4.19685 4.484049 

40 2.854512 1.982793 4.280183 4.650716 

45 2.764487 1.916388 4.363516 4.817383 

50 2.682798 1.858389 4.44685 4.984049 

 

100 

 

 

V3 

5 5.095442 4.361218 5.162707 5.377846 

10 4.905839 4.076369 5.212707 5.477846 

15 4.733014 3.836028 5.262707 5.577846 

20 4.574835 3.630519 5.312707 5.677846 

25 4.429517 3.452781 5.362707 5.777846 

30 4.295551 3.297542 5.412707 5.877846 

35 4.171658 3.160783 5.462707 5.977846 

40 4.056743 3.039391 5.512707 6.077846 

45 3.949864 2.930913 5.562707 6.177846 

50 3.850207 2.833392 5.612707 6.277846 

 

 

 

 

 

 

 

 

 



 

Table 5.2.5: Variances of the posterior predictive distribution of 2 using different priors with 

n=30,60&100 mean=25, variances V1=2, V2=4 & V3=6. 

Size 2  Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel Type-

II Prior 

 

 

 

 

30 

 

 

 

 

 

 

 

 

V1 

5   2.650895 1.960673 1.96791 2.257561 

10   2.433672 1.760533 2.301244 2.424228 

15   2.266966 1.629407 2.634577 2.590894 

20   2.13499 1.536847 2.96791 2.757561 

25   2.027916   1.46802 3.301244 2.924228 

30   1.939302 1.414836 3.634577 3.090894 

35   1.864755 1.372506 3.96791 3.257561 

40   1.80117 1.338015 4.301244 3.424228 

45   1.746295 1.309369 4.634577 3.590894 

50   1.698456   1.2852 4.96791 3.757561 

 

 

 

 

 

60 

 

 

 

 

 

V2 

5 3.053136 2.941562 3.436798 3.638667 

10    2.90217 2.692644 3.603464 3.72200 

15 2.771884 2.500298 3.770131 3.805334 

20 2.658302 2.347206 3.936798 3.888667 

25 2.558404 2.222465 4.103464 3.97200 

30 2.469859 2.118866 4.270131 4.055334 

35 2.390834 2.031455 4.436798 4.138667 

40 2.319873 1.956712 4.603464 4.22200 

45 2.255802 1.892069 4.770131 4.305334 

50 2.197663 1.835609 4.936798 4.388667 

 

 

 

 

100 

 

 

 

 

V3 

5 4.488128 4.329209 4.77395 4.838322 

10 4.326641 4.047072 4.87395 4.888322 

15 4.179445 3.80902 4.97395 4.938322 

20 4.044722 3.605468 5.07395 4.988322 

25 3.920953 3.429423 5.17395 5.038322 

30 3.806853 3.275662 5.27395 5.088322 

35 3.701333 3.140206 5.37395 5.138322 

40 3.603458 3.019969 5.47395 5.188322 

45 3.512428 2.912524 5.57395 5.238322 

50 3.427549 2.815932 5.67395 5.288322 

 

 

 

 

 

 

 



Table  5.2.6: Variances of the posterior predictive distribution of 2 using different priors with 

n=30,60&100 mean=30, variances V1=2, V2=4 & V3=6. 

Size 2  

Hyper 

Parameters 

ai=bi=ci 

Inverse  Chi-

Square Prior 

Inverted 

Gamma Prior 

Levy 

Prior 

Gumbel Type-

II Prior 

 

 

 

 

 

30 

 

 

 

 

 

 

V1 

5 2.628931 1.816164 1.894188 1.967029 

10 2.414598 1.64613 2.060854 2.300362 

15 2.250109 1.456092 2.227521 2.633695 

20 2.119890 1.397619 2.394188 2.967029 

25 2.014240 1.352435 2.560854 3.300362 

30 1.926805 1.316472 2.727521 3.633695 

35 1.853249 1.287169 2.894188 3.967029 

40 1.790510 1.262833 3.060854 4.300362 

45 1.736366 1.242299 3.227521 4.633695 

50 1.689163 1.223460 3.394188 4.967029 

 

 

 

60 

 

 

 

V2 

5 3.336274 3.154604 3.688514 3.696962 

10 3.164489 2.878373 3.771848 3.863629 

15 3.016237 2.664922 3.855181 4.030295 

20 2.886991 2.495032 3.938514 4.196962 

25 2.773317 2.356603 4.021848 4.363629 

30 2.67256 2.241636 4.105181 4.530295 

35 2.582637 2.144634 4.188514 4.696962 

40 2.501891 2.061689 4.271848 4.863629 

45 2.428983 1.989953 4.355181 5.030295 

50 2.362827 1.927298 4.438514 5.196962 

 

 

100 

 

 

V3 

5 4.991427 4.64504 5.04143 5.190872 

10 4.806638 4.336139 5.09143 5.290872 

15 4.638203 4.075503 5.14143 5.390872 

20 4.484042 3.85264 5.19143 5.490872 

25 4.342414 3.659894 5.24143 5.590872 

30 4.211851 3.491546 5.29143 5.690872 

35 4.091105 3.34324 5.34143 5.790872 

40 3.979108 3.211597 5.39143 5.890872 

45 3.874944 3.093959 5.44143 5.990872 

50 3.777817 2.988204 5.49143 6.090872 

 The results obtained using above programme are presented in tables 5.2.4 

:5.2.5; 5.2.6 for different values of hyper parameters, n and mean. In the above 

Tables 5.2.4, 5.2.5 and 5.2.6, it is observed that the values of the posterior 

predictive variances under inverted gamma distribution using different values of 

hyper parameters are less as compare to other priors which means we can prefer the 

prior inverted gamma distribution as a prior for the variance of normal distribution. 
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