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Chapter 1

Introduction

The major mysteries of the universe is that on the one sidgetis the inhomogeneous
distribution of matter throughout space, while on the otlide there is the homogeneous
distribution of matter throughout space [1]. This appaanttradiction (puzzle) typifies
our uncertainty about the origin of structures in the urgeess both statements are true.
In order to measure the inhomogeneity of matter, we needloak/around us and indeed
the closer we look the greater the density contrasts ussadyn to be. Considering the
enormous development in terms of observational technjguesare now in a position
to answer some of the questions regarding the origin andigeolof the universe. The
study of the structure of our universe is one of the most a@nd exciting research fields
in cosmology. In the recent decades, new and sensationalifacosmology have been
unveiled and our understanding of the large scale structutiee universe is improving
rapidly. There are various cosmological models and the qaef these models is to
explain the origin of the structure (processes) to form ttes@nt universe and observa-
tions have added enormous knowledge for understandingutge-kcale structures in the

present universe. The inhomogeneity of the universe has &eeajor aspect of cosmol-

8



ogy over the last 25 years. We have learned a great deal jabp&om red-shift surveys,
and although things turn out to be fairly complicated in taese that the universe is not
simply a pile of clusters distributed at random, nevertselgossesses some systematics

upon which we can build models.

The evolution of a self-gravitating many-body system inesl the long-range na-
ture of attractive gravity and is fundamentally connecteth statistical mechanics and
thermodynamics. Historically, the important consequdnm® the thermodynamical ar-
guments had arisen in the 1960s, known as the gravo-theatedtoophe, i.e., thermo-
dynamic instability due to the negative specific heat [2][3tiginally, the gravo-thermal
catastrophe had been investigated in a very idealizedtiitya.e., a stellar system con-
fined in a spherical cavity [4][5]. In order to describe therthodynamic information
about the system, it is useful to emphasize one or anothanyser of the thermody-
namic system in different situations. For this purposes mnécessary to summarize the
inter-relations between different descriptions (like P, . as a function ofS, V, N)
which however contains all the basic information about ysesn. These equations of
state does not contain much information about the systent jsaecessary to consider
each equation of state as a partial differential equatiorrgas Maxwell’s thermody-
namic equations. Although, thermodynamics mainly apgbesquilibrium systems, but
self-gravitating systems continually evolve towards nsingular states, so they are never
in equilibrium. The main reason for this inadequacy is thegleange nature of the grav-
itational force and the fact that it does not saturate. Ireptd avoid this inadequacy,
attempts have been made and the assumption is that the asigein a state of quasi-
equilibrium, so the thermodynamics can be used to undetstenphenomena of galaxy

clustering. There have been a clear indication that thisrapion (quasi-equilibrium)
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was quite good as thermodynamics worked surprisingly veeltiescribing the instabili-
ties and slow evolution of gravitating systems. These tesl$o agreed reasonably well

with computer simulations.

An interesting technique called n-particle correlationdtion between galaxies is
one of the approach for understanding the galaxy clustefihg technique of correlation
function (measure of deviation from randomness) was fitsbduced by [6] and later
was popularised by many workers like [7][8]. The evaluatadm-particle correlation
functions can be studied by using Bogollubov-Born-Greearkood-Yvon (BBGKY)
hierarchy, but it is too complicated to handle it for higheder correlations. However,
the lower order correlation function called two-point edation function was introduced
by [7] and is presently the most widely used as a statistigditator. The shape of the
two-point correlation function for different clusters odlgxies have been measured and
the simple power law led many workers to describe the thealetsults and the N-body
numerical simulations. The two-point correlation funat{(g,) governed by the amplitude
and scale length has become very popular as same contansatfon about clustering

on all higher scales [16][17][18].

1.1 Plan of Dissertation

In the second chapter, we describe an overview of the foamaii galaxy clusters in the
early phase of universe. Cosmological parameters and tpegres of the dark matter
help to determine the growth of density perturbations arehtally the formation of
massive dark halos on large scale and on smaller scales. artieupar importance of

studying such processes will help to know about the masshilitbn. Also, the effects
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of non-linearity and smoothing processes in the evolutioclwstering of galaxies in an
expanding universe can be seen. We also see how correlatictidns, thermodynam-
ics and N-body simulation models are used to understandltiséecdng phenomena of

galaxies in an expanding universe.

In the third chapter, we start with the detailed studies ofedation function¢) and
see how correlation function has been used so far to underta clustering phenomena
of galaxies in an expanding universe. In one of the sectiotisis chapter, we understand
how the thermodynamics can be used for gravitating systasssi(ning to be point mass)
and how two-point correlation function determines the min@alynamic properties of an
infinite system. From the thermodynamic point of view, Vandfal’s equation of state
is used with the fact that in gravitating systems their is eqouisive interaction between
gravitating particles (galaxies). From this equation, wsatlibe the correlation parameter
(b), which in turn depends on correlation function, hence wdlhelpful to determine
and study the clustering phenomena of galaxies. A diffeaketjuation is developed
relating two-point correlation functioft,) with the average number density), temper-
ature(7") and the inter-particle distan@g and the unique solution chosen have important
consequences for galaxy clustering. Also, we see how the @drthree point correla-
tion function has been proposed and is in good agreementtingtdata of Zwicky and
Shane-Virtanen catalogues. Finally, the evolution of print correlation function on the
basis of simulations are extensively being used to exanmaalistribution functions of

gravitating systems.

In the fourth chapter, we extend the results of two-pointelation function to ex-
tended mass structures. It should be noted that galaxibspwiht mass consideration is

only an approximation. In fact, galaxies have real extersilrdttures, where dark matter
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especially is having an important contribution. A diffetiahequation is developed here
which again relates the two-point correlation functigh With average number density
(n) , temperaturel() and the inter-particle distan¢e) for extended mass structures. The
extended nature of galaxies is studied by using the sofijgranametefe) which avoids
the divergence ofr? + ¢2)~/2 in the limit of » — 0. The solution of this differential
equation developed in this chapter on the basis of variaparation method by intro-
ducing the constant8 and Z is one of the important research findings of my M. Phil.
work. We use boundary conditions to fit the required valueg @fin the solution for

understanding the galaxy clustering phenomena.

In the fifth chapter, we plot correlation parametern(db.) verses cell size (R) for
a well defined cluster by taking equation (4.45) into congitien from chapter 4th. The
graphs are obtained for some specific cluster (e.g; A2048hba well defined mass and

number of galaxies.

Finally we summarize the dissertation in the form of disausand explore various

research findings.



Chapter 2

Formation of Galaxy Clusters

As the universe continued to expand and cool (3000 K), elastno longer have enough
energy to overcome the attractive force of atomic nucled become bound to atoms.
The stage was set for the structures to form. The large-staletures of the cosmos we
observe today were formed as a consequence of the growtk pfithordial fluctuations
i.e; small changes in the density of the universe in a confregibn. As the universe
cooled, clumps of dark matter began to condense, and whikim gas began to condense
due to primordial fluctuations of gravitationally attratttgas and dark matter in the denser
areas, and thus the structures that would later becomeigalagre formed, which consti-
tuted the formation of first galaxies of the universe. At fhoént, the universe was almost
exclusively composed of hydrogen, helium, and dark maeon after the first proto-
galaxies formed, the hydrogen and helium gas within thenaibég condense and make
the first stars. Thus the first galaxies were then formed. T$wodery of a galaxy more
than 13 billion years old, which existed only 480 million yeafter the Big Bang, was
reported in January 2011. The first galaxies may have formezhrearlier than thought,

as new study suggests just after 200 million years after tinetse’s birth. Using sev-

13
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eral different telescopes, astronomers have discoveresticantigalaxy whose stars appear
to have formed 200 million years after the Big Bang i.e, al80 million years earlier
than the oldest previously known galaxies. The universdfits estimated to be 13.7
billion years old. This observation challenges the thesooiehow soon galaxies formed
and evolved in the early phase of the universe. It could eedmto solve the mystery of
how the hydrogen fog that filled the early universe was ckkaféhe universe was very
violent in its early epochs, and galaxies grew quickly, ewa by accretion of smaller
mass galaxies. The result of this process is left imprintethe distribution of galaxies
in the nearby universe (2dF Galaxy Redshift Survey). Gakare not isolated objects
in space, rather galaxies are distributed in a great cosmicoffilaments throughout the
universe. Galaxies come in a variety of shapes, from roweadufeless elliptical galaxies

to the pancake-flat spiral galaxies consisting of starsrstéllar gas, dust, etc.

It has been assumed that gravity acted on minute densitgtiars in matter, gases,
and the mysterious "dark matter” of the universe after thg Bang in order to form this
early stage of universe. The study of clustering of galakiean expanding universe is
considered to be one of important challenge in the modemnmalmg)y. in this chapter, we
will focus on various aspects which are important to unéedthe structure formation

in an expanding universe.

2.1 Mass Distribution

The measurement of galaxy clustering has long been a pritnakrin constraining struc-
ture formation models and cosmology. However, the powea#xy surveys to discrim-

inate between models is partially compromised by the feat ttey provide an indirect
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measure of the mass distribution. The presently observestiering of galaxies suggests
that their motions have been dominated by mutual gravitatidynamics. At present,
the structure formation of galaxies is heuristically deddnto two parts. On large scales,
cosmological parameters and the properties of the darkemag¢termine the growth of
density perturbations and the eventual formation of mas$avk halos. On smaller scales,
hydrodynamic and other processes shape how luminous galéxim within dark matter
halos and how they evolve as haloes accrete and merge. Turalr@insequence of this
picture is that distribution of galaxies is related, bufeli from mass distribution. This
difference in distribution arises in parts because halesnawre strongly clustered than
the dark matter as a whole, and more massive halos are mongstclustered than less
massive ones. The cold dark matter successfully desctiegotmation of structures in
the universe as properties of galaxies such as their stalias, colour and morphology
are closely related to the inferred mass of their host halttdsas been found that ob-
served clustering of galaxies and effectiveness of thistehing in constraining galaxy
formation models and cosmological parameters is very sems$o the host halo mass in

which galaxies live.

2.2 Clustering Phenomena of Galaxies

The description of gravitational clustering in an expagdimiverse must account the ac-
tual growth and evolution of correlated structure in a gating system, and also the
effect of the smoothing process with which structure is wdw\When the clustering has
evolved significantly away from initial conditions, it isiddo be non-linear, and the op-
erations of non-linear evolution and smoothing need notroate [9][10]. It should be

noted that complete description of the growth of clustermgst be able to describe the
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non-linear evolution and then the effects of smoothing tbe-inear evolved structure.
When the gravitational evolution is not highly evolved,stpossible to provide such a
complete description of the evolved system, after it has lseoothed on some given
large scale. These linear and quasi-linear analyses dttersplve the equations of mo-
tion directly, in the limit of small changes from the initiebnditions [7][11][12]. When

the changes from the initial conditions are substanti@,eVolution of clustering in the

non-linear regime is more difficult to describe. So the noedr clustering phenomenon
is determined by physical processes involving a lengthycamdplex sequence of events.

Various approaches for understanding the clustering phena are;

One of the way to understanding the galaxy clustering in thigeuse deals with
the evaluation of n-particle correlation functions betwealaxies. This can be done by
solving system of Liouvilles equations or BBGKY-hierarayuations and have been dis-
cussed by many workers like [13][14][15][16]. But BBGKYdrarchy equations are too
complicated to handle for higher order correlation funcsioHowever, the lowest order
i.e; two-point correlation function can also be pursueddiscussing the phenomenon of
galaxy clustering which contains information on all theheg n-particle correlations in
full BBGKY-hierarchy [8][17][18][19]. An alternative siple and more effective statisti-
cal approach to two-point correlation functions for namekr galaxy clustering has been
developed by [20] with the help of gravitational thermodyn@results. This approach
discussed by [8], assumes that clustering evolves throsglj@ence of quasi-equilibrium
states. This assumption allows them to use statisticairtbéynamics to describe the
growth of clustering, particularly in the highly non-limegime. It should be noted that
guasi-equilibrium approach appears to provide a good gegor of the growth of clus-

tering from an initially poission distribution and this appch is not so accurate when the
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initial conditions are significantly different from poissi [21][22][23][24]. When mutual
gravitational interactions of individual galaxies dontmeclustering can be described by
guasi-equilibrium thermodynamics [8][17][18]) and ss&tal mechanics [19][20]. This
is the another way of using thermodynamics and statistieghanics. These theories are
found to be in good agreement with observations given byg8d]as long as the evolution
is in quasi-equilibrium, we may be able to use thermodynaniibe main aspect in which
thermodynamics helps us to move forward is that expansitimecadystem of galaxies is to
a good approximation adiabatic [18]. It should be noted ginavitational clustering may
be adiabatic, but it is not necessary that it will be eitheergropic or reversible [8][18].
The applicability of thermodynamics to the cosmologicahgdody problem suggests
that statistical mechanics should also apply. This clokiom occurs because statisti-
cal mechanics is the microscopic (and therefore perhape fmaodamental) description
of system (galaxy) positions and motions, whose ensemlarages provide the macro-
scopic thermodynamic description of the system. The sitzismechanical theory of
N-body galaxy clusters has been developed by [31], whereetkeant partition function

has been solved.

The second approach first discussed by [25] assumes thatepagavgravitating
systems will collapse spherically. This assumption alldwe compute the distribution
of non-linear, virialized clump masses, given some ifitigliussian density field, as a
function of time. It should be noted that their original dation of the mass multiplicity
function was controversial as it has been redefined and wegrby a number of authors
[23][24][26][27][28]. The Press-Schechter distributiohclump masses appears to be in
good agreement with that measured in N-body simulationdustering from arbitrary

gaussian initial conditions given by [29]. Although Pré&sshechter approach provides
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information about the distribution of virialized clump nsas, but it does not provide
information about the internal structure. Of these clunmos,does it describe how these
clumps are distributed relative to each other in space. Turegs may be correlated with
each other, or distributed uniformly at random. Thus, orm@&noa compute the n-point
correlation functions of the clustered distribution, noeccan construct the non-linear
counts in cells distribution function. In this respect, Press-Schechter distribution of
mass clumps provides a good, but by no means perfect fit toitladized clump size

distribution measured in N-body simulations.

2.3 Effects of Clustering

The clustering of galaxies encodes important informatibaus the values of the cos-
mological parameters as it can be related to the spatiailuisbn of the underlying
dark matter, and also about the physical processes behiaxlygarmation. In the cold
dark matter (CDM) hierarchical structure formation theding evolution of galaxies takes
place inside dark matter haloes [32][33]. The formation emdlution of CDM is gov-
erned by gravity and can be modelled accurately using N-lsadylations. We do not
yet have the same level of knowledge of the fate of the barywhgh depends on the
physics of gas accretion, star formation and feedback psase Recent improvements
and techniques in astronomical instrumentation have ledwealth of new information
becoming available on galaxy clustering, both locally ahdaalier epochs. In particu-
lar, the unprecedented size and number of galaxies in theGad&xy Redshift Survey
[34] and the SDSS [35] make it possible to quantify how thesteting signal depends
on intrinsic galaxy properties, such as luminosity, stalfeass or colour. The variation

of clustering strength with an intrinsic galaxy propertycedes important information
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about how galaxies populate haloes. As we know galaxieserla® very large scales
under the influence of their mutual gravitation and the oftar&ation of this cluster-
ing is a problem of current interest. Different techniquashsas percolation [36][37],
minimal spanning trees [38][39]), fractals [6], corretatifunctions [13][40]), and distri-
bution functions [17] have been introduced to understardarge-scale structure in the
universe. However, the description of correlations antriBigtion functions have been
related most directly to physical theories of gravitatiaitastering and the consequences

of these theories also agree well with observations.

Thus far, theories of the cosmological many-body galaxtridistion function have
been developed mainly from a thermodynamic point of viewisHtarts from the first
two laws of thermodynamics and, for quasi-equilibrium ewioin, derives gravitational
many-body equations of state in the context of the expanaingerse. Application of the
thermodynamic fluctuation theory to these equations oédigtconsidering the galaxies
as point gravitating masses gives their distribution fiomctComparisons of gravitational
thermodynamics to the cosmological many-body problem baesn discussed on the ba-
sis of N-body computer simulation results [41][42][43]. @parisons with the observed
galaxy clustering [44][45][46] along with other theoreti@rguments [14][15] support it

further.

The general conditions under which statistical mechaniag describe the cosmo-
logical many-body problem are closely related to thoseterapplicability of thermody-
namics, described in detail by [8][17][18]. When the ensknatyeraged thermodynamic
guantities change more slowly than local dynamical cr@ssinclustering timescales,
then the form of the statistical distribution functions &ns essentially the same, and

only their macroscopic variables evolve. In this quasi#dgiium evolution, equilibrium



20

statistical mechanics provides a good approximation tadthiibution of particles and
velocities at any given time with the values of the macrogcegriables at that time. In
equilibrium, all permissible microstates of the systemghm ensemble have an equal a
priori probability. This is the fundamental postulate adtsgtical mechanics which im-
plies that the approximate probability of finding a specifiegdcro-state in the system is
proportional to the number of permissible micro-statesrigathe macro-state’s proper-

ties.

Cosmological many-body systems generally satisfy the-8o@de criterion of quasi-
equilibrium statistical mechanics since macroscopic gllobriables such as average tem-
perature, density, and the ratio of gravitational correfeénergy to thermal energy change
on time-scales at least as long as the Hubble time, whereakdgnamical time-scales
in regions of clustering are shorter. The criterion of ecuakiori probabilities for any
micro-state or configuration is less well understood, andgiorous derivation remains an
important unsolved problem even in classical statisticatinanics. It is closely related to
statistical homogeneity and the absence of extensive \@mjlinear structures over scales
comparable with the system. A more detailed analysis ofahges of initial conditions

that form the basis of attraction can be considered as anrtanggroblem for future.

To investigate the problem of non-linear gravitationalagl clustering from the
point of view of statistical mechanics, the statistical huics of N-body systems is

based on the N-body Hamiltonian described by [31] as;

H= Z —m + &(r1, T, TN (2.1)

Wherep; is the momentum of the ith particle ardr,, o, .....ry) is the function of the
relative position vectors. If the system occupies a volurmand R the size of each

spherical cell, then the partition functicfiy (1, T") of a system of particles interacting
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gravitationally by making use of above equation is given by;

3N

14 =P’
ZN(‘/, T) = W/QXP [— (Z 2;71 +¢(T177’27 ----- TN)) T_l

1=0

ENpd*Nr (2.2)

The evaluation of above integral is generally very compéidand lengthy process. How-
ever, the partition function for the cosmological many-ppdoblem have been evaluated
analytically, which has proved a big success in understantie clustering phenomena
of galaxies in an expanding universe. The details of itsuat&dn has been worked out

by [31] in which the partition function is described as;
3N

L ) VN1 + T 3Nt (2.3)

In(V.T) = - (27rmT

NI\ A2
wheref is given as;

5 =2 (Gm?) (2.4)

This serves as a basic result for rigorously evaluatindhalthermodynamic properties of
the system, starting with the free energy. It is particylarteresting that the correlation
parameter?’, which is the ratio of the gravitational correlation engtg twice the kinetic
energy of peculiar motion, emerges directly in the panifienction and in the equations
of state. So their is no need to make any assumptions in tinvatlen of the functional
form of b(RT—3) as was done earlier by [11][12]. Once the many-body partifioc-
tion is known, there is no difficulty in evaluating the grarahonical partition function,
which represents the exchange of both particles and ené&gyn the grand canonical
partition function, the distribution function of galaxiéslows directly. The proper ther-
modynamic dependence of the correlation paramétemerges directly in the equations
of state and one can calculate then distribution functgmv()) simply. One should note
that it has been found that all these results agree exactly edrlier ones derived us-

ing thermodynamic arguments. The following are the equatf state, which can be
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directly calculated from the free energy describeddoy: —T'InZy

U - gz\rm — o) (2.5)
NT
p="Ta- (2.6)

In addition to the above two equations, other importantrttuetynamical quantities like
entropy (S), chemical potentigl) which are helpful in describing the macroscopic state

of a system can also be evaluated and the final expressiogs/areas;

% = (A T%?) — In(1 — b) — 3b+ S, 2.7)

whereS, = 2 + 3in(22) is an arbitrary constant.

no_ Iy o _§ 2mm
7 In(RT™")+In(l1—0b)—0b 2ln( A2) (2.8)

Also the distribution function which represents the oVatlaistering of galaxies is charac-
terised by the full set of (V). A simple objective description of the distribution furani
is to count their number in cells of a given size, which arériisted uniformly over the
sky. The galaxy distribution function calculated on theiba$ the partition functior?

is written as;

F(N) = w [N(1 = b) + Nb]" " exp(=N(1 — b) — Nb) (2.9)

In addition to its generality and rigour, the main advantafjhis approach is that it can
easily be extended to non-point mass systems. Actuallxigalhave extended structures
and haloes, and the introduction of a softening paraniet&nables us to include effects
of large haloes of dark matter around galaxies. The anahgmlution of the configuration
integral for the cosmological gravitational systems hasnb@eveloped by [31] and this

integral may be applied to systems containing either pairgxtended masses. Then,
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one can analytically calculate the partition function amdrfon-point mass structures the
partition function developed by [31] is given as;

Zn(V,T) = — <M

3N

2z N N-1
1 | 7 ) VY [1+ BT *a(e/R)] (2.10)

The patrtition function obtained above is again helpful ialegting all the thermo-
dynamic quantities associated with the system. The constaised in above equation
depends upon the softening parametand the cell siz€?, which contains large number

of non-point mass galaxies is given as;

2 ¢/R
I T + €2/ R?

On the basis of equation (2.10), one can also evaluate thadieqs of state, distribution

ale/R) =+/1+€?/R? + (2.11)

function, and also other thermodynamical quantities likernical potential, etc. The
details of the evaluation of all the important equationsloaiseen from the work of [31].

The final equations are written as;

U, = SNT — 27er /g r,7,T) i T av (2.12)
2 r2 Ay
NT 27er2N2 2\ d
Po= / £(r ( —2) i (2.13)
F(N,e) = w [N(1 = b.) + Nb] " exp(=N(1 = bJ) — NbJ)  (2.14)
B T 4 i1 b — by — B (25
= (T %) + In(1 = b.) = b = Zin ( v ) (2.15)
WhereJ is given as;
) 2
J==-— 2.16
3 3ay/1+€2/R? (2.18)
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2.4 Simulation Models

Over the past decade, models of galaxy clustering have edathich allow us to inter-
pret observational data and learn more about how galaxeedisiributed between dark
matter haloes. In the cold dark matter (CDM) hierarchicalcttre formation theory,
galaxies grow inside dark matter haloes [47][48]. The fdramaof structure in the dark
matter is governed by gravity and can be modelled accurdétglysing N-body simu-
lations [49]. N-body simulations show that relaxation te tbserved distributions of
quasi-equilibrium statistical mechanics occurs for aipower-law perturbation spectra
with power-law indices between about -1 and +1. Systems mitich stronger global
initial correlations or anti-correlations relax only aftmany expansion time-scales, or
not at all. However, the fate of baryonic material is much enoomplicated as it in-
volves a range of often complex and non-linear physical gsses. The efficiency of
galaxy formation is expected to depend on the mass of thedaosimatter halo [49][50].
Modelling the dependence of galaxy clustering on intrigsaperties such as luminosity
offers a route to establish how such properties depend upmmass of the host halo
and hence to improve our understanding of galaxy formafitis development has been
led by semi-analytical models, which can populate largewas with galaxies in a short
time using physically motivated prescriptions [51][5Z]4][55]. Such studies also in-
spired empirical approaches, which involve fitting halowgation distributions (HODS)
[56][57][58] and conditional luminosity functions [59] deribing the number of galax-
ies per halo and the luminosity of galaxies within a halopeesively. Recent advances
in astronomical instrumentation have also produced a wedlinformation on galaxy
clustering. The enormous volume and number of galaxiesanvo-degree field Galaxy

Redshift Survey (2dFGRS) [23] and the SDSS [24] have madsilpesaccurate mea-
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surements of clustering for samples of galaxies defined bypuws intrinsic properties
[60][61][62][63][64][65]. The variation of clustering mgngth with luminosity tells us
how galaxies populate haloes and hence about the physicalatygformation. Any

discrepancy between the observational measurements sieghg and theoretical pre-
dictions points out the need to improve the models, eitheebging existing ingredients

or adding new ones.

The dependence of galaxy clustering on luminosity has besssored accurately
in the local universe [60][61][62][63][65][66]. Over theepod spanned by these studies,
galaxy formation models have evolved significantly, paifacly in the treatment of bright
galaxies [67]. The majority of current models invoke sontefof heating of the hot gas
atmosphere to prevent gas cooling in massive haloes, irr todeproduce the bright
end of the galaxy luminosity function. This has implicasdor the correlation between
galaxy luminosity and host dark matter halo mass, which in has an impact on the
clustering of galaxies. [68] compared the semi-analytieddxy formation models of [69]
and [70], which are against the measurements of clustemimg the SDSS. Qualitatively,
the models displayed similar behaviour to the real datadlslihot match the clustering
measurements in detail as [65] and [68] have shown that atuthmosity varies the
predictions of [70] model change the clustering amplitugleabsimilar amount to the
observations. Thus, these models demonstrated that thighg predictions could be

improved, but not fully reconciled with the data.



Chapter 3

Correlation Functions

A correlation is the relation between random variables at different points in space

or time, usually as a function of the spatial or temporalatise between the points. If
one considers the correlation between random variablessepting the same quantity
measured at two different points, then the correlationferred to as an autocorrelation.
However, correlation between different random variablescalled as cross correlation
because to emphasize that different variables are coesidtdrey are made up of cross

correlations.

3.1 Correlation Function

Correlation function in astronomy is a tool that descrilbesdistribution of galaxies in the
universe and the lowest order correlation function geherafers to the two-point corre-
lation function. For a given distance, the two-point catign functioné, is a function

of one variable (distance), which describes the probgliliat two galaxies are separated
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by this particular distance.

The spatial correlation functiof(r) is defined by the joint probability P(r) of
finding two objects (galaxies) separated by a distanaed within volume element$l;

anddVj;, with n as the average space density of objects in the sample, satch th

dP(r) = n?[1 4 &£(r)|dVidVsy (3.1)

Positive correlation, i.e§ > 0, refers to the clustering phenomena, negative correlation
l.e; £ < 0, refers to anti-clustering and for the zero correlatiogr, fior a random distribu-

tion of points, there is no clustering.

The spatial distribution of rich clusters of galaxies ane tfustering properties of
clusters have been the subject of considerable interestloegast two decades, with a
wide range of claims to the nature and properties of suchering phenomena. Since
rich clusters can be used rather efficiently in surveyingdtmacture in large volumes
of space, they have become an important tool in tracing tlye{acale structure of the
universe. The Abell (1958) catalogue of rich clusters hantanalysed by many inves-
tigators [71][72][73][74] using different techniques in attempt to determine the spatial
distributions of rich clusters. The studies deal primawiyh the surface distribution of
clusters and, in some cases, used approximate estimatdagter red-shifts. Moreover,
[72][73] have used red-shift measurements of complete b clusters to determine
directly the spatial distribution of rich clusters. Theuks indicate that rich clusters of
galaxies cluster very strongly in space, forming clustérslusters of galaxies or super-
clusters. The clustering strength of clusters was obseiwde much higher than the
clustering strength of galaxies. The clustering or coti@hascale for rich clusters was

found to be about five times larger than the correlation sobfmlaxies. Similar investi-
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gations have shown that the results provide strong conséran models for the formation

and evolution of galaxies and structure.

3.2 Stellar Mass Correlation Function

The observed clustering of galaxies and the effectiveniasssclustering in constraining
galaxy formation models and cosmological parameters ig sensitive to the host halo
mass in which galaxies live. The two-point correlation fume (2PCF) of galaxies has
been accurately measured by large surveys, such as thestyveadField Galaxy Redshift
Survey [75], the Sloan Digital Sky Survey [76] at z = 0, and DiHeEP 2 Galaxy Redshift
Survey at z = 1 [77]. In all these cases, the 2PCF appears toposver law over a
wide range of scales, and it depends on red-shift, lumipasilour and morphology of
galaxies [78][79][80][81][82]. Recently, the traditidr@PCF has been extended [83] by
measuring the stellar mass correlation function from th&SMata, the so-called stellar
mass correlation function (SMCEF). This quantity providddidonal constraint on galaxy
formation models, as it depends on the relative mass of galat given scales. In order
to predict the 2PCF and the stellar mass correlation, we teptbduce a large sample
of galaxies in a large cosmological volume. To achieve thagaxy catalogues have been

build by using N-body simulations of different cosmologies

The semi-analytical models (SAMSs) for galaxy formation ][84e often used to
study galaxy formation, and the early studies found thad¢hmodels predicted cluster-
ing which marginally agreed well with the data [85]. The madvantage of this model

allows one to easily investigate how galaxy properties @arthe underlying assumptions
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regarding the baryonic physics are changed. However, reteep surveys (including
more faint galaxies) have shown that currently SAMs prettiothigh clustering ampli-
tude at small scales [85][86]. The excessive clustering@sé studies was primarily due
to the over abundance of faint galaxies in these models. @tent model given by [87]
removed this over-abundance and was able to reproduce ¢hkdillar mass function

(SMF) down to very low mass end.

Another way to model galaxy clustering is the Abundance MiatgMethod (AMM)
given by [88] with the assumption that there is a monotoniatien between a galaxy’s
stellar mass and its halo’s mass and the stellar mass cantamexb by matching the
halo abundance to the observed SMFs. The biggest advarftdge approach is that the
observed SMF is perfectly reproduced and can well reprotlueg@roperties of galaxy

clustering seen in the SDSS at z=0 [89].

3.3 2-PCF for Point Mass Particles (Galaxies)

The formation of large-scale structures in the universenes af the most important and
interesting problems in cosmology. It is generally belatvkat these structures have
developed by a process of gravitational instability froma#irmitial fluctuations in the
density of a largely homogeneous early universe. Hencs,\ely important to clarify
the physical mechanism of the evolution of density fluctuai The inflationary scenario
predicts a random gaussian field possessing the propefttatistical homogeneity and

isotropy as the primordial fluctuations [90][91][92].

Classical thermodynamics is the theory of great scope andrgkty as it survived

the relativity and quantum mechanical revolutions of pbysiearly intact. The one of
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the reasons behind this was that among all theories of phiytsiermodynamics has the
least physical content. Its statements relate very geneeaitities which one can know
through equation of state, etc. for specific applicationug;ht is natural to use thermo-
dynamics for gravitating systems, but results of gravotadi thermodynamics(GTD) are
often surprising compared to thermodynamics of ordinagegaThese surprising results
are caused by the long range, unsaturated (unshieldedgradtgravitational forces, and

as a result understanding of GTD is less certain than orglth@rmodynamics.

However, the basic premise of classical thermodynamidsaissystems in equilib-
rium can be characterised by a finite set of macroscopic peteasn These macroscopic
parameters may be averages of microscopic parameterd) wizsig not be known in de-
tail and may vary in nature among different types of systethshould be noted that
equilibrium is always an idealisation for a system, whichamgthat macroscopic distur-
bances occur on time-scales very long compared to micrascelaxation time-scales.
The macroscopic parameters which describe the system Hpin@dude the total inter-
nal energyl)), entropy(), volume(/), and the number of particle¥( system contains.
But, if it contains more than one type of particles, then egudrie is characterised by its

number(V;), and volumey;), which each specie contains.

The gravitational clustering can be characterised by te#&idution of voids, and
in turn are related to the higher order correlations. Ondhsranethod is the BBGKY-
hierarchy approach to understand higher order correldtiontion. As the clustering
evolves self consistently the methods like distributionaifis and BBGKY-hierarchy ap-
proach is of no help at all because these methods becomeorapficated. The two-point
correlation functiorg, determines the thermodynamic properties of an infinitessgstnd

these thermodynamic properties are equations of statehviclude gravitation and in
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turn determine the quantum fluctuations.

In order to describe the thermodynamic information of anstem, it is useful to
emphasize one or another parameter of the thermodynantensys different situations.
So it is necessary to summarize the inter-relations betwdtrent descriptions, which
however contains all the basic information about the systarthis direction, models are
attempts to find solvable mathematical descriptions whantitain the essential physics
of complicated problem. In the early descriptions of an iffge gas, the Vander Waal’s
equation of state provide a simple model, which could beedlto the phase transitions.
As this model represents the large class of physically aineifjuation of state for uniform

systems, so it is natural to use such a model for gravitayietems.

The Vander Waal’s equation of state in the simple form isgas;

N? N NT

In the equation (3.2), value ob”refers to the short-range, hard-core part of the
particle repulsive interaction potential giving rise te #xcluded volume of the particles,
and the value ofd’ refers to the long range part of the attractive potentialdorcing a
reduced pressure. But we know in case of gravitating systmaee is no repulsion, i.e;

b = 0, so above equation reduces to

NT N?
P= <7 — CLW) (3.3)

The above equation for pressur)(can also be written as;

NT
P==-(1-b) (3.4)

Similarly, the equation for internal energy/’Y can be written as;

U:K+W:2NHLQ® (3.5)
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Hence, the equations (3.4) and (3.5) represent the equatistate for gravitating
systems. In the equation (3.5), = m < v? > /3 is the temperature of the systern,
v? > represents the average of the square of the peculiar mattative to the expansion,
N=nV is the average number of particles in voluieandb is a dimensionless variable

known as correlation parameter and for gravitating systérissdefined by [8] as;

h=—

2_
W B 27ern/ (7, T, dVv (3.6)
v

2K 3T )47'('7“
In the gravitational thermodynamics, the measure of catiaet (clustering) is stud-
ied on the basis of correlation parametét.’ The correlation parameteb”is defined as
the ratio of correlation energy to twice the kinetic eneligythe correlation parametey’;
n= % is the average number density of the system of particles efactassm, 7' is the
temperature}/ is the volume( is the universal constant of gravitatiof{sz, 7', ) is the

two-point correlation function andis the inter-particle distance.

Hence, on using equation (3.6), equations (3.4) and (3rbals®d be written as;

NT 27er dV
P= v / &(n, T, 7“)47W (3.7)
2 AT2
U:§NT—M/§ Tr)dV (3.8)
2 4rr

From equations (3.7) and (3.8), we write

oU\  2rGm*N?*&(n,T,r)  2mGm*N? [ &(n,T,r)
(W) = - v yr— / . av (3.9)
2 72 =
opP _ N 2rGm*N / o&(n, T,r) dV (3.10)
ov ), V 3?2 v 0T Axr

Now the differential equation faf(n, 7', r) in terms ofn, 7' andr can be obtained from

the Maxwell’s thermodynamic equation given as;

oU OP
(W)T,N =7 (a—T) -7 (11
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On using equations (3.7), (3.9) and (3.10) in equation (3\k& have

&(n,T,r) &(n,T,r) o&(n,T,r) dV av
SRR 3 | e sdV = T T,
/ /V /5” )y

4mr oT 4mr
(3.12)

Differentiating above equation with respect to V,

=3V d{(n,T,r) 3¢§(n,T.r)

4dmr v 4dmr
3VeE(n,T,r) 0 (1 3§(ﬁ,T, T)
- 4x OV <_)_ Cdmr
_ L) 1 LT g

or 4mr 4r

As the two-point correlation functiohdepends om, 7" andr, so we can write

E=¢&n,T,r) (3.14)

8§d +—€dT+ oc

on oT or
d¢  0¢&dn 0 dT O dr

g X & (3.15)

(or )dV ondv ' aTdV ' oradv (3.16)
Assuming
dT
v 0 (3.17)
Also
dn —N dr r
Using equations (3.17) and (3.18) in equation (3.16), we get
d¢  —N 0§ r 0& (3.19)

AV V2 on  3Vor

0 1 o [(1\ Or —1
o () = (‘) v = 37y (3.20)

Also we can write;



34

Using equations (3.19) and (3.20) in equation (3.13), wehav

3V (~NOE v 96\ _3(Tr)

drr \ V2 0on 3V or 4rr

ng(ﬁ7T7 7’) —1 _ 3£<ﬁ7 T7 T)
47?_ 3Vr flm‘

oT 47r dmr

(3.21)

From the above equation, the final differential equationtfor terms ofn, 7" andr for

point mass particles (galaxies) looks like[93];

_0¢ o 05

Equation (3.22) is a first order differential equation footparticle correlation function. It
is characterised by average number densjtgmperaturd’ and inter-particle distance
The solution of the above differential equation on usingodgthysically valid boundary

conditions is given as;

B cnT=3 \? 1 1 \?
&, T,r) = <1 n ClnT_g) G ( CZTT) (3.23)

Also the correlation parameter by using equation (3.23)gua¢ion (3.6) for the point

mass galaxies is given as;
BT =3

b=
1+ BaT—®

(3.24)
Whereg = 2(Gm?)? is a positive constant.

The unique solution chosen above clearly indicates the rdbgee of two-point
correlationé; onn, T andr and the self evaluation df clarifies thath has a complete

dependence on the combinatioi —3 as was suggested earlier by [8].
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3.4 Proposed form of 3-PCF

The statistical properties of the gaussian field are coralyieharacterized by the two-
point correlation function (2PCF) or the power spectrumilevhigher order correlations
vanish and the 2PCF has a certain value [94]. If the galaxyiloligion have been entirely
gaussian, then 2PCF would definitely provide a completergism of galaxy cluster-
ing. As the analyses of CMB suggest that the primordial massuétion in our universe
appear extremely gaussian, and non-gaussian signatwesged in the galaxy distri-
bution are due to gravitational collapse. As such 2PCF pes/only partial view of the
full distribution and cannot sufficiently probe non-gaasssignals. In order to investigate
non-gaussian structure as well as shape in these galaxypdigins, we require higher or-
der clustering statistics. In the hierarchy of n-point etation functions, the three-point
correlation function is the lowest order statistic to pow®information as this enables
probes of triaxial nature of haloes and extended filamentsinvihe cosmic web. Also,
non-linear gravitational clustering gives rise to nonezealues for the higher order corre-
lations, even if the primordial density fluctuations areasegaussian. This is reasonable,
since phases between fourier modes in the bi-spectrum asedewed to be distributed
non-randomly but correlated in some ways in the non-linegimne, where galaxies or
galaxy groups are strongly clustered around each othef9897][98][99][100][101].
Hence, the higher order statistics, such as the three-pomelation function (3PCF),
become essential when the evolution of the density fieldsvsmed by non-linear gravi-
tational clustering. So, the three-point correlation tiorc(3PCF) provides an important
view into the clustering of galaxies that is not availabletsdower order, i.e; two-point
correlation function (2PCF). The non-gaussian infornraibout structure and shape of

galaxy or cluster is thus characterised by higher ordeistitadt, such as the 3PCF. There-
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fore, it is quite important for the understanding of norehln evolution to investigate the
properties of the 3PCF. However, it is difficult to deal witietexact formula of the 3PCF
both theoretically and numerically, since it is much monggllay and complicated than
the 2PCF. However, it has been proposed on the basis of sasglenption by [102][103],

that the 3PCF can be expressed as;

Cabc = Q (gabgbc + gbcgca + 50(15(11)) (325)

where( , £ and(Q are the 3PCF, 2PCF and a certain constant respectively.

The equation (3.25) is often called the hierarchical formegiby [104]. The data
from the Zwicky and Shane-Virtanen catalogues are in googkggent with this assump-
tion when we choos€@ = 0.85 for Zwicky and@ = 1.24 for Shane-Wirtanen [102][103].
However, there is a serious fault with the proposed equéBdb) as it has no theoretical
grounds, although some observational or numerical datbeavell fitted. One explana-
tion may be that equation (3.25) f@ = 1 coincides with the Kirkwood superposition
approximation, which is familiar in liquid physics and tutbnce theory, i€,,&p.&0 < 1
[105][106]. However, this approximation is not appropeidor the non-linear regime,
since the distribution of the gravitational sources isragip correlated in such regimes.
Hence, this resemblance is helpless to compensate forabeetiical defect. Indeed, there
have been many theoretical investigations of the 3PCF [108]. Nevertheless, most of
the analyses have been based on the hierarchical form assamphe coefficient) un-
der the hierarchical form was estimated by assuming selitaiity [L07]. The BBGKY
hierarchy was analysed by assuming the hierarchical faswgedl as self-similarity [108].
In the first place, however, there is no reason why the 3PCEldhecessarily depend
only on the second power of the 2PCF, even if we accept thesseifarity. Indeed, the

work done by [109] suggest the possible existence of salgtibat do not satisfy the hi-
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erarchical form on the basis of the BBGKY equations. To stildyconnection between
the 2PCF and the 3PCF in the non-linear gravitational cligjeegime, we can analyse
these functions by using a scaling hypothesis. It is expetiat the time evolution of the

statistics also will fundamentally obey some self-similales, since gravity is scale free
[105][107][108][110]). The self-similar investigatiori the 2PCF or the power spectrum
can be studied on the basis of N-body simulations [111][1TRg results have shown that
the self-similar evolution of the power spectrum can besfiatd when the initial power

spectrum is scale free and the power spectrum in the norr liegane obeys some scaling

laws and the scaling hypothesis itself is very familiar.



Chapter 4

Correlation Function for Extended

Mass Galaxy Clusters

The universe is dominated by matter in gravitational intgoa into the spatial configu-
ration consisting of galaxies, group of galaxies, supastelrs and even larger structures
[113][114]. The standard way of understanding the str@stun the universe (i.e; the
departure from randomness and homogeneity) is describetehys of correlation func-
tions. From observation the galaxy-to-galaxy correlafiamction,,; is known to scale
asé,y = r~7, where the exponent ranges from 1.6 to 1.8. The calculationpftac-
itly assumes the universe to have evolved to the stage, viheiaitial primordial matter
has been formed into the observed galaxies and that thesdagahare coupled to the ex-
pansion of the universe. We take our clue by analogy with tek @stablished theory
of interacting gases [115], where the relative arrangemehthe atoms and molecules
(galaxies) are accurately described in terms of the priesipnd methods of thermo-
dynamics. The approach of thermodynamics has already beeunsded at length and

breadth, by considering each galaxy to be a constitueritfgdf an infinite gas. We ap-

38
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ply the same techniques to a system made up of many galaxdemvitational interaction,
subject to fluctuations emerging from the intrinsic projsrof the gravitational interac-
tion. A number of theories of the cosmological many body pFobhave been developed
mainly from the thermodynamic point of view [15][16][93].h& theme of the approach
is to describe different instabilities and evolution of\gtating systems. Of all the mod-
els used for understanding the clustering of galaxiespbdynamic model provides the
simplest model for the galaxy clustering in an expandinyersie. We make use of the
equations of state along with the correlation functionstfa extended mass structures
for the development of a semi-analytical model. This caméaedone by solving a sys-
tem of Liouville’s equation or BBGKY-hierarchy equationscahave been discussed by
[11][15]. But BBGKY-hierarchy equations are too compliedto handle for higher order
correlation functions. We extract the possible informataibout lowest order i.e; two-
point correlation function&,) for galaxies with real extended mass structures clugerin
gravitationally in an expanding universe. It is importamtibte that galaxies with point
mass consideration is only an approximation. In fact, gakakave real extended struc-
tures, where dark matter especially is having an importantribution. The extended
nature of galaxies is introduced by the softening grawvtel potential proportional to
(r? + €2)~1/2. The softening parameter)(represents the finite size of a galaxy and is

sometimes a more realistic approximation for particulabpgm than the —! potential.

4.1 Equations of state for Extended Mass Structures

The gravitational clustering of galaxies in an expandinigense on the basis of two-point
correlation function&,) for point mass particles (galaxies) have earlier been deeel

by [93] by using equations of state. Here, we study and gdtieerelated information
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about&, for extended mass structures also by using the same appreachaking use
of equation of state. The general pair of equations of statanternal energy({.) and

pressure B,) for extended mass structures are given by [93];

3 2rGm?2N? _ T qv

Ue = SNT - T /Vg(r, A, T) (1 + ) o (4.1)
NT  27Gm*N? _ v

P, = vV - 32 //6(7’, n, T) (1 + ) 471'7’ (42)

Equations (4.1) and (4.2) represent the equations of sthiere the measuring cor-

relation parametdr, for extended mass structures is given by [93] as;

21Gm*N E dv
be = S 3VT /g < ) dmrr (43)

Heren = % is the average number density of extended mass particlesigs) withe
as a softening parameter and is taken between 0.01 to 0.@8e(imnits of total radius),
T is the temperaturd/ the volumeG is the universal constant of gravitatiaf{yz, 7', )
is the two-point correlation function for extended masadtires and the inter-galactic
distance. It should be noted that these expressions asslangeavolumeV for their

validity.

4.2 Development of the differential equation of two-point

Correlation Function for Extended Mass Structure

In this section, we develop the differential equation imteof correlation functiog(n, 7', r),

by making use of the Maxwell's thermodynamic equation retathe internal energy{)

oU OP
(W)T,N =7 (a—T) -7

and pressureK) given as;



41

But for extended mass structures, we use internal eriérgynd pressuré,, so that above

oU. OP.
<8V)ﬂN‘T(aT)WN‘Rf “.4)

Now from equations (4.1) and (4.2), we have

(GUE) _ —2rGm2*N?*¢(n, T, r) <1 N 6_2)
TN

equation goes like;

oV 1% Amr 72
2rGm*N? [ &(n, T,r) e\ 7
T /V - (1 + ﬁ) av (4.5)
and
2 A2 2\ T 9l
OP. _ N 2nGm’N / 1+ & o&(n,T,r) dV (4.6)
o),y V 32 v 72 or  Anr

Using equations (4.2), (4.5) and (4.6) in equation (4.4) hawe

—27Gm*N?*&(n, T, r) € & 2rGm2N? &, T,r) €2 = NT
\%4 4dmr <1+ ) + V2 /V 4dmr (l_l_r_z) v

72

1+ —

_ 20GmAN’T / < 62>T3 O¢(n, T, r) dV
1%

3V2 r2 oT Ar
-3
NT 2nGm?N? e\ 7?2 dV
— n,T)|1+ — — 4.7
T [ (145) T @n)

Equation (4.7) can also be written as;

— n. T 2\ 7 0. T 2\ T
Ay 72 v Arr 72
-3
e\ 2 06(n,T,r) dV
—T 1 - Y Y
/V < * 7“2) or  Amr

/Vf(r, A, T) (1 n 62) v (4.8)

r2 4y

Differentiating equation (4.8) with respect 16, and using equations (3.19) and (3.20),
the two-point correlation differential equation for extieal mass structure takes the form

as [93];

06 ( r )% % _ (4.9)

208 o B _
3n8ﬁ+ r24+¢e2 ) OT Tar
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Equation (4.9) is a first order differential equation for tpanticle correlation function and

is characterised by average number densjtemperaturd’ and inter-particle distance

4.3 Solution of the differential equation of two-point Cor-

relation Function for Extended Mass Structure

Equation (4.9) is a first order partial differential equatfor two particle correlation func-
tion. The above equation is characterised by average nuddmsityn, temperaturd’
and inter-particle distance Therefore, two-point correlation functigin, T,r) will de-
pend on the values of and7" as well as on the spatial co-ordinaten a statistically
homogeneous distribution of galaxies clustering graiaitetlly in an expanding universe.
Hence, the thermodynamic description of a two point coti@hafunction for describing
the galaxy clustering can be defined by the physical behawbaquation (4.9). After
looking for the possible solution of the equation (4.9), we able to extend the work of
[93] and study it in accordance with the prescribed boundarnyditions. The detailed
study of this solution will provide a new insight in the cleshg problem phenomena of

galaxies.

From the equation (4.9), it is clear that the two point catieh function(¢,) de-
pends on three variableg 7" andr. As correlation function(&,) is directly related to
probability, so in order to look for the possible solutiontbé equation (4.9), we write
two point correlation functioti¢,) as product of three variabte(n)['(T") R(r).

Where
O(n) is function ofrn only,

['(T) is function of T only and
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R(r) is function ofr only.
Thus, we write;

&(n, Tyr) =60(n)IN(T)R(r) (4.10)

From equation (4.10), it follows that

08 de(n)
i [(T)R(r) o (4.11)
08 dar(T)
a7 = O(n)R(r) o7 (4.12)
052 . _ dR(’I“)
o =0(n)I(T) o (4.13)
After using equations (4.11), (4.12) and (4.13) in equat/bf), we have
dO(n 2 dr(Tr
3nl(T)R(r) df_L") + T (@%«2) O(n)R(r) d; )
= r@@wrand§§° (4.14)
Dividing equation (4.14) both sides &y(n)I'(7") R(r), we get
3ndO(n) T r* dI(T)  rdR(r)
O dn Te+r2 dT R dr (4.15)
After rearranging equation (4.15), we have
3ndO(n) _ rdR(r) T r?  dl(T) (4.16)

dn R dr T e&+r2 dT

ol

As both sides of equation (4.16) are functions of differemtiables, so equation

(4.16) will be true only, if both sides are equal to the samestant say”’, and we write;

=7 (4.17)
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and
rdR(r) T r? dU(T)

R dr T e&+r2 dT

=7 (4.18)

In order to find the solution of equation (4.17), we proceed as
a6 _ Zdn
© 3n

Integrating on both sides of above equation, we have

e Z [dn
Z,
= [nB = glnn + InCy (4.20)
=0=C(n)s (4.21)

This represents the solution of one part of the differerggghation. Similarly, in

order to find the solution of equation (4.18), we proceed as;

2 | .2
e +r (rdR Z) T dr’ (4.22)

> \Rdr ) Tar

r

Equation (4.22) can be correct only, if both sides of it anea¢do the same constant say

"ZN', SO
e+r2 (rdR
T _7)\=2Z 4,23
72 <Rdr ) N (4.23)
and
T dTl
—— =7 4.24
T 9T N (4.24)

In order to find the solution of equation (4.23), we proceed as

r dR r?
o L= g — (4.25)

(or)
dR r? dr
(e amas) T (4.26)

r
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On integrating both sides of above equation, we have

dR r? dr
(or)
ZN 2 2
InR = Zlnr + TZn(e +7%) 4+ InCy (4.28)
(or)
R(r) = Cyr?(é® + TZ)ZTN (4.29)

Now in order to find the solution of the equation (4.24), leiniegrate it as;

/ d?r _ / ZN%T +InGy (4.30)

(or)
Inl = ZylnT + InCsy (4.31)

(or)
[(T) = CsT#~ (4.32)

Using equations (4.21), (4.29) and (4.32) in equation (4.\4@ get the two point corre-

lation function (with unknown parametefsand Zy) as;

& (1, T,7) = [Co() § (G TN [Cor® (¢ + 73 3 (4.33)
(or)
&0(71, T, 7) = C1CoCs(R) T2 p2 (&2 4 12)F (4.34)
(or)
&7, T,r) = C(7) T T2V % (&2 +12) 3 (4.35)
where
O = 01040y (4.36)

Hence, equation (4.35) is the required solution of the eqnd#.9).
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4.4 Functional form of two-point Correlation Function

and Correlation Energy

The solution defined by equation (4.35) can have variety oh& depending upon the
parameterg’ andZy, but we are interested in such a solution that is physicallgly The

physically valid solution can be verified when a set of boupd®nditions assigned for
two-point correlation function are satisfied. The set offmbary conditions assigned for

two-point correlation function are;

(1). The gravitational clustering of galaxies in a homogrrgeuniverse requires cor-
relation function §,) to have a positive value, which obviously depends uponithi¢ihg

values ofn, T andr.

(2). Whenn, T andr are very small (approximately tending to zero), the twoapoi

correlation functiong;) will increase expect for the number density

(3). When two-point correlation function increases, thestdring of galaxies be-
comes dominant because of virial equilibrium, which suggdsat at low temperatures
and high densities more and more clusters are formed. Iir @tbeds, whenn T3 is
very large (approximately tending to infinity), the two-piele correlation functior(&s)
will increase and measuring correlation paraméigrdefined by equation (4.3) will also

increase, and vice versa.

So depending upon these boundary conditions of the cdoelainction, we will
choose the values ¢f andZ as per requirement. Let us substitute first equation (4.35)

in equation (4.3), so that correlation parametey for extended mass structure becomes



a7

as;
-1
2rGm*N NZZnZ (2 o\ e\ ? dv
be_W[/C<n)3T r (6 +7‘) (1+T_2 m (4.37)
y _ 2mGmEN [ (3N gTzN 7 (&2 2)ZTN( 2427 dmrtdr (4.38)
T oavr Jy T\ DT e gy '
2rGm*N [F 3N\ ® I
b= [0 () T @0 e s
0
b _27TGm2ﬁC(g)%TZN/R(EQ—FT’Z)ZAQIT’ZdT (4.40)
€ 3T 4 0 .

Now we can see from equation (4.40), that for different valoéZ,y, we have
different values for the integral. But we will use only sudiues ofZy, which has some
physical significance for correlation paramete.(So, the following cases can be taken

into consideration;

Case 1. Let us tak&y = 1, then the equation (4.40) gives us;

2rGm*n 3N\ 3 r
be == TC <E) T/O redr (441)

2rGm?n | (3N\* R®
B TGmn <3 ) R_ (4.42)

= b= ar ) 3
Equation (4.42) relates the variation of correlation pagtan(. ) for extended mass struc-
tures with the size of cluster. For a given cluster cell sizth wiore dimensions oR, we
can study the clustering rate without involving the thergmaamic quantities . However,
there is need to show the temperature dependenigeatéo as we have assumed the sys-
tem in quasi-equilibrium state. This is achieved by tesforgother values o7y, . It is
interesting to note here that the validity 85, is based oy < 1, because fo/y > 2
the correlation parameteb,j shows direct power law dependenceloymeaning veloci-

ties are increasing and clustering is also increasing, wisiabsurd.



48

Case 2. let us tak&y = 0, then the equation (4.40) gives us;

Z
2rGm*n , (3N\* [T, 5,
be = —=7—C (E) /O (e + )= rPdr (4.43)
27 5 (R 2
be = MC’ g / r - dr (444)
3T 4m 0 (€24 r2)2
Z
2rGm®n _, (3N ? 1 2
b= 2O (BNNT L p a2t | B 1 (4.45)
3T Am 2 € €2

Case 3. Let us tak&y = —1, then the equation (4.40) gives us;

2rGm*n 3N\ 3 I S, 2
be = TC (E) T A (6 +7r ) redr (446)
2rGm>n 3N\ 7 Y
=y © (E) g /0 CETaN (4.47)
25 5
b = ZZGmT o (BNNT s (p g (B (4.48)
3 47 €
Case 4. let us tak&y = —2, then the equation (4.40) gives us;
2rGm*n 3N\ 3 L (" 2
be = TC (471_) T / (6 +7r ) redr (449)
b, = 25Gmn < ) / — T 4 (4.50)
3T + 7»2 2

b, — 27TGm277LC (ﬂ)
47

<log +4/14 6—2 ) (4.51)

The equations (4.45), (4.48) and (4.51) are in good agreewitgna set of boundary

conditions. The correlation is maximum, if galaxies aratied as point mass objects{

0) and goes on decreasing as softening parameétgogs on increasing, thus clustering
decreases. It has been found that the dispersion in thd vedieeity in the coma cluster
[116] could be up td000Kms~! and is sufficient to throw galaxies in the surrounding

voids. The cause for decrease of correlation for galaxi¢ls @itended structures, may
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be due to dispersion in radial velocity. The precise natfirsuch dependence between
b. and the increase in radial velocity can be treated as oneeaftportant problem to
study in contact with the correlation function studies fataxy clusters. Equation (4.51)

is important in sense that it clarifies the earlier result ali as justifies the significance

of b, andb. In the earlier work of [8] and [93], it has been understoaat tthas a specific
dependence on the combinatioi—3. Here in our study, it is also true that has also

the specific dependence a3, which means that the clustering takes place at moderate
level. Z may have always positive values because of the reason tHatde values ofV,

b. increases.



Chapter 5

Role of Correlation Energy in Galaxy

Clusters

The correlation energy plays an important role in the evoiubf galaxy clustering phe-
nomena in an expanding universe. A number of workers like [B]] [13], [19], [20],
[31], [40], [41], [42], [43], [45] and [93] have over all digssed the evolution of corre-
lation energy, which is defined as the ratio between the gatonal potential to twice
the kinetic energy of the system. This correlation enetgys’measured in the scale of
0 — 1 and is assumed that for un-clustered system of galaxiesa sgstem having no
interaction of particles (galaxies)= 0 like particles of an ideal gas . As the galaxies
cluster together under the phenomena of mutual intergdienclustering rate goes on
increasing, which means thatfastarts increasing, the clustering scale is more and more.
The aim of this chapter is to study the evolution of galaxystéuing rate with the size of
the cluster. To treat the problem very simple, it is assurhatldll galaxies can be con-
sidered to be co-moving in spatial homogeneous cell ancelbeant study is done on the

basis of N-body Hamiltonian, which defines the sum of the Kinenergies and Potential

50
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energies of all the particles in a system (ensemble conceépi3 ensemble is considered
to be made up of large number of cells of varying sizes. Theaifizhe cell can be varied
and the corresponding clustering ratevhich is in the scale df — 1 is plotted against the
different cell sizes. The results are then extended to geddyaving extended structures.
The extended nature of the galaxies and their correlationtion details are discussed

[117] in chapter 4.

5.1 Effect of b, (Correlation Energy for Extended Mass

Galaxies) on cell size R

In the first attempt, we study the effectipf(clustering scale for extended mass galaxies)
with the cell size 'R’ of a cluster. Recently, the analytit@atment for studying the two-
particle correlation function for extended structureslibeesn discussed by [117]. We take
equation (4.45) of chapter 4th into consideration and testaquation for a well defined
cluster likeA2048 The cluster A2048 belongs to an Abell cluster have the Wahg

parameters as;
Number of galaxies (N)=59
Mass of each galaxy (m)=7 x 102 Kg.
The equation (4.45) is given as;

i +1/1+ U
6T 47 € €2

2wGm*n ., (3N\7"? eN2 /eN? R R?
be‘TC<E) By (5) - () oo eyie

2 25 N\ %3
p, = 2TGmIn <3_> RVETTE - log

) 51)
) (5.2)

The appropriate value of is taken to be3 and using the value of softening parameter
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e = 0.05 in the units of total radius R.

. . . . . . = N o 3N
For simplicity the cell is considered to be spherical typéhad, i = 7 = ;5

On making use of all these values in equation (5.2), the amugbes like;

B 21Gm? 3N _3N

be = T OO R (/T4 (0.0025) — (0.0025)l0g[20 + VI+400])  (5.3)
21C Gm?2N?

=5 TR (\/1.0025 — (0.0025)l0g|20 + x/401\) (5.4)
21C Gm2N?2

e = o 1.0012 — (0.0025)l0g |20 + 20.02 55

=g (1:0012 = (0.0025)l0g|20 + 20.025]) (5.5)

As we know thath, is also measured in the scale ®f 1, so as to make the value of
b. less than 1, the constant C defined in equation (5.5) is chafstire order ofl0~?.
The other parametdr can be taken ag = 1, 10, 100, but in the present casé = 1. It
may be noted that in one of the earlier paper [8], the entrtyyiss with respect to for
galaxy clustering problem have already been discussedese ttemperatures. With all

these substitutions ar@ = 6.67 x 10~ Nm?2K¢~2, the result leads to;

, _ 21X 107 667 x 107(5.7 x 10)(59)°

(1.0012 — (0.0025) x log|40.025)

¢ 352 1 xR
(5.6)
1017
be = 45004.52681 x —=— (1.0012 — (0.0025) x (1.602)) (5.7)
10'7
be = 45004.52681 x —=— (1.0012 — 0.0040)) (5.8)
1017
b = 45004.52681 x —— (0.9972)) (5.9)
10'7
be = 4487851414 x —- (5.10)

The various values of cell sizg] of this cluster are fixed at;
R=0.1Mpc, 0.2Mpc, 0.3Mpc and so on.

The computation values of for these cell sizes are calculated from equation (5.10).
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Figure 5.1: Variation between the correlation parameéteaind the cell sizek for the

cluster A2048 on the basis of equation (5.10).
5.2 Effectofb (Correlation Energy for Point Mass Galax-

ies) on cell size R

As we have already studied the effect of correlation energgadl size for extended mass
structure in the above section. In the present section, wayshe effect of correlation
energy on cell size for point mass galaxies. We use direqtiagon (5.2) of above section
with the limite — 0 and test this equations for a well defined cluster 048 The

cluster A2048 belongs to an Abell cluster have the paramelefined in section (5.1).
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Figure 5.2: Variation between the correlation parameétand the cell sizeR for the

cluster A2048 on the basis of equation (5.15).

Now the equation (5.2) with — 0 gives;

92— Z/3
b:27er nC<3N) R

e 5.11
61T 47 ( )

On same substitutions as in section (5.1), equation (5akEstthe form as;

2rGm? 3N _3N
b= wR i (5.12)
21C Gm?N?
= 1

352 TR (5.13)

As we know thab is measured in the scale ©f 1, so as to make the value bfess than

1, the constant C defined in equation (5.13) is chosen of ttleraf10-5. The other

54
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parametefl’ can be taken & = 1, 10, 100, but in the present cage = 1. With all these

substitutions andy = 6.67 x 10~ Nm?K ¢g~2, the result leads to;

21X 107 6.67 x 1071(5.7 x 10%)*(50)°

b 352 1 xR

(5.14)

10"

The various values of cell sizg] of this cluster are fixed at;
R=0.1Mpc, 0.2Mpc, 0.3Mpc and so on.

The computation values oéffor these cell sizes are calculated from equation (5.15).

5.3 Effectofb. onb

The correlation energy for extended mass galaxies is defing8ll] as;

AT 3a(e/R)

©~ 1+ BT 3a(e/R) (5-16)
and is related to the point mass galaxy system [31] by;
b, bale/ R) (5.17)

1+ b(a(e/R) = 1)
We can see the effect 6f on b by using different values of the softening parametr (
cell size R) and the ratia/ R as shown in tables (5.1) and (5.2). The effect shows that
b. has a strong dependence oand the value decreaseseifs large and increases for

smaller values of.



b be be be
e=0]e=001|e=0.02]|e=0.03
0.0 0.000 0.000 0.00
0.1 0.001 0.0007 0.0005
0.2 0.003 0.002 0.001
0.3 0.006 0.003 0.002
0.4 0.009 0.004 0.003
0.5 0.013 0.007 0.004
0.6 0.019 0.009 0.007
0.7 0.030 0.015 0.010
0.8 0.051 0.026 0.017
0.9 0.107 0.057 0.038
1.0 1.000 1.000 1.000
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Table 5.1: Comparison between theandb at different values of and R = 0.0002.



Table 5.2: Comparison between theandb at different values of and R = 0.0004.

b be be be

e=0]1e=001e=0.02]|€e=0.03

0.0 0.000 0.000 0.000
0.1 0.003 0.001 0.0009
0.2 0.007 0.003 0.002
0.3 0.011 0.006 0.004
0.4 0.017 0.009 0.006
0.5 0.026 0.013 0.009
0.6 0.038 0.019 0.013
0.7 0.058 0.030 0.020
0.8 0.096 0.051 0.030

0.9 0.193 0.107 0.074

1.0 1.000 1.000 1.000




Chapter 6

Discussion and Conclusion

The problems of the origin and the evolution of large-scaddten (galaxy clusters) are
quiet different from other cosmological problems. The d¢arion of theoretical models
for the evolution of large scale structure in the universeei@een the major growth area
in the astrophysics of galaxy-clusters. The evolutionasyony of the constituent parti-
cles (galaxies) need to be known and then the evolution odyeem as a whole can be
worked out on the basis of different assumptions and teci@siqThe galaxy clustering
is considered to be one of the major study used in the studgrgélscale structures in
the universe. In the universe, matter distribution has eahehical appearance as galax-
ies tend to group together to form clusters, and clusterglareped into super-clusters.
Some major techniques during the recent years have beetodeden understanding
the complicated process of gravitational clustering, tkesters of galaxies and super-
clusters. The detailed analysis of the galaxy clusterididion is given by the correlation
functions. The galaxy correlation function is a measuréhefdegree of the clustering in
either the spatial distributio€(r)) or the angular distributiofw(#)) of galaxies. The

most important one is the two-point correlation functiorhieh is observed to decline
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with distance at a power law shafg/r)” having the same slope= 1.6 — 1.8 for both
galaxy systems and cluster systems, although with diffemeplitudes. The sameness of
the two indices suggests a simple underlying dynamics oscales. Actually, the cos-
mological N-body computer simulations using gravitatiarntlae only force, reproduces
many of the features of clustering rather well. The hiermalrclustering and the power
law correlation function suggest matter distribution be@uging fractal or multi-fractal.
Since a cluster is a cluster of galaxies, therefore an istiaigetechnique called n-particle
correlation function is one of the approaches for studyliregdalaxy clustering. However,
it is too complicated to handle higher order correlationctions. The lower order cor-
relation function is presently the most widely used as assieal indicator. The use of
two-point correlation function to express the statistfmalperties of galaxies has become

very popular as the same contains information about clugten all higher scales.

The approach of the applicability of thermodynamics haslmbscussed at length
and breadth by a number of workers like [50][51][52][53]which each galaxy is consid-
ered to be a constituent particle of an infinite gas. The @laysalidity of the application
of thermodynamics in the clustering of galaxies and galdugters has been discussed
on the basis of N-body computer simulations results [54f Gravitational galaxy clus-
tering carried out by [50][53] ensures a more fundamentdistical mechanical descrip-
tion of the cosmological many-body problem. We have dewdae differential equa-
tion for the clustering of galaxies for extended mass stmgst in an expanding universe
(equation (4.9)). The characteristic solution of this eliéntial equation (in accordance
with prescribed set of boundary conditions) provides a mesight for understanding the
clustering phenomena. Hence, the non-linear gravitatidoatering for extended mass

structures in an expanding universe can be studied withehgedf two-point correlation
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function, which depends on average number densitgmperaturd’, and inter-particle
distancer. One of the appropriate solution of this differential edpmis find out on the
basis of variable separation method (equation (4.35)) witknown parameterg and
Zx. The values of these parametefand Zy depends on the set of boundary conditions
assigned for two-point correlation function. Most impattdoundary condition is that
clustering becomes dominant at low temperatures and highittkss as more and more
clusters are formed. From equation (4.40), we can cleartierstand that the correlation
parameteb, for extended mass structures depends on the limiting vaiigsand 7 .
Hence, equation (4.40) serves as a basic equation for ¢wvejuarrelation parameter for
extended mass structurisfor the different galaxy clusters. It is clear that with time i
volvement of softening parametei,(the role of dark matter comes into play and one can
study the effectiveness of clustering rate, whigres studied on the basis of the effective
range of softening paramete) {n the limits of total radius (R) of a cluster of galaxies.
We notice from the equations (4.45), (4.48) and (4.51) &hhas a strong dependence on
the softening parametet)( Thus, softening parametet) (ntroduces a correction term
that lowers the correlation energy, with the resultlecreases. Some mathematical tricks
have off course been involved like the varying valuesZaf, as a result of which the
description of¢, for extended mass structures (galaxies) gets well defineshbgtions

(4.42), (4.45), (4.48) and (4.51).

In the chapter 5th, we have plotted graphs between cowala&nergy § andb,)
with the cell size (R) for a cluster. From these graphs, itndarstood that for smaller
values of the size of the cluster correlation energy is matele as for larger values of
the size of cluster correlation energy is less. We have éilgbed the effect ob. onb and

have found that with the increase in the softening paranietethe effect ofb. shows a
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decreasing value from 0.1-1.0 for a given cell size. Howeserincreasing the cell size

of a cluster, the effect df, shows an increasing trend.

The whole discussion of this dissertation is summarisedhénform of following

points;

1. To understand the formation of galaxy clusters, variousi@®on the basis of
mass distribution plays a vital role like the cold dark mia¢@DM) sufficiently describes
the formation of structures in the universe. Cosmologieaameters add a considerable

knowledge for studying the mass distribution.

2. The statistical mechanics and thermodynamics is an irapbtbol in studying
the phenomena of galaxy clusters in an expanding universeelker, the use of quasi-
equilibrium thermodynamics provides sufficiently a goodlerstanding of studying the
behaviour of a system consisting of galaxies and variouisstal properties are explored

to understand the basic equations of state.

3. The two-particle correlation functiogy) has proved to be a lowest possible tool
in understanding the correlation between various pagti{imlaxies). We have recon-
firmed the complete dependence of correlation paramé&ten’the combinatiom7 3
on the basis of a partial differential equation relatfagvith n, 7" andr. Although, this
study had earlier been described by [93], but the main airhiefvtork was to extend the
same analytical model for a system of galaxies clusterimagigationally in which each
galaxy is treated to be an extended mass instead of beirigdragalaxy as mere a point
particle. The extended nature of a galaxy is described hyguikie value of softening

parameterd) from 0.01 to 0.05 in the units of total radiuB) of a cluster.

4. The extension of the earlier work [93] has been succegsfudide applicable to

extended nature of galaxies in which a partial differerggaiation developed for extended
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structures (equation (4.9)) has been analysed in detailintemesting kind of solutions
are obtained by making use of certain constantsikend 7, whose appropriate values
has been chosen keeping the necessary boundary conditiort®nsideration. The basic
objectives in exploring the results far was to develop a new approach, whose analytical
results can be tested for various systems. The extendelisrésquation (4.51)) have
again shown that the measuring correlation paramegtefior extended mass galaxies has
a complete dependence on the combinati@it®. This clearly indicates that the theory
developed in this work as well as in previous studies [8][12][93] is applicable to a
moderately dense system. The details of these results simoour work (chapter 4th)
has been recently publishedMNRAS Letters (May, 2012 issue]doi:10.1111/}.1745-

3933.2012.01281.x].

5. The overall dependence fcorrelation parameter for point mass galaxies)@and
(correlation parameter for extended mass galaxies) calebdycunderstood by studying
the effects of these two correlation parameters with the afa cluster. e.g; In case of
A 2048 cluster with known parameters for number of galaxies (N) galdxy mass (m),
we have found that for bothandb,., small clusters have more correlation energy to build
a cluster, while as bigger clusters have less correlati@nggnto build a cluster. It is
important to understand here that the rolé ahdb, is very much related with the size of

cluster.

The overall impression of this M. Phil. work is that we havasenably described an
alternative kind of approach exclusively meant for extehabass structures to understand

its clustering phenomena on the basis of two-point conidtinction €s).
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