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Chapter 1

Introduction

The major mysteries of the universe is that on the one side, there is the inhomogeneous

distribution of matter throughout space, while on the otherside there is the homogeneous

distribution of matter throughout space [1]. This apparentcontradiction (puzzle) typifies

our uncertainty about the origin of structures in the universe as both statements are true.

In order to measure the inhomogeneity of matter, we need onlylook around us and indeed

the closer we look the greater the density contrasts usuallyseem to be. Considering the

enormous development in terms of observational techniques, we are now in a position

to answer some of the questions regarding the origin and evolution of the universe. The

study of the structure of our universe is one of the most active and exciting research fields

in cosmology. In the recent decades, new and sensational facts in cosmology have been

unveiled and our understanding of the large scale structureof the universe is improving

rapidly. There are various cosmological models and the purpose of these models is to

explain the origin of the structure (processes) to form the present universe and observa-

tions have added enormous knowledge for understanding the large-scale structures in the

present universe. The inhomogeneity of the universe has been a major aspect of cosmol-
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ogy over the last 25 years. We have learned a great deal, especially from red-shift surveys,

and although things turn out to be fairly complicated in the sense that the universe is not

simply a pile of clusters distributed at random, nevertheless possesses some systematics

upon which we can build models.

The evolution of a self-gravitating many-body system involves the long-range na-

ture of attractive gravity and is fundamentally connected with statistical mechanics and

thermodynamics. Historically, the important consequencefrom the thermodynamical ar-

guments had arisen in the 1960s, known as the gravo-thermal catastrophe, i.e., thermo-

dynamic instability due to the negative specific heat [2][3]. Originally, the gravo-thermal

catastrophe had been investigated in a very idealized situation, i.e., a stellar system con-

fined in a spherical cavity [4][5]. In order to describe the thermodynamic information

about the system, it is useful to emphasize one or another parameter of the thermody-

namic system in different situations. For this purpose, it is necessary to summarize the

inter-relations between different descriptions (likeT , P , µ as a function ofS, V , N)

which however contains all the basic information about the system. These equations of

state does not contain much information about the system, soit is necessary to consider

each equation of state as a partial differential equation given as Maxwell’s thermody-

namic equations. Although, thermodynamics mainly appliesto equilibrium systems, but

self-gravitating systems continually evolve towards moresingular states, so they are never

in equilibrium. The main reason for this inadequacy is the long range nature of the grav-

itational force and the fact that it does not saturate. In order to avoid this inadequacy,

attempts have been made and the assumption is that the universe is in a state of quasi-

equilibrium, so the thermodynamics can be used to understand the phenomena of galaxy

clustering. There have been a clear indication that this assumption (quasi-equilibrium)
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was quite good as thermodynamics worked surprisingly well for describing the instabili-

ties and slow evolution of gravitating systems. These results also agreed reasonably well

with computer simulations.

An interesting technique called n-particle correlation function between galaxies is

one of the approach for understanding the galaxy clustering. The technique of correlation

function (measure of deviation from randomness) was first introduced by [6] and later

was popularised by many workers like [7][8]. The evaluationof n-particle correlation

functions can be studied by using Bogollubov-Born-Green-Kirkwood-Yvon (BBGKY)

hierarchy, but it is too complicated to handle it for higher order correlations. However,

the lower order correlation function called two-point correlation function was introduced

by [7] and is presently the most widely used as a statistical indicator. The shape of the

two-point correlation function for different clusters of galaxies have been measured and

the simple power law led many workers to describe the theoretical results and the N-body

numerical simulations. The two-point correlation function (ξ2) governed by the amplitude

and scale length has become very popular as same contains information about clustering

on all higher scales [16][17][18].

1.1 Plan of Dissertation

In the second chapter, we describe an overview of the formation of galaxy clusters in the

early phase of universe. Cosmological parameters and the properties of the dark matter

help to determine the growth of density perturbations and eventually the formation of

massive dark halos on large scale and on smaller scales. The particular importance of

studying such processes will help to know about the mass distribution. Also, the effects



11

of non-linearity and smoothing processes in the evolution of clustering of galaxies in an

expanding universe can be seen. We also see how correlation functions, thermodynam-

ics and N-body simulation models are used to understand the clustering phenomena of

galaxies in an expanding universe.

In the third chapter, we start with the detailed studies of correlation function(ξ) and

see how correlation function has been used so far to understand the clustering phenomena

of galaxies in an expanding universe. In one of the sections in this chapter, we understand

how the thermodynamics can be used for gravitating systems (assuming to be point mass)

and how two-point correlation function determines the thermodynamic properties of an

infinite system. From the thermodynamic point of view, Vander Waal’s equation of state

is used with the fact that in gravitating systems their is no repulsive interaction between

gravitating particles (galaxies). From this equation, we describe the correlation parameter

(b), which in turn depends on correlation function, hence will be helpful to determine

and study the clustering phenomena of galaxies. A differential equation is developed

relating two-point correlation function(ξ2) with the average number density(n̄), temper-

ature(T ) and the inter-particle distance(r) and the unique solution chosen have important

consequences for galaxy clustering. Also, we see how the form of three point correla-

tion function has been proposed and is in good agreement withthe data of Zwicky and

Shane-Virtanen catalogues. Finally, the evolution of two-point correlation function on the

basis of simulations are extensively being used to examine the distribution functions of

gravitating systems.

In the fourth chapter, we extend the results of two-point correlation function to ex-

tended mass structures. It should be noted that galaxies with point mass consideration is

only an approximation. In fact, galaxies have real extendedstructures, where dark matter
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especially is having an important contribution. A differential equation is developed here

which again relates the two-point correlation function (ξ) with average number density

(n̄) , temperature (T ) and the inter-particle distance(r) for extended mass structures. The

extended nature of galaxies is studied by using the softening parameter(ǫ) which avoids

the divergence of(r2 + ǫ2)−1/2 in the limit of r → 0. The solution of this differential

equation developed in this chapter on the basis of variable separation method by intro-

ducing the constantsZ andZN is one of the important research findings of my M. Phil.

work. We use boundary conditions to fit the required values ofZN in the solution for

understanding the galaxy clustering phenomena.

In the fifth chapter, we plot correlation parameter (b andbe) verses cell size (R) for

a well defined cluster by taking equation (4.45) into consideration from chapter 4th. The

graphs are obtained for some specific cluster (e.g; A2048) having a well defined mass and

number of galaxies.

Finally we summarize the dissertation in the form of discussion and explore various

research findings.



Chapter 2

Formation of Galaxy Clusters

As the universe continued to expand and cool (3000 K), electrons no longer have enough

energy to overcome the attractive force of atomic nuclei, and become bound to atoms.

The stage was set for the structures to form. The large-scalestructures of the cosmos we

observe today were formed as a consequence of the growth of the primordial fluctuations

i.e; small changes in the density of the universe in a confinedregion. As the universe

cooled, clumps of dark matter began to condense, and within them gas began to condense

due to primordial fluctuations of gravitationally attracted gas and dark matter in the denser

areas, and thus the structures that would later become galaxies were formed, which consti-

tuted the formation of first galaxies of the universe. At thispoint, the universe was almost

exclusively composed of hydrogen, helium, and dark matter.Soon after the first proto-

galaxies formed, the hydrogen and helium gas within them began to condense and make

the first stars. Thus the first galaxies were then formed. The discovery of a galaxy more

than 13 billion years old, which existed only 480 million years after the Big Bang, was

reported in January 2011. The first galaxies may have formed much earlier than thought,

as new study suggests just after 200 million years after the universe’s birth. Using sev-
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eral different telescopes, astronomers have discovered a distant galaxy whose stars appear

to have formed 200 million years after the Big Bang i.e, about300 million years earlier

than the oldest previously known galaxies. The universe itself is estimated to be 13.7

billion years old. This observation challenges the theories of how soon galaxies formed

and evolved in the early phase of the universe. It could even help to solve the mystery of

how the hydrogen fog that filled the early universe was cleared. The universe was very

violent in its early epochs, and galaxies grew quickly, evolving by accretion of smaller

mass galaxies. The result of this process is left imprinted on the distribution of galaxies

in the nearby universe (2dF Galaxy Redshift Survey). Galaxies are not isolated objects

in space, rather galaxies are distributed in a great cosmic web of filaments throughout the

universe. Galaxies come in a variety of shapes, from round, featureless elliptical galaxies

to the pancake-flat spiral galaxies consisting of stars, interstellar gas, dust, etc.

It has been assumed that gravity acted on minute density variations in matter, gases,

and the mysterious ”dark matter” of the universe after the Big Bang in order to form this

early stage of universe. The study of clustering of galaxiesin an expanding universe is

considered to be one of important challenge in the modern cosmology. in this chapter, we

will focus on various aspects which are important to understand the structure formation

in an expanding universe.

2.1 Mass Distribution

The measurement of galaxy clustering has long been a primarytool in constraining struc-

ture formation models and cosmology. However, the power of galaxy surveys to discrim-

inate between models is partially compromised by the fact that they provide an indirect
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measure of the mass distribution. The presently observed clustering of galaxies suggests

that their motions have been dominated by mutual gravitational dynamics. At present,

the structure formation of galaxies is heuristically divided into two parts. On large scales,

cosmological parameters and the properties of the dark matter determine the growth of

density perturbations and the eventual formation of massive dark halos. On smaller scales,

hydrodynamic and other processes shape how luminous galaxies form within dark matter

halos and how they evolve as haloes accrete and merge. The natural consequence of this

picture is that distribution of galaxies is related, but differs from mass distribution. This

difference in distribution arises in parts because halos are more strongly clustered than

the dark matter as a whole, and more massive halos are more strongly clustered than less

massive ones. The cold dark matter successfully describes the formation of structures in

the universe as properties of galaxies such as their stellarmass, colour and morphology

are closely related to the inferred mass of their host haloes. It has been found that ob-

served clustering of galaxies and effectiveness of this clustering in constraining galaxy

formation models and cosmological parameters is very sensitive to the host halo mass in

which galaxies live.

2.2 Clustering Phenomena of Galaxies

The description of gravitational clustering in an expanding universe must account the ac-

tual growth and evolution of correlated structure in a gravitating system, and also the

effect of the smoothing process with which structure is viewed. When the clustering has

evolved significantly away from initial conditions, it is said to be non-linear, and the op-

erations of non-linear evolution and smoothing need not commute [9][10]. It should be

noted that complete description of the growth of clusteringmust be able to describe the
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non-linear evolution and then the effects of smoothing the non-linear evolved structure.

When the gravitational evolution is not highly evolved, it is possible to provide such a

complete description of the evolved system, after it has been smoothed on some given

large scale. These linear and quasi-linear analyses attempt to solve the equations of mo-

tion directly, in the limit of small changes from the initialconditions [7][11][12]. When

the changes from the initial conditions are substantial, the evolution of clustering in the

non-linear regime is more difficult to describe. So the non-linear clustering phenomenon

is determined by physical processes involving a lengthy andcomplex sequence of events.

Various approaches for understanding the clustering phenomena are;

One of the way to understanding the galaxy clustering in the universe deals with

the evaluation of n-particle correlation functions between galaxies. This can be done by

solving system of Liouvilles equations or BBGKY-hierarchyequations and have been dis-

cussed by many workers like [13][14][15][16]. But BBGKY-hierarchy equations are too

complicated to handle for higher order correlation functions. However, the lowest order

i.e; two-point correlation function can also be pursued fordiscussing the phenomenon of

galaxy clustering which contains information on all the higher n-particle correlations in

full BBGKY-hierarchy [8][17][18][19]. An alternative simple and more effective statisti-

cal approach to two-point correlation functions for non-linear galaxy clustering has been

developed by [20] with the help of gravitational thermodynamic results. This approach

discussed by [8], assumes that clustering evolves through asequence of quasi-equilibrium

states. This assumption allows them to use statistical thermodynamics to describe the

growth of clustering, particularly in the highly non-linear regime. It should be noted that

quasi-equilibrium approach appears to provide a good description of the growth of clus-

tering from an initially poission distribution and this approach is not so accurate when the
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initial conditions are significantly different from poission [21][22][23][24]. When mutual

gravitational interactions of individual galaxies dominate, clustering can be described by

quasi-equilibrium thermodynamics [8][17][18]) and statistical mechanics [19][20]. This

is the another way of using thermodynamics and statistical mechanics. These theories are

found to be in good agreement with observations given by [30]and as long as the evolution

is in quasi-equilibrium, we may be able to use thermodynamics. The main aspect in which

thermodynamics helps us to move forward is that expansion ofthe system of galaxies is to

a good approximation adiabatic [18]. It should be noted thatgravitational clustering may

be adiabatic, but it is not necessary that it will be either isoentropic or reversible [8][18].

The applicability of thermodynamics to the cosmological many-body problem suggests

that statistical mechanics should also apply. This close relation occurs because statisti-

cal mechanics is the microscopic (and therefore perhaps more fundamental) description

of system (galaxy) positions and motions, whose ensemble averages provide the macro-

scopic thermodynamic description of the system. The statistical mechanical theory of

N-body galaxy clusters has been developed by [31], where therelevant partition function

has been solved.

The second approach first discussed by [25] assumes that on average gravitating

systems will collapse spherically. This assumption allowed to compute the distribution

of non-linear, virialized clump masses, given some initially gaussian density field, as a

function of time. It should be noted that their original derivation of the mass multiplicity

function was controversial as it has been redefined and improved by a number of authors

[23][24][26][27][28]. The Press-Schechter distributionof clump masses appears to be in

good agreement with that measured in N-body simulations of clustering from arbitrary

gaussian initial conditions given by [29]. Although Press-Schechter approach provides



18

information about the distribution of virialized clump masses, but it does not provide

information about the internal structure. Of these clumps,nor does it describe how these

clumps are distributed relative to each other in space. The clumps may be correlated with

each other, or distributed uniformly at random. Thus, one cannot compute the n-point

correlation functions of the clustered distribution, nor one can construct the non-linear

counts in cells distribution function. In this respect, thePress-Schechter distribution of

mass clumps provides a good, but by no means perfect fit to the virialized clump size

distribution measured in N-body simulations.

2.3 Effects of Clustering

The clustering of galaxies encodes important information about the values of the cos-

mological parameters as it can be related to the spatial distribution of the underlying

dark matter, and also about the physical processes behind galaxy formation. In the cold

dark matter (CDM) hierarchical structure formation theory, the evolution of galaxies takes

place inside dark matter haloes [32][33]. The formation andevolution of CDM is gov-

erned by gravity and can be modelled accurately using N-bodysimulations. We do not

yet have the same level of knowledge of the fate of the baryons, which depends on the

physics of gas accretion, star formation and feedback processes. Recent improvements

and techniques in astronomical instrumentation have led toa wealth of new information

becoming available on galaxy clustering, both locally and at earlier epochs. In particu-

lar, the unprecedented size and number of galaxies in the 2dFGalaxy Redshift Survey

[34] and the SDSS [35] make it possible to quantify how the clustering signal depends

on intrinsic galaxy properties, such as luminosity, stellar mass or colour. The variation

of clustering strength with an intrinsic galaxy property encodes important information
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about how galaxies populate haloes. As we know galaxies cluster on very large scales

under the influence of their mutual gravitation and the characterization of this cluster-

ing is a problem of current interest. Different techniques such as percolation [36][37],

minimal spanning trees [38][39]), fractals [6], correlation functions [13][40]), and distri-

bution functions [17] have been introduced to understand the large-scale structure in the

universe. However, the description of correlations and distribution functions have been

related most directly to physical theories of gravitational clustering and the consequences

of these theories also agree well with observations.

Thus far, theories of the cosmological many-body galaxy distribution function have

been developed mainly from a thermodynamic point of view. This starts from the first

two laws of thermodynamics and, for quasi-equilibrium evolution, derives gravitational

many-body equations of state in the context of the expandinguniverse. Application of the

thermodynamic fluctuation theory to these equations of state by considering the galaxies

as point gravitating masses gives their distribution function. Comparisons of gravitational

thermodynamics to the cosmological many-body problem havebeen discussed on the ba-

sis of N-body computer simulation results [41][42][43]. Comparisons with the observed

galaxy clustering [44][45][46] along with other theoretical arguments [14][15] support it

further.

The general conditions under which statistical mechanics may describe the cosmo-

logical many-body problem are closely related to those for the applicability of thermody-

namics, described in detail by [8][17][18]. When the ensemble averaged thermodynamic

quantities change more slowly than local dynamical crossing or clustering timescales,

then the form of the statistical distribution functions remains essentially the same, and

only their macroscopic variables evolve. In this quasi-equilibrium evolution, equilibrium
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statistical mechanics provides a good approximation to thedistribution of particles and

velocities at any given time with the values of the macroscopic variables at that time. In

equilibrium, all permissible microstates of the systems inthe ensemble have an equal a

priori probability. This is the fundamental postulate of statistical mechanics which im-

plies that the approximate probability of finding a specifiedmacro-state in the system is

proportional to the number of permissible micro-states having the macro-state’s proper-

ties.

Cosmological many-body systems generally satisfy the time-scale criterion of quasi-

equilibrium statistical mechanics since macroscopic global variables such as average tem-

perature, density, and the ratio of gravitational correlation energy to thermal energy change

on time-scales at least as long as the Hubble time, whereas local dynamical time-scales

in regions of clustering are shorter. The criterion of equala priori probabilities for any

micro-state or configuration is less well understood, and its rigorous derivation remains an

important unsolved problem even in classical statistical mechanics. It is closely related to

statistical homogeneity and the absence of extensive very non-linear structures over scales

comparable with the system. A more detailed analysis of the ranges of initial conditions

that form the basis of attraction can be considered as an important problem for future.

To investigate the problem of non-linear gravitational galaxy clustering from the

point of view of statistical mechanics, the statistical mechanics of N-body systems is

based on the N-body Hamiltonian described by [31] as;

H =

N
∑

i=0

Pi
2

2m
+ φ(r1, r2, .....rN) (2.1)

Wherepi is the momentum of the ith particle andφ(r1, r2, .....rN) is the function of the

relative position vectors. If the system occupies a volumeV andR the size of each

spherical cell, then the partition functionZN(V, T ) of a system of particles interacting
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gravitationally by making use of above equation is given by;

ZN(V, T ) =
V 3N

Λ3NN !

∫

exp

[

−
(

N
∑

i=0

Pi
2

2m
+ φ(r1, r2, .....rN )

)

T−1

]

d3Npd3Nr (2.2)

The evaluation of above integral is generally very complicated and lengthy process. How-

ever, the partition function for the cosmological many-body problem have been evaluated

analytically, which has proved a big success in understanding the clustering phenomena

of galaxies in an expanding universe. The details of its evaluation has been worked out

by [31] in which the partition function is described as;

ZN(V, T ) =
1

N !

(

2πmT

Λ2

)
3N

2

V N(1 + βn̄T−3)N−1 (2.3)

whereβ is given as;

β =
3

2
(Gm2)3 (2.4)

This serves as a basic result for rigorously evaluating all the thermodynamic properties of

the system, starting with the free energy. It is particularly interesting that the correlation

parameter ’b’, which is the ratio of the gravitational correlation energy to twice the kinetic

energy of peculiar motion, emerges directly in the partition function and in the equations

of state. So their is no need to make any assumptions in the derivation of the functional

form of b(n̄T−3) as was done earlier by [11][12]. Once the many-body partition func-

tion is known, there is no difficulty in evaluating the grand canonical partition function,

which represents the exchange of both particles and energy.From the grand canonical

partition function, the distribution function of galaxiesfollows directly. The proper ther-

modynamic dependence of the correlation parameter ’b’ emerges directly in the equations

of state and one can calculate then distribution function (f(N)) simply. One should note

that it has been found that all these results agree exactly with earlier ones derived us-

ing thermodynamic arguments. The following are the equations of state, which can be



22

directly calculated from the free energy described byA = −T lnZN

U =
3

2
NT (1− 2b) (2.5)

P =
NT

V
(1− b) (2.6)

In addition to the above two equations, other important thermodynamical quantities like

entropy (S), chemical potential(µ) which are helpful in describing the macroscopic state

of a system can also be evaluated and the final expressions aregiven as;

S

N
= ln(n̄−1T 3/2)− ln(1− b)− 3b+ S0 (2.7)

whereS0 =
5

2
+ 3

2
ln(2πm

Λ2 ) is an arbitrary constant.

µ

T
= ln(n̄T−3/2) + ln(1− b)− b− 3

2
ln

(

2πm

Λ2

)

(2.8)

Also the distribution function which represents the overall clustering of galaxies is charac-

terised by the full set off(N). A simple objective description of the distribution function

is to count their number in cells of a given size, which are distributed uniformly over the

sky. The galaxy distribution function calculated on the basis of the partition functionZN

is written as;

f(N) =
N̄(1− b)

N !

[

N̄(1− b) +Nb
]N−1

exp(−N̄(1− b)−Nb) (2.9)

In addition to its generality and rigour, the main advantageof this approach is that it can

easily be extended to non-point mass systems. Actually galaxies have extended structures

and haloes, and the introduction of a softening parameter(ǫ) enables us to include effects

of large haloes of dark matter around galaxies. The analytical solution of the configuration

integral for the cosmological gravitational systems has been developed by [31] and this

integral may be applied to systems containing either point or extended masses. Then,
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one can analytically calculate the partition function and for non-point mass structures the

partition function developed by [31] is given as;

ZN(V, T ) =
1

N !

(

2πmT

Λ2

)
3N

2

V N
[

1 + βn̄T−3α(ǫ/R)
]N−1

(2.10)

The partition function obtained above is again helpful in evaluating all the thermo-

dynamic quantities associated with the system. The constant α used in above equation

depends upon the softening parameterǫ and the cell sizeR, which contains large number

of non-point mass galaxies is given as;

α(ǫ/R) =
√

1 + ǫ2/R2 +
ǫ2

R2
ln

ǫ/R

1 +
√

1 + ǫ2/R2
(2.11)

On the basis of equation (2.10), one can also evaluate the equations of state, distribution

function, and also other thermodynamical quantities like chemical potential, etc. The

details of the evaluation of all the important equations canbe seen from the work of [31].

The final equations are written as;

Ue =
3

2
NT − 2πGm2N2

V

∫

ξ(r, n̄, T )

(

1 +
ǫ2

r2

)
−1

2 dV

4πr
(2.12)

Pe =
NT

V
− 2πGm2N2

3V 2

∫

ξ(r, n̄, T )

(

1 +
ǫ2

r2

)
−3

2 dV

4πr
(2.13)

f(N, ǫ) =
N̄(1− be)

N !

[

N̄(1− be) +Nbe
]N−1

exp(−N̄(1− beJ)−NbeJ) (2.14)

µ

T
= ln(nT−3/2) + ln(1 − be)− beJ − 3

2
ln

(

2πm

Λ2

)

(2.15)

WhereJ is given as;

J =
5

3
− 2

3α
√

1 + ǫ2/R2
(2.16)
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2.4 Simulation Models

Over the past decade, models of galaxy clustering have evolved which allow us to inter-

pret observational data and learn more about how galaxies are distributed between dark

matter haloes. In the cold dark matter (CDM) hierarchical structure formation theory,

galaxies grow inside dark matter haloes [47][48]. The formation of structure in the dark

matter is governed by gravity and can be modelled accuratelyby using N-body simu-

lations [49]. N-body simulations show that relaxation to the observed distributions of

quasi-equilibrium statistical mechanics occurs for initial power-law perturbation spectra

with power-law indices between about -1 and +1. Systems withmuch stronger global

initial correlations or anti-correlations relax only after many expansion time-scales, or

not at all. However, the fate of baryonic material is much more complicated as it in-

volves a range of often complex and non-linear physical processes. The efficiency of

galaxy formation is expected to depend on the mass of the hostdark matter halo [49][50].

Modelling the dependence of galaxy clustering on intrinsicproperties such as luminosity

offers a route to establish how such properties depend upon the mass of the host halo

and hence to improve our understanding of galaxy formation.This development has been

led by semi-analytical models, which can populate large volumes with galaxies in a short

time using physically motivated prescriptions [51][52][53][54][55]. Such studies also in-

spired empirical approaches, which involve fitting halo occupation distributions (HODs)

[56][57][58] and conditional luminosity functions [59] describing the number of galax-

ies per halo and the luminosity of galaxies within a halo, respectively. Recent advances

in astronomical instrumentation have also produced a wealth of information on galaxy

clustering. The enormous volume and number of galaxies in the two-degree field Galaxy

Redshift Survey (2dFGRS) [23] and the SDSS [24] have made possible accurate mea-
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surements of clustering for samples of galaxies defined by various intrinsic properties

[60][61][62][63][64][65]. The variation of clustering strength with luminosity tells us

how galaxies populate haloes and hence about the physics of galaxy formation. Any

discrepancy between the observational measurements of clustering and theoretical pre-

dictions points out the need to improve the models, either byrefining existing ingredients

or adding new ones.

The dependence of galaxy clustering on luminosity has been measured accurately

in the local universe [60][61][62][63][65][66]. Over the period spanned by these studies,

galaxy formation models have evolved significantly, particularly in the treatment of bright

galaxies [67]. The majority of current models invoke some form of heating of the hot gas

atmosphere to prevent gas cooling in massive haloes, in order to reproduce the bright

end of the galaxy luminosity function. This has implications for the correlation between

galaxy luminosity and host dark matter halo mass, which in turn has an impact on the

clustering of galaxies. [68] compared the semi-analyticalgalaxy formation models of [69]

and [70], which are against the measurements of clustering from the SDSS. Qualitatively,

the models displayed similar behaviour to the real data, butdid not match the clustering

measurements in detail as [65] and [68] have shown that as theluminosity varies the

predictions of [70] model change the clustering amplitude by a similar amount to the

observations. Thus, these models demonstrated that the clustering predictions could be

improved, but not fully reconciled with the data.



Chapter 3

Correlation Functions

A correlation is the relation between random variables at two different points in space

or time, usually as a function of the spatial or temporal distance between the points. If

one considers the correlation between random variables representing the same quantity

measured at two different points, then the correlation is referred to as an autocorrelation.

However, correlation between different random variables are called as cross correlation

because to emphasize that different variables are considered, they are made up of cross

correlations.

3.1 Correlation Function

Correlation function in astronomy is a tool that describes the distribution of galaxies in the

universe and the lowest order correlation function generally refers to the two-point corre-

lation function. For a given distance, the two-point correlation functionξ2 is a function

of one variable (distance), which describes the probability that two galaxies are separated

26
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by this particular distance.

The spatial correlation functionξ(r) is defined by the joint probabilitydP (r) of

finding two objects (galaxies) separated by a distancer and within volume elementsdV1

anddV2, with n̄ as the average space density of objects in the sample, such that

dP (r) = n̄2[1 + ξ(r)]dV1dV2 (3.1)

Positive correlation, i.e;ξ > 0, refers to the clustering phenomena, negative correlation

i.e; ξ < 0, refers to anti-clustering and for the zero correlation, i.e; for a random distribu-

tion of points, there is no clustering.

The spatial distribution of rich clusters of galaxies and the clustering properties of

clusters have been the subject of considerable interest over the past two decades, with a

wide range of claims to the nature and properties of such clustering phenomena. Since

rich clusters can be used rather efficiently in surveying thestructure in large volumes

of space, they have become an important tool in tracing the large-scale structure of the

universe. The Abell (1958) catalogue of rich clusters has been analysed by many inves-

tigators [71][72][73][74] using different techniques in an attempt to determine the spatial

distributions of rich clusters. The studies deal primarilywith the surface distribution of

clusters and, in some cases, used approximate estimates forcluster red-shifts. Moreover,

[72][73] have used red-shift measurements of complete samples of clusters to determine

directly the spatial distribution of rich clusters. The results indicate that rich clusters of

galaxies cluster very strongly in space, forming clusters of clusters of galaxies or super-

clusters. The clustering strength of clusters was observedto be much higher than the

clustering strength of galaxies. The clustering or correlation scale for rich clusters was

found to be about five times larger than the correlation scaleof galaxies. Similar investi-
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gations have shown that the results provide strong constraints on models for the formation

and evolution of galaxies and structure.

3.2 Stellar Mass Correlation Function

The observed clustering of galaxies and the effectiveness of this clustering in constraining

galaxy formation models and cosmological parameters is very sensitive to the host halo

mass in which galaxies live. The two-point correlation function (2PCF) of galaxies has

been accurately measured by large surveys, such as the two-degree Field Galaxy Redshift

Survey [75], the Sloan Digital Sky Survey [76] at z = 0, and theDEEP 2 Galaxy Redshift

Survey at z = 1 [77]. In all these cases, the 2PCF appears to be apower law over a

wide range of scales, and it depends on red-shift, luminosity, colour and morphology of

galaxies [78][79][80][81][82]. Recently, the traditional 2PCF has been extended [83] by

measuring the stellar mass correlation function from the SDSS data, the so-called stellar

mass correlation function (SMCF). This quantity provides additional constraint on galaxy

formation models, as it depends on the relative mass of galaxies at given scales. In order

to predict the 2PCF and the stellar mass correlation, we needto produce a large sample

of galaxies in a large cosmological volume. To achieve this,galaxy catalogues have been

build by using N-body simulations of different cosmologies.

The semi-analytical models (SAMs) for galaxy formation [84] are often used to

study galaxy formation, and the early studies found that these models predicted cluster-

ing which marginally agreed well with the data [85]. The mainadvantage of this model

allows one to easily investigate how galaxy properties varyas the underlying assumptions
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regarding the baryonic physics are changed. However, recent deep surveys (including

more faint galaxies) have shown that currently SAMs predicttoo high clustering ampli-

tude at small scales [85][86]. The excessive clustering in these studies was primarily due

to the over abundance of faint galaxies in these models. The recent model given by [87]

removed this over-abundance and was able to reproduce the local stellar mass function

(SMF) down to very low mass end.

Another way to model galaxy clustering is the Abundance Matching Method (AMM)

given by [88] with the assumption that there is a monotonic relation between a galaxy’s

stellar mass and its halo’s mass and the stellar mass can be obtained by matching the

halo abundance to the observed SMFs. The biggest advantage of this approach is that the

observed SMF is perfectly reproduced and can well reproducethe properties of galaxy

clustering seen in the SDSS at z=0 [89].

3.3 2-PCF for Point Mass Particles (Galaxies)

The formation of large-scale structures in the universe is one of the most important and

interesting problems in cosmology. It is generally believed that these structures have

developed by a process of gravitational instability from small initial fluctuations in the

density of a largely homogeneous early universe. Hence, it is very important to clarify

the physical mechanism of the evolution of density fluctuations. The inflationary scenario

predicts a random gaussian field possessing the properties of statistical homogeneity and

isotropy as the primordial fluctuations [90][91][92].

Classical thermodynamics is the theory of great scope and generality as it survived

the relativity and quantum mechanical revolutions of physics nearly intact. The one of
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the reasons behind this was that among all theories of physics, thermodynamics has the

least physical content. Its statements relate very generalquantities which one can know

through equation of state, etc. for specific application. Thus, it is natural to use thermo-

dynamics for gravitating systems, but results of gravitational thermodynamics(GTD) are

often surprising compared to thermodynamics of ordinary gases. These surprising results

are caused by the long range, unsaturated (unshielded) nature of gravitational forces, and

as a result understanding of GTD is less certain than ordinary thermodynamics.

However, the basic premise of classical thermodynamics is that systems in equilib-

rium can be characterised by a finite set of macroscopic parameters. These macroscopic

parameters may be averages of microscopic parameters, which may not be known in de-

tail and may vary in nature among different types of systems.It should be noted that

equilibrium is always an idealisation for a system, which means that macroscopic distur-

bances occur on time-scales very long compared to microscopic relaxation time-scales.

The macroscopic parameters which describe the system normally include the total inter-

nal energy(U), entropy(S), volume(V ), and the number of particles(N) system contains.

But, if it contains more than one type of particles, then eachspecie is characterised by its

number(Ni), and volume(Vi), which each specie contains.

The gravitational clustering can be characterised by the distribution of voids, and

in turn are related to the higher order correlations. One another method is the BBGKY-

hierarchy approach to understand higher order correlationfunction. As the clustering

evolves self consistently the methods like distribution ofvoids and BBGKY-hierarchy ap-

proach is of no help at all because these methods become very complicated. The two-point

correlation functionξ2 determines the thermodynamic properties of an infinite system and

these thermodynamic properties are equations of state, which include gravitation and in
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turn determine the quantum fluctuations.

In order to describe the thermodynamic information of any system, it is useful to

emphasize one or another parameter of the thermodynamic system in different situations.

So it is necessary to summarize the inter-relations betweendifferent descriptions, which

however contains all the basic information about the system. In this direction, models are

attempts to find solvable mathematical descriptions which contain the essential physics

of complicated problem. In the early descriptions of an imperfect gas, the Vander Waal’s

equation of state provide a simple model, which could be related to the phase transitions.

As this model represents the large class of physically similar equation of state for uniform

systems, so it is natural to use such a model for gravitating systems.

The Vander Waal’s equation of state in the simple form is given as;

(

P + a
N2

V 2

)(

1− b
N

V

)

=
NT

V
(3.2)

In the equation (3.2), value of ’b’ refers to the short-range, hard-core part of the

particle repulsive interaction potential giving rise to the excluded volume of the particles,

and the value of ’a’ refers to the long range part of the attractive potential producing a

reduced pressure. But we know in case of gravitating systems, there is no repulsion, i.e;

b = 0, so above equation reduces to

P =

(

NT

V
− a

N2

V 2

)

(3.3)

The above equation for pressure (P ) can also be written as;

P =
NT

V
(1− b) (3.4)

Similarly, the equation for internal energy (U) can be written as;

U = K +W =
3

2
NT (1 − 2b) (3.5)
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Hence, the equations (3.4) and (3.5) represent the equationof state for gravitating

systems. In the equation (3.5),K = m < v2 > /3 is the temperature of the system,<

v2 > represents the average of the square of the peculiar motionsrelative to the expansion,

N=n̄V is the average number of particles in volumeV andb is a dimensionless variable

known as correlation parameter and for gravitating systems, it is defined by [8] as;

b = − W

2K
=

2πGm2n̄

3T

∫

V

ξ(n̄, T, r)
dV

4πr
(3.6)

In the gravitational thermodynamics, the measure of correlation (clustering) is stud-

ied on the basis of correlation parameter ’b’. The correlation parameter ’b’ is defined as

the ratio of correlation energy to twice the kinetic energy.In the correlation parameter ’b’,

n̄ = N
V

is the average number density of the system of particles eachof massm, T is the

temperature,V is the volume,G is the universal constant of gravitation,ξ(n̄, T, r) is the

two-point correlation function andr is the inter-particle distance.

Hence, on using equation (3.6), equations (3.4) and (3.5) can also be written as;

P =
NT

V
− 2πGm2N2

3V 2

∫

V

ξ(n̄, T, r)
dV

4πr
(3.7)

U =
3

2
NT − 2πGm2N2

V

∫

V

ξ(n̄, T, r)
dV

4πr
(3.8)

From equations (3.7) and (3.8), we write
(

∂U

∂V

)

T

= −2πGm2N2

V

ξ(n̄, T, r)

4πr
+

2πGm2N2

V 2

∫

V

ξ(n̄, T, r)

4πr
dV (3.9)

(

∂P

∂V

)

V

=
N

V
− 2πGm2N2

3V 2

∫

V

∂ξ(n̄, T, r)

∂T

dV

4πr
(3.10)

Now the differential equation forξ(n̄, T, r) in terms ofn̄, T andr can be obtained from

the Maxwell’s thermodynamic equation given as;
(

∂U

∂V

)

T,N

= T

(

∂P

∂T

)

V,N

− P (3.11)
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On using equations (3.7), (3.9) and (3.10) in equation (3.11), we have

−3V
ξ(n̄, T, r)

4πr
+ 3

∫

V

ξ(n̄, T, r)

4πr
dV = −T

∫

V

∂ξ(n̄, T, r)

∂T

dV

4πr
+

∫

V

ξ(n̄, T, r)
dV

4πr

(3.12)

Differentiating above equation with respect to V,

−3V

4πr

dξ(n̄, T, r)

dV
− 3ξ(n̄, T, r)

4πr

− 3V ξ(n̄, T, r)

4π

∂

∂V

(

1

r

)

− 3
ξ(n̄, T, r)

4πr

= −T
∂ξ(n̄, T, r)

∂T

1

4πr
+

ξ(n̄, T, r)

4πr
(3.13)

As the two-point correlation functionξ depends on̄n,T andr, so we can write

ξ = ξ(n̄, T, r) (3.14)

=⇒ dξ =
∂ξ

∂n̄
dn̄+

∂ξ

∂T
dT +

∂ξ

∂r
dr (3.15)

(or)
dξ

dV
=

∂ξ

∂n̄

dn̄

dV
+

∂ξ

∂T

dT

dV
+

∂ξ

∂r

dr

dV
(3.16)

Assuming

dT

dV
= 0 (3.17)

Also

dn̄

dV
=

−N

V 2
, and

dr

dV
=

r

3V
(3.18)

Using equations (3.17) and (3.18) in equation (3.16), we get;

dξ

dV
=

−N

V 2

∂ξ

∂n̄
+

r

3V

∂ξ

∂r
(3.19)

Also we can write;

∂

∂V

(

1

r

)

=
∂

∂r

(

1

r

)

∂r

∂V
=

−1

3V r
(3.20)
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Using equations (3.19) and (3.20) in equation (3.13), we have

−3V

4πr

(−N

V 2

∂ξ

∂n̄
+

r

3V

∂ξ

∂r

)

− 3ξ(n̄, T, r)

4πr

− 3V ξ(n̄, T, r)

4π

−1

3V r
− 3

ξ(n̄, T, r)

4πr

= −T
∂ξ(n̄, T, r)

∂T

1

4πr
+

ξ(n̄, T, r)

4πr

(3.21)

From the above equation, the final differential equation forξ in terms ofn̄, T andr for

point mass particles (galaxies) looks like[93];

3n̄
∂ξ

∂n̄
+ T

∂ξ

∂T
− r

∂ξ

∂r
= 0 (3.22)

Equation (3.22) is a first order differential equation for two particle correlation function. It

is characterised by average number densityn̄, temperatureT and inter-particle distancer.

The solution of the above differential equation on using setof physically valid boundary

conditions is given as;

ξ2(n̄, T, r) =

(

C1n̄T
−3

1 + C1n̄T−3

)2
1

C1n̄T−3

(

1

C2Tr

)2

(3.23)

Also the correlation parameter by using equation (3.23) in equation (3.6) for the point

mass galaxies is given as;

b =
βn̄T−3

1 + βn̄T−3
(3.24)

Whereβ = 3

2
(Gm2)3 is a positive constant.

The unique solution chosen above clearly indicates the dependence of two-point

correlationξ2 on n̄, T andr and the self evaluation ofb clarifies thatb has a complete

dependence on the combinationn̄T−3 as was suggested earlier by [8].
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3.4 Proposed form of 3-PCF

The statistical properties of the gaussian field are completely characterized by the two-

point correlation function (2PCF) or the power spectrum, while higher order correlations

vanish and the 2PCF has a certain value [94]. If the galaxy distribution have been entirely

gaussian, then 2PCF would definitely provide a complete description of galaxy cluster-

ing. As the analyses of CMB suggest that the primordial mass fluctuation in our universe

appear extremely gaussian, and non-gaussian signatures produced in the galaxy distri-

bution are due to gravitational collapse. As such 2PCF provides only partial view of the

full distribution and cannot sufficiently probe non-gaussian signals. In order to investigate

non-gaussian structure as well as shape in these galaxy distributions, we require higher or-

der clustering statistics. In the hierarchy of n-point correlation functions, the three-point

correlation function is the lowest order statistic to provide information as this enables

probes of triaxial nature of haloes and extended filaments within the cosmic web. Also,

non-linear gravitational clustering gives rise to non-zero values for the higher order corre-

lations, even if the primordial density fluctuations are setas gaussian. This is reasonable,

since phases between fourier modes in the bi-spectrum are considered to be distributed

non-randomly but correlated in some ways in the non-linear regime, where galaxies or

galaxy groups are strongly clustered around each other [95][96][97][98][99][100][101].

Hence, the higher order statistics, such as the three-pointcorrelation function (3PCF),

become essential when the evolution of the density fields is governed by non-linear gravi-

tational clustering. So, the three-point correlation function (3PCF) provides an important

view into the clustering of galaxies that is not available toits lower order, i.e; two-point

correlation function (2PCF). The non-gaussian information about structure and shape of

galaxy or cluster is thus characterised by higher order statistics, such as the 3PCF. There-
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fore, it is quite important for the understanding of non-linear evolution to investigate the

properties of the 3PCF. However, it is difficult to deal with the exact formula of the 3PCF

both theoretically and numerically, since it is much more lengthy and complicated than

the 2PCF. However, it has been proposed on the basis of simpleassumption by [102][103],

that the 3PCF can be expressed as;

ζabc = Q (ξabξbc + ξbcξca + ξcaξab) (3.25)

whereζ , ξ andQ are the 3PCF, 2PCF and a certain constant respectively.

The equation (3.25) is often called the hierarchical form given by [104]. The data

from the Zwicky and Shane-Virtanen catalogues are in good agreement with this assump-

tion when we chooseQ = 0.85 for Zwicky andQ = 1.24 for Shane-Wirtanen [102][103].

However, there is a serious fault with the proposed equation(3.25) as it has no theoretical

grounds, although some observational or numerical data canbe well fitted. One explana-

tion may be that equation (3.25) forQ = 1 coincides with the Kirkwood superposition

approximation, which is familiar in liquid physics and turbulence theory, ifξabξbcξca ≪ 1

[105][106]. However, this approximation is not appropriate for the non-linear regime,

since the distribution of the gravitational sources is strongly correlated in such regimes.

Hence, this resemblance is helpless to compensate for the theoretical defect. Indeed, there

have been many theoretical investigations of the 3PCF [107][108]. Nevertheless, most of

the analyses have been based on the hierarchical form assumption. The coefficientQ un-

der the hierarchical form was estimated by assuming self-similarity [107]. The BBGKY

hierarchy was analysed by assuming the hierarchical form, as well as self-similarity [108].

In the first place, however, there is no reason why the 3PCF should necessarily depend

only on the second power of the 2PCF, even if we accept the self-similarity. Indeed, the

work done by [109] suggest the possible existence of solutions that do not satisfy the hi-
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erarchical form on the basis of the BBGKY equations. To studythe connection between

the 2PCF and the 3PCF in the non-linear gravitational clustering regime, we can analyse

these functions by using a scaling hypothesis. It is expected that the time evolution of the

statistics also will fundamentally obey some self-similarrules, since gravity is scale free

[105][107][108][110]). The self-similar investigation of the 2PCF or the power spectrum

can be studied on the basis of N-body simulations [111][112]. The results have shown that

the self-similar evolution of the power spectrum can be satisfied when the initial power

spectrum is scale free and the power spectrum in the non linear regime obeys some scaling

laws and the scaling hypothesis itself is very familiar.



Chapter 4

Correlation Function for Extended

Mass Galaxy Clusters

The universe is dominated by matter in gravitational interaction into the spatial configu-

ration consisting of galaxies, group of galaxies, super-clusters and even larger structures

[113][114]. The standard way of understanding the structures in the universe (i.e; the

departure from randomness and homogeneity) is described bymeans of correlation func-

tions. From observation the galaxy-to-galaxy correlationfunctionξgal is known to scale

asξgal = r−γ, where the exponentγ ranges from 1.6 to 1.8. The calculation ofγ tac-

itly assumes the universe to have evolved to the stage, wherethe initial primordial matter

has been formed into the observed galaxies and that these galaxies are coupled to the ex-

pansion of the universe. We take our clue by analogy with the well established theory

of interacting gases [115], where the relative arrangements of the atoms and molecules

(galaxies) are accurately described in terms of the principles and methods of thermo-

dynamics. The approach of thermodynamics has already been discussed at length and

breadth, by considering each galaxy to be a constituent particle of an infinite gas. We ap-

38
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ply the same techniques to a system made up of many galaxies ingravitational interaction,

subject to fluctuations emerging from the intrinsic properties of the gravitational interac-

tion. A number of theories of the cosmological many body problem have been developed

mainly from the thermodynamic point of view [15][16][93]. The theme of the approach

is to describe different instabilities and evolution of gravitating systems. Of all the mod-

els used for understanding the clustering of galaxies, thermodynamic model provides the

simplest model for the galaxy clustering in an expanding universe. We make use of the

equations of state along with the correlation functions forthe extended mass structures

for the development of a semi-analytical model. This can even be done by solving a sys-

tem of Liouville’s equation or BBGKY-hierarchy equations and have been discussed by

[11][15]. But BBGKY-hierarchy equations are too complicated to handle for higher order

correlation functions. We extract the possible information about lowest order i.e; two-

point correlation function (ξ2) for galaxies with real extended mass structures clustering

gravitationally in an expanding universe. It is important to note that galaxies with point

mass consideration is only an approximation. In fact, galaxies have real extended struc-

tures, where dark matter especially is having an important contribution. The extended

nature of galaxies is introduced by the softening gravitational potential proportional to

(r2 + ǫ2)−1/2. The softening parameter (ǫ) represents the finite size of a galaxy and is

sometimes a more realistic approximation for particular problem than ther−1 potential.

4.1 Equations of state for Extended Mass Structures

The gravitational clustering of galaxies in an expanding universe on the basis of two-point

correlation function(ξ2) for point mass particles (galaxies) have earlier been developed

by [93] by using equations of state. Here, we study and gatherthe related information



40

aboutξ2 for extended mass structures also by using the same approachi.e; making use

of equation of state. The general pair of equations of state i.e, internal energy (Ue) and

pressure (Pe) for extended mass structures are given by [93];

Ue =
3

2
NT − 2πGm2N2

V

∫

V

ξ(r, n̄, T )

(

1 +
ǫ2

r2

)
−1

2 dV

4πr
(4.1)

Pe =
NT

V
− 2πGm2N2

3V 2

∫

V

ξ(r, n̄, T )

(

1 +
ǫ2

r2

)
−3

2 dV

4πr
(4.2)

Equations (4.1) and (4.2) represent the equations of state,where the measuring cor-

relation parameterbe for extended mass structures is given by [93] as;

be =
2πGm2N

3V T

∫

V

ξ(n̄, T, r)

(

1 +
ǫ2

r2

)
−1

2 dV

4πr
(4.3)

Heren̄ = N
V

is the average number density of extended mass particles (galaxies) withǫ

as a softening parameter and is taken between 0.01 to 0.05 (inthe units of total radius),

T is the temperature,V the volume,G is the universal constant of gravitation,ξ(n̄, T, r)

is the two-point correlation function for extended mass structures andr the inter-galactic

distance. It should be noted that these expressions assume alarge volumeV for their

validity.

4.2 Development of the differential equation of two-point

Correlation Function for Extended Mass Structure

In this section, we develop the differential equation in terms of correlation functionξ(n̄, T, r),

by making use of the Maxwell’s thermodynamic equation relating the internal energy (U)

and pressure (P ) given as;
(

∂U

∂V

)

T,N

= T

(

∂P

∂T

)

V,N

− P
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But for extended mass structures, we use internal energyUe and pressurePe, so that above

equation goes like;
(

∂Ue

∂V

)

T,N

= T

(

∂Pe

∂T

)

V,N

− Pe (4.4)

Now from equations (4.1) and (4.2), we have

(

∂Ue

∂V

)

T,N

=
−2πGm2N2

V

ξ(n̄, T, r)

4πr

(

1 +
ǫ2

r2

)
−1

2

+
2πGm2N2

V 2

∫

V

ξ(n̄, T, r)

4πr

(

1 +
ǫ2

r2

)
−1

2

dV (4.5)

and
(

∂Pe

∂T

)

V,N

=
N

V
− 2πGm2N2

3V 2

∫

V

(

1 +
ǫ2

r2

)
−3

2 ∂ξ(n̄, T, r)

∂T

dV

4πr
(4.6)

Using equations (4.2), (4.5) and (4.6) in equation (4.4), wehave

−2πGm2N2

V

ξ(n̄, T, r)

4πr

(

1 +
ǫ2

r2

)
−1

2

+
2πGm2N2

V 2

∫

V

ξ(n̄, T, r)

4πr

(

1 +
ǫ2

r2

)
−1

2

dV =
NT

V

−2πGm2N2T

3V 2

∫

V

(

1 +
ǫ2

r2

)
−3

2 ∂ξ(n̄, T, r)

∂T

dV

4πr

−NT

V
+

2πGm2N2

3V 2

∫

V

ξ(r, n̄, T )

(

1 +
ǫ2

r2

)
−3

2 dV

4πr
(4.7)

Equation (4.7) can also be written as;

−3V ξ(n̄, T, r)

4πr

(

1 +
ǫ2

r2

)
−1

2

+ 3

∫

V

ξ(n̄, T, r)

4πr

(

1 +
ǫ2

r2

)
−1

2

dV =

−T

∫

V

(

1 +
ǫ2

r2

)
−3

2 ∂ξ(n̄, T, r)

∂T

dV

4πr
∫

V

ξ(r, n̄, T )

(

1 +
ǫ2

r2

)
−3

2 dV

4πr
(4.8)

Differentiating equation (4.8) with respect toV , and using equations (3.19) and (3.20),

the two-point correlation differential equation for extended mass structure takes the form

as [93];

3n̄
∂ξ2
∂n̄

+ T

(

r2

r2 + ǫ2

)

∂ξ2
∂T

− r
∂ξ2
∂r

= 0 (4.9)
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Equation (4.9) is a first order differential equation for twoparticle correlation function and

is characterised by average number densityn̄, temperatureT and inter-particle distancer

4.3 Solution of the differential equation of two-point Cor-

relation Function for Extended Mass Structure

Equation (4.9) is a first order partial differential equation for two particle correlation func-

tion. The above equation is characterised by average numberdensityn̄, temperatureT

and inter-particle distancer. Therefore, two-point correlation functionξ(n̄,T,r) will de-

pend on the values of̄n andT as well as on the spatial co-ordinater in a statistically

homogeneous distribution of galaxies clustering gravitationally in an expanding universe.

Hence, the thermodynamic description of a two point correlation function for describing

the galaxy clustering can be defined by the physical behaviour of equation (4.9). After

looking for the possible solution of the equation (4.9), we are able to extend the work of

[93] and study it in accordance with the prescribed boundaryconditions. The detailed

study of this solution will provide a new insight in the clustering problem phenomena of

galaxies.

From the equation (4.9), it is clear that the two point correlation function(ξ2) de-

pends on three variables̄n, T andr. As correlation function(ξ2) is directly related to

probability, so in order to look for the possible solution ofthe equation (4.9), we write

two point correlation function(ξ2) as product of three variableΘ(n̄)Γ(T )R(r).

Where

Θ(n̄) is function ofn̄ only,

Γ(T ) is function ofT only and
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R(r) is function ofr only.

Thus, we write;

ξ2(n̄, T, r) = Θ(n̄)Γ(T )R(r) (4.10)

From equation (4.10), it follows that

∂ξ2
∂n̄

= Γ(T )R(r)
dΘ(n̄)

dn̄
(4.11)

∂ξ2
∂T

= Θ(n̄)R(r)
dΓ(T )

dT
(4.12)

∂ξ2
∂r

= Θ(n̄)Γ(T )
dR(r)

dr
(4.13)

After using equations (4.11), (4.12) and (4.13) in equation(4.9), we have

3n̄Γ(T )R(r)
dΘ(n̄)

dn̄
+ T

(

r2

ǫ2 + r2

)

Θ(n̄)R(r)
dΓ(T )

dT

= rΘ(n̄)Γ(T )
dR(r)

dr
(4.14)

Dividing equation (4.14) both sides byΘ(n̄)Γ(T )R(r), we get

3n̄

Θ

dΘ(n̄)

dn̄
+

T

Γ

r2

ǫ2 + r2
dΓ(T )

dT
=

r

R

dR(r)

dr
(4.15)

After rearranging equation (4.15), we have

3n̄

Θ

dΘ(n̄)

dn̄
=

r

R

dR(r)

dr
− T

Γ

r2

ǫ2 + r2
dΓ(T )

dT
(4.16)

As both sides of equation (4.16) are functions of different variables, so equation

(4.16) will be true only, if both sides are equal to the same constant say ’Z ’, and we write;

3n̄

Θ

dΘ(n̄)

dn̄
= Z (4.17)
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and

r

R

dR(r)

dr
− T

Γ

r2

ǫ2 + r2
dΓ(T )

dT
= Z (4.18)

In order to find the solution of equation (4.17), we proceed as;

dΘ

Θ
=

Z

3

dn̄

n̄

Integrating on both sides of above equation, we have

∫

dΘ

Θ
=

Z

3

∫

dn̄

n̄
+ lnC1 (4.19)

⇒ lnΘ =
Z

3
lnn̄ + lnC1 (4.20)

⇒ Θ = C1(n̄)
Z

3 (4.21)

This represents the solution of one part of the differentialequation. Similarly, in

order to find the solution of equation (4.18), we proceed as;

ǫ2 + r2

r2

(

r

R

dR

dr
− Z

)

=
T

Γ

dΓ

dT
(4.22)

Equation (4.22) can be correct only, if both sides of it are equal to the same constant say

’ZN ’, so

ǫ2 + r2

r2

(

r

R

dR

dr
− Z

)

= ZN (4.23)

and

T

Γ

dΓ

dT
= ZN (4.24)

In order to find the solution of equation (4.23), we proceed as;

r

R

dR

dr
− Z = ZN

r2

ǫ2 + r2
(4.25)

(or)

dR

R
=

(

Z + ZN
r2

ǫ2 + r2

)

dr

r
(4.26)
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On integrating both sides of above equation, we have
∫

dR

R
=

∫
(

Z + ZN
r2

ǫ2 + r2

)

dr

r
+ lnC2 (4.27)

(or)

lnR = Zlnr +
ZN

2
ln(ǫ2 + r2) + lnC2 (4.28)

(or)

R(r) = C2r
Z(ǫ2 + r2)

ZN

2 (4.29)

Now in order to find the solution of the equation (4.24), let usintegrate it as;
∫

dΓ

Γ
=

∫

ZN
dT

T
+ lnC3 (4.30)

(or)

lnΓ = ZN lnT + lnC3 (4.31)

(or)

Γ(T ) = C3T
ZN (4.32)

Using equations (4.21), (4.29) and (4.32) in equation (4.10), we get the two point corre-

lation function (with unknown parametersZ andZN ) as;

ξ2(n̄, T, r) = [C1(n̄)
Z

3 ][(C3T
ZN ][C2r

Z(ǫ2 + r2)
ZN

2 ] (4.33)

(or)

ξ2(n̄, T, r) = C1C2C3(n̄)
Z

3 TZN rZ(ǫ2 + r2)
ZN

2 (4.34)

(or)

ξ2(n̄, T, r) = C(n̄)
Z

3 TZNrZ(ǫ2 + r2)
ZN

2 (4.35)

where

C = C1C2C3 (4.36)

Hence, equation (4.35) is the required solution of the equation (4.9).
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4.4 Functional form of two-point Correlation Function

and Correlation Energy

The solution defined by equation (4.35) can have variety of forms, depending upon the

parametersZ andZN , but we are interested in such a solution that is physically valid. The

physically valid solution can be verified when a set of boundary conditions assigned for

two-point correlation function are satisfied. The set of boundary conditions assigned for

two-point correlation function are;

(1). The gravitational clustering of galaxies in a homogeneous universe requires cor-

relation function (ξ2) to have a positive value, which obviously depends upon the limiting

values of̄n, T andr.

(2). Whenn̄, T andr are very small (approximately tending to zero), the two-point

correlation function (ξ2) will increase expect for the number densityn̄.

(3). When two-point correlation function increases, the clustering of galaxies be-

comes dominant because of virial equilibrium, which suggests that at low temperatures

and high densities more and more clusters are formed. In other words, whenn̄T−3 is

very large (approximately tending to infinity), the two-particle correlation function(ξ2)

will increase and measuring correlation parameter(bǫ) defined by equation (4.3) will also

increase, and vice versa.

So depending upon these boundary conditions of the correlation function, we will

choose the values ofZ andZN as per requirement. Let us substitute first equation (4.35)

in equation (4.3), so that correlation parameter (be) for extended mass structure becomes
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as;

be =
2πGm2N

3V T

∫

V

C(n̄)
Z

3 TZNrZ
(

ǫ2 + r2
)

ZN

2

(

1 +
ǫ2

r2

)
−1

2 dV

4πr
(4.37)

be =
2πGm2N

3V T

∫ R

0

C

(

3N

4πr3

)
Z

3

TZNrZ
(

ǫ2 + r2
)

ZN

2

(

r2 + ǫ2
)

−1

2 r
4πr2dr

4πr
(4.38)

be =
2πGm2N

3V T

∫ R

0

C

(

3N

4πr3

)
Z

3

TZNrZ
(

ǫ2 + r2
)

ZN−1

2 r2dr (4.39)

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

TZN

∫ R

0

(

ǫ2 + r2
)

ZN−1

2 r2dr (4.40)

Now we can see from equation (4.40), that for different values of ZN , we have

different values for the integral. But we will use only such values ofZN , which has some

physical significance for correlation parameter (be). So, the following cases can be taken

into consideration;

Case 1. Let us takeZN = 1, then the equation (4.40) gives us;

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

T

∫ R

0

r2dr (4.41)

⇒ be =
2πGm2n̄

3
C

(

3N

4π

)
Z

3 R3

3
(4.42)

Equation (4.42) relates the variation of correlation parameter (be) for extended mass struc-

tures with the size of cluster. For a given cluster cell size with more dimensions ofR, we

can study the clustering rate without involving the thermodynamic quantities . However,

there is need to show the temperature dependence ofbe also as we have assumed the sys-

tem in quasi-equilibrium state. This is achieved by testingfor other values ofZN . It is

interesting to note here that the validity ofZN is based onZN ≤ 1, because forZN ≥ 2

the correlation parameter (be) shows direct power law dependence onT , meaning veloci-

ties are increasing and clustering is also increasing, which is absurd.
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Case 2. let us takeZN = 0, then the equation (4.40) gives us;

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

∫ R

0

(

ǫ2 + r2
)

−1

2 r2dr (4.43)

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

∫ R

0

r2

(ǫ2 + r2)
1

2

dr (4.44)

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3 1

2

(

R
√
ǫ2 +R2 − ǫ2log

∣

∣

∣

∣

∣

R

ǫ
+

√

1 +
R2

ǫ2

∣

∣

∣

∣

∣

)

(4.45)

Case 3. Let us takeZN = −1, then the equation (4.40) gives us;

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

T−1

∫ R

0

(

ǫ2 + r2
)

−2

2 r2dr (4.46)

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

T−1

∫ R

0

r2

(ǫ2 + r2)
dr (4.47)

be =
2πGm2n̄

3
C

(

3N

4π

)
Z

3

T−2

(

R− ǫtan−1

(

R

ǫ

))

(4.48)

Case 4. let us takeZN = −2, then the equation (4.40) gives us;

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

T−2

∫ R

0

(

ǫ2 + r2
)

−3

2 r2dr (4.49)

be =
2πGm2n̄

3T
C

(

3N

4π

)
Z

3

T−2

∫ R

0

r2

(ǫ2 + r2)
3

2

dr (4.50)

be =
2πGm2n̄

3
C

(

3N

4π

)
Z

3

T−3

(

log

∣

∣

∣

∣

∣

R

ǫ
+

√

1 +
R2

ǫ2

∣

∣

∣

∣

∣

− R√
R2 + ǫ2

)

(4.51)

The equations (4.45), (4.48) and (4.51) are in good agreement with a set of boundary

conditions. The correlation is maximum, if galaxies are treated as point mass objects (ǫ →

0) and goes on decreasing as softening parameter (ǫ) goes on increasing, thus clustering

decreases. It has been found that the dispersion in the radial velocity in the coma cluster

[116] could be up to1000Kms−1 and is sufficient to throw galaxies in the surrounding

voids. The cause for decrease of correlation for galaxies with extended structures, may
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be due to dispersion in radial velocity. The precise nature of such dependence between

be and the increase in radial velocity can be treated as one of the important problem to

study in contact with the correlation function studies for galaxy clusters. Equation (4.51)

is important in sense that it clarifies the earlier result as well as justifies the significance

of be andb. In the earlier work of [8] and [93], it has been understood thatb has a specific

dependence on the combinationn̄T−3. Here in our study, it is also true thatbe has also

the specific dependence onn̄T−3, which means that the clustering takes place at moderate

level.Z may have always positive values because of the reason that for large values ofN ,

be increases.



Chapter 5

Role of Correlation Energy in Galaxy

Clusters

The correlation energy plays an important role in the evolution of galaxy clustering phe-

nomena in an expanding universe. A number of workers like [1], [8], [13], [19], [20],

[31], [40], [41], [42], [43], [45] and [93] have over all discussed the evolution of corre-

lation energy, which is defined as the ratio between the gravitational potential to twice

the kinetic energy of the system. This correlation energy ’b’ is measured in the scale of

0 − 1 and is assumed that for un-clustered system of galaxies, i.e; a system having no

interaction of particles (galaxies)b = 0 like particles of an ideal gas . As the galaxies

cluster together under the phenomena of mutual interaction, the clustering rate goes on

increasing, which means that asb starts increasing, the clustering scale is more and more.

The aim of this chapter is to study the evolution of galaxy clustering rate with the size of

the cluster. To treat the problem very simple, it is assumed that all galaxies can be con-

sidered to be co-moving in spatial homogeneous cell and the relevant study is done on the

basis of N-body Hamiltonian, which defines the sum of the Kinetic energies and Potential

50
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energies of all the particles in a system (ensemble concept). This ensemble is considered

to be made up of large number of cells of varying sizes. The size of the cell can be varied

and the corresponding clustering rateb, which is in the scale of0−1 is plotted against the

different cell sizes. The results are then extended to galaxies having extended structures.

The extended nature of the galaxies and their correlation function details are discussed

[117] in chapter 4.

5.1 Effect of be (Correlation Energy for Extended Mass

Galaxies) on cell size R

In the first attempt, we study the effect ofbe (clustering scale for extended mass galaxies)

with the cell size ’R’ of a cluster. Recently, the analyticaltreatment for studying the two-

particle correlation function for extended structures hasbeen discussed by [117]. We take

equation (4.45) of chapter 4th into consideration and test this equation for a well defined

cluster likeA2048. The cluster A2048 belongs to an Abell cluster have the following

parameters as;

Number of galaxies (N)=59

Mass of each galaxy (m)=5.7× 1042Kg.

The equation (4.45) is given as;

be =
2πGm2n̄

6T
C

(

3N

4π

)Z/3
(

R
√
ǫ2 +R2 − ǫ2log

∣

∣

∣

∣

∣

R

ǫ
+

√

1 +
R2

ǫ2

∣

∣

∣

∣

∣

)

(5.1)

be =
2πGm2n̄

6T
C

(

3N

4π

)Z/3

R2

(

√

1 +
( ǫ

R

)2

−
( ǫ

R

)2

log

∣

∣

∣

∣

∣

R

ǫ
+

√

1 +
R2

ǫ2

∣

∣

∣

∣

∣

)

(5.2)

The appropriate value ofZ is taken to be3 and using the value of softening parameter
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ǫ = 0.05 in the units of total radius R.

For simplicity the cell is considered to be spherical type sothat,n̄ = N
V
= 3N

4πR3

On making use of all these values in equation (5.2), the equation goes like;

be =
2πGm2

6T

3N

4πR3
C
3N

4π
R2

(

√

1 + (0.0025)− (0.0025)log|20 +
√
1 + 400|

)

(5.3)

be =
21C

352

Gm2N2

TR

(√
1.0025− (0.0025)log|20 +

√
401|

)

(5.4)

be =
21C

352

Gm2N2

TR
(1.0012− (0.0025)log|20 + 20.025|) (5.5)

As we know thatbe is also measured in the scale of0 − 1, so as to make the value of

be less than 1, the constant C defined in equation (5.5) is chosenof the order of10−56.

The other parameterT can be taken asT = 1, 10, 100, but in the present caseT = 1. It

may be noted that in one of the earlier paper [8], the entropy studies with respect tob for

galaxy clustering problem have already been discussed on these temperatures. With all

these substitutions andG = 6.67× 10−11Nm2Kg−2, the result leads to;

be =
21× 10−56

352
× 6.67× 10−11(5.7× 1042)2(59)2

1× R
(1.0012− (0.0025)× log|40.025|)

(5.6)

be = 45004.52681× 1017

R
(1.0012− (0.0025)× (1.602)) (5.7)

be = 45004.52681× 1017

R
(1.0012− 0.0040)) (5.8)

be = 45004.52681× 1017

R
(0.9972)) (5.9)

be = 44878.51414× 1017

R
(5.10)

The various values of cell size(R) of this cluster are fixed at;

R=0.1Mpc, 0.2Mpc, 0.3Mpc and so on.

The computation values ofbe for these cell sizes are calculated from equation (5.10).
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Figure 5.1: Variation between the correlation parameterbe and the cell sizeR for the

cluster A2048 on the basis of equation (5.10).

5.2 Effect ofb (Correlation Energy for Point Mass Galax-

ies) on cell size R

As we have already studied the effect of correlation energy on cell size for extended mass

structure in the above section. In the present section, we study the effect of correlation

energy on cell size for point mass galaxies. We use directly equation (5.2) of above section

with the limit ǫ → 0 and test this equations for a well defined cluster likeA2048. The

cluster A2048 belongs to an Abell cluster have the parameters defined in section (5.1).
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Figure 5.2: Variation between the correlation parameterb and the cell sizeR for the

cluster A2048 on the basis of equation (5.15).

Now the equation (5.2) withǫ → 0 gives;

b =
2πGm2n̄

6T
C

(

3N

4π

)Z/3

R2 (5.11)

On same substitutions as in section (5.1), equation (5.11) takes the form as;

b =
2πGm2

6T

3N

4πR3
C
3N

4π
R2 (5.12)

b =
21C

352

Gm2N2

TR
(5.13)

As we know thatb is measured in the scale of0−1, so as to make the value ofb less than

1, the constant C defined in equation (5.13) is chosen of the order of 10−56. The other
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parameterT can be taken asT = 1, 10, 100, but in the present caseT = 1. With all these

substitutions andG = 6.67× 10−11Nm2Kg−2, the result leads to;

b =
21× 10−56

352
× 6.67× 10−11(5.7× 1042)2(59)2

1× R
(5.14)

b = 45004.52681× 1017

R
(5.15)

The various values of cell size(R) of this cluster are fixed at;

R=0.1Mpc, 0.2Mpc, 0.3Mpc and so on.

The computation values ofb for these cell sizes are calculated from equation (5.15).

5.3 Effect ofbe on b

The correlation energy for extended mass galaxies is definedby [31] as;

be =
βn̄T−3α(ǫ/R)

1 + βn̄T−3α(ǫ/R)
(5.16)

and is related to the point mass galaxy system [31] by;

be =
bα(ǫ/R)

1 + b(α(ǫ/R)− 1)
(5.17)

We can see the effect ofbe on b by using different values of the softening parameter (ǫ),

cell size (R) and the ratioǫ/R as shown in tables (5.1) and (5.2). The effect shows that

be has a strong dependence onǫ and the value decreases, ifǫ is large and increases for

smaller values ofǫ.
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Table 5.1: Comparison between thebe andb at different values ofǫ andR = 0.0002.

b be be be

ǫ = 0 ǫ = 0.01 ǫ = 0.02 ǫ = 0.03

0.0 0.000 0.000 0.00

0.1 0.001 0.0007 0.0005

0.2 0.003 0.002 0.001

0.3 0.006 0.003 0.002

0.4 0.009 0.004 0.003

0.5 0.013 0.007 0.004

0.6 0.019 0.009 0.007

0.7 0.030 0.015 0.010

0.8 0.051 0.026 0.017

0.9 0.107 0.057 0.038

1.0 1.000 1.000 1.000
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Table 5.2: Comparison between thebe andb at different values ofǫ andR = 0.0004.

b be be be

ǫ = 0 ǫ = 0.01 ǫ = 0.02 ǫ = 0.03

0.0 0.000 0.000 0.000

0.1 0.003 0.001 0.0009

0.2 0.007 0.003 0.002

0.3 0.011 0.006 0.004

0.4 0.017 0.009 0.006

0.5 0.026 0.013 0.009

0.6 0.038 0.019 0.013

0.7 0.058 0.030 0.020

0.8 0.096 0.051 0.030

0.9 0.193 0.107 0.074

1.0 1.000 1.000 1.000



Chapter 6

Discussion and Conclusion

The problems of the origin and the evolution of large-scale matter (galaxy clusters) are

quiet different from other cosmological problems. The construction of theoretical models

for the evolution of large scale structure in the universe have been the major growth area

in the astrophysics of galaxy-clusters. The evolutionary history of the constituent parti-

cles (galaxies) need to be known and then the evolution of thesystem as a whole can be

worked out on the basis of different assumptions and techniques. The galaxy clustering

is considered to be one of the major study used in the study of large scale structures in

the universe. In the universe, matter distribution has a hierarchical appearance as galax-

ies tend to group together to form clusters, and clusters areclamped into super-clusters.

Some major techniques during the recent years have been developed in understanding

the complicated process of gravitational clustering, likeclusters of galaxies and super-

clusters. The detailed analysis of the galaxy cluster distribution is given by the correlation

functions. The galaxy correlation function is a measure of the degree of the clustering in

either the spatial distribution(ξ(r)) or the angular distribution(ω(θ)) of galaxies. The

most important one is the two-point correlation function, which is observed to decline

58
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with distance at a power law shape(r0/r)γ having the same slopeγ = 1.6− 1.8 for both

galaxy systems and cluster systems, although with different amplitudes. The sameness of

the two indices suggests a simple underlying dynamics on allscales. Actually, the cos-

mological N-body computer simulations using gravitation as the only force, reproduces

many of the features of clustering rather well. The hierarchical clustering and the power

law correlation function suggest matter distribution be a grouping fractal or multi-fractal.

Since a cluster is a cluster of galaxies, therefore an interesting technique called n-particle

correlation function is one of the approaches for studying the galaxy clustering. However,

it is too complicated to handle higher order correlation functions. The lower order cor-

relation function is presently the most widely used as a statistical indicator. The use of

two-point correlation function to express the statisticalproperties of galaxies has become

very popular as the same contains information about clustering on all higher scales.

The approach of the applicability of thermodynamics has been discussed at length

and breadth by a number of workers like [50][51][52][53], inwhich each galaxy is consid-

ered to be a constituent particle of an infinite gas. The physical validity of the application

of thermodynamics in the clustering of galaxies and galaxy clusters has been discussed

on the basis of N-body computer simulations results [54]. The gravitational galaxy clus-

tering carried out by [50][53] ensures a more fundamental statistical mechanical descrip-

tion of the cosmological many-body problem. We have developed the differential equa-

tion for the clustering of galaxies for extended mass structures in an expanding universe

(equation (4.9)). The characteristic solution of this differential equation (in accordance

with prescribed set of boundary conditions) provides a new insight for understanding the

clustering phenomena. Hence, the non-linear gravitational clustering for extended mass

structures in an expanding universe can be studied with the help of two-point correlation
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function, which depends on average number densityn̄, temperatureT , and inter-particle

distancer. One of the appropriate solution of this differential equation is find out on the

basis of variable separation method (equation (4.35)) withunknown parametersZ and

ZN . The values of these parametersZ andZN depends on the set of boundary conditions

assigned for two-point correlation function. Most important boundary condition is that

clustering becomes dominant at low temperatures and high densities as more and more

clusters are formed. From equation (4.40), we can clearly understand that the correlation

parameterbe for extended mass structures depends on the limiting valuesof Z andZN .

Hence, equation (4.40) serves as a basic equation for evaluating correlation parameter for

extended mass structuresbe for the different galaxy clusters. It is clear that with the in-

volvement of softening parameter (ǫ), the role of dark matter comes into play and one can

study the effectiveness of clustering rate, wherebe is studied on the basis of the effective

range of softening parameter (ǫ) in the limits of total radius (R) of a cluster of galaxies.

We notice from the equations (4.45), (4.48) and (4.51) thatbe has a strong dependence on

the softening parameter (ǫ). Thus, softening parameter (ǫ) introduces a correction term

that lowers the correlation energy, with the resultbe decreases. Some mathematical tricks

have off course been involved like the varying values ofZN , as a result of which the

description ofξ2 for extended mass structures (galaxies) gets well defined byequations

(4.42), (4.45), (4.48) and (4.51).

In the chapter 5th, we have plotted graphs between correlation energy (b and be)

with the cell size (R) for a cluster. From these graphs, it is understood that for smaller

values of the size of the cluster correlation energy is more,while as for larger values of

the size of cluster correlation energy is less. We have also studied the effect ofbe onb and

have found that with the increase in the softening parameter(ǫ), the effect ofbe shows a
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decreasing value from 0.1-1.0 for a given cell size. However, on increasing the cell size

of a cluster, the effect ofbe shows an increasing trend.

The whole discussion of this dissertation is summarised in the form of following

points;

1. To understand the formation of galaxy clusters, various models on the basis of

mass distribution plays a vital role like the cold dark matter (CDM) sufficiently describes

the formation of structures in the universe. Cosmological parameters add a considerable

knowledge for studying the mass distribution.

2. The statistical mechanics and thermodynamics is an important tool in studying

the phenomena of galaxy clusters in an expanding universe. However, the use of quasi-

equilibrium thermodynamics provides sufficiently a good understanding of studying the

behaviour of a system consisting of galaxies and various statistical properties are explored

to understand the basic equations of state.

3. The two-particle correlation function (ξ2) has proved to be a lowest possible tool

in understanding the correlation between various particles (galaxies). We have recon-

firmed the complete dependence of correlation parameter ’b’ on the combination̄nT−3

on the basis of a partial differential equation relatingξ2 with n̄, T andr. Although, this

study had earlier been described by [93], but the main aim of this work was to extend the

same analytical model for a system of galaxies clustering gravitationally in which each

galaxy is treated to be an extended mass instead of being treated a galaxy as mere a point

particle. The extended nature of a galaxy is described by using the value of softening

parameter (ǫ) from 0.01 to 0.05 in the units of total radius (R) of a cluster.

4. The extension of the earlier work [93] has been successfully made applicable to

extended nature of galaxies in which a partial differentialequation developed for extended
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structures (equation (4.9)) has been analysed in detail. Aninteresting kind of solutions

are obtained by making use of certain constants likeZ andZN , whose appropriate values

has been chosen keeping the necessary boundary conditions into consideration. The basic

objectives in exploring the results forbe was to develop a new approach, whose analytical

results can be tested for various systems. The extended results (equation (4.51)) have

again shown that the measuring correlation parameter ’be’ for extended mass galaxies has

a complete dependence on the combinationn̄T−3. This clearly indicates that the theory

developed in this work as well as in previous studies [8][11][12][93] is applicable to a

moderately dense system. The details of these results shownin our work (chapter 4th)

has been recently published inMNRAS Letters (May, 2012 issue)[doi:10.1111/j.1745-

3933.2012.01281.x].

5. The overall dependence ofb (correlation parameter for point mass galaxies) andbe

(correlation parameter for extended mass galaxies) can be clearly understood by studying

the effects of these two correlation parameters with the size of a cluster. e.g; In case of

A2048 cluster with known parameters for number of galaxies (N) andgalaxy mass (m),

we have found that for bothb andbe, small clusters have more correlation energy to build

a cluster, while as bigger clusters have less correlation energy to build a cluster. It is

important to understand here that the role ofb andbe is very much related with the size of

cluster.

The overall impression of this M. Phil. work is that we have reasonably described an

alternative kind of approach exclusively meant for extended mass structures to understand

its clustering phenomena on the basis of two-point correlation function (ξ2).
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