
EFFECT OF CO-SOLVENTS ON BULK AND
INTERFACIAL CHARACTERISTICS OF
ROOM TEMPERATURE IONIC LIQUIDS

DISSERTATION
Submitted in partial fulfillment of the requirements

provided for the award of Degree of

Master of Philosophy
In

CHEMISTRY
By

ROOHI JAN
Under the supervision of

Dr. G. M. Rather

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF KASHMIR
Srinagar – 190006, J&K, India

April
2012



Dedicated to my noble parents



Dr. Ghulam Mohammad Rather University of Kashmir
Ph. D Srinagar-190006

Associate Professor J&K, India

DEPARTMENT OF CHEMISTRY

CERTIFICATE FROM SUPERVISOR

This is to certify that the work presented in this dissertation entitled “EFFECT OF

CO-SOLVENTS ON BULK AND INTERFACIAL CHARACTERISTICS OF ROOM

TEMPERATURE IONIC LIQUIDS” is original and has been carried out by Ms.

Roohi Jan under my supervision. This piece of work is suitable for submission for

the award of M.Phil Degree in Chemistry. It is further certified that the work has not

been submitted in part or full for award of any degree in this or any other University.

(Dr. G. M. Rather)
Supervisor



DECLARATION

I hereby declare that the work incorporated in the present dissertation was carried out

by me in the Department of Chemistry, University of Kashmir, Srinagar 190006. The

entire work or any part of it has never been submitted before for any prize or degree

anywhere.

(Roohi Jan)



ACKNOWLEDGEMENTS
Praise be to Allah for his continued blessings. Praise be to Allah for blessing me with noble parents
whose love and meliflous affection made this whole journey wonderful and successful. Words are
meaningless to express my unaccountable feelings to them for their belief in me, unequivocal
support, kind understanding, patience and preservance and above all in making me what I am
today. I wish them all the happiness and adventure that they have ensured that I had the
opportunity to experience. I owe them more than anything else in the world.

It is a matter of great previlage for me to work under the able and highly academic guidance of Dr.
G. M. Rather, Associate Professor, Department of Chemistry, University of Kashmir who
irreversibly cooperated with me and always gave me ample freedom. His energetic smile, optimistic
attitude, critical jugdements and never ending enthusiasm made the realization of this dissertation
possible.

Praise be to Allah for blessing me with an opportunity to meet an exceptional man Dr. Mohsin
Ahmad Bhat, Assistant Professor, Department of Chemistry who nurtured my capabilities and
above all his trust in my abilities kept me going and ultimately towards the attainment of this
goal. His scholarly guidance, experienced words, meticulous practical training, displined and
magnanimous nature, unlimited sincerity and affection towards students had always inspired me
and I feel extremely fortunate to be his student. His devotion and dedication to work, passion for
knowledge, inquisited mind and scientific attitude have made an everlasting impact on me and
boosted my confidence. His exceptional guidance and invaluable comments during the period of the
research and the writing of the study are very much appreciated. This research has been a
remarkable adventure and I am indebted to him for making it a challenging and learning journey.
Thank You Sir for being so patient and loving to me during the analysis of data. Thank You Sir
for all your love and I am excited to spend everyday of my life thanking You over and over again.
Really Sir You are the Real Mentor of the World of Research .

I would extend my special thanks Dr. Aijaz Ahmad Dar, Assistant Professor, Department of
Chemistry, University of Kashmir for his wise counseling and kind concern.

My special thanks to present Head of Department of Chemistry for allowing me to work in the
department. All other faculty members are also acknowledged for all the guidance and assistance
they provided me whenever I approached them. I would also like to mention the non teaching staff
especially Altaf Ahmad Mir for their assistance in every possible way.

No less had been the incessant help and constant encouragement provided by Muzaffer Hussain
Najar and Raashid Baya during the course of the study. I am very much thankful to them for their
invaluable advice and moral support.

Nevertheless I am not missing out this opportunity to acknowledge and appreciate Oyais Baya
whose infinite care and affection had always strengthened my determination. His kind concern,
wise counseling and timely tips are invaluable for me. He gave me great insight and guidance on
how to push forward and his never ending support helped to make this journey possible. Thank
you Oyais Baya for encouraging me always and replenishing my energy to work during the study.

Special thanks to Mudasir Nazir my research copartner for all the generosity and encouragement
he has provided to me during the study.

I feel  it my gratitude to appreciate and acknowledge my lab mates and  of course good friends of
mine- Roohi Masrat, Suraya Jabeen, Masrat Maswal , Sabreena Yousuf, Uzma Khan,and Rais
Ahmad Shah for their kind concern, timely assistance, love, moral support and amicable
cooperation in scientific and social fronts of life. Their infinite cooperation, hard work, sincerity
and dedication to work are source of inspiration to me. Really, I was fortunate enough to have
such a wonderful labmates who made this whole journey very exciting and unique. The moments



which I spent with my lab mates are most memorable moments of my life. It is really very much
painful to depart from such a company who always in one or other way tried to channelize all my
negative feelings of research to a successful journey.

I would also extend my special thanks to people from IIIM Srinagar Dr. Khursheed Ahmad Bhat,
Shabir Hussain Lone and Shakeel Baya for their timely assistance and kind support.

A special and Deep acknowledgement to my elder Sister, Rehana Akhter for her unwavering love,
priceless prayers, for providing financial assistance and for nourishing me like her daughter. I
respectfully offer thanks to my Jiju, Mushtaq Ahmad Bhat for his kind concern and invaluable
advice. Thanks to my nieces Mehvish Mushtaq, Huma Mushtaq and Adeeva Mushtaq for their
innocent love and care. Their innocent talks and actions always refreshed me whenever I was
entrapped by the frustration of research.

I would also like to thank my brother Waheed Ahmad Wani for giving me strength of will to
pursue what I believed and strength of character to lead a righteous life. Thanks to my Sister-in-
law Bilkees jan for her constant support, infinite love and encouragement. And of course my
heartfelt and sweet thanks to my sweet nephew Mohammad Aman Wani for his pious love. His
innocent actions and babbling talks drain magically all sort of negative feelings from my mind.

I am very much thankful to Allah for blessing us with this mini angel who innocently makes the
life of my family very much exciting and enthusiastic.

I feel my pleasure to acknowledge my two younger sisters, Samiya Jan and Nelofer Akhter for
their priceless prayers, invaluable suggestions, concern, support and encouragement. Thanks for
being my Special Friends.

I would like to extend my deepest appreciation to all my friends Usma Gul, Rukaya Khaliq,
Sakeena Akhter Umul Maurifa, Rasika Jan, Momin Bashir, Shubnum Bashir, Fozia Ashraf,
Saima Riyaz and especially Raafia Najam for being there, whenever I was in need of them the
most and for their love, support and encouragement.

Very special thanks to Syeed Zeeshan Fathima who accompanied and supported me always. She
has also inspired me through her openness and straightforwardness.Thank you Zeeshan for directly
or indirectly making this period very successful and immemorable.

Most people are lucky to have friends as constant and close to their heart as Ulfat Araf Jan
(school friend) is to mine. She always motivated and elated me and gave me immense love and care
from my school days.

I feel short of words for my roommate Kurat D for making my stay comfortable and enjoyable
during this period.

I am forever grateful to my granddadi whose foresight and values gently offer counsel and
unconditional support at each turn of the road.

This piece of work is a tribute to my beloved parents and to an exceptional man from a student
still anxious to learn from him

Overall it was remarkable and incredible experience of my life.

Roohi Jan



List of Publications:

1. Roohi Jan, Ghulam Mohammed Rather, Mohsin Ahmad Bhat, Association of ionic liquids in
solution: Conductivity studies of [bmim][Cl] and [bmim][PF6] in binary mixture of Acetonitrile
+ Methanol. Journal of Solution Chemistry 2012 (accepted)

2. Roohi Jan, Ghulam Mohammed Rather, Mohsin Ahmad Bhat, Effect of co-solvents on bulk
and interfacial characteristics of N-alkylimidazolium based ionic liquids [bmim][PF6] and
[bmim][BF4]. (Communicated)



I

CONTENTS
Chapter No. Title Page No.

 List of Figures II
 List of Tables III
 List of Schemes III

1 Introduction 1-28
1.1. Composition of  Room Temperature Ionic
Liquids

4-5

1.2. Synthesis of Room Temperature Ionic Liquids 5-7
1.3. Physicochemical Properties of RTILs 7-14
1.4. Solute-solvent interaction in systems

containing Imidazolium based Ionic Liquids
14-20

References 21-28

2 Association of Ionic Liquids in solution:
Conductivity studies of [bmim][Cl] and
[bmim][PF6] in binary mixture of Methanol and
Acetonitrile.

29-46

2.1: Introduction 29-31

2.2:  Experimental 31-33
2.3: Results and Discussion 34-43
2.4: Conclusion 44

References 45-46

3 Effect of co-solvents on the bulk and interfacial
characteristics of N-alkylimidazolium Ionic
Liquids [bmim][BF4] and [bmim][PF6].

47-71

3.1: Introduction 47-48
3.2: Experimental 49
3.3: Results and Discussions 50-66

3.3.1: Co-solvent effects of Methanol  and
Acetonitrile on the Bulk
Characteristics of [bmim][BF4] and
[bmim][PF6]

50-59

3.3.2: Co-solvent effects of Methanol  and
Acetonitrile on the Interfacial
Characteristics of [bmim][BF4] and
[bmim][PF6]

59-66

Conclusion 66-67
References 68-71



II

LIST OF FIGURES

Figure  No. Title Page No.
2.1 Molar conductivities (Ʌ) of (A) [bmim][Cl] and

[bmim][PF6] in methanol + acetonitrile mixtures in
the composition range 10 to 100% methanol (by
volume) in steps of 10%. Lines show the results of
the lcCM calculations.

35

2.2 (A) Limiting ion conductance (Ʌ0
m) and (B) ion

association constant (K0
a) of [bmim][Cl] and [bmim]

[PF6] in methanol + acetonitrile mixtures in the
composition range 0 to 100% methanol (by volume)
in steps of 10%. Lines show the results of lcCM
calculations

43

3.1 Specific conductance ( ) of [bmim][BF4] and
[bmim][PF6] as a function  of composition in (A)
Acetonitrile and (B) Methanol  respectively.

51

3.2 Specific conductance ( ) as a function of
composition in acetonitrile and methanol (A)
[bmim][PF6] and (B) [bmim][BF4].

52

3.3 Conductivities ( ) of [bmim][BF4] in Methanol (A)
and Acetonitrile (B) at 298.15K. Experimental
values represented by symbols and lines show
Casteel Amis Fit.

55

3.4 Conductivities ( ) of [bmim][PF6] in Methanol (A)
and Acetonitrile (B) at 298.15K. Experimental
values represented by symbols and lines show
Casteel Amis fit.

56

3.5 Surface Tension (γ) as a function of composition in
methanol and acetonitrile (A) [bmim][PF6] (B)
[bmim][BF4]

61

3.6 Change in surface tension(∆γ)  as a function of
composition in methanol and acetonitrile (A)
[bmim][PF6] and (B)  [bmim][BF4]

63



III

LIST OF TABLES

Table No. Title Page No.

2.1 Dielectric constant (ε ) and viscosity ( ) of methanol

(MeOH) + acetonitrile (MeCN) mixtures at 298.15 K.

33

2.2 Coefficients of the conductance equation 37

2.3 Association constant (K ), Limiting molar

conductivities ( ), input radii (R) and parameters

(Rij) for [bmim][Cl] and [bmim][PF6] in acetonitrile +

methanol mixed solvent systems at 298.15 K.

39

3.1 Fitted Values of the Empirical Parameters, κ ,x ,  a, b and the standard error (s) of [bmim][BF4]

and [bmim][PF6] in Methanol and Acetonitrile

according to the Empirical Casteel – Amis  Equation

at 298.15K.

57

3.2. Surface excess (Γ) of RTILs, [bmim][PF6] and

[bmim][BF4]  in Methanol and Acetonitrile in lower

and higher concentration regions.

65

List of Schemes

Title Page No.

Scheme 1 General reaction scheme for the synthesis of Ionic

Liquids

6

Scheme 2 Electronic structure of 1,3-dialkylimidazolium cation 8



Chapter 1
General Introduction



Chapter 1 General Introduction

1

Ionic liquids (ILs) are special class of molten salts constituted by large and

asymmetric organic cations and inorganic or organic anions, with melting

temperatures below 100oC. Due to the large size and the conformational flexibility of

constituent ions, ILs present low lattice enthalpies and large entropy changes upon

melting which favour the liquid state. ILs with melting point below ambient

temperatures are regarded as Room Temperature Ionic Liquids (RTILs). RTILs have

attracted increasing attention in recent years [1-5] from both academia and industry

due to their interesting properties and potential applications. RTILs as a hybrid of

neutral and ionic entities, exhibit many unique physicochemical properties, such as

negligible volatility, nonflammability under ambient conditions, large liquidus range,

high thermal and chemical stability, wide electrochemical window, wide range of

densities and viscosities, high potential for recycling, high ionic conductivity, and

miscibility with a wide range of organic and inorganic compounds [1, 3, 6-12 ] which

confer them their reputation as “green solvents” and make them a good alternative to

traditional organic solvents [7,10,13-18]. In addition, the high polarity of the ILs

makes them to form very strong effective adsorption films and redy tribochemical

reactions, which contributes to their prominent antiwear capability [19]. On account

of above mentioned specialities, RTILs have found wide applications in chemical

synthesis, catalysis, lubrication, thermal separation processes and electrochemistry [4,

13, 20-26].

ILs were initially synthesized in the early 20th century and at present there are 200

different types of ILs which have been reportedly prepared. The first report of ionic

liquid (formerly called a room-temperature molten salt), ethyl ammonium nitrate goes

back to 1914, which was composed of ethylammonium cation and nitrate anion and
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had a melting temperature of 12oC [ 27]. However, this ionic liquid did not attract

further application based research due to its explosive nature. Latter, organic

chloroaluminates were developed by Hurley and Thomas in 1951 [28]. However,

interest in these salts advanced only after the development of binary ionic liquids

from mixtures of aluminium (III) chloride and N-alkylpyridinium [29] or 1, 3-

dialkylimidazolium chloride [30]. During 1970s ionic liquids were studied mainly for

electrochemical applications and in the mid-1980s, ionic liquids were proposed as

solvents for organic synthesis [31, 32]. In the 1990s many air and water stable ionic

liquids were introduced and since then they have become increasingly popular in

academia and industry [33].

The most fascinating aspect of ionic liquids is that their physical and chemical

properties can be tailored for specific applications by adjusting the structure and

species of cations/anions; it is in this context that these valuable solvents are being

referred to as ‘Designer Solvents’. As an example, the combination of 1-butyl-3-

methylimidazolium [bmim] with tetrafluoroborate [BF4]- ion results in a hydrophilic

IL, whereas the association of the same cation with hexafluorophosphate [PF6]- ion

produces a strongly hydrophobic compound, and, in general the hydrophobicity of the

cation increases with the length of the alkyl chain [2]. In fact, the possible

combination number of cations and anions is uncountable with vast and still

unexplored possibilities [34, 35]. To facilitate the selection of an optimum ionic liquid

for a particular application, it is useful to consider their fundamental transport and

thermodynamic properties. An understanding of microstructures and interactions of

ionic liquids at molecular level, as pure compounds or in the presence of dissolved

species, is useful to design suitable ionic liquids [36, 37]. The chemical constitution of
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ionic liquids determines the nature of intramolecular and intermolecular interactions

and thus the macroscopically observable properties such as thermodynamic and

transport properties [38]. A deeper understanding of the effect of the molecular

structure and microscopic properties of ionic liquids is paramount in understanding

and improving the macroscopic properties of the system [39].

Recently, the synthesis of functionalized task-specific ionic liquids (TSILs) with

special functions according to the requirement of a specific reaction has become an

attractive field due to their tunable features for various targeted chemical tasks and the

advantages as reusable homogenous supports, reagents, and catalysts with green

credential. The TSILs often serve the dual role of catalyst and reaction medium.

Endowed with catalytically active groups, functional ionic liquids have been

developed and successfully applied as catalysts in a number of chemical

transformations. Like a basic functionalized ionic liquid, 1-butyl-3-

methylimidazolium hydroxide [bmim][OH], catalyzes the three component

condensation reaction of acid chlorides, amino acids, and dialkyl

acetylenedicarboxylates in water to afford functionalized pyrroles in high yields [40].

Bellina et al. [41] synthesized a series of glycerylimidazolium based task specific

ionic liquids aiming their applications to palladium catalyzed coupling reactions.

Wang and coworkers developed [42] a variety of structurally diverse Bronsted acidic

benzimidazolium based ionic liquids and explored their use as environmentally

benign catalysts for acetalization of various aldehydes using substituted 1, 2-

ethanediols affording protected acetals in high yields. Wang et al. have designed [43],

synthesized and used an ethanolamine functionalized TSIL, 4-di

(hydroxyethyl)aminobutyl tributylammonium bromide for the Heck coupling reaction
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where IL performs the role of base, ligand and reaction medium simultaneously, with

added advantage of recyclability of the system. SO3H-functionalized ionic liquids

have been employed as an alternative reaction medium to conventional acid catalysts

for oligomerization of various olefins, to produce branched olefin derivatives in high

conversions and excellent selectivity. The TSILs maintain the unique properties of

ionic liquids, therefore can be easily recycled and reused as homogenous small

molecular catalysts. Up to now, functionalized ionic liquid (FIL) catalysis has been

mainly focused on exploring acid or base mediated reactions. Considering the

‘designer’ properties of ionic liquids, there seems a tremendous unexplored potential

for FIL catalysis [44-47].

1.1. Composition of Room Temperature Ionic Liquids

The fact that an ionic liquid is composed of ions and is still liquid at ambient

conditions is reason enough to evoke curiosity among researchers as far as their

properties and applications are concerned. A sufficient and systematic understanding

of molecular structure-physicochemical properties relationship is a basic requirement

for molecular design in chemistry with a view to create new materials having

desirable properties. The general strategy of designing RTILs is to destabilize the

crystalline phase of an ionic substance with respect to its melt. Choosing large size,

diffuse charge and unsymmetrical ions in such combinations leads to weak coulombic

interactions and the low symmetry hampers their efficient packing in the crystal. Both

these goals are achieved through selection of large size unsymmetrical organic cations

and weakly coordinating inorganic/organic anions. In addition to molecular symmetry

and charge delocalization, size mismatch of ions, side chain elongation and

fluorination of hydrocarbon chain continue to be the popular methods for inventing
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new RTILs. The most common ionic liquids comprise salts of tetraalkylphosphonium,

tetraalkylammonium, N-alkylpyridinium or N, N′-dialkylimidazolium cations.

Common cations contain 1-18 carbon alkyl groups, and include the ethyl, butyl and

hexyl derivatives of N-alkyl-N′-methylimidazolium and N-alkylpyridinium. Other

cations include pyrrolidinium, pyridazinium, pyrimidinium, pyrazinium, pyrazolium,

triazolium, thiazolium and oxazolium. A wide range of anions can be matched with

the cation component for achieving an ionic liquid with desired physicochemical

properties. Commonly used anions include carboxylates, fluorinates, carboxylates,

sulfonates, fluorinated sulfonates, imides, borates, phosphates, antimonates, halides,

halometallates, etc. [48]. Because of enormous choice of available cations and anions

one can design large number of RTILs with desired physical properties by employing

a proper combination of cation and anion. Owing to some potential advantages like

high air and water stability, low toxicity, appreciable conductivity and structural

organization, imidazolium based RTILs are more oftenly used especially for

electrochemical applications [49, 50].

1.2. Synthesis of Room Temperature Ionic Liquids

Conventionally a two step procedure is used in the synthesis of RTILs [51, 52]. The

first step is usually a quaternization   reaction, wherein alkylation of heteroatom in an

organic moiety is performed to produce salt of desired organic cation. In the second

step the anion (usually a halide) of the salt synthesized in step first is substituted by

the anion of choice through anion exchange reaction [Scheme 1].
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Scheme 1: General reaction scheme for synthesis of Ionic liquids

A variety of synthetic procedures are available in the literature for the synthesis of

RTILs and often the purity of final product happens to be a matter of concern in these

procedures. Impurities even in the lowest concentration regime have drastic and

undesired effects on the physicochemical characteristics of RTILs, especially those of

electrochemical concern. Gordon and co-workers [53] have recommended a three

pronged approach, viz.

(i) Purification of starting materials

(ii) Control of conditions for quarternization and metathesis reactions and

(iii) Purification of the synthesized ionic liquids for research grade purity.
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The conventional synthesis and purification procedures for RTILs are time consuming

and often give low yields. Low yields, waste generation, complicated workup

procedures and non-green aspects of synthesis and purification processes for RTILs

are current obstacles in the path of their generalized use. Hence many groups have

extensively investigated these issues and subsequently non-conventional approaches

like use of microwaves [54, 55] and ultrasound [56-58] have been tested for the

synthesis and purification of RTILs with better yield and purity, fast conversions and

easy workup of synthetic and purification steps in mind. Various approaches for

purification of RTILs have been a subject matter of many publications [59-62].

Making the RTIL synthetic procedures greener, with maximum purity and stability of

the synthesized product and designing new choices of cation-anion combinations,

besides the structural modifications in the cation-anion skeleton to achieve desired

properties in a low cost RTIL continue to be an area of immense interest for synthetic

chemists. Synthesis of RTILs from biorenewable natural products is currently a new

area of research in this regard [63, 64].

1.3. Physicochemical properties of RTILs

1.3.1. Structure of Imidazolium based Ionic Liquids.

As solvents ionic liquids present a completely different environment from that of

polar and non-polar molecular solvents. In addition to the interactions existing in

conventional organic solvents (hydrogen bonding, dipole-dipole and van der Waals

interactions) ionic liquids being constituted exclusively by ions experience strong

inter-ionic interactions that yield long- lived association of ions [38]. The nature and

type of interactions and interconstituent forces in the bulk ionic liquids affects their

physical and chemical properties and how they interact with other solutes [65]. There
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are, however, still many questions related to the nature and the precise origin of the

possible interaction in RTILs, which are yet to be assumed satisfactorily.

1.3.1.1. Features of Imidazolium Ionic Liquids

Stability and excellent liquescency of Imidazolium ring [Scheme 2] makes the

imidazolium ionic liquids most widely used and studied families of ILs [66]. The

unique properties of these cations are founded in the electronic structure of their

aromatic ring which contains delocalized 3-center-4-electron configuration across the

N1-C2- N3 moiety, a double bond between C4 and C5 at the opposite side of the ring,

and a weak delocalization in the central region [67]. The hydrogen atoms C2-H, C4-

H, and C5-H carry almost the same charge, but carbon C2 is positively charged owing

to the electron deficit in the C=N bond, whereas C4 and C5 are practically neutral.

The resulting acidity of the hydrogen atoms is the key to understand the properties of

these ionic liquids. The hydrogen on the C2 carbon (C2-H) has been shown to bind

specifically with a solute molecule [68, 69] or its counter ion [70] as a good hydrogen

bond donor.

1.3.1.2. Nanostructural Organization of Imidazolium based Ionic Liquids

Ionic liquids are composed solely of ions so that long-range coulomb interactions may

play a major role giving rise to structure and dynamics that are unique to ionic liquids

[71]. Many of the novel features of ionic liquids are likely to originate from these
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unique structures and dynamics [72]. From macroscopic point of view, an ionic liquid

can be considered as a continuum system characterized by its macroscopic constants,

such as boiling point, vapour pressure, density, surface tension. However, from

microscopic point of view it is a discontinuum which consists of individual, mutually

interacting molecules, characterized by molecular properties such as dipole moment,

electronic polarizability, hydrogen-bond donor (HBD) and hydrogen bond acceptor

(HBA) capability, electron-pair donor (EPD) and electron-pair acceptor (EPA)

capability, etc. The types and extent of these interactions determine the macroscopic

properties of ionic liquids and their possibilities for different applications.

Many studies have been carried out to examine the structure and interactions of ionic

liquids, mostly imidazolium based ionic liquids, by using different approaches.

Specifically, the structure of these ionic liquid systems exhibits unique spatial

heterogeneity that results from their inherent polar/nonpolar phase separation. The

underlying reason for the microphase segregation is due to the interplay between

electrostatic interactions (between polar imidazolium ring and anion) and van der

Waals interaction between the nonpolar alkyl tails of the cation [73].

Nanosegregation of imidazolium based ionic liquids between polar and non-polar

regions was first predicted through molecular dynamics simulation studies [74-77]

and later confirmed by neutron [78] and X- ray diffraction [78] techniques. The

molecular dynamics simulations done on 1-alkyl-3-methylimidazolium cations with

anions (F-, Cl−, Br−, and [PF6]−) show that regions above and below the imidazolium

ring are the preferential ones in case of large anions, however, nearest-neighbour

anions are pushed away from the volume occupied by the flexible alkyl chain on

increasing alkyl chain length [75]. The charged anion and the cation head groups
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distribute homogeneously because of the strong electrostatic interactions, while the

neutral tail groups tend to aggregate due to the collective short-range interaction of

longer alkyl chain [77].

The local structural heterogeneity of imidazolium based ionic liquids has been probed

by coherent anti-Stokes Raman scattering (CARS) [71, 72]. Neutron diffraction

measurements on 1, 3-dimethyl Imidazolium based ionic liquids show the effects of

charge distribution and anion size on their nanostructural segregation. As the ions

increase in size, the charge becomes more delocalized and the cation–anion

interaction is reduced, resulting in less charge ordering and nanostructural segregation

[79]. Divalent anions, such as sulphate (SO4
2-), thiosulphate (S2O3

2-), chromate

(CrO4
2-), dichromate (Cr2O7

2-), carbonate (CO3
2-) and oxalate (C2O4

2-) increase the

electrostatic interactions due to enhanced intermolecular structuring [80].

The existence of structural organization of 1-alkyl-3-methylimidazolium based ionic

liquids with [Cl]- and [BF4]- studied by X-ray diffraction  reveal that size of structural

heterogeneities depend on alkyl chain length [78,  81]. The effects of cation symmetry

on properties of imidazolium based ionic liquids have also been reported [82-84].

Symmetric 1, 3- didecyl Imidazolium hexafluorophosphate and asymmetric 1-decyl-

3-methylimidazolium hexafluorophosphate are liquids irrespective of their symmetry

[82]. However, the greater structural organization in symmetric cation than 1-decyl-3-

methylimidazolium hexafluorophosphate was reported [83]. Both experimental and

molecular dynamic simulation results show that symmetric 1, 3-dialkyl-imidazolium

bis(trifluoromethylsulfonyl)imide ionic liquids have the same morphology; however,

nanoscale ordering is considerably enhanced in symmetric cation based ionic liquids

[73, 84]. The effect of conformational heterogeneity of cations and anions in
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nanostructure organization of ionic liquids has also been reported [85]. For example,

the coexisting trans-trans and trans-gauche conformations of n-butyl chain in 1-butyl-

3-methylimidazolium cations was found to be crucial in lowering the melting point of

this 1-butyl-3-methylimidazolium based ionic liquids [85].

1.3.2. Viscosity

RTILs are viscous liquids with viscosities 1-3 orders of magnitude greater than the

conventional solvents [86]. Owing to the impact of viscosity on the rate of mass

transport and conductivity, high viscosity of RTILs is presently the main concern for

their use in electrochemical setups [49, 87]. It has been found that cation as well as

anion of the RTIL have a significant impact on their overall viscosity. Hole theory

[88] has been successfully used [89] to analyze the RTIL viscosity and its tuning

through structural variations. It has been shown that viscosity of RTILs can be

modeled by assuming that they behave like an ideal gas whose motion is restricted by

the availability of sites for the ions to move into. Hence for an RTIL

= ( ̅/ . )( ( )) (1.1)

where is the coefficient of viscosity, is the geometric mean of the constituent ion

molecular mass, is ̅ the average speed of the molecule (= 8kT/π.m)1/2, the

collision diameter (4 R2) and P(r ≥R) is the probability of finding a hole of radius r,

greater than the R of the RTIL whose value can be evaluated through,= √ (1.2)

where is given by= (1.3)
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being the surface tension. Good correlation between calculated on the basis of

Hole theory and that measured experimentally has been reported. As evident from the

above equations, RTIL viscosity can be decreased by decreasing the surface tension,

increasing the free volume or by decreasing the ionic radius. This is the reason for low

viscosity of RTILs with fluorinated anions. Various groups have extensively studied

the impact of cation, anion, their size, symmetry and charge delocalization on the

values of RTILs in detail [90–93]. Viscosity of RTILs has been demonstrated to be

temperature sensitive [94, 95]. While temperature dependence of in most RTILs

obeys an Arrhenius type relationship, Guzman-Andrade (GA) law,= . exp (1.4)

where is the activation energy for viscous flow, for many RTILs Vogel-Tamman-

Fulcher (VTF) equation,

= . exp (1.5)

with , B and T0 as constants, better explains the variations of with temperature. In

general, RTILs with asymmetric cations without any functional group in alkyl chains

generally follow GA law while those with symmetrical low molar mass cations follow

VTF equation [95]. An overall analysis of the viscosity data leads to the general

conclusion that for RTILs electrostatic interactions, hydrogen bonding and van der

Waals interactions are the determining factors for their overall viscosity [92].

Regarding mass transport in RTILs, diffusion coefficients have been found to vary

with in accordance with Stokes-Einstein relation [96, 97], qualitatively suggesting

their conventional solvent like behavior. Worth to mention, there are reports in
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literature [98, 99] where validity of fractional Stokes-Einstein behavior in RTILs has

been demonstrated. In spite of many detailed and comprehensive experimental and

molecular dynamical studies, mass transport in RTILs is yet to be completely

understood [100].

1.3.3: Conductivity

Composed entirely of ions, RTILs are considered as concentrated electrolyte fluids,

with appreciable conductivity values that abrogates the need of supporting electrolyte

in their use as solvents in electrochemical setups [49, 87, 94]. Conductivity values

from 0.1- 20 mS cm-1 have been reported [94] and found to be strongly dependent on

the overall composition of the RTIL. Among all the RTILs, those based on

imidazolium based cations have higher conductivities of the order of 10 mS.cm-1

[101], which is one of the reasons for their extensive use in electrochemistry [49].

Conductivity is found to be an inverse function of the RTIL viscosity as per Stokes-

Einstein equation. An interesting observation in this regard has been the mismatch

between the experimentally observed conductivity and the value calculated

theoretically on the basis of magnitudes of diffusion coefficients [91, 92, 102-104].

This mismatch has been explained in terms of ion aggregates and correlated ionic

motions in RTILs [91, 92, 103-105]. Besides viscosity, ion size, charge

delocalization, density, ion aggregation and correlated ionic motions influence the

RTIL conductivity [90, 91, 102, 106–109]. Furthermore conductivity strongly

depends upon temperature, obeying an Arrhenius type equation,= − (1.6)

where is the activation energy for the conduction and is a constant.
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1.4. Solute-Solvent Interaction in systems containing Imidazolium based Ionic
Liquids

Ionic liquids can dissolve a wide range of polar or nonpolar, organic or inorganic

compounds. The ability of an ionic liquid to dissolve polar and non-polar compounds

is related to its structural segregation [74, 110]. The segregation of polar and nonpolar

domains and diverse environment in ionic liquids helps to understand how solutes

physically fit into the bulk liquid and how much the overall structure is affected.

Different solutes interact preferably with certain domain of the ionic liquids. Each

domain located at different site acts as a specific solvent for a given class of solutes

and due to contrasting polarities of these domains ionic liquids are called “two-in

one” solvents [110] or (pseudo) different solvents [111].

The solutes are generally classified into three groups depending on where and how

they interact with ionic liquids [110]:

(a) Associating solutes: interact strongly with polar network.

(b) Dipolar solutes: prefer the non- polar regions of ionic liquids and

(c) Non-polar solutes: can orient themselves at the interface between the polar and

non-polar regions of ionic liquids.

1.4.1. Associating Solutes

Associating solutes form strong hydrogen bonds with the charged parts of the ionic

liquid domains [112], specifically with atoms of anions [110]. The most common

examples are water and methanol.

One of the most studied solute-solvent interactions involving ionic liquids is the

interaction between water and imidazolium based ionic liquids. Both the experimental

[113-115] and theoretical works [116] show water molecules preferentially interact
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with polar domain of ionic liquids through hydrogen bonding. Cammarata et al. [115]

studied interactions between ionic liquids and water by attenuated total reflectance

(ATR) infrared spectroscopy and concluded that water molecules preferentially

interact with anions through hydrogen bonding. In addition, they found that ionic

liquids containing [BF4]- and [PF6]- anions form symmetric complexes with water

molecule (both protons of water bound to two discrete anions) as X…H-O-H…X

(where X represents the anion in the ionic liquid). Similar observations were reported

through vibrational spectroscopy measurement and DFT calculation [117, 118].

The interaction between methanol and ionic liquid is dominated by hydrogen bond

interaction due to its both hydrogen bond donor and acceptor properties [116]. The

only differences are: methanol interacts with both polar and non polar domains of

ionic liquids and interaction between methanol and C2-H is weaker than that of water

molecule [116]. The infrared spectroscopy and two dimensional correlation and

multivariate curve resolution on mixtures of methanol and [bmim][BF4] and

[bmim][PF6] have established hydrogen bonding interactions between methanol OH

group and anionic fluorine [113,116] in RTIL + methanol mixtures. The OH

stretching band was observed to show red shift on addition of methanol in ionic

liquid and the observed shift was found to be greater for [BF4]- than [PF6]- indicating

stronger interaction of former than later. The results from these reports also indicated

the presence of weaker interactions between methanol and cation hydrogen through

methanol oxygen and acidic hydrogen of imidazolium cation. The density functional

theory (DFT) calculations by Zhu et al. [119] also show anions prefer to occur near

hydroxyl atom of methanol due to its positive charge.
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1.4.2. Dipolar Solutes

Dipolar solutes interact with the charged head groups of the ions and nonpolar

domains. They orient themselves at the interface between the polar and non-polar

regions of the ionic liquids [110]. This makes them excellent solvents for many ionic

liquids. Acetone, acetonitrile, and small halogenated hydrocarbons are some of the

solutes in these categories. Acetone and acetonitrile are soluble at all compositions in

[bmim][PF6] whereas the solubility of hexane and water is 0.11 and 0.29 mole

fraction at 330K [120, 121].

The NMR experiment and ab initio calculations on acetone and [C4mim][PF6],

[C6mim][PF6], [C8mim][PF6] and [C6mim][BF4]) indicated hydrogen bonds between

the ring protons, alkyl chain of the ionic liquids and the carbonyl oxygen of the

acetone molecules [122]. The results show that the strength of the hydrogen bond is

influenced by the type of anion and the length of alkyl chain on the imidazolium ring.

Acetonitrile interacts with the polar and non-polar domain of ionic liquids at different

proportions [112]. The simulation work by Lopes and coworkers [116] on

[bmim][BF4] and [bmim][PF6] + methanol/acetonitrile mixtures show that both

acetonitrile and methanol interact strongly with both anions. The differences between

methanol and acetonitrile are: the anion-methanol interaction is stronger than that of

anion-acetonitrile and C2-H-acetonitrile interaction is conversely stronger for

acetonitrile than that of methanol [116]. The molecular dynamics of acetonitrile and

[bmim][BF4] mixture shows interaction between nitrogen of CH3CN and imidazolium

ring hydrogens [123].

Zang et al. (124) investigated the properties of the mixtures of deuterated dimethyl

sulfoxide (DMSO-d6) and 1-butyl-3-methylimidazolium tetrafluoroborate
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([bmim][BF4]) by IR and quantum chemical calculations. They found that hydrogen

bonds are preferentially formed between imidazolium C2-H and oxygen of DMSO

than anion-DMSO alkyl chain hydrogens. In addition, the interaction between oxygen

of DMSO and C4-H/ C5-H was observed to have insignificant importance in ionic

liquid-DMSO interaction [125]. The intermolecular interactions of DMSO ionic

liquids have also been analyzed using the measured excess properties [126, 127].

1.4.3. Non polar solutes

The nonpolar molecules such as alkanes tend to reside in the nonpolar domains of ILs

and are excluded from the ionic network because of the cohesive energy of the

charged groups [112]. The simulation work by Padua et al [112] shows a strong peak

radial distribution function appears between the methyl groups of n-hexane and end

carbon alkyl side chain of cation, and very weak correlation observed between the

alkane and both cation head group and anion in hexane + [bmim][PF6] mixtures.

The difference in relative position, orientation, and specific interaction between

solutes and different domains of ionic liquids shows the complex microscopic

structures of ionic liquid fluid phase. The position of solutes in ionic liquids depends

on the size and morphology of ionic liquid microstructures and affinity of solute for

each domain.

Ionic liquids have attracted wide attention lately and their potential applications in

different areas are continuously being explored. Most of the current researches on

ionic liquids are concentrated on investigating what can be achieved through ionic

liquids and why they work the way they do. The latter provide insight into the

molecular factors that determine their properties ranging from quantitative

thermodynamic and physical data and qualitative trends that guide in searching the



Chapter 1 General Introduction

18

best ionic liquids for particular purpose. Many of the applications rely upon the

interaction of ionic liquids with other components. Ionic liquids exhibit nanoscale

phase segregation into polar and nonpolar regions. The nanoscale self-organisation is

the result of interplay between Coulomb and van der Waals interactions which leads

to the formation of high charge density permeated non-polar regions. Like in any

other associated liquid, the structural organization of constituents makes RTILs to

behave as very viscous fluids. Presently the high viscosity of ionic liquids is a

constraint in obtaining optimum application in many electrochemical devices, in

addition to its detrimental role in chemical kinetics. There exist three possibilities for

handling the high viscosity of ionic liquids:

(1) To synthesize ionic liquids with low viscosity but these may not be suitable for a

given application as one needs to replace either the cation or anion by another species

imparting the low viscosity. This may lead to a decrease in the effectiveness of the

ionic liquids itself.

(2) To use viscous ionic liquids in conjunction with molecular solvents to provide a

clear liquid phase that will offer low viscosity but still be useful for a variety of

applications.

(3) To increase the temperature. However, increase of temperature may be unsuitable

when chemicals/ devices are poorly heat resistant.

So the use of co-solvents seems as a better option to overcome viscosity related

challenges of RTILs. There are many reports available on the physical properties of

pure and binary mixtures of imidazolium ionic liquids with co-solvents. The

physicochemical properties in these reports have been studied and correlated with the

structures of ionic liquids in terms of variations in the cations and anions [128, 129].
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Seddon et al. [130] have reported the effect of chloride, water and organic solvents on

the physical properties of various ionic liquids. Yang et al. [131] observed the effect

of water and cosolvents on the viscosity of the ionic liquids, 1-butyl 3-methyl

imidazolium hexafluorophosphate [bmim][PF6], 1-butyl 3-methyl imidazolium

tetrafluoroborate [bmim][BF4] and 1-butyl 3-methyl imidazolium trifluoroacetate

[bmim][CF3CO2]. It has been found that a change in the nature and concentration of

co-solvents affects the viscosity and conductivity of RTIL very significantly. The

solvents of higher dielectric constant seem to have a larger effect on the viscosity and

the conductivity of the solution indicating that organic solvents enhance ionic

association of the ionic liquids, an effect that is due to the dielectric properties of the

solvents.

Motivated by the literature reported concerns and missing links associated with the

fundamental and applied aspects of ion association characteristics and the co-solvent

impact on the physicochemical aspects of RTILs, we attempted to explore the impact

of cosolvent on structural, transport and interfacial properties of N-alkylimidazolium

ionic liquids. The resulting studies are presented as two chapters;

In chapter 2 of this dissertation we present results from our detailed conductometric

investigations regarding the ion association characteristics of [bmim][Cl] and

[bmim][PF6] in molecular solvents viz. methanol and acetonitrile. Chapter 3rd presents

results from our studies aimed at to explore the impact of organic co-solvents viz.

acetonitrile and methanol on the bulk and interfacial characteristics of [bmim][BF4]

and [bmim][PF6].
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Prelude

Concentration dependence of molar conductance for 1-butyl-3-methylimidazolium

chloride ([bmim][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate

([bmim][PF6]) in binary mixtures of acetonitrile + methanol was investigated to

explore the ion association behavior of imidazolium based ionic liquids. The limiting

molar conductance ( ), association constants ( ) and the maximal distance

between the oppositely charged ions in ion pair formation (Rij) in the mixed solvent

mixtures were evaluated following the framework of Barthel’ s low-concentration

chemical model (lcCM). It is reported that the investigated ILs display opposing

trends in ion association behavior with change in binary solvent composition. The

results are discussed in the light of ionic liquid and solvent specific ion-solvent and

ion-ion interactions in the mixed solvent systems.

2.1. Introduction

Ionic liquids (ILs) in recent years have been attracting considerable attention from the

scientific and industrial community in general and electrochemists in particular [1-4].

On account of their unique and tunable inherent physicochemical characteristics, ILs

are now increasingly being used as reaction media, novel solvents for separation and

analysis and as electrolytes in electrically, photochemically or chemically driven

electrochemical setups [1-3, 5]. A comprehensive understanding of ion-ion and ion-

solvent interactions in ILs and IL + co-solvent mixtures is must to achieve the desired

characteristics of ILs in such systems. Among the large variety of ILs known till date,

those based on imidazolium cations are probably the most intensively investigated

and used, perhaps on account of their high air, moisture, thermal, electrochemical and

chemical stability [3, 6]. The imidazolium based ILs are very complex innovative

systems which are capable of interacting simultaneously with other molecules via
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dispersive, ionic, π-π, dipolar and hydrogen bonding interactions. These interactions

when understood completely can be intelligently made use of in changing the course

of chemical or electrochemical reactions through a proper use of ILs as solvents or

electrolytes [7–10, 4, 11]. In view of the recent developments related to theory of

conductance of electrolyte solutions [12, 13], conductometry is increasingly being

used as a reliable, affordable and convenient bench level technique that provides

valuable information about the ion-ion and ion-solvent interactions in electrolyte

solutions. In view of the fact that mixed solvents enable the variation of properties

such as dielectric constant and viscosity over a wide range, conductometric inves-

tigations of ILs in mixed solvent systems seems very interesting. Such studies are

expected to shed new light on the mechanism and extent of ion-ion and ion-solvent

interactions and solvation of ILs in solutions, wherein nonelectrostatic forces

contribute significantly to the equilibrium and dynamic characteristics of constituent

ions.

In view of the above mentioned facts we carried detailed conductometric

investigations of 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) and 1-butyl-3-

methylimidazolium hexafluorophosphate ([bmim][PF6]) in binary mixtures of

acetonitrile + methanol mixed solvent systems. The studies were aimed at exploring

the solvent and ion specific transport and ionic association characteristics of imida-

zolium based IL electrolyte solutions. Such studies are of considerable interest for the

optimal and desired use of IL + mixed organic solvent systems in high energy

batteries [14] and other electrochemical systems and for understanding the ion pair

effect and organic reaction mechanisms [7, 8, 15].
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2.2. Experimental

Acetonitrile (GR grade, 99.9%) and Methanol (GR grade, 99.9%) were purchased

from Merck, India and purified following reported standard methods [16]. Electro-

chemical purity grade ILs used were synthesized following a two step procedure [17]

as reported earlier [7, 8]. Briefly, in the first step 1-methylimidazole was refluxed with

n-butyl chloride for 90 hrs under argon atmosphere for the synthesis of 1-butyl-3-

methylimidazolium chloride as a white crystalline solid. In the next step the halide

anion was exchanged with [PF6]- on treatment with HPF6. The ILs were vacuum dried

and stored in desiccators under inert atmosphere and were characterized through
1
H-

NMR, mass spectrometry and
13

C-NMR spectroscopy. The water content of dried ILs

was less than 50 ppm, as analyzed by Karl Fischer titration. Binary solvent mixtures

were prepared by mixing the required volumes of acetonitrile and methanol. The

value of relative dielectric constant ( ) and coefficient of viscosity (η) of the solvent

mixtures were obtained by interpolation of the literature reported [18] values of these

parameters for acetonitrile + methanol mixtures at 298.15 K. The physical properties

of the used composition mixtures are listed in Table 2.1.

Stock solutions of ILs were prepared by adding their required mass into the mixed

solvent system to be investigated. Conductivity was recorded by a digital

microprocessor based conductivity meter (CYBERSCAN CON 500) from Eutech

instruments having sensitivity of 0.1 µS cm
−1

; details are reported elsewhere [19].

During data processing the conductivity of solvent system was subtracted from the

recorded values to obtain IL only conductivity in the solution. Numerical calculations

and data fitting was performed through codes written in Origin 8.0 (Microcal

Software Inc.)
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Table 2.1: Dielectric constant ( ) and viscosity ( ) of Methanol (MeOH) +
Acetonitrile (MeCN) mixtures at 298.15 K, the values were calculated by
interpolation of the literature reported [18] values for these parameters for
acetonitrile + methanol mixed solvent systems

solvent mixture
(WMeOH % ) /m Ps  s

0 35.96 0.3413
10 35.62 0.3421

20 35.37 0.3486
30 35.17 0.3613
40 34.99 0.3791
50 34.78 0.4012
60 34.52 0.427
70 34.19 0.4559
80 33.78 0.4874
90 33.29 0.521

100 32.63 0.5438
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2.3. Results and Discussions

The concentration dependent molar conductance values (Λm) for [bmim][Cl] and

[bmim][PF6] in acetonitrile + methanol mixtures with changing weight fractions of

methanol (wMeOH ) are presented as Figure 2.1. The conductance results were analyzed

by following the framework of Barthel’s low-concentration chemical Model (lcCM)

[13]. According to this framework, the molar conductance of a partially

associated strong electrolyte in solution is given by= ∝ ( − (∝ ) + ∝ (∝ ) + ∝ − (∝ ) (2.1)

= ∝∝ ( ) (2.2)

 = exp (2.3)

= (16 ∝ ) (2.4)= (2.5)

where is the molar conductivity at infinite dilution, (1-α) is the fraction of

charged ions bound as ion pairs and is the standard state association constant.

The activity coefficient of the free cation ( ) and free anion ( ) are related as( ) = . (2.6)

is the Debye parameter, e is the proton charge, the permitivity of the vacuum

and the dielectric constant of solvent system. T is the Kelvin temperature and

and are the Avogadro’s and Boltzman constants respectively.

According to the lcCM model two oppositely charged ions are counted as ion pairs if

the inter-ionic distance, r, is within the limits of < r < R, where is the distance of

closest approach and taken as the sum of their crystallographic radii ( = + )

and R the upper limit of distance of approach for ion pair formation taken as
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Fig.2.1. Molar conductivities (Λ) of (A) [bmim][Cl] and (B)[bmim][PF6] in methanol +
acetonitrile mixtures in the composition range 10 to 100 % methanol (by volume) in step
of 10%. Lines show the results of the lcCM calculations.
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= + . .Expressions for the coefficients S, E, and as given by Barthel et al.

[13] are listed in Table 2.2. The limiting slope S and the parameter E are fully defined

by the known values of and η (Table 2.1) of the solvent system. The coefficients

and are both functions of distance parameter R, representing the distance up to

which oppositely charged ions can move as freely moving particles in solution. In the

present study data analysis was carried out by a non-linear least square fitting pro-

cedure with the coefficients S, E and preset to their calculated values and with ,

and as the adjustable parameters. For these calculations = 0.330 nm

[20], = 0.181 nm [13]  and = 0.256 nm [21] were used. In the calculations

for R, n was taken as 1 and in view of the literature reports [22] s = 0.47 nm for

methanol and s = 0.58 nm for acetonitrile, s for the mixed solvent systems employed

in present study was calculated through the equation;= . 0.47 + (1 − ). 0.58 (2.7)

is the mole fraction of methanol in the mixed solvent system.

Figure 2.1 compares the experimental values for [bmim][Cl] (Figure 2.1(A)) and

for [bmim][PF6] (Figure 2.1(B)) solutions in the mixed solvent systems of changing

composition with the results of the lcCM calculations ( equations 2.1-2.5). The

estimated values for together with the and the distance parameter Rij calculated

from the last term of equation 2.1 are presented in Table 2.3. The value of Rij can be

used as a compatibility control of the fit as it should be similar to the input radius= + . . chosen for calculation of and . As evident from the Table 2.3, R

and Rij are in good agreement for both the ILs. The values of estimated for the

investigated ILs in the present work seem a bit higher than those reported in methanol

and acetonitrile in earlier reports [23-25].
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Table 2.2: Coefficients of the conductance equation

= += 0.82043. 10 . ( )
= 82.484. 10 . . ( ) .

= − 2
= 2.94227. 10 . . ( )= 0.433204. 10 . . ( ) .

= += +
= 2. . 2 + 2 − 1 + 0.9074 + 0.50290. 10 . . ( )

= . 353 + 2 − 2.0689 − 4. 0.50290. 10 . . ( )
= . 0.50290. 10 . . ( ) 0.6094 + 4.4748 + 3.8284

= 0.50290 . 10 . . ( ) − 1.3693 + 343 − 2
with = 16.709. 10 . . ( ) and = = | |
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However the data presented in earlier reports related to conductance of ILs in

molecular solvents [23-26] indicate a significant variation in the values of ,

reported for same ILs in same solvents. Such discrepancy in the reported values of

is being attributed to (a) estimation of through use of different conductivity

equations and (b) the use of concentration data in different ranges for the estimation of

said values. As clearly seen from the entries in Table 2.3, the values of for

[bmim][PF6] and [bmim][Cl] fall with the increase in methanol fraction in the mixed

solvent system. This is in line with the decrease in the dielectric constant of solvent

and increase in its viscosity with decrease of acetonitrile fraction in the solvent

system. Nevertheless it was observed that the Walden product ( .η) does not remain

constant as expected in case where ion-solvent interactions do not vary with changing

composition of solvent [12]. This implies that the changing mole fractions of

acetonitrile and methanol lead to change in ion-solvent interactions in present case.

Similar observations have been made for RTILs in earlier studies [27]. Interestingly

for all solvent compositions (except at wMeCN =0) investigated, values for

[bmim][Cl] were found to be higher than the corresponding values for [bmim][PF6]. It

is also seen that the relative difference the observed variations in can be attributed

to differences in solvation and mobility characteristics of Cl
−

and [PF6]
−

in the mixed

solvent systems. As has been reported in literature [28], while methanol interacts

strongly with anions in such systems, acetonitrile on the contrary interacts

preferentially with the imidazolium cation suggesting that the observed variations in

are anion driven. In the light of our observations, it can be safely argued that while

in acetonitrile the mobility of Cl
−
is more than that for [PF6]

−
, in methanol the reverse

is true. This trend suggests that greater the size of anion, smaller is its mobility in
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Table 2.3. Association constant ( ), Limiting molar conductivities ( ), input
radii (R) and parameters (R ij ) for [bmim][Cl] and [bmim][PF6] in Acetonitrile +
Methanol mixed solvent systems at 298.15 K.

solvent mixture
(WMeOH % ) (dm3.mol-1) (S. cm2.mol-1)

R
(nm)

R ij
(nm)

[bmim][Cl]
0 88.5 196.52 1.089 1.093

10 58.3 189.27 1.077 1.092
20 48.9 184.46 1.064 1.061
30 45.3 179.89 1.052 1.052
40 35.4 167.41 1.04 1.037
50 29.8 158.35 1.029 1.033
60 27.8 152.41 1.019 1.022
70 33.9 142.39 1.009 1.012
80 28.4 131.16 0.999 1.005
90 25.8 120.96 0.99 1.974

100 20.7 114.56 0.981 1.966

[bmim][PF6]
0 27 158.52 1.166 1.184

10 15.1 156.8 1.152 1.153
20 14.8 153.24 1.139 1.137
30 15.7 148.26 1.127 1.125
50 19 139.14 1.108 1.103
60 19 133.89 1.094 1.094
70 26.1 128.39 1.084 1.088
80 37.9 124.9 1.074 1.083
90 45.5 112.33 1.065 1.071

100 100.8 116.46 1.056 0.996
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acetonitrile, while in methanol the reverse is true, which we attribute to differing ion

solvating abilities of the two solvents. In view of its smaller size Cl
−

has a higher

charge density than that of [PF6]
−
, thus the former interacts with methanol more than

later which is more solvated by acetonitrile on account of its higher polarizability.

More interesting findings of the present investigations are the relative magnitudes of

the and its variations in the mixed solvent systems for the two ILs with common

cation. As seen from Table 2.3, while at lower fractions of methanol in the mixed

solvent system the of [bmim][Cl] was higher than that observed for [bmim][PF6],

in methanol rich solvent systems the reverse was observed. Besides while for

[bmim][Cl], value decreases with increase of methanol fraction in the mixed

solvent system, for [bmim][PF6] an increasing trend was observed. While the trend

observed for variation of of [bmim][Cl] with the change in content of methanol

fraction in the solvent system is quite expected in light of the resulting variations in

, the trend observed in case of [bmim][PF6] is quite unexpected. We observed a

similar trend for the IL [bmim][BF4]. From molecular dynamic studies [28] it has

been established that hydrogen bonding solvents like methanol strongly solvate halide

ions through hydrogen bonds, while non hydrogen bonding solvents like acetonitrile

interact more strongly with easily polarizable solutes through ion-dipole interactions.

In light of these reports, on account of its smaller size and higher charge density, Cl
−

is expected to show a weaker ion-solvent but stronger ion-ion interactions with its

imidazolium counterpart and hence larger in solvents like acetonitrile. However in

solvents like methanol where Cl
−

is expected to be strongly solvated due to its ability

to get engaged in strong hydrogen bonding, opposite trend is expected. For

[bmim][PF6], where anion is more polarizable, the ion-solvent interactions are
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expected to be stronger and hence values lower than for [bmim][Cl] homologue in

solvents like acetonitrile. However, in methanol the ion-ion interactions for

[bmim][PF6] are expected to be stronger and hence expected to show larger than

its chloride counterpart. In light of these facts we propose that for IL with smaller

anions, like [bmim][Cl], the stronger ion-ion plus weak ion-solvent interactions are

replaced by weaker ion-ion and stronger ion-solvent interactions with increase of

methanol fraction in the acetonitrile + methanol solvent system which is responsible

for the resulting decrease in . On the contrary in ILs with larger anions like

[bmim][PF6], the weaker ion-ion plus stronger ion-solvent interactions are replaced by

stronger ion-ion and weaker ion-solvent interactions with increase of methanol

fraction in the acetonitrile + methanol mixed solvent system resulting in the observed

variations in with changing fraction of methanol. This is in agreement with the

report by Mohammed et al. [29] wherein it has been proved that while the interaction

energy for [bmim][PF6] + acetonitrile system is negative, for [bmim][PF6] + methanol

the same is positive. Present studies are an excellent example of tuning the physic-

ochemical characteristics of closely related IL electrolytes through alterations in

solvophobicity achieved through similar variations in the composition of the mixed

solvent systems.
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Fig. 2 .2. (A) Limiting ion conductance ( ) and (B) ion association constant ( ) of
[bmim][Cl] and [bmim][PF6] in methanol + acetonitrile mixtures in the composition range 0
to 100 % methanol (by volume) in step of 10%.
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2.4. Conclusion

Conductometric investigations of imidazolium based ILs viz 1-butyl-3-

methylimidazolium chloride ([bmim][Cl]) and 1-butyl-3-methylimidazolium

hexafluorophosphate ([bmim][PF6]) in binary mixtures of acetonitrile + methanol

were performed. The data analyzed with Barthel’s low-concentration chemical model

establish that the conducting behavior and ion association is highly specific to the

nature of IL and composition of mixed solvent system. Thus while in methanol ion-

association and is more for [bmim][PF6] than [bmim][Cl], in acetonitrile the

opposite was observed. Also, with increase in methanol fraction in acetonitrile +

methanol mixed solvent systems, while was observed to decrease for both the ILs

investigated, opposing trends were observed in the variation of . For [bmim][PF6]

there was an increase in while for [bmim][Cl] a decrease in the said value was

observed.
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Prelude

A systematic study of the electrical conductivity and surface tension of solutions of

imidazolium based Room Temperature Ionic Liquids (RTILs) viz. 1-butyl-3-

methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-butyl-3-

methylimidazolium tetrafluoroborate ([bmim][BF4]) in co-solvents methanol and

acetonitrile in the mole fraction range 0.05-0.7 at 298.15K is presented. The influence

of co-solvents on bulk and interfacial characteristics of these ionic liquids is discussed

in terms of structure-composition-property relations. An interesting outcome of the

present work is that both RTILs retain their inherent structural characteristics upto a

high dilution limit, and this limit is higher in acetonitrile than in methanol. The

present findings establish that in comparison to methanol, acetonitrile is a better co-

solvent that can be used for enhancing the transport parameters of RTILs for

electrochemical and other applications.

3.1. Introduction

Recent physicochemical studies have established Room Temperature Ionic Liquids

(RTILs) as a new class of compounds that can be used as novel green solvents,

catalysts, additives, and lubricants[1-2]. Presently researchers from diverse fields are

showing an increasing interest in studies aimed at the use of RTILs for different

application fields, such as catalysis, organic synthesis, lubrication, thermal separation

processes and electrochemistry [1-9]. Poor transport properties, high viscosity and

low conductivity of RTILs are some of the major obstacles that limit the generalized

use of RTILs in various applications. Working at high temperatures [10-12] and/or

addition of a co-solvent that reduces the viscosity are the two options currently

advocated by solution chemists to overcome the viscosity limitations of RTILs [13-

15]. Interestingly RTIL + co-solvent mixtures in some cases have been reported to



Chapter 3 Effect of Cosolvents on Bulk and Interfacial.....

48

possess altered and in some cases improved physicochemical properties [16, 17]. The

low viscosity of such mixtures ensures easy mass transport, thereby minimizing the

energy requirements for the use of RTILs in many engineering processes. However,

addition of a co-solvent always leads to loss in structural organization in RTILs which

is the main factor responsible for many of their desirable characteristics. The above

mentioned facts imply that the generalized use of RTILs as an alternative to

conventional solvents in industry and academia demand detailed and comprehensive

investigations about the physicochemical properties of the RTIL + co-solvent binary

mixtures. In view of such demands and presaged potential applications, recently there

has been a significant upsurge in the studies related to RTIL + co-solvent and RTIL

mixtures and much useful data about physicochemical properties of such binary

mixtures have been published [18-24].

The work presented in the current chapter was carried with an aim to study the impact

of methanol and acetonitrile as co-solvents on the bulk and interfacial characteristics

of [bmim][BF4] and [bmim][PF6] at 298.15K. The solvents methanol and acetonitrile

were chosen not only because of their industrial/environmental relevance but also

because of the different nature of the molecular interactions they can engage the

chosen RTILs constituents into. Thus, while methanol interacts mainly through

hydrogen bonding and is regarded as highly associating liquid, acetonitrile is a dipolar

non-associating molecule.
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3.2. Experimental

Chemicals

The RTILs [bmim][BF4] and [bmim][PF6] were synthesized, purified and dried

according to the already reported procedure [25-27]. The synthesized RTILs were

vacuum dried and stored in dessicators under inert atmosphere and were characterized

through 1H-NMR, mass spectrometry and 13C-NMR spectroscopy. The water content

of dried RTILs was less than 50 ppm, as analysed by Karl Fischer Titration.

Acetonitrile (GR grade, 99.9%) and methanol (GR grade, 99.9%) were purchased

from Merck India and purified following reported standard methods [28].

Measurements

The electrical conductivity of the solutions of varying RTIL mole fraction in the

composition range (0.05-0.7) were measured by CYBERSCAN CON 500

conductivity meter from Eutech instruments having sensitivity of 0.1µS cm-1.

Surface tension measurements of the solutions were made using K9 Tensiometer

(Kruss, Germany) by the ring detachment technique. Temperature was maintained at

25°C (within  0.1° C) by circulating water from a HAAKE GH bath through the

thermostatable vessel holder. The accuracy of the measurements was within  0.1dyne

cm-1.
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3.3. Results and Discussion

3.3.1. Co-solvent Effects of Acetonitrile and Methanol on the Bulk
Characteristics of [bmim][BF4] and [bmim][PF6]

Conductance studies have been proved to be one of the reliable means of extracting

information about bulk characteristics of fluid phase conducting media. While Figure

3.1 depicts the relative influence of co-solvent mole fraction of (A) Acetonitrile (B)

Methanol on the conductivity of two ionic liquids [bmim][BF4] and [bmim][PF6],

Figure 3.2, on the other hand, compares the effect of the two co-solvents on the same

ionic liquid (A) [bmim][BF4] and (B) [bmim][PF6]. Similar patterns of behaviour for

conductivity verses composition have been reported earlier for RTIL + organic co-

solvents [29-32] and have generated immense interest among researchers and many

explanations and advantages associated with it have been proposed [32, 33]. A

correlation of the observed variations of with mole fraction of RTILs in light of

earlier reports [32, 33] indicate that a variety of factors, viz. formation of RTIL-

cosolvent/ RTIL- supramolecular associates and entrapping of the cosolvent within

the RTIL-supramolecular aggregates, whose fraction varies with mole fraction of the

RTIL, can be responsible for the observed trends. While the electrical conductivity

increases with the increase of RTIL concentration at low concentrations, the

incremental electrical conductivity does not follow linear behaviour as anticipated for

conventional electrolyte + solvent mixtures; instead it reaches a maxima and then falls

again. Similar trends have been reported for the variation of with addition of co-

solvents [32, 33].
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Fig.3.1. Specific conductance ( ) of [bmim][BF4] and [bmim][PF6] as a function of composition in
(A) Acetonitrile and (B) Methanol respectively.
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Fig.3.2. Specific conductance ( ) as a function of composition in Acetonitrile and Methanol (A)
[bmim][PF6] (B ) [bmim][BF4].
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The observed variations of the conductivity with composition can be attributed to net

effect of two competing factors:

(1) Increase in the number of charge carriers on account of dissociation of added

RTIL (dominates the low concentration regime)

(2) Aggregation of ions that leads to increase in size and hence decrease in mobility

and charge besides an increase in viscosity of the solution (dominates the RTIL rich

regime).

The electrical conductivity has a relationship with ion mobility and number of charge

carriers [19, 34] which is expressed as= (3.1)

where is the number of charge carriers of charge and the ionic mobility of

species i. In the low RTIL regime, the increase in conductivity due to increase in the

number of charge carriers on account of increasing RTIL fraction overweighs the

decrease in conductivity on account of their reduced mobility. However in the RTIL

rich fraction the aggregate formation on account of strong ion-ion interactions

becomes the dominant factor and hence leads to the overall decrease in the ionic

mobility and hence conductivity [35-37].

The observed dependence of conductivity as a function of RTIL mole fraction in the

organic co-solvents was analysed using Casteel-Amis equation [38, 39].

= ( ) [ ( − ) − ( − ) (3.2)

where is the maximum conductivity and the corresponding mole fraction of

RTIL and a and b are fitting parameters that depend upon the shape of the

conductivity species. The fits to the equation are represented as lines in the Figure 3.3

and 3.4 and their corresponding fit parameters are presented in Table 3.1. All these
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observations indicate that acetonitrile better boosts the conductivity in the investigated

RTILs with less impact on the structural organisation of the constituent ions in

comparison to methanol. This is in agreement with the recently reported predictions

by Chaban et al for imidazolium based RTIL + co-solvent mixtures [40].

Comparing the RTIL mole fraction corresponding to the maxima gives a clear

indication that the investigated RTILs maintain their structural aggregation

characteristics down to lower concentration with acetonitrile as co-solvent than with

methanol. This is of considerable importance for investigations wherein addition of

co-solvents to the RTILs to enhance their transport characteristics without influencing

the structural organization within the RTILs is desired.

A comparative analysis of the molar conductivity values indicate that specific

conductance ( ) of RTILs in acetonitrile is more than that observed in methanol at all

the compositions. This can be attributed to higher viscosity of methanol than

acetonitrile which impedes the motion of ions. Additionally due to the lower dielectric

constant of methanol, ion association in RTILs is expected to be more in methanol

than that in acetonitrile.

According to the simulation studies by Padua et al. [41] the imidazolium based ionic

liquids possess a characteristic nanostructural organization wherein nonpolar domains

permeate the polar channels formed by imidazolium cations and anions. The increm-

mental addition of co-solvents to the RTILs can lead to initial aggregation of these

solutes in their preferred domains, that causes a disruption of the structural network.

Further addition of solvent is expected to make the ions to aggregate into small

clusters that in turn dissociate like conventional electrolytes at low concentration of

RTIL. Both methanol (protic solvent) and acetonitrile (aprotic solvent) belong to the
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Fig.3.3. Conductivities ( ) of [bmim][BF4] in (A) Methanol and (B) Acetonitrile at
298.15K. Experimental values represented by symbols and lines show Casteel Amis fit.
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Fig.3.4. Conductivities ( ), [bmim][PF6] in (A) Methanol and (B) Acetonitrile at  298.15 K.
Experimental values represented by symbols and lines show Casteel Amis fit.
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Table 3.1: Fitted Values of the Empirical Parameters, , , a, b and the
standard error (s) of [bmim][BF4] and  [bmim][PF6] in Methanol and Acetonitrile
according to the Empirical Casteel - Amis  Equation at 298.15K.

RTIL
(mS cm-1)

a B

Methanol

[bmim][BF4] 43.60 0.164 0.898 2.44

s 0.543 0.00349 0.0478 0.3115

[bmim][PF6] 26.37 0.118 0.840 4.79

s 0.384 0.00273 0.0469 0.3123

Acetonitrile

[bmim][BF4] 55.79 0.144 0.680 1.26

s 2.252 0.01128 0.1496 1.2328

[bmim][PF6] 55.08 0.103 0.779 4.20

s 1.208 0.00386 0.0768 0.6253
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co-solvent category that has significant affinity for both polar and non polar domains

present in imidazolium based RTILs.It is on account of these factors that both these

co-solvents are fairly soluble in [bmim][BF4] and [bmim][PF6] in all compositions.

Simulation studies [42] have established that both acetonitrile and methanol interact

strongly with the anions [BF4]-, the interaction being less directional in case of

acetonitrile in comparison to methanol. It has been observed that while in methanol

the -OH group interacts with the anion and the Me-group faces the imidazolium

cation, in acetonitrile, the Me-group points preferentially towards the anion. Thus, it

can be argued that compared to methanol, the interaction of imidazolium cation with

the acetonitrile is stronger. Also in view of the higher Lewis basicity of [BF4]- it is

expected to interact more strongly with methanol in comparison to [PF6]-. In the light

of these facts it can be safely argued that the dilution limit up to which RTIL can

maintain the structural ordering of its constituents will be higher when acetonitrile is

used as co-solvent in comparison to dilution with methanol. On similar grounds it can

be assumed that the said limit will be higher in case of [bmim][BF4] than in

[bmim][PF6]. This is also clearly evident from the data presented in Table 3.1. In view

of the data reported therein it seems that compared to methanol, acetonitrile is a better

co-solvent, that can be made use for enhancing the transport properties of

imidazolium RTILs without affecting the structural ordering of the constituents.

3.3.2. Co-solvent effects of Methanol and Acetonitrile on the Interfacial
Characteristics of [bmim][BF4] and [bmim][PF6]

Structural aspects of IL/solid, liquid and gas interface are of prime importance in

many areas related to applications of such interfaces [43-45]. Hence a comprehensive

molecular level understanding of such interfaces is a must in order to utilize their

novel features for interface based applications [46-48].
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Surface composition and molecular orientation prevailing at the interface are two

different but related aspects that fix the various physicochemical properties of

interfaces. Thus a comprehensive understanding of fundamental and applied aspects

of interfaces demands complete information about the composition and structural

organization prevailing in the interface. While surface composition implies the

identification of the molecules in the surface region and whether there is enhancement

or depletion of constituents or parts of the constituents with respect to bulk, the

structural organization implies complete information about the orientation (ordering

and geometry of the constituents or parts of constituents) prevailing at the surface.

Surface properties of IL + co-solvent mixtures are of particular interest for two

reasons; first, they are often considered as key to obtain valuable information about

the transfer of mass and energy of dissolved molecules across the IL based interfaces

and also provides information about the aggregation behaviour and drop formation in

IL based partially miscible liquid mixtures. Such information is valuable in

understanding the behaviour of ILs as components in mixed solvent systems, which is

very useful for their use in processes like liquid-liquid extraction. Secondly, these

properties provide valuable information about composition of mixture at the interface

region which usually differs from that in the bulk phase. The principle of independent

surface action formulated by Langmuir [49] has often been used to describe the

microscopic structure of a liquid surface. According to this principle, each part of a

molecule possesses a local surface energy; hence surface tension is an indicator of the

molecular orientation at the interface. Direct Recoil Spectrometry (DRS) studies [50,

51] of RTIL surface have shown that both the anion and cation are present at the

surface of ILs and hence both do contribute to the overall surface free energy. Since

the bulk stoichiometry in RTILs should be preserved up to the surface, the
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electroneutrality requirement demands that the surface cannot be preferentially

enriched by any of the IL constituent ions.

Figure 3.5 depict the variation in surface tension of RTILs viz. [bmim][BF4] and

[bmim][PF6] with change in mole fraction of the RTIL in acetonitrile and methanol.

As obvious from the plots, surface tension of [bmim][PF6] as well as [bmim][BF4]

increases with increase in mole fraction of RTIL in both methanol and acetonitrile,

but the variation is clearly not linear. These observed deviations from linear behaviour

are an indication of non-ideal mixing and Domanska et al. [52] have also reported

similar observations for addition of alcohols to imidazolium based RTILs. To

visualize the nonideal mixing more clearly we calculated the deviations for observed γ

values from those expected for ideal values using the equation

∆ = − ( + ) (3.3)

and the variation of ∆γ as a function of RTIL mole fraction is depicted in Figure 3.6.

The Figure clearly shows that the mixing of RTIL with acetonitrile and methanol is

nonideal. While the deviation from ideal behaviour is more pronounced for

[bmim][PF6] than [bmim][BF4] in acetonitrile, opposite is the case  in methanol. This

can be attributed to the composition dependent structural organization and ion-solvent

interactions for RTIL-co-solvent mixtures. Since γ is the measure of cohesive forces

among constituents at the interface, the nonlinearity in γ vs. RTIL mole fraction

clearly indicate that there might be some sort of transition in nature of forces

responsible for nonideal variation of γ and ∆γ. We propose that introduction of RTIL

into the organic solvent leads to formation of strong associates in the lower mole

fraction range, which are ultimately replaced by supramolecular aggregates of RTILs

entrapping the small fraction of organic solvent.
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Fig.3.5. Surface Tension (γ) as a function of composition in Methanol and Acetonitrile
(A) [bmim][PF6] (B) [bmim][BF4]
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In the low RTIL concentration region cation- anion interaction is weakened due to

stronger solvation by co-solvents leading to low surface tensions, but when

concentration of RTIL is increased in the mixture, cation-anion interaction

predominates, due to which surface tension increases.

As clearly seen from the Figure 3.5 addition of both methanol and acetonitrile to the

investigated RTILs decreases their surface tension. The surface excess of co-solvent

in the RTIL and that of RTIL in the co-solvent from the γ vs. concentration data of co-

solvent rich and RTIL rich mixtures respectively was estimated by using Gibbs

adsorption equation [53]

= − (3.4)

where Γ, c, γ, R, and T are the surface excess, bulk solute concentration, surface

tension of the mixture, ideal gas constant and the temperature respectively. The

estimated values of surface excess are given in Table 3.2. As clear from the entries in

Table 3.2 while the surface excess of RTIL in the investigated co-solvents is negative;

the surface excess of co-solvents in RTILs in the RTIL rich regimes is positive. A

comparison of the magnitudes of the surface excess indicates that while acetonitrile

shows stronger interaction with [bmim][PF6] than [bmim][BF4]; in case of methanol

the reverse is true. Through molecular dynamic simulation Lopes and co-workers [41,

42] have established that both acetonitrile and methanol interact strongly with the

anions [BF4]- and [PF6]-. On account of its smaller size [BF4]- interacts more strongly

than [PF6]-. The difference between methanol and acetonitrile interaction with

imidazolium based RTILs lies in their interaction with C2-H of imidazolium ion.
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Fig.3.6. Change in surface tension (∆γ) calculated using equation 3.3 as a function of
composition in Methanol and Acetonitrile. (A) [bmim][PF6] and (B) [bmim][BF4]
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Table 3.2: Surface excess (Γ) of RTILs, [bmim][PF6] and [bmim][BF4]  in
Methanol and Acetonitrile in lower and higher concentration regions calculated
using equation 3.4.

RTIL Γ(mol m-2) Γ(mol m-2)
Methanol in RTIL Acetonitrile in RTIL

[bmim][PF6] 3.91E-06 1.17E-06

[bmim][BF4] 3.59E-06 1.33E-06

RTIL in Methanol RTIL in Acetonitrile

[bmim][PF6] -3.63E-07 -8.47E-07

[bmim][BF4] -7.66E-07 -7.26E-07
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This interaction energy is comparatively stronger for acetonitrile than for methanol

and same is expected to be more for [PF6]- than [BF4]- on account of larger

polarizability of the former. In light of these facts it can be safely argued that among

methanol and acetonitrile as solutes while [bmim][BF4] will show  stronger

interaction energies with methanol, in case of [bmim][PF6] acetonitrile will more

strongly interact with the RTIL domains than methanol. This, very well justifies the

relative variations observed for γ values of [bmim][BF4] and [bmim][PF6] on  addition

of methanol and acetonitrile.

An overall view of the observed trends in γ, ∆γ and make us to propose that

addition of RTIL to the co-solvent in low dilution limits leads to formation of free

conducting ions and their aggregates besides ion-co-solvent complexes which lead to

increase in γ, ∆γ, and . Further addition of RTIL favours the formation of ion pairs

and aggregates that, besides decreasing the fraction of conducting species, increases

the viscosity and γ as well. Higher cohesive energy among RTIL constituents in the

aggregates than that of RTIL-co-solvent complexes in turn leads to increase in

viscosity, γ and ∆γ and hence decrease in with further addition of RTIL. Thus, we

propose that the maxima in ∆γ and vs. mole fraction plots actually represent the

RTIL-co-solvent composition beyond which the mixture behaves more RTIL like.

The observed variation of γ, ∆γ and with change in molar ratio clearly depict two

types of nonidealities in the investigated composition range, attributable to two

different tendencies of a RTIL. In low concentration range it behaves as a strongly

associated electrolyte which interacts strongly with co-solvent molecules while in

high concentration region it behaves as a structured solvent that entraps the co-solvent

in interstitial sites.
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3.4. Conclusion

Since the high viscosity of ionic liquids is a crucial property in optimizing the

conditions required for many chemical processes, it is also a constraint that limits the

use of RTILs in many electrochemical devices. The applicability of RTILs can be

enhanced either by increasing the temperature or by addition of co-solvent. However,

increase of temperature may be unsuitable when chemical/devices are poorly heat

resistant. So the use of co-solvents seems a better option to overcome viscosity related

challenges of RTILs. The presence of co-solvent molecules reduces the electrostatic

attraction between the ions, and decreases the overall cohesive energy, resulting in a

decrease in the viscosity. An interesting finding of the present work is that with co-

solvent addition RTILs preserve their characteristic structural aspects up to the certain

definite limit of dilution; in acetonitrile, xIL= 0.14395 for [bmim][BF4] and xIL =

0.10319 for [bmim][PF6]; in methanol, xIL= 0.16383 for [bmim][BF4] and xIL= 0.11807

for [bmim][PF6]. In acetonitrile both RTILs retain their chemical characteristics up to a

higher dilution limit and there is also better increase of ionic conductivity than

methanol. So acetonitrile seems to be a better co-solvent for boosting the conductivity

of imidazolium ionic liquids and enhancing their transport for electrochemical and

other applications wherein high viscosity limits the use of RTILs.
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