
Evaluating Effectiveness of Software

Testing Techniques with Emphasis

on Enhancing Software Reliability

A thesis submitted on partial fulfilment of the

requirement for the degree of

Doctor of Philosophy (Ph.D)

by

Umar Farooq

P.G. Department of Computer Sciences

Faculty of Applied Sciences & Technology

University of Kashmir

under the supervision of

Dr. S.M.K. Quadri & Dr. Nesar Ahmad

in

Computer Science

March, 2012

mailto:shiekh.umar.farooq@gmail.com
http://csd.uok.edu.in/
http://csd.uok.edu.in/
http://www.kashmiruniversity.net

Declaration

This is to certify that the thesis entitled “Evaluating Effectiveness of Software

Testing Techniques with Emphasis on Enhancing Software Reliability”, sub-

mitted by Mr. Umar Farooq in the Department of Computer Sciences, University

of Kashmir, Srinagar for the award of the degree of Doctor of Philosophy in Com-

puter Science, is a record of an original research work carried out by him under

our supervision and guidance. The thesis has fulfilled all the requirements as per

the regulations of the University and in our opinion has reached the standards

required for the submission. The results embodied in this thesis have not been

submitted to any other University or Institute for the award of any degree or

diploma.

Supervisor and Head Co-Supervisor

(Dr. S.M.K. Quadri) (Dr. Nesar Ahmad)

Department of Computer Sciences Dept. of Stats. & Comp. Appl.

University of Kashmir T. M. Bhagalpur University

Srinagar, 190 006 Bihar, 812 007

Dated: 27-March-2012

Abstract

Software testing is one of the most widely known and essential field in software

engineering. The purpose of software testing is not only to reveal defects and

eliminate them but also to serve as a tool for verification, validation and certi-

fication. Defection detection and increasing reliability are the two main goals of

software testing. For decades, researchers have been inventing new techniques to

test software. However, no testing technique will ever be a solution for all types

of software defects. At present, we have very limited information of software test-

ing techniques effectiveness and efficiency. Therefore, while researchers should

continue to develop new testing techniques, they also need to deeply understand

the abilities and limitations of existing techniques. We need to know what types

of defects a particular technique can be expected to find and at what cost. We

have to check whether testing technique effectiveness and efficiency depends on

program to which it is applied, subject who applies it, the number of faults in

the program or the type of faults in the program. However it is not sufficient if

testing techniques are only compared on fault detecting ability. They should also

be evaluated to check which among them enhances reliability.

The research in this thesis aims at evaluating software testing techniques in terms

of effectiveness in detecting software defects, and the ability to increase the reli-

ability of the software. The research in this thesis falls within empirical method

research on the verification and validation process with a focus on software testing

techniques evaluation. The work in this thesis links both research and practice

and aims to continue building empirical knowledge in the field of software engi-

neering.

The first part of this thesis surveys and analyzes empirical studies on evaluation

of testing techniques. Issues with the current evaluation of software testing tech-

niques are identified. Building upon this, we present an evaluation framework (a

set of guidelines) for experiments which evaluate the software testing techniques.

In addition, we also proposed a uniform classification of software testing tech-

niques and identified a set of factors which helps us in selecting an appropriate

testing technique.

The second part of the thesis presents an experiment which evaluates and com-

pares three defect detection techniques to evaluate the effectiveness of the software

testing techniques in terms of defect detection. Moreover, we also evaluated the

efficiency of these techniques. The dependence of the effectiveness and efficiency

on the various parameters like programs, subjects and defects is also investigated

in the experiment.

The third and final part of this thesis presents an experiment which evaluates and

compares three defect detection techniques for reliability using a novel method.

The efficiency of these techniques is also evaluated.

Our effort is to provide evidence that will help testing and research community to

understand the effectiveness and efficiency of software testing techniques in terms

of defect detection and reliability and their dependence on various factors. The

ultimate goal of our work is to move software engineering from a craft towards an

engineering discipline.

Contents

List of Figures xii

List of Tables xiii

Glossary xv

1 Introduction 1

1.1 Introduction . 2

1.2 Research Motivation . 4

1.3 Research Goals & Objectives . 5

1.4 Research Methodology . 6

1.5 Contributions . 7

1.6 Outline . 8

2 Software Testing Techniques Evaluation: Issues and Mitigation 10

2.1 Introduction . 11

2.2 Software Testing Techniques . 13

2.2.1 Proposed Software Testing Techniques Classification 13

2.2.1.1 Static testing techniques . 14

2.2.1.2 Dynamic testing techniques 15

2.2.1.3 Test data selection criteria 15

2.3 Why to Evaluate Software Testing Techniques? 17

2.4 Existing Research on Software Testing Techniques Evaluation 19

2.4.1 Evaluation Results . 21

2.4.2 Problems with Existing Studies . 24

2.4.2.1 Experimentation problems 29

2.4.2.2 Knowledge problems . 30

vi

CONTENTS

2.5 Where do we Stand at this Moment? . 31

2.6 Factors for Selecting Software Testing Technique 32

2.6.1 Software Related Factors . 33

2.6.2 Testing Related Factors . 33

2.6.3 Customers Requisites and other Requirements 34

2.7 Proposed Guidelines for Software Testing Techniques Evaluation 35

2.8 Conclusion and Future Work . 38

3 Evaluating Software Testing Techniques for Effectiveness & Efficiency 40

3.1 Introduction . 41

3.2 Schema Used . 43

3.3 Goals, Hypotheses and Theories . 45

3.3.1 Goals . 45

3.3.2 Hypothesis . 46

3.3.3 Theories and Related Work . 47

3.4 Experimental Plan . 51

3.4.1 Experimental Design . 51

3.4.2 Defect Detection Techniques . 58

3.4.2.1 Code reading . 58

3.4.2.2 Functional testing . 59

3.4.2.3 Structural testing . 59

3.4.3 Programs . 60

3.4.3.1 Faults and fault classification 62

3.4.3.2 Failure counting scheme . 64

3.4.4 Subjects . 65

3.4.5 Data Collection and Validation Procedures 66

3.4.6 Data Analysis Procedures . 66

3.5 Experiment Procedures . 67

3.5.1 Training Activities . 67

3.5.2 Conducting the Experiment . 67

3.5.2.1 Threats to validity . 67

3.5.2.2 Giving feedback to subjects 68

3.6 Results . 68

3.6.1 Raw Data . 68

vii

CONTENTS

3.6.2 Interpretation . 69

3.6.2.1 Evaluation of failure observation effectiveness 71

3.6.2.2 Evaluation for fault isolation effectiveness 71

3.6.2.3 Evaluation of time taken to observe failures 73

3.6.2.4 Evaluation of time taken to isolate faults 74

3.6.2.5 Evaluation of total time (detection time + isolation time) . . 75

3.6.2.6 Evaluation of efficiency in observing failures 75

3.6.2.7 Evaluation of efficiency in isolating faults 77

3.6.2.8 Evaluation of effectiveness of failures observed for each fault

class . 77

3.6.2.9 Evaluation of effectiveness of faults isolated for each fault class 79

3.7 Summary . 79

3.8 Conclusion and Future Work . 81

4 Evaluating Software Testing Techniques for Reliability 83

4.1 Introduction . 84

4.2 Background . 86

4.3 Related Work . 87

4.4 Statistical Testing vs Systematic Testing . 88

4.5 Description of the Experiment . 90

4.5.1 Overview of Testing Methods Used . 90

4.5.2 Programs and Faults . 92

4.5.3 Methodology . 93

4.5.4 Counting Scheme for the Failures . 96

4.6 The Experiment . 99

4.6.1 Number of Faults Detected and Isolated 99

4.6.2 Types of Faults Detected and Isolated 99

4.6.3 Total Weight Calculated for Each Technique 100

4.6.4 Combining Testing Techniques . 102

4.6.4.1 Total Weight calculated for combination of technique 103

4.7 Threats to Validity . 105

4.8 Discussion . 105

4.9 Conclusion and Future Work . 107

viii

CONTENTS

5 Conclusions & Future Work 108

5.1 Conclusions Drawn . 109

5.2 Future Work . 110

Publications 112

References 115

ix

List of Figures

2.1 Proposed Classification of Software Testing Techniques 18

3.1 Fault distribution percentage for cmdline program 64

3.2 Fault distribution percentage for nametbl program 64

3.3 Fault distribution percentage for ntree program 64

3.4 Fault distribution percentage for all 3 programs 64

3.5 Statistics of program variable for failure observation effectiveness 72

3.6 Statistics of program variable for fault isolation effectiveness 73

3.7 Statistics of program variable for failure observation time 74

3.8 Statistics of technique variable for failure isolation time 77

3.9 Statistics of program variable for total time 79

3.10 Statistics of program variable for failure observation efficiency 80

3.11 Statistics of technique variable for fault isolation efficiency 81

4.1 Percentage of faults of each severity along with the actual number of defects . 96

4.2 Effectiveness and efficiency of testing techniques. 100

4.3 Percentage of Defects detected and isolated by each technique categorized by

severity . 102

4.4 Percentage of reduced risk and residual risk in the program 103

4.5 Effectiveness of combination of testing techniques 106

x

List of Tables

2.1 Intra-Family Comparisons . 21

2.2 Inter-Family Comparisons . 22

2.3 Major Results of Data-flow testing techniques comparison 24

2.4 Major Results of Mutation testing techniques comparison 25

2.5 Major Results of Regression testing techniques comparison 25

2.6 Major Results of Control-flow, data-flow and random testing techniques com-

parison . 26

2.7 Major Results of Code Reading, functional and structural testing techniques

comparison . 27

2.8 Major Results of Mutation and data-flow testing techniques comparison . . . 27

2.9 Major Results of Regression and improvement testing techniques comparison 28

3.1 Description of existing studies on code reading, functional and structural testing 50

3.2 Results of Hetzel Experiment . 51

3.3 Results of Myers Experiment . 51

3.4 Results of Basili and Selby Experiment . 52

3.5 Results of Kamsties and Lott Experiment . 53

3.6 Results of Roper et al Experiment . 53

3.7 Results of Juristo and Vegas Experiment . 54

3.8 Average percentage of defects detected in existing experiments 54

3.9 Average defect detection rate in existing experiments 55

3.10 Experimental Design Summary . 56

3.11 Requirements for testing techniques . 60

3.12 Size and other relevant information for programs 61

3.13 Count and classification of faults as per adopted classification 63

xi

LIST OF TABLES

3.14 Different defect detection and isolation cases 65

3.15 Raw data for effectiveness . 69

3.16 Raw data for efficiency . 70

3.17 Analysis of variance of percentage of failures observed 71

3.18 Analysis of variance of percentage of faults isolated 72

3.19 Analysis of variance of failure-observation time 73

3.20 Analysis of variance of fault-isolation time . 75

3.21 Analysis of variance for total time . 76

3.22 Analysis of variance of Mean failure observation rate 76

3.23 Analysis of variance of Mean fault isolation rate 78

3.24 Analysis of variance of percentage of observed failures caused by faults from

each fault class and type . 78

3.25 Analysis of variance of percentage of isolated faults from each fault class and

type . 80

4.1 Count and percentage of faults as per the adopted classification 93

4.2 List and description of faults and failures . 95

4.3 List of failures and their corresponding weights. 97

4.4 Explanations for failure and fault data . 98

4.5 Number of defects detected and isolated and time taken by each technique . . 100

4.6 Defects detected and isolated by each technique 101

4.7 Defects detected and isolated by each technique categorized by severity . . . 101

4.8 Defects detected and isolated by combination of testing techniques 104

4.9 Defects detected and isolated by each technique categorized by severity . . . 105

xii

Glossary

Defect When the distinction between fault and

failure is not critical, defect can be used

as a generic term to refer to either a fault

(cause) or a failure (effect).

Detection Detection refers to the observation that

the programs observed behavior differs

from the expected behavior.

Effectiveness The number of defects found by a

technique

Efficiency The amount of time taken by a tech-

nique to find a defect. In other words, it

also specifies number of defects found by

a technique in an hour.

Error An incorrect or missing human action

that result in software containing a fault

(i.e. incorrect software)

Failure An inability of a system to perform its

required functions within specified re-

quirements or to perform in an unex-

pected way.

Fault An abnormal condition that may cause

a reduction in, or loss of, the capabil-

ity of a functional unit to perform a re-

quired function. It can also be defined

as a requirements, design, or implemen-

tation flaw or deviation from a desired

or intended state.

Isolation Isolation means to reveal the root cause

of the failure in the program.

Test case A set of inputs, execution conditions,

and a pass/fail criterion.

Test case specification It is a requirement to be

satisfied by one or more test cases.

Test obligation A partial test case specification,

requiring some property deemed impor-

tant to thorough testing.

Test or test execution The activity of executing

test cases and evaluating their results.

Test Plan A document describing the estimation

of the test efforts, approach, required re-

sources and schedule of intended testing

activities.

Test Procedure A document providing detailed

instructions for the execution of one or

more test cases.

Test suite A set of test cases.

Testing Technique Different methods of testing

particular features a computer program,

system or product. Testing techniques

means what methods or ways would be

applied or calculations would be done to

test a particular feature of software.

Validation The process of evaluating the to deter-

mine whether it satisfies specified cus-

tomer requirements.

Verification The process of evaluating the software

to determine whether it works according

to the specified requirements.

xiii

Chapter 1

Introduction

1

1. INTRODUCTION

1.1 Introduction

Our dependence on software is continuously increasing as software is now playing a primary

role in present day systems. These software intensive systems demand high quality software as

software failures cost us both in terms of money, time and other resources. In addition, it has

become a matter of reputation for organizations to produce quality products, especially when

safety of people or environment is concerned. A recent example of such a case is the Toyota

Company, which issued a recall of approximately 133,000 Prius and 14,500 Lexus vehicles

to update software in the vehicle’s antilock braking system [Malik et al., 2010]. There are

many ways to evaluate and control the quality of a software; however software testing still

dominates the other methods as it is used as the primary method for quality assurance and

quality control in software industry. Software testing is a process of verifying and validating

that a software application or program meets the business and technical requirements that

guided its design and development and works as expected; it also identifies important errors

or flaws categorized as per the severity level in the application that must be fixed [Bentley,

2005]. Software testing is a broad field and has evolved over the time. Software testing is no

longer seen as an activity that starts only after the coding phase is complete with the limited

purpose of detecting failures only. Software testing is also used to test the software for other

software quality factors like reliability, efficiency, portability, maintainability, compatibility

etc. Software testing constitutes a major part of software development lifecycle.

Despite all the efforts people put in the quality of the software, effectiveness of testing

remains lower than expectations. According to [Bertolino, 2007] testing is a widespread

validation approach in industry, but it is still largely ad hoc, expensive, and unpredictably

effective. Inadequate testing has resulted in many software related problems in past and have

actually brought social problems and financial losses. A solution to this problem is to test a

system exhaustively. However we are often faced with lack of time and resources which can

limit our ability to effectively complete testing efforts, thus ruling out exhaustive testing. For

this reason, Dijkstra stated that testing can be used to show the presence of errors, but never

to show their absence [Dijkstra, 1970]. Hence, our aim is that the testing process should find

maximum defects possible. For that purpose, we have to make a choice between available

testing techniques as we would like to use only few not all to test our system. We would

like to select proper and effective testing techniques which will increase test effectiveness to

maximum extent that too very efficiently, keeping in view the limited resources available for

testing. However, making this choice is next to impossible task, because we do not have

2

1. INTRODUCTION

adequate information about relative effectiveness, efficiency and cost of testing techniques.

To obtain this kind of information is not easy given the variability of their operations; which

depends on the subject that applies it, the programming language, software under test, the

type of faults etc.

Current studies suggest that we should use diverse testing techniques for testing the

programs. They argue that using diverse techniques works on different aspects and as such

targets different types of defects. But using numerous techniques to carry out testing means

excessive use of resources (less efficiency), as it clearly involves more test cases, time and

resources. Moreover, many techniques may target same types of defects resulting in the

duplication of the efforts which again implies wastage of resources. So, we should evaluate

and compare software testing techniques for their effectiveness and efficiency. Even though

some advances have been made in evaluating effectiveness, efficiency of testing techniques

but there is still a long way to go as results are very inconclusive and contradictory. Another

important thing to note is that most of the experiments conducted so far are focused only on

evaluating software testing technique’s fault finding effectiveness and efficiency and not much

attention is paid to evaluate software testing techniques on software reliability improvement

criterion as producing dependable software is also one of the main objectives of software

testing.

So, we argue that there is a need to evaluate software testing techniques not only for

effectiveness and efficiency of finding faults but also for the ability of enhancing software

reliability. Our goal is not to find a single technique that will supersede the rest of the testing

techniques at all fronts but we would like to identify conditions under which a technique

helps us to detect the most defects (i.e., maximum effectiveness) and conditions under which

the technique helps us to detect defects most rapidly (i.e., maximum efficiency). In addition

to that, the dependence of effectiveness of testing techniques on the program to which it is

applied, subject who applies it, the number of faults in the program, types of faults also need

to be verified.

The rest of this chapter is organized as follows: Section 1.2 explains the motivation

behind this work, Section 1.3 sets the goals and objectives. Section 1.4 presents the research

methodology adapted followed by Section 1.5 which presents contributions made in this work

and finally, Section 1.6 gives an outline of this theses.

3

1. INTRODUCTION

1.2 Research Motivation

Software testing is a complex and critical task in software development life cycle. Testing

methods and techniques, tools, standards, measurements, and empirical knowledge etc. are

the main elements of interest in the software testing domain. The area of software testing

research is almost as old as the software engineering itself. It has largely been driven by

the quest for quality software. [Harrold, 2000] [Taipale et al., 2005] [Bertolino, 2007] have

discussed about the future research developments in software testing. The evolution of def-

inition and targets of software testing has directed the research on testing techniques which

includes the creation, refinement, extension, and popularization of better testing methods

and techniques. Although, all the software testing techniques have one important thing in

common i.e. they aid us in achieving goals of software testing. However, we know that

software testing has diverse goals like verification and validation, reliability improvement etc.

One testing technique or method is not sufficient enough to achieve all the goals of software

testing. Different techniques help us in attaining different goals of software testing as different

testing techniques serve the different purposes. In addition to that, techniques differ from

one another in number of other ways like the purpose for which it is used, test data selection

criteria, the phase in which it is used etc. At the same time many software testing techniques

serve the same purpose or are similar in many aspects, for example, the information they need

to generate test cases (code or specification), the criteria for selecting test cases, the aspects

of program to be examined by test cases etc. Using the techniques which serve the same

purpose or target same type of faults is superfluous, which will cause wastage of resources

and time. [Beizer, 1990] stresses the importance of proper selection of testing techniques; he

claims that the selection of an unsuitable technique can lead to an inappropriate set of test

cases, which will bring with it an inaccurate (if not erroneous) evaluation of the software

aspect being tested. So, in that case,s we would like to choose the most effective technique.

The importance of selecting an appropriate software testing technique is widely accepted in

the software testing community. [Howden, 1978] refers to the fact that a very common testing

problem is the lack of well-defined techniques for selecting proper test cases. A lot of studies

have focused on the importance of the information about testing techniques so that we can

decide which one we should use in a given context [Kamsties and Lott, 1995] [Wong and

Mathur, 1995a].

A lot of research has addressed the evaluation of the relative effectiveness of the various

test criteria and especially of the factors which make one technique better than another at

4

1. INTRODUCTION

fault finding but there are no clear-cut results yet. Studies carried out so far do not examine

the conditions of applicability of a technique at length or assess the relevant attributes for each

technique. There is no study which can tell us much about the relative benefits and limitations

of testing techniques. As a result of that, one technique do not supersede other techniques

on all fronts, thereby creating ambiguity in test technique selection. At present, we do not

have an exact idea of what methods and techniques are available and of all the practical

information of interest about every testing technique. Recent surveys on comparisons of

various software testing techniques also concludes that further empirical research in software

testing is needed and that much more replication has to be conducted before general results

can be stated. “Demonstrating effectiveness of testing techniques” was in fact identified as a

fundamental research challenge in FOSE2000 and FOSE2007, and even today this objective

calls for further research, whereby the emphasis is now on empirical assessment [Bertolino,

2007].

So there is a need to further evaluate software testing techniques but the evaluation should

be carried out in such a way that the results could be realistic and implementable. Besides

evaluating software testing techniques for fault finding effectiveness and efficiency, we should

also evaluate software testing techniques for reliability as producing dependable software is

also one of the main objectives of software testing. In this research, we aim to evaluate

software testing techniques for effectiveness and reliability. The problem addressed in this

research is another step towards building a knowledge base which can help testing community

to choose an effective and efficient testing technique.

1.3 Research Goals & Objectives

The ultimate goal of this research is to evaluate the software testing techniques. The research

statement is as:

Evaluating effectiveness of software testing techniques with

emphasis on enhancing software reliability

The factor evaluated in this research is effectiveness of software testing techniques. In

addition, we also aim to evaluate software testing techniques for reliability. The research

focus is on two things: fault detection and reliability. The research goal leads us to research

objectives which are stated as follows:

5

1. INTRODUCTION

1. Identifying the current research status about available testing techniques evaluation

and also to outline an approach to evaluate software testing techniques effectiveness.

2. To evaluate software testing techniques for effectiveness in terms of fault detection

ability. The goal is to investigate the effectiveness and its dependence on the program

to which it is applied, subject who applies it and the faults in the program.

3. To evaluate software testing techniques for reliability. The goal is to investigate which

software testing technique is effective in enhancing software reliability.

1.4 Research Methodology

Two types of studies can be carried out to evaluate the relative effectiveness of software testing

techniques and provide information for selecting among them: analytical and empirical.

An analytical solution would describe conditions under which one technique is guaran-

teed to be more effective than another, or describe in statistical terms relative effectiveness

of software testing techniques. Analytical studies can produce more generalized results, i.e.,

results which are not tied to a particular experimental perspective. However, analytical stud-

ies remain so far quite theoretical in nature: they are highly useful to enlarge our knowledge

behind testing techniques but provide little practical guidance in selecting a test technique.

The reason is that the conclusions provided by such analytical comparisons are based on as-

sumptions that are far beyond what one can reasonably expect to know or even hypothesize

about a program under test [Bertolino, 2004].

Empirical solutions are closer to a practitioner’s mindset in which measures from the

observed experimental outcomes are taken. An empirical solution would be based on extensive

studies of the effectiveness of different testing techniques in practice, including controlled

studies to determine whether the relative effectiveness of different testing methods depends

on the software type, subject who test it, the type of faults in the software, the kind of

organization in which the software is tested, and a myriad of other potential confounding

factors [Young, 2008]. Empirical approaches to measuring and comparing effectiveness of

testing techniques are still in its infancy. A major open problem is to determine when, and

to what extent, the results of an empirical assessment can be expected to generalize beyond

the particular programs and test suites used in the investigation.

However, at present the trend in research is toward empirical, rather than theoretical com-

parison of the effectiveness of testing techniques. Directly observed results can sound more

6

1. INTRODUCTION

realistic and convincing than mathematical formulas built on top of theoretical assumptions.

Empirical studies have displaced theoretical investigation of test effectiveness to a large ex-

tent. Carrying out empirical work to understand the problems of software engineering is

held to be of increasing importance [Fenton, 1994] and [Gibbs, 1994]. Over the decades,

the importance of empirical studies in software engineering has been emphasized by several

researchers [Basili et al., 1985], [Fenton et al., 1994], [Tichy, 1998], [Wohlin et al., 2000] and

[Kitchenham et al., 2002].

There are, however, inherent problems in drawing conclusions from single studies, espe-

cially those with human subjects. For this reason, research community demand that experi-

mental results are externally reproducible - that is, an independent group of researchers can

repeat the experiment and obtain similar results. Successful replications enable a discipline’s

body of knowledge to grow, as the results are added to those of earlier replications. Repli-

cations are commonly considered to be important contributions to investigate the generality

of empirical studies. By replicating an original study it may be shown that the results are

either valid or invalid in another context, outside the specific environment in which the orig-

inal study was launched. The results of the replicated study show how much confidence we

could possibly have in the original study. In the last few years, the importance of repli-

cating research studies has received growing attention in the empirical software engineering

community. A finding cannot be established as the “truth”, based on a single study, since

small variations in the execution of a study can have a large effect on the results. In general,

however, testing techniques are heuristics and their performance varies with different scenar-

ios; thus, they must be studied empirically [Do et al., 2005]. In this thesis we have used an

empirical research methodology.

1.5 Contributions

In this thesis, we thoroughly investigated and evaluated software testing techniques. The

major contributions are listed as follows:

1. We surveyed existing studies on software testing techniques. The goal was to identify the

major issues in software testing technique evaluation studies. Thereafter we proposed

a set of guidelines which aim at mitigating the issues identified.

2. We empirically evaluated three testing techniques with respect to fault detection ability

and compared them in terms of effectiveness taking into consideration the proposed

7

1. INTRODUCTION

guidelines. In addition, the role of program and subjects was also examined. We also

evaluated software testing techniques for efficiency and different fault types and classes.

3. Lastly, we evaluated three systematic testing techniques for reliability using a novel

method. The goal was to check the potential of each technique to reduce risk in the

software.

In addition to these major contributions, this thesis also makes following contributions.

1. A uniform classification of software testing techniques which classifies testing techniques

from the root and classifies them according to the basic information like to which

family the techniques belongs, the information they require and the aspect of code they

examine.

2. A decision support approach for selecting the most suitable testing technique is pre-

sented which is based on number of identified factors that influence the selection of

appropriate techniques.

1.6 Outline

This thesis is structured around these three research objectives stated in section 1.3.

Chapter 2 discusses the software testing techniques evaluation. Firstly, it proposes a

uniform classification of software testing techniques. It then surveys the existing research on

software testing techniques evaluation. It then focuses on identifying the issues with software

testing techniques evaluation. In order to mitigate the issues identified, a framework is

proposed for evaluation of software testing techniques.

Chapter 3 discusses evaluation of software testing techniques. The defect detection tech-

niques are evaluated empirically for effectiveness and efficiency using a controlled experiment.

The chapter begins by surveying the studies carried out so far to evaluate testing techniques.

Finally, it discusses the execution of the experiment and the results of the experiment.

Chapter 4 discusses evaluation of software testing techniques for reliability. It begins

with presenting a novel approach for evaluating the software techniques for reliability. On

the basis of that approach we execute an experiment which evaluates three defect detection

techniques for reliability followed by its evaluation.

Chapter 5 summarizes the major findings of this work and the contribution to knowledge

made in this dissertation. Moreover, it also presents the future scope of this work which can

be investigated in further research.

8

1. INTRODUCTION

Some of the material presented in this thesis has been published previously. The complete

list of these published articles immediately follows Chapter 5.

End

9

Chapter 2

Software Testing Techniques

Evaluation: Issues and Mitigation

10

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

2.1 Introduction

Verification and validation activities are conducted to evaluate and enhance product quality

throughout the entire cycle of software development. Verification aims at checking that the

system as a whole works according to its specifications and validation aims at checking that

the system behaves according to the customers’ requirements. Verification and validation is

a generic term which includes software testing. Software testing is an important phase in

software development life cycle. Almost 30-60 % resources are spent on the testing. Despite

all the efforts people put in the quality of the software, effectiveness of testing remains lower

than expectations. Testing is a widespread validation approach in the industry, but it is still

largely adhoc, expensive, and unpredictably effective [Bertolino, 2007]. Unfortunately the

lack of understanding of software testing usually leads to incomplete testing work.

Verification and validation includes both static as well as dynamic software testing tech-

niques. The choice of a software testing technique in software testing influences both process

and product quality. Taking into account current testing problems and failure consequences

using the most effective and efficient testing methods is most important need in testing.

We have multitude of software testing techniques which makes testing technique selection

a complex choice. When choosing a testing technique, practitioners want to know which

one will detect the faults that matter most to them in the programs that they plan to test

[Goodenough and Gerhart, 1975]. Which techniques should be chosen? Are there any par-

ticular benefits of using a specific technique? Which techniques are effective? Which are

efficient? All testing techniques can reveal faults; but how effectively they do that and what

kind of faults they find, how much resources they utilize, by which factor they increase the

reliability, we do not have an exact answer to such questions. Although the utilization of

these techniques is growing, we have very limited knowledge about their relative quantitative

and qualitative statistics. At present, mostly selection of testing techniques is done neither

systematically, nor following well-established guidelines. Despite the large number of studies

which attempt to study the effectiveness and efficiency of testing techniques and its allied

factors and conditions, we have very limited knowledge on testing techniques effectiveness as

they are not complete in all respects and vary significantly in terms of parameters they have

taken into consideration. Additionally, existing studies show contradictory results. There is

no “silver bullet” testing approach and that no single technique alone is satisfactory has been

pointed out by many leading researchers [Chu, 1997]. Therefore we should use a combination

of several techniques to test a software. However, we should select appropriate techniques

11

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

which will target different types of defects. However, many testing techniques belong to

same group and as such will target same types of defects in the program. So we should use

a best candidate from each group to test a program but do we have knowledge of relative

effectiveness of techniques in a group? We guess, no!

It is obvious that testing technique selection and evaluation remains a key issue in software

testing. So the need of the hour is to find the effective and efficient software testing techniques

which can attain the goal of testing to maximum possible extent while consuming fewer

resources. It will be nice if we can first go for intra-family comparisons, then we can go

inter-family comparisons; but a lack of uniform classification makes comparison process more

complicated. One classification places a particular technique in one family whereas other

classification places the same technique in some other family. In effect we should develop a

uniform classification of software testing techniques, then only can be comparison meaningful

and worthy as there will be no ambiguity related to the technique and the group to which it

belongs. As we know no single study can be complete and perfect in all respects, we cannot

really expect one testing technique to supersede all other techniques. There is often a specific

interest or purpose of evaluating a particular test technique, based on the assumption that

the technique will be more effective. Regardless of our technique, it could be wise to try to

understand what types of defects a particular technique can be expected to find and at what

cost. We have to check whether testing technique effectiveness and efficiency depends on

program to which it is applied, subject who applies it, the number of faults in the program

or the type of faults in the program. However it is not sufficient if testing techniques are only

compared on fault detecting ability. They should also be evaluated to check which among

them enhances reliability. To establish a useful theory for testing, we need to evaluate existing

and novel testing techniques not only for defect detection effectiveness and efficiency but also

for their ability of enhancing software reliability. In this chapter we describe why there

is need to evaluate effectiveness of software testing techniques, problems with the existing

studies and a framework is proposed for carrying out such studies so that in future such

studies show results which can be useful for testing professionals in particular and testing

industry in general.

The chapter is organized as: Section 2.2 gives us a brief description of software testing

techniques and also proposes a uniform classification of software testing techniques in Section

2.2.1. Section 2.3 explains why we should evaluate software testing techniques. Section 2.4

surveys the existing research on software testing techniques evaluation. Evaluation results

of the surveyed studies are presented in subsection 2.4.1 and the problems and shortcomings

12

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

are presented in subsection 2.4.2. Current status of testing technique selection is presented

in Section 2.5. Section 2.6 describes how to choose a testing technique in the absence of

concrete knowledge about the testing techniques. Section 2.7 proposes a framework (s set

of guidelines) which should be taken into consideration while evaluating testing techniques

effectiveness. Section 2.8 presents the conclusions and future work.

2.2 Software Testing Techniques

Software testing techniques are diverse methods to do software testing. We test software

by selecting appropriate testing technique and applying them systematically. Testing tech-

niques refer to different methods of testing particular features a computer program, system

or product. By a testing technique, we mean a method or approach that systematically de-

scribes how a set of test cases should be created (with what intention and goals) keeping into

consideration possible rules for applying the test cases. Testing techniques determine what

ways would be applied or calculations would be done to test a particular feature of software.

Testing techniques aids in limiting the number of test cases that can be created, since it will

be targeting a specific type of input, path, fault, goal, measurement etc. [Eldh, 2011]. Test

techniques provide an understanding of the complexities imposed by most systems. Using

testing techniques, we can reproduce tests, as it paves the path for creating a test ware. Some

techniques are easy to apply while other techniques require a little experience and knowledge

before they can be used. The beauty of software testing techniques is that the more you

use each the greater insight you will gain. You will understand when to use them, how to

implement them, how to execute them, and will have a clear knowledge of which ones to

use in any given situation. But before utilizing different testing techniques in proper man-

ner for an appropriate purpose, we should have a profound theoretical knowledge of these

testing techniques. In effect, we will study available software testing techniques and classify

them according to underlying mechanism which includes what information they require, the

purpose for which they can be used, when to use the. We will not describe the features of

testing techniques in detail, as this information can be gathered from the classical literature

on testing techniques, for example [Beizer, 1990] [Myers et al., 2011].

2.2.1 Proposed Software Testing Techniques Classification

Existing software testing practices are divided into two main categories: static testing and dy-

namic testing. Accordingly we can divide software testing techniques into two main categories

13

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

according to the criterion whether the technique requires actual execution of the software or

not: static testing techniques and dynamic testing techniques [Roper, 1995]. Static testing

covers the area of performing all kinds of tests on the software related documents or source

code of software without executing it. Dynamic testing covers the area of performing all kinds

of tests on the object code and executable that is determined from the source code by exe-

cuting it. The difference between these types of testing is usually determined by the state of

the software program (source code vs. executable). The other difference is that static testing

techniques can be used from requirement phase to implementation phase, dynamic testing

techniques can be applied from implementation phase onwards only. Another difference is

that while static testing looks for faults, dynamic testing looks for failures. Software Verifi-

cation and Validation use both static and dynamic techniques for system checking to ensure

that the resulting program satisfies its specification and that the program as implemented

meets the expectations of the stakeholders.

2.2.1.1 Static testing techniques

Static testing/Non-execution based techniques focus on the range of ways that are used to

verify the program without reference to actual execution of the program. Static techniques are

concerned with the analysis and checking of system representations such as the requirements

documents, design diagrams and the program source code, either manually or automatically,

without actually executing the code [Sommerville, 2007]. Techniques in this area include code

inspection, program analysis, symbolic analysis, and model checking etc. Documentation in

the form of text, models or code are analyzed, often by hand. In a number of cases, e.g. in

the compilation of program code, tools are used [Graham and Van Veenendaal, 2008].

Static testing techniques are also classified according to criterion whether or not the

technique requires any automatic tool in addition to human analysis. If so, the techniques

are grouped under automatic static testing otherwise it is manual static testing. Automatic

testing is the evaluation of program or program related documents using software tools. In

automatic static testing usually we input code to a static analysis tool for evaluating it for

quality. In addition to code, documentation of the program can also be used in quality check

of the program. Manual static testing evaluates the program and program related documents

manually without the assistance of any tool. Manual static testing usually include the review

of source code, program documents etc.

14

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

2.2.1.2 Dynamic testing techniques

Dynamic Testing / Execution based techniques focus on the range of ways that are used to

ascertain software quality and validate the software through actual executions of the software

under test. We test the software with real or simulated inputs, both normal and abnormal,

under controlled and expected conditions to check how a software system reacts to various

input test data. It is essential to test the software in controlled and expected conditions as

a complex, non deterministic system might react with different behaviors to a same input,

depending on the system state. The dynamic testing of a software product implies execution,

as only by studying the result of this execution is it possible to decide whether or not (or to

what extent) the quality levels set for the dynamic aspects evaluated are met.

Dynamic testing techniques are generally divided into the two broad categories depending

on a criterion whether we require the knowledge of source code or not for test case design: if

it does not require knowledge of the source code, it is known as black box testing otherwise

it is known as white box testing [Sommerville, 2007] [Beizer, 1995]; which correspond with

two different starting points for dynamic software testing: the requirements specification and

internal structure of the software. Black Box testing gives us only the external view (behavior)

of the software as it concentrates on what the software does and is not concerned about how it

does it. Testing techniques under this strategy are totally focused on testing requirements and

functionality of the software under test. We need to have thorough knowledge of requirement

specification of the system in order to implement the black box testing strategy. In addition

we need to know how the system should behave in response to the particular input. White

box testing strategy deals with the internal logic and structure of the code and depends on

the information how software has been designed and coded for test case design. The test cases

designed based on the white box testing strategy incorporate coverage of the code written in

terms of branches, paths, statements and internal logic of the code, etc. White box testing

strategy is focused on examining the logic of the program or system, without concerned about

the requirements of software which is under test. The expected results are evaluated on a set

of coverage criteria. We need have knowledge of coding and logic of the software to implement

white box testing strategy.

2.2.1.3 Test data selection criteria

Dynamic testing involves selecting input test data, executing the software on that data and

comparing the results to some test oracle (manual or automatic), which determines whether

15

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

the results are correct or not. We need to do test the software on the entire input domain

(exhaustive testing) to be sure that software is totally error free. As a matter of fact, due

to the inherent discontinuous nature of software, we cannot infer any property from an

observation on some point to other points in the input domain [Chu, 1997]. However the

problem is that, excluding trivial cases, the input domain is usually too large which makes

it impossible for us to go for exhaustive testing. So should we keep the software untested?

Well, that thing can haunt us for years. Instead what we can do is that we will select a

comparatively small subset which is in some sense representative of the entire input domain

and will test the software for that selected subset. From this, we then can infer the behavior

of software for the entire input domain. Therefore, dynamic testing corresponds to sampling

a certain number of executions of software from amongst all its possible executions. Ideally,

the test data should be chosen so that executing the software on this subset will uncover all

errors, thus guaranteeing that any software which produces correct results for the test data

will produce correct results for any data in the input domain. However, discovering such an

ideal set of test data is in general an impossible task [Rapps and Weyuker, 1985] [Bertolino,

1991]. The identification of a suitable sampling strategy is known as the test data selection

problem. The selection of test data is largely dependent on the testing purpose and type

of testing technique used. There are five basic strategies for selecting test data of dynamic

testing techniques:

1. Random Testing: In random testing, we select test inputs from the possible input

domain randomly without any bias.

2. Statistical Testing: Test data is selected according to the distribution as is expected

when the software will be in actual use.

3. Functional Testing: Test data set is selected according to the specified functions of

the program, so that all functions and sub functions are tested at least once.

4. Structural Testing: Test data is selected according to the structural specification

which aims to get the required coverage for the specified coverage items (statements,

branches or paths). The structural tests encompass control flow (program flow) and

data flow. Control Flow Testing (CFT) and Data Flow Testing (DFT) help with in-

teractions along the execution path and interactions among data items in execution

respectively.

16

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

5. Mutation Testing: Test data is selected based on the survived mutants in the pro-

gram.

The first three testing methods are included in black box testing strategy, whereas the last

two are include in white box testing strategy. A large number of testing techniques fall

within each of the above listed testing methods. The proposed classification of software

testing techniques is shown in Figure 2.1 . Effective testing should find greatest possible

number of errors with manageable amount of efforts applied over a realistic time span with a

finite number of test cases. We have to make sure that we select technique(s) that will help

to ensure the most efficient and effective testing of the system. However, the fundamental

question is what would be the techniques that we should adopt for an efficient and effective

testing

2.3 Why to Evaluate Software Testing Techniques?

Software testing should be effective enough to prevent critical damages on the whole system

for users, by taking into consideration of potential failures of the program and its environments

[Kurokawa and Shinagawa, 2008]. One way to avoid such failures is to go for exhaustive

testing of the system, which tests the system with all possible combinations of inputs which

includes both valid and invalid cases. However, excluding trivial cases, exhaustive testing is

an impractical thing for the most software systems. Besides, we are often faced with lack

of time and resources, which can limit our ability to effectively complete testing efforts. A

tester do not want to go for exhaustive testing, rather he wants to select a testing technique

in relation to the selected test strategy that will detect maximum possible faults and brings

the product to an acceptable level while consuming less resources and time. Whether we

opt for static or dynamic testing, there is a selection of testing methods to choose from. In

each testing method there are so many testing techniques that are used to test a system.

Each testing technique meant for testing has its own dimensions i.e. for what purpose it

is used, what aspect it will test, what will be its deliverables etc. Different approaches to

software development require different testing methods and techniques [Tawileh et al., 2007].

This limits our ability to use a generic technique for testing a system. So at present we

prefer to use variety of testing techniques to test a system as it will ensure that a variety

of defects are found, resulting in more effective testing. But how long will we use numerous

testing techniques to test software. Going this way means excessive use of resources (less

17

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

Figure 2.1: Proposed Classification of Software Testing Techniques

18

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

efficiency), as using many testing techniques clearly implies more test cases, more time and

more resources. So the need is to select appropriate testing techniques which can make

testing process effective and efficient. However, for a given testing problem, there exist

several techniques of the same kind which differ by the underlying mechanism. For instance,

several regression testing techniques are available; they belong to same family, yet they follow

a different way to solve the problem at hand. Contrary to this are techniques which belong

to different groups and also exploit totally different set of information for the purpose; for

example, the control-flow and data-flow based techniques derive test cases quite differently.

Among so many techniques, which are in a competition we would like to select a technique

that will detect the maximum possible significant defects, while consuming less resources and

time. Unfortunately, it is not known which testing technique to select as we do not have

adequate information about relative effectiveness, efficiency and cost of testing techniques.

[Farooq and Quadri, 2010] also states that we do not have all the information of interest about

every testing technique. This kind of information can only be obtained by evaluating software

testing techniques. It is also necessary to understand what types of defects a particular

technique is expected to find and at what cost. We also need to analyze testing technique

dependences on program to which it is applied, subject who applies it, the number of faults

in the program or the type of faults in the program. We should evaluate testing techniques to

know about the relative merits and limitations of each testing technique, so that we are able to

use it in appropriate scenario and for appropriate purpose. This information is useful before

one has to implement a given testing technique; it is also useful (as a post mortem analysis)

when one is finished with testing as this post-implementation assessment and analysis is

needed for subsequent improvement of the technique to increase its effectiveness [Farooq and

Dumke, 2008].

2.4 Existing Research on Software Testing Techniques Evalu-

ation

A lot of research has been carried out concerning the evaluation of software testing techniques.

By tracing the major research results that have contributed to the growth of software testing

techniques we can analyze the maturation of software testing techniques research. We can also

assess the change of research paradigms over time by tracing the types of research questions

and strategies used at various stages [Luo, 2001]. Three directions of research have been

found related to evaluation of testing techniques:

19

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

1. Actual evaluations and comparisons of testing techniques based either on analytical or

empirical methods,

2. Evaluation frameworks or methodologies for comparing and/or selecting testing tech-

niques.

3. Surveys of empirical studies on testing techniques which have summarized available

work and have highlighted future trends.

Many experiments and case studies have been conducted so far towards the goal of eval-

uation of testing techniques. Some relevant works for controlled experiments are [Hetzel,

1976], [Myers, 1978] [Basili and Selby, 1987], [Weyuker, 1990], [Bieman and Schultz, 1992],

[Frankl and Weiss, 1993], [Hutchins et al., 1994], [Offutt and Lee, 1994], [Kamsties and Lott,

1995], Wong and Mathur [1995b], Offutt et al. [1996], [Frankl et al., 1997], [Roper et al.,

1997], [Frankl and Iakounenko, 1998], [Rothermel and Harrold, 1998], [Wong et al., 1997],

[Vokolos and Frankl, 1998], Rothermel et al. [1999], [Elbaum et al., 2000], [Kim et al., 2000],

[Bible et al., 2001], [Graves et al., 2001], [Juristo and Vegas, 2003] and many more. There

are also some case studies which studied and evaluated different testing techniques which

include [Wohlin et al., 2000], [Aurum et al., 2002], [Beck, 2003], [Host et al., 2005]. In case of

frameworks and methodologies [Vegas and Basili, 2005] describe a characterization scheme for

experiments which is specific for software testing techniques. The schema is similar to [Basili

et al., 1985] but adapted to deal with evaluating testing techniques. [Do et al., 2004] and

[Do et al., 2005] define the SIR (Software Artifact Infrastructure Repository) infrastructure

to support controlled experiments with software testing techniques. The main contribution

of their work is a set of benchmark programs that can be used to evaluate testing techniques.

[Eldh et al., 2006] describes a straightforward framework for the comparison of the efficiency,

effectiveness and applicability of different testing techniques based on fault injection or seed-

ing. [Vos et al.] also defines general methodological framework for evaluating software testing

techniques, which focuses on the evaluation of effectiveness and efficiency, but the framework

is very preliminary and needs significant improvement. A significant survey of the software

testing techniques can be found in [Juristo et al., 2004] which surveys the empirical studies

in the last 3 decades.

Our focus in this thesis is on empirical evaluation of testing techniques, so we will have a

look at empirical studies conducted so far to evaluate testing techniques. During the past few

decades, a large number of empirical evaluations of numerous testing techniques have been

20

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

executed to compare various software testing techniques. The research on the comparison of

testing technique traces back to as early as 35 years ago with Hetzel making a start in 1976

by conducting a controlled experiment in order to analyze three defect detection methods

[Hetzel, 1976]. The empirical research on testing techniques is largely carried out through

experiments comparing different dynamic testing techniques with each other or with different

types of static testing techniques usually some reading technique. Most of the experimental

studies are performed in a unit level testing context. A laboratory setting with student

subjects is the most common design in the existing experiments. The most commonly studied

factors in the experiments evaluating testing techniques are their effectiveness (i.e., number

of detected defects) and efficiency (i.e., effort required to apply the technique) in programs.

[Juristo et al., 2004] identified two classes of evaluation studies on testing techniques; intra-

family and inter-family. Based on distinction made by [Juristo et al., 2004], major intra

family and inter family studies carried till date to evaluate software testing techniques are

listed in Table 2.1 and Table 2.2. In addition to these, many studies are in progression, but

their results are preliminary. So they are not presented in the list/table.

Table 2.1: Intra-Family Comparisons

Technique Study Year

Data-flow testing techniques Weyuker 1990

Bieman and Schultz 1992

Mutation testing techniques Offut and Lee 1994

Wong and Mathur 1995

Offut et al. 1996

Regression testing techniques Rothermel and Harrold 1998

Vokolos and Frankl 1998

Kim et al. 2000

Bible et al. 2001

Graves et al. 2001

2.4.1 Evaluation Results

Summarizing the results of the studies conducted to evaluate the effectiveness and efficiency

of software testing techniques. We observed that studies unfortunately have a lot of con-

tradiction in terms of their results. There is no study which can tell us much about the

21

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

Table 2.2: Inter-Family Comparisons

Comparison Groups Study Year

Control-flow, data-flow and random

techniques

Frankl and Weiss

Hutchins et al.

Frankl and Iakounenko

1993

1994

1998

Functional and structural techniques.

Note: All studies also compare

manual static testing technique

Code Reading with functional and

structural techniques.

Hetzel

Myers

Basili and Selby

Kamsties and Lott

Roper et al.

Juristo and Vegas

1976

1978

1987

1995

1997

2003

Mutation and data-flow techniques Wong and Mathur 1995

Frankl et al. 1997

Regression and improvement testing Wong et al. 1998

techniques Rothermel et al. 1999

Elbaum et al. 2000

Kim et al. 2000

Graves et al. 2001

22

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

relative effectiveness or efficiency of testing techniques because of the difference between pa-

rameters they have taken into consideration. The results also are very inconclusive and do

not reveal much information. [Moreno et al., 2009] also states that experimental results are

conflicting, and the experiments lack a formal foundation. From the analysis of previous

studies, we can conclude that the experimental studies on software testing techniques does

not provide a basis for making any strong conclusions regarding effectiveness or efficiency

of different testing techniques. As a result we cannot generalize results of software testing

techniques evaluation. Current studies point out that various other factors, in addition to

the applied testing technique, have a strong effect on the results of defect finding effectiveness

and efficiency. Even though the experiments are designed to study the effects of one or more

selected testing techniques, the effects of all other factors cannot be excluded. The defect

detection effectiveness and efficiency seems to depend on the person who test the software,

the software being tested, and the actual defects that exist in the software. One important

result that can be drawn from the existing experimental studies on testing techniques is that

more faults are detected by combining individual testers than by combining different tech-

niques [Juristo et al., 2004]. This is an important finding because it shows that the results

of test execution vary significantly among individual testers despite the certain test case de-

sign strategy used. The variation between individuals seems to be greater than the variation

between techniques. The different testers seem to find clearly different defects despite using

the same technique. The most important results of data flow testing techniques, mutation

testing techniques and regression testing techniques studies are presented in Table 2.3, Table

2.4 and Table 2.5 respectively. The most important results of control flow, data flow and ran-

dom testing techniques, code Reading, functional and structural testing techniques, mutation

and data flow and regression and improvement testing techniques are presented in Table 2.6,

Table 2.7, Table 2.8 and Table 2.9 respectively. The results are discussed in more detail in

[Juristo et al., 2004]. We can summarize the results of empirical studies on testing techniques

as follows:

1. There is no clear, consistent evidence that one fault finding technique is stronger than

others, rather the evidence to date suggests that each technique has its own merits.

2. While some studies conclude that technique A is ranked higher than technique B. Some

studies conclude technique A and technique B find different kinds of defects, and are

as complementary.

23

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

3. The effectiveness of verification activities is low; only 25-50% of the defects in an artifact

are found using inspection, and 30-60% using testing. This makes secondary defect

detection activities important.

4. Combining testing techniques uncovered more defects than did a single technique.

5. Combining individual testers seem to increase defect detection effectiveness more than

combining test case design techniques.

6. Defect detection effectiveness highly depends on the individual differences between

testers even if they use the same test case design technique.

7. Defect detection effectiveness seems to be correlated with the amount of test cases.

8. The effectiveness of different techniques seems to depend on the type of software tested

and the types of the actual defects in the software.

9. It seems that some types of faults are not well suited to some testing techniques.

10. There appears to be a relationship between the programs, or the type of faults entered

in the programs, and technique effectiveness.

Table 2.3: Major Results of Data-flow testing techniques comparison

1. All-p-uses technique is better than all-uses which is better than

all-du-paths, as they generate fewer test cases and generally cover the

test cases generated by the other criteria.

2. Even though all-c-uses generate fewer test cases, it is not clear that

it is better to use it instead of all-p-uses, as coverage is not assured.

3. The all-du-paths technique is usable in practice, since it does not

generate too many test cases.

2.4.2 Problems with Existing Studies

We must first clearly recognize the issues in any field in order to make it more mature by

resolving those issues. Many years of empirical investigation in the subject have gone by

though there are not definite results yet. In A look at 25 years of data, the authors have

reached the same conclusion after studying various experiments on software testing [Moreno

24

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

Table 2.4: Major Results of Mutation testing techniques comparison

1. When time is a critical factor, weak mutation/ selective mutation is

preferred as opposed to standard mutation, as it generates fewer test cases

and effectiveness is approximately the same.

2. In intermediate cases, it is preferable to use abs/ror mutation,

because, although it generates more cases (from 50 to 100 times more),

it raises effectiveness by seven points.

3. If time is not a critical factor, it is preferable to use standard

mutation.

Table 2.5: Major Results of Regression testing techniques comparison

1. For programs with big sets of test cases, it is preferable to use

deja-vu or test-tube as opposed to retest-all, as it takes less time to

select and run test cases.

2. For small programs with small sets of test cases, it is preferable to

use retest-all as opposed to deja-vu and test-tube, as it takes less time

to select and run test cases.

3. When the number of test cases selected is an issue, it is preferable to

use deja-vu as opposed to test-tube and test-tube as opposed to retest-all,

since deja-vu selects fewer test cases than test-tube and test-tube selects

fewer test cases than retest-all.

4. The percentage of selected cases over initial set depends on the

structure of the program, and its modifications.

5. It is not clear whether to use textual differencing as opposed to

retest-all. Although textual differencing selects a lower percentage of

test cases over the initial set than retest-all, there are no definite

results regarding the time taken to run test cases. There are also no

definite results for textual differencing and deja-vu.

25

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

Table 2.6: Major Results of Control-flow, data-flow and random testing techniques comparison

1. When time is critical, the use of the random testing technique can be

relied upon to yield an effectiveness similar to all-uses and all-edges

(the differences being smaller the higher coverage is) in 50% of the cases.

Where testing needs to be exhaustive, the application of all-uses provides

assurance, as, in the other half of the cases; this criterion yielded more

efficient results thanks to the actual technique, unlike all-edges, which

was more efficient because it generated more test cases.

2. All-edges should be complemented with all-dus, as they are equally

effective and detect different faults. Additionally, they generate

about the same number of test cases. The random testing technique has

to generate between 50% and 160% more test cases to achieve the same

effectiveness as all-edges and all-dus.

3. High coverage levels are recommended for all-edges, all-uses and

all-dus, as this increases their effectiveness. This is not the case for

the random testing technique.

et al., 2009]. Also, they found that it is really difficult to compare different experiments;

however, they do not present any solution to it. [Briand and Labiche, 2004] discussed many

issues facing empirical studies of testing techniques; criteria to quantify fault-detection ability

of a technique is one such issue, while threats to validity arising out of the experimental setting

(be it academic or industrial) is another. [Juristo et al., 2002] and [Juristo et al., 2004] has

highlighted following issues with current studies:

1. informality of the results analysis (many studies are based solely on qualitative graph

analysis)

2. limited usefulness of the response variables examined in practice, as is the case of the

probability of detecting at least one fault

3. non-representativeness of the programs chosen, either because of size or the number of

faults introduced

4. non-representativeness of the faults introduced in the programs

We believe that there are many reasons for this inadequacy of knowledge and restricted results

regarding the evaluation of software testing techniques. After analyzing the existing studies

26

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

Table 2.7: Major Results of Code Reading, functional and structural testing techniques com-

parison

1. For experienced subjects and when time is not an issue, it is better to

use the boundary value analysis technique as opposed to sentence coverage,

as subjects will detect more faults, although it will take longer.

2. For inexperienced subjects and when time is short, it is better to

use sentence coverage as opposed to boundary value analysis, although

there could be a loss of effectiveness. The time will also depend on the

program.

3. It is preferable to use boundary value analysis as opposed to condition

coverage, as there is no difference as regards effectiveness and it takes

less time to detect and isolate faults.

4. There appears to be a dependency on the subject as regards technique

application time, fault detection and fault isolation.

5. There appears to be a dependency on the program as regards the number

and type of faults detected.

6. More faults are detected by combining subjects than techniques of the

two families.

7. If control faults are to be detected, it is better to use boundary

value analysis or condition coverage than sentence coverage. Otherwise, it

does not matter which of the three are used.

8. The effect of boundary value analysis and branch testing techniques on

effectiveness cannot be separated from the program effect.

Table 2.8: Major Results of Mutation and data-flow testing techniques comparison

1. It is preferable to use all-uses as opposed to mutation in case when

high coverage is important and time is limited, as it will be just as

effective as mutation in about half of the cases.

2. All-uses behave similarly as regards effectiveness to abs/ror and 10%

mutation.

27

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

Table 2.9: Major Results of Regression and improvement testing techniques comparison

1. In case of time limitation, the use of regression based on

modifications and minimization and prioritization can be relied upon to

yield effectiveness similar to regression based on modifications only.

2. In case of time limitation, the use of minimization can be relied upon

to yield a lower effectiveness than safe and data-flow (these two equal)

and random.

3. The more faults there are in the program, the more effective

minimization is.

4. In case of time limitation, the use of prioritization can be relied

upon to yield a higher fault detection speed than no prioritization.

5. It is preferable to use fep techniques as opposed to sentence coverage

technique, as they have a higher fault detection speed.

6. Function coverage techniques do not behave equally.

7. When time is not an issue, it is preferable to use sentence coverage

techniques as opposed to function coverage techniques, as they are more

effective, but also more costly.

8. Effectiveness for these techniques depends on the program.

28

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

on software testing techniques evaluation, we conclude that existing studies on evaluation of

testing techniques mostly have following problems:

2.4.2.1 Experimentation problems

1. Comparing testing techniques is to quantify fault detection effectiveness and efficiency.

A comparison criterion for testing techniques is usually not well defined.[Farooq and

Quadri, 2010] states that in the context of testing technique selection, the term best

has different meanings depending on the person making comparisons.

2. Most of the studies do not take all the parameters necessary for comparison into con-

sideration, as a result of that one technique do not supersede other techniques on all

fronts; thereby creating ambiguity in test technique selection.

3. Existing studies mostly differ in the number and type of parameters they have used in

their study. A common standard is missing which makes it difficult to compare these

studies.

4. There are many things that are not covered by such studies. The inconclusive results

indicate the presence of factors that were not under experimental control. The com-

parative study of the effectiveness of different techniques should be supplemented by

studies of the fault types that each technique detects and not only the probability of

detecting faults. That is, even if T1 and T2 are equally effective, this does not mean

that they detect the same faults [Juristo et al., 2003]. This would provide a better

understanding of technique complementary, even when they are equally effective.

5. Most of the studies use only fault seeding in their experiments. The result is that

large numbers faults can be seeded, thus leading to less random variation in fault ratios

and more statistical power. However it often results in seeding unrealistic faults. In

addition, we may be biased towards seeding faults of a particular type. As a result, we

are usually left with invalid results which are far away from reality.

6. In all studies, subjects have not been chosen properly according to given scenario. Even

though experiment conducted by [Basili and Selby, 1987] took into account several

classes of professionals. Most experiments conducted the studies in student environ-

ments, which limit the transfer of experiment results to real world. Therefore, we need

to balance between academic and industry perspective.

29

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

7. Another major problem with testing technique evaluation is that experiments are mostly

made on a small sample (code sample selection is in majority below 2K), and often with

the demonstration that they either perform better than another specific technique. The

main reason for this is the difficulty to get large amount of real data to perform research

on. The number of faults on sample of this size may not be large enough to allow for

quantitative, statistical analysis.

8. The experiments are often biased either towards academic or industrial system, as they

are usually carried out with only academic or industrial settings into consideration.

Most of the studies conducted so far are academic in nature. As a result, usually

studies are less validated or hardly put to practice in testing industry. Studies in an

academic setting are often a first step before studies are carried in industrial settings

[Juristo and Moreno, 2001]. So we should take both systems into consideration while

carrying out such experiments.

2.4.2.2 Knowledge problems

1. Existing studies do not tend to share the knowledge they acquire by using a testing

technique with others [Vegas, 2001]. The information related to these studies is not fully

available which makes it difficult for researchers or industry professionals in drawing

exact results from diverse studies. Also it becomes difficult to replicate the work already

done. Everyone is going its own way, starting things from very beginning. It would

have been good to validate the earlier studies so that results can be generalized and

implemented at industry level.

2. Usually the main focus is often to invent a special technique and compare its effective-

ness with one already known (often a similar technique). Little attention is given to

evaluate effectiveness of already existing techniques which could have served profession-

als better.

3. The problem with testing techniques in industry is that they are not known (many

testers have no training in testing techniques), not utilized, since often there is a belief

of their efficiency and effectiveness, and it is seldom proven for larger complex system.

The actual research setting of creating reasonable comparative models have not been

totally explored. Our experience is that testers are often not trained in testing, but on

system behaviour. Even if people are formally trained in test techniques, they easily

30

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

fall back to approaching testing from a system usage viewpoint rather than applying a

test technique, since requirements on testers are seldom assessed as long as they find

some failures.

2.5 Where do we Stand at this Moment?

The big achievement we had from conducting so many experimental experiments is: we do

know with certainty that the usage of a testing technique is better than none, and that a

combination of techniques is better than just one technique. We also know that the use of

testing techniques supports systematic and meticulous work and that techniques are good

for finding possible failures. No firm research conclusions exist about the relative merits

of software testing techniques. The conclusions they drew may only apply to their specific

experimental environment and are not general enough to be applied to other research en-

vironments, let alone to software testing industry [Yang, 2007]. Most of the research that

has been performed is very academic and not terribly useful in the real testing world. At

present we do not have adequate proof of any technique superseding other ones in terms of

effectiveness or efficiency.

How should one choose testing technique at present? Current studies suggest it is just

not sufficient to rely on a single method for catching all defects in a program. Actually each

technique is good for certain things, and not as good for other things. Each individual tech-

nique is aimed at particular types of defect as well. For example, state transition testing is

unlikely to find boundary defects. Some techniques are more applicable to certain situations

and test levels; others are applicable to all test levels. Some testing techniques are never

considered for use at all and others are used over again in different software projects without

even examining, after use, whether or not they were really suited [Vegas, 2004]. One con-

clusion that seems to have been reached is: There is no “best technique. The “best depends

on the nature of the product and other allied factors. The choice of which test technique to

use depends on a number of factors, including the type of system, regulatory standards, cus-

tomer or contractual requirements, level of risk, type of risk, test objective, documentation

available, knowledge of the testers, time and budget, development life cycle, use case models

and previous experience of types of defects found which are discussed more thoroughly in

section 2.6. Each testing technique is good at finding one specific class of defect, using just

one technique will help ensure that many (perhaps most but not all) defects of that particular

class are found. Unfortunately, it may also help to ensure that many defects of other classes

31

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

are missed! Using a variety of techniques will therefore help ensure that a variety of defects

are found, resulting in more effective testing. However, it will also ensure the excessive use

of resources which will in turn result in less efficiency. So it is argued that more experimen-

tal work is required to evaluate testing technique so that our testing will be both effective

and efficient. We need to know how to demonstrate the effectiveness of testing methods,

how much effective are testing techniques in terms of effort and defect finding capability as

we always want to select a testing technique that will bring the product to an acceptable

level. Recent surveys on comparisons of various software testing techniques also concludes

that further empirical research in software testing is needed, and that much more replication

has to be conducted before general results can be stated [Juristo et al., 2004] [Moreno et al.,

2009]. But the experimentation should be carried out in such a way so that results can be

realistic and with very less contradictions. Then only we can have firm knowledge about the

effectiveness and efficiency of the testing technique in revealing faults, the classes of faults

for which the technique is useful, and other allied aspects.

2.6 Factors for Selecting Software Testing Technique

The big question remaining after these descriptions of wonderful test case design techniques

is: Which testing technique(s) should we use? At present, the answer to that is: It depends!

There is no established consensus on which technique is the most effective and efficient. At

present, the decisions made regarding technique selection are mostly unsystematic. Testers

actually make the selection on the basis of their particular perception of the techniques

and situations, which is not necessarily incorrect, but partial (and therefore incomplete)

[Vegas et al., 2006]. A firm and generalized thing that we know is that we have to use

testing techniques for testing a system. With so many testing techniques to choose from

how are testers to decide which ones to use? If not effective, at least we should choose a

suitable testing technique. Another question that arises is that, how will we choose the most

appropriate testing techniques? Rather can selecting testing techniques unsystematically, we

should choose techniques according to certain factors. We have to select testing techniques

anyway, so why not to do it systematically. The benefit is: If somebody asks how you did

it, you are able to describe it, plus your reasoning behind it. Your test will be accountable.

And you may be able to improve over time. The selection of testing techniques is related

to various aspects/factors (both internal and external) [Graham and Van Veenendaal, 2008].

We have grouped those factors into three categories. There can be many other factors that

32

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

help us in selecting appropriate techniques for testing the software. The aspects/factors that

aid us in selecting appropriate testing technique are listed below.

2.6.1 Software Related Factors

Type of system:

The type of system (e.g., graphical, embedded, financial, etc.) will influence the choice of

techniques. For example, a financial application involving many calculations would benefit

from boundary value analysis, while a GUI system will prefer GUI testing.

Life cycle model:

Life cycle model used in software development also impinge on the testing technique selection.

For example, a sequential life cycle model will lend itself to the use of more formal techniques

whereas an iterative life cycle model may be better suited to using an exploratory testing

approach.

Models used:

Since testing techniques are based on models, the models available (i.e. developed and used

during the specification, design and implementation of the system) will also govern the choice

of testing technique to be used. For example, if the specification contains a state transition

diagram, state transition testing would be a good technique to use.

Likely defects:

Knowledge of the likely defects will be very helpful in choosing testing techniques (since each

technique is good at finding a particular type of defect). This knowledge could be gained

through experience of testing a previous version of the system and previous levels of testing on

the current version. What types of defects do the artefacts contain? There is a big difference

between grammatical errors in code and missing requirements in a requirements specification.

2.6.2 Testing Related Factors

Aspect:

Which aspect of the software development are we assessing? Requirements? Design? Code?

For Example, reviews are more beneficial in design as compared to code. Similarly if code

is checked for consistency, code reading technique will be beneficial, whereas for checking its

behavior, functional techniques are more appropriate.

Purpose:

The purpose of testing also defines which technique to use as activity might contribute to

33

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

validation that is, assuring that the correct system is developed or to verification that is,

assuring that the system meets its specifications or to both. Static techniques contribute

mostly towards verification, whereas dynamic techniques contribute to validation.

Test objective:

If the test objective is simply to gain confidence that the software will cope with typical op-

erational tasks then routine techniques can be employed. If the objective is for very thorough

testing (e.g. for safety-critical systems), then more rigorous and detailed techniques should

be selected. Greater the risk, greater is the need for more thorough and more formal testing.

Commercial risk may be influenced by quality issues (so more thorough testing would be

appropriate) or by time-to market issues (so exploratory testing would be a more appropriate

choice).

Evaluation criteria:

What are the criteria for selecting techniques? Should you choose the most effective or the

most efficient method? Efficiency in this context means the number of defects found per time

unit spent on verification, and effectiveness means the share of the existing defects found.

Documentation:

Whether or not documentation (e.g. a requirements specification or design specification)

exists and whether or not it is made up to date will affect the choice of testing techniques.

The content and style of the documentation will also influence the choice of techniques.

Tester knowledge/experience:

How much testers know about the system and about testing techniques will clearly influence

their choice of testing techniques. This knowledge will in itself be influenced by their expe-

rience of testing and of the system under test.

Time and budget:

Ultimately how much time is available will always affect the choice of testing techniques.

When more time is available we can afford to select more techniques and when time is

severely limited we will be limited to those that we know have a good chance of helping us

find just the most important defects.

2.6.3 Customers Requisites and other Requirements

Customer/contractual requisites:

A contract usually specifies the main objective of the system. Possible objectives can be

performance, dependability etc. Accordingly we will choose a testing technique to meet that

34

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

objective.

Regulatory requirements:

Some industries have regulatory standards or guidelines that govern the testing techniques

used. For example, the aircraft industry requires the use of equivalence partitioning, boundary

value analysis and state transition testing for high integrity systems together with statement,

decision or modified condition decision coverage depending on the level of software integrity

required.

2.7 Proposed Guidelines for Software Testing Techniques Eval-

uation

The big question still remains there: Which are the techniques which are effective and efficient.

The knowledge for selecting testing techniques should come from studies that empirically

justify the benefits and application conditions of the different techniques [Juristo et al., 2003].

To get a definite answer to such question we need to carry out experimentation on a large scale

using a common benchmark/framework. A common standard is also required to standardizing

the evaluation process of such experiments. Empirical studies on large scale artifacts, within

real world contexts, and replicated by several professional testers to attain generally valid

results would be of course prohibitively expensive. A possible way out to overcome such

difficult challenges could be that of combining the efforts of several research groups, currently

conducting separate experimentations, and join their forces to carry out a widely replicated

experiment, i.e., factorize a large experiment in pieces among several laboratories. The idea

would be similar to that of launching an “Open Experiment” initiative, similarly to how some

Open Source projects have been successfully conducted. This is undoubtedly a remarkable

aim which without careful management is unlikely to succeed. In addition, not all open source

projects are necessarily successful, and experimentation, to be credible, needs very careful

planning and control. Moreover, such an enterprise could perhaps overcome the problems of

scale, but the issues of context and tester’s background would further require that industries

be actively involved in the initiative [Bertolino, 2004].

Empirical software engineering research needs research guidelines to improve the research

and reporting processes. There exists a real need in industry to have guidelines on which

testing techniques to use for different testing objectives, and how usable these techniques

are [Vos et al.]. Here we present a framework (a set of guidelines) how experiments/studies

for evaluating the effectiveness of testing techniques should be carried out so that definite,

35

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

practical and comparable results about relative merits of testing techniques can be achieved.

The proposed guidelines are general since no assumptions about the testing technique that

is being evaluated, about the subjects and a program is made.

1. Studies should be carried on a set of common systems or at least similar systems. It will

make comparisons of techniques much easier. [Weyuker, 1993] states that effectiveness

of a testing technique is only possible to measure if you can compare two techniques

for the same set (i.e. software).

2. The studies should be carried out on a large sample and on real data (most preferably

on industrial data). The number of detected faults will be sufficient enough for quan-

titative, statistical analysis. Carrying out experiments on such data will draw results

that will be near to perfection if not perfect.

3. From an external validity standpoint, experimenting on actual faults is realistic. Car-

rying out experimentation on actual faults is more realistic from an external validity

standpoint. However, extracting proper results from such results often is time consum-

ing as we are unaware about the number of actual faults present in product. In this

method detailed fault information can be expensive to collect. On the other hand fault

seeding allows us to seed as many faults as necessary in order to work with a sample

that is large enough to be amenable to statistical analysis. However seeding does not

always seed realistic faults. However if we still want to go for fault seeding, we need an

unbiased, systematic, and inexpensive way to do so. We need to investigate and define

procedures to seed faults for the purpose of experimentally assessing test techniques.

So it is advisable to use both methods on different systems, this way we can achieve

more concrete and applicable results.

4. We can perform software testing experiments either by using human subjects or by

using simulation. Using first one allows us to access other factors like cost effectiveness

and human applicability, Test suites are perhaps more realistic, as derived by human

subjects performing the actual test tasks; while second one allows us to test software

rigorously (100% coverage) as we can generate large of test sets, accounting for ran-

dom variation but this technique can suffer from biasing problem if not implemented

properly, It is good to use both techniques but role and domain of each should be well

defined.

36

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

5. Criteria for comparing testing techniques should take into consideration many param-

eters. We cannot expect experiments to be perfect with respect to all factors which

need to be taken into consideration while evaluating the effectiveness of software test-

ing techniques. But we should strive towards carrying out experiments which takes

into consideration maximum factors related to testing technique effectiveness. Taking

into account diverse parameters will yield more appropriate results and will make test-

ing techniques selection more valid and unambiguous. Some of factors necessary for

comparison are

(a) Number of faults

(b) Fault rate

(c) Fault type

(d) Size (test case generated)

(e) Coverage

(f) Time (Usually it is execution time)

(g) Software

(h) Experience of subjects

(i) Reliability improvement

6. Experimental details should be shared. Experiment should lead to an experimentation

package that would allow other researchers to easily replicate experiments. Ideally,

it should contain all the necessary material to perform the experiment and should be

publicly available, under certain conditions. This would allow the research community

to converge much faster towards credible results. This would allow other researcher to

analyze the data and possibly draw different conclusions.

7. We should balance all dimensions of validity to achieve trustworthy empirical studies

(i.e. the balance between internal (researcher point of view) and external (Practitioner

point of view) validity). Studies in academia are often strong in terms of internal

validity (i.e. our capability to draw proper conclusions from the data) and weak as far

as external validity is concerned (i.e. it is hard to know the extent to which you can

generalize your results to industrial contexts). Field studies have exactly the opposite

strengths and weaknesses. Both academic and field studies are necessary. Field studies

37

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

are more suited to assess to difficulties to apply techniques in practice and to confirm

the results obtained on real sets of faults.

8. The information available about the techniques is normally distributed across different

sources of information (books, articles and even people) [Vegas, 2004]. We should work

towards building a sharable centralized depository on testing techniques.

9. Removing X% of the faults in a system will not necessarily improve the reliability by

X%. A study at IBM showed that removing 60% of product defects resulted in a 3%

improvement in reliability. So we should not only strive to find out find out techniques

which finds maximum errors, but also those techniques which increase the reliability.

In fact we should execute techniques in such a way so that it not only finds faults but

also increases reliability. Statistical testing can be used to enhance the effectiveness of

the testing effort. Whereas software testing in practice is usually focused on finding

bugs, statistical testing is focused on evaluating reliability.

2.8 Conclusion and Future Work

Despite the general feeling that everything is changing fast, techniques do not usually change

overnight. One sure thing that we came to know is that we have to do testing anyhow. With

so many testing techniques and the very inadequate quantitative and qualitative knowledge

about them, we strongly believe that there is a need to further evaluate software testing

techniques. Presently we are unaware about the relative ordering of software testing tech-

niques and if we are to make software testing more effective by selecting effective testing

techniques then we need to place existing software testing techniques at least on an ordinal

scale. Present situation call for replication and further work on evaluation of software testing

techniques so as to acquire the basic knowledge about the relative effectiveness and efficiency

of software testing techniques for both fault finding and reliability criterion. To do so we need

to carry out experimentation on large scale but that needs to in a way that can be compared

and will have no contradictions. For that we also need to establish common and standard

parameters so that there are little variations in experimentation goals. We also need to find

out dimensions on the basis of which we can all agree that if one testing method A is more

effective than another testing method i.e., what ”effectiveness” is exactly meant for. Possible

interpretations are how many tests are needed to find the first failure, or the percentage of the

faults found by the testing technique to all the faults, or of how much reliability is improved.

38

2. SOFTWARE TESTING TECHNIQUES EVALUATION: ISSUES AND
MITIGATION

End

39

Chapter 3

Evaluating Software Testing

Techniques for Effectiveness &

Efficiency

40

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

3.1 Introduction

Present day systems are becoming more and more software intensive rather than hardware

intensive, as software has moved from a secondary to a primary role in providing critical

services. Testing such systems require us to make a choice among many available testing

techniques. Although the utilization of these techniques is growing, we do have a very in-

adequate knowledge about their relative quantitative and qualitative statistics. All of them

can reveal failures, but we do not know how effectively and efficiently they do that and what

kind of faults they find. The choice of a testing technique in software testing influences both

process and product quality.

The software engineering community generally accepts that defect detection should be

based on both dynamic and static testing techniques, as testing only code by executing it

is not sufficient enough to guarantee that all faults and flaws in the software system are

identified; so using techniques other than dynamic testing techniques becomes essential. In

static testing, the code is examined, the aim being to discover maximum inaccuracies through

observation. Static analysis techniques differ as to the way in which the code is observed. In

dynamic testing, the code is executed, the aim being to discover code defects by observing

system behaviour and trying to deduce whether or not it is satisfactory. Additionally, whereas

static testing detects the faults the software contains (a fault is flaw or deviation from a desired

or intended state in a software product), all dynamic testing can do is detect failures (the

inability of a system to perform its required functions within specified requirements). As the

ultimate aim of software testing is to correct any faults in the software, dynamic testing calls

for a further step to identify faults from the observed failures.

Many static and dynamic techniques for evaluating software system code have been pro-

posed. However, not much work has been put into finding out the strengths and weaknesses

of each technique. For software engineering to move from a craft towards an engineering

discipline, software developers need empirical evidence to help them decide what defect-

detection technique to apply under various conditions [Basili et al., 1985] [Rombach et al.,

1993]. Several experiments have measured effectiveness and efficiency of various defect de-

tection methods. However, existing experimental research on testing techniques does not

provide a basis for making any strong conclusions regarding effectiveness or efficiency of dif-

ferent testing techniques as the results are generally incompatible and do not allow one to

make objective comparison on the effectiveness and efficiency of various testing approaches.

The reason for this incompatibility is that most of the empirical studies to date have been

41

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

conducted under different conditions and examined programs of different size and applica-

tion domains. To avoid bias in the comparison of methods, experiments should be conducted

under a common framework so that they can be compared in a way that can help us to

generalize the results. As mentioned in chapter 2, recent surveys on comparisons of various

software testing techniques also concludes that further empirical research in software testing

is needed, and that much more replication has to be conducted before general results can be

stated. Replication helps validate empirical results published by other software-engineering

researchers [Daly et al., 1994].

To contribute to the knowledge base of testing techniques, we replicated an experiment

that evaluates three defect-detection techniques code reading, functional testing, and struc-

tural testing. The reason to select these testing methods is that they are most widely used

testing methods in the practice. The experiment proposed here aims to contribute to clar-

ifying differences between techniques for practical purposes such as how many defects they

detect, what type of defects they detect and how much time they take to find a defect, etc.

The origins of this experiment go back to the work of [Hetzel, 1976] and [Myers, 1978]. More

precisely, it is the continuation of a line of experiments run by other authors, which have

added to the knowledge provided by previous experiments. However, the most significant

study was conducted by [Basili and Selby, 1987]. This experiment studied the effectiveness

and efficiency of different code evaluation techniques. The work of Basili and Selby was

first replicated by [Kamsties and Lott, 1995]. This replication assumed the same working

hypotheses as in Basili’s experiments, but the experiment differed as to the programming

language used. In addition, the fault isolation phase was added in the experiment. Their

work was replicated again by [Roper et al., 1997]. Their experiment followed exactly the same

guidelines as the experiment run by Kamsties and Lott (who had built a laboratory package

to ease external replication of the experiment), although new analyses were added. Further

the experiment was replicated by [Juristo and Vegas, 2003]. Their experiment stressed on the

fault types and did not considered efficiency of testing techniques. We replicated the experi-

ment which was actually carried out by [Kamsties and Lott, 1995] and further replicated by

[Roper et al., 1997] which includes fault isolation phase in addition to fault detection phase.

Detection refers to the observation that the programs observed behaviour differs from the

expected behaviour. Isolation means to reveal the root cause of the difference in behaviour.

In our case, it is a fault in the code. The experiment package built by Kamsties and Lott was

used, although some experimental conditions like hypothesis are changed which are described

in more in subsequent sections.

42

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

The chapter has the following structure: Section 3.2 presents the schema used for the ex-

periment, Section 3.3 describes goals, hypothesis and theories, Section 3.4 presents the exper-

iment plan which describes experimental design, defect detection techniques used, programs

used in subsections 3.4.1, 3.4.2 and 3.4.3 respectively. Section 3.5 describes the experiment

procedures, Section 3.6 presents and discusses the results, Section 3.7 summarizes the results

of this experiment and finally, Section 3.8 presents conclusion and future work.

3.2 Schema Used

Many researchers in the past highlighted the need to carry out experiment under a common

framework or using common or similar standards and parameters. Framework proposed

in chapter 2, mostly stresses on carrying experimentation and evaluation under a common

benchmark. In effect, we used a characterization scheme proposed by [Lott and Rombach,

1996] to carry out our experiment. Carrying out experiment using this schema will permit the

comparison of results from similar experiments and establishes a context for cross experiment

analysis of those results. The schema is as follows:

1. Goals, Hypotheses, and Theories

(a) Aspects of a goal

i. Object of study (e.g., code reading, functional testing, . . .)

ii. Purpose of study (e.g., compare, analyse, . . .)

iii. Quality focus of study (e.g., effectiveness, efficiency, . . .)

iv. Point of view (e.g., practitioner, experimenter, . . .)

v. Context (e.g., subjects, objects, environment, . . .)

(b) Hypotheses

i. Type (e.g., direct observations, context factors, . . .)

ii. Expected result (i.e., null and alternative hypotheses)

(c) Theories

i. Mechanisms that predict and/or explain results

ii. Derived from beliefs or related work

2. Experiment Plan

(a) Experimental design

43

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

i. Independent variables (e.g., techniques, objects, order, . . .)

ii. Dependent variables (e.g., defects found, time required, . . .)

iii. Randomization (e.g., match of subject, object, and technique)

iv. Repeated measures (e.g., within-subject designs)

v. Manipulation of independent variables (e.g., full-factorial, partial-factorial, .

. .)

vi. Null hypotheses (e.g., technique A has no effect on . . .)

(b) Defect-detection techniques for source code

i. Type (e.g., reading, functional testing, structural testing, . . .)

ii. Other aspects (e.g., test-case development, termination criteria, . . .)

(c) Objects

i. Source-code modules (e.g., length, complexity, . . .)

ii. Faults (e.g., number, types, interactions, . . .)

(d) Subjects

i. Selection criteria (e.g., participants in a course)

ii. Experience, training, and background (e.g., students, professionals, . . .)

iii. Ethical issues (e.g., right to withdraw, anonymity, . . .)

iv. How many are required (assess power of analysis procedure)

(e) Data collection and validation procedures

i. On-line and off-line collection procedures (e.g., forms, videotape, counts of

runs, . . .)

ii. Validation approaches (e.g., independent sources, interviews, . . .)

(f) Data analysis procedures

i. Significance level for inferential statistics (e.g., p < 0 : 05)

ii. Parametric techniques

iii. Non-parametric techniques

3. Experiment Procedures

(a) Training activities (e.g., independent work, controlled setting, . . .)

(b) Conducting the experiment (e.g., time periods, data validity, . . .)

44

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

(c) Giving feedback to subjects (e.g., comparing expectations with results, . . .)

4. Results

(a) Data (i.e., the raw data collected during the study)

(b) Interpretations (i.e., statements about the hypotheses)

3.3 Goals, Hypotheses and Theories

A statement of goals determines what an experiment should accomplish, and thereby assists

in designing and conducting the experiment [Basili et al., 1985]. We used GQM (Goal-

Question-Metrics) approach to state the goals of our experiment. Accordingly we define our

main goal of the experiment as:

Analyse code reading, functional testing and structural testing techniques for de-

tecting software defects for the purpose of comparison with respect to their effective-

ness, efficiency from the point of view of the researcher in the context of a controlled

experiment.

Our main goal is to evaluate the relative effectiveness and efficiency of software testing

techniques. In addition we want to study the effects of other factors also. Accordingly, the

two main hypotheses are:

MH01: Testing techniques of code reading, functional testing and structural testing do not

differ in their effectiveness.

MH11: Testing techniques of code reading, functional testing and structural testing differ in

their effectiveness.

MH02: Testing techniques of code reading, functional testing and structural testing do not

differ in their efficiency.

MH12: Testing techniques of code reading, functional testing and structural testing differ in

their efficiency.

3.3.1 Goals

Goal 1: Effectiveness at revealing failures.

The goal as per GQM is stated as follows: Analyze code reading, functional testing, and

structural testing for the purpose of comparison with respect to their effectiveness at revealing

failures/ inconsistencies from the point of view of the researcher in the context of a controlled

experiment using small C programs.

45

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Goal 2: Efficiency at revealing failures.

The goal as per GQM is stated as follows: Analyze code reading, functional testing, and

structural testing for the purpose of comparison with respect to their efficiency at revealing

failures from the point of view of the researcher in the context of a controlled experiment

using small C programs.

Goal 3: Effectiveness at isolating faults.

The goal as per GQM is stated as follows: Analyze code reading, functional testing, and

structural testing for the purpose of comparison with respect to their effectiveness at isolating

faults from the point of view of the researcher in the context of a controlled experiment using

small C programs.

Goal 4: Efficiency at isolating faults.

The goal as per GQM is stated as follows: Analyze code reading, functional testing, and

structural testing for the purpose of comparison with respect to their efficiency at isolating

faults from the point of view of the researcher in the context of a controlled experiment using

small C programs.

3.3.2 Hypothesis

Statements about the expected results that can be tested using the experiment are called

testable hypotheses. To support testing such statements using inferential statistical methods,

these statements are eventually formulated as null hypotheses, and the original statement is

called the alternative hypothesis [Judd et al., 1991].

Testable hypotheses derived from goal 1 are as follows:

H01: Subjects using defect-detection techniques reveal and record the same percentage of

total possible failures1

H11: Subjects using the three defect-detection techniques reveal and record a different per-

centage of total possible failures.

Testable hypotheses derived from goal 2 are as follows:

H02: Subjects using defect-detection techniques reveal and record a same percentage of total

possible failures per hour.

H12: Subjects using defect-detection techniques reveal and record a different percentage of

total possible failures per hour.

1Only failures that were both revealed by the subject’s detection efforts and were recorded by the subject

are counted to compute this percentage.

46

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Testable hypotheses derived from goal 3 are as follows:

H03: Subjects using defect-detection techniques isolate a same percentage of faults after

failures are observed by applying one of the defect detection techniques1.

H13: Subjects using defect-detection techniques isolate a different percentage of faults after

failures are observed by applying one of the defect detection techniques.

Testable hypotheses derived from goal 4 are as follows:

H04: Subjects isolate a same number of faults per hour by applying one of the defect detection

techniques.

H14: Subjects isolate a different number of faults per hour by applying one of the defect

detection techniques.

These hypotheses can be tested by answering following questions:

Q1. What influence does each independent variable have on effectiveness of failure obser-

vation and fault isolation?

Q2. What influence does each independent variable have on the time to observe failures,

time to isolate faults and the total time?

Q3. What influence does each independent variable have on the efficiency of failure

observation and fault isolation?

In addition to this we will also extend our analysis to failure observation and fault iso-

lation for each type and class of faults which are discussed in Section 3.4.3.1. This can be

investigated by answering following question

Q4. Which technique leads to the observation of largest percentage of failures and isolation

of largest percentage of faults from each type and class?

3.3.3 Theories and Related Work

Evaluation of software testing techniques is a main element of interest in software testing. The

benefits and need of evaluating testing techniques is already explained in detail in previous

chapter. As mentioned in table 2.2, five studies are significant which compares code reading,

functional and structural techniques.

[Hetzel, 1976] compared functional testing, code reading and a technique that was a

combination of functional testing, structural testing and code reading (selective testing).

1An important requirement for counting isolated faults was that a failure corresponding to the isolated

fault had been revealed. Without this requirement, the fault could have been isolated purely by chance, not

based on the use of a defect-detection technique.

47

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

This experiment used 39 subjects (students and inexperienced programmers) and was based

on testing three PL/I programs. His main finding was that functional and selective testing

was equally effective, with code reading appearing inferior.

This work was built upon by [Myers, 1978] who compared team-based, code walkthrough-

s/inspections with individuals using variations of structural and functional testing. Myers

experiment used 59 professional programmers (averaging 11 years experience). The experi-

ment was based on one PL/I program - the renowned Naur text formatter. The main findings

of this work included that the walkthrough/inspection approach was found to be as effective

in terms of fault finding as either of the two approaches to testing, there was tremendous vari-

ability amongst the performance of these experienced programmers and the ability to detect

certain types of errors varied from method to method. An important aspect of this work was

Myers investigation of theoretical combinations of testers. Comparing paired performance

with single technique performance it was found that all pairs performed statistically better,

though there was no statistical difference between any of the pairings. Whilst individuals

were averaging only 33% fault detection, pairs averaged 50%.

In the 1980s this empirical research was refined by [Basili and Selby, 1987]. The three

techniques that were compared were functional testing using equivalence partitioning and

boundary value analysis, structural testing using 100% statement coverage, and code reading

using stepwise abstraction. The 74 subjects were a mixture of experienced professionals

and advanced students. The four programs studied were written in Fortran or a structured

language, Simpl-T. The main findings of this work included that code reading detected more

faults and had a higher detection rate than functional or structural testing, the number of

faults observed, fault detection rate, and total effort in detection depended on the software

type and each technique had some merit.

[Selby, 1986] also investigated all six possible pairwise combinations of the three techniques

into hypothetical teams of two. In comparing the performance of the teams with individuals

Selby found:

1. On average the combinations detected 67.5% of the faults in comparison to an average

of 49.8% for individual techniques;

2. Code reading was found to be the most cost effective technique, both individually and

as part of a combination;

3. The percentage of faults detected and the fault-detection cost-effectiveness depended

on the type of software being tested.

48

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

[Kamsties and Lott, 1995] replicated the experiment of [Basili and Selby, 1987] using the

same basic experimental design with some variations. They changed the programs and the

language (to C) and the associated faults. They also included a fault-finding phase, and used

a variation of branch coverage (which incorporated additional conditional, loop and relational

operator criteria) as the structural testing criteria. The other testing techniques remained

unchanged. They ran two versions of the replication, both with student subjects. The first

replication had 27 subjects complete all three tasks, the second had 15. The main findings

of this work included:

1. There was no statistical difference between the three techniques in either of the repli-

cations.

2. Functional testers observed failures most efficiently and were most efficient at isolating

faults.

The work of [Kamsties and Lott, 1995] was replicated by [Roper et al., 1997]. They found

effectiveness-related differences between functional and structural techniques depending on

the program to which they were applied. The observed differences in effectiveness by fault

class among the techniques suggest that a combination of the techniques might surpass the

performance of any single technique.

Finally, the work of [Roper et al., 1997] was replicated by [Juristo and Vegas, 2003].

Their main purpose was to investigate the impact and relation of fault types on testing

techniques. They concluded that effectiveness depends on the program, technique and fault

type. However, the efficiency of the testing techniques was not considered in the experiment.

They also ran two replications of their experiment.

The complete description of each study is shown in Table 3.1. The results of the [Hetzel,

1976], [Myers, 1978], [Basili and Selby, 1987], [Kamsties and Lott, 1995], [Roper et al., 1997]

and [Juristo and Vegas, 2003] are presented in Table 3.2, Table 3.3, Table 3.4, Table 3.5,

Table 3.6 and Table 3.7 respectively. The results presented in this section are discussed

comprehensively in [Juristo et al., 2004]. The aim of this replication study is to further

investigate these conclusions, and to contribute to the body of empirical evidence that is

evolving in this area.

The effectiveness and efficiency statistics of these experiments is shown in Table 3.8 and

Table 3.9 respectively. The (-) in some blocks denotes that the corresponding information

was not taken into consideration in the experiment.

49

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.1: Description of existing studies on code reading, functional and structural testing

Author

Year

Programs Subject Count Fault Count Techniques

Hetzel

1976

3 Programs

coded in PL/I

with 64,164

and 170 LOC

39 9, 15 and 25 Disciplined

Reading,

Selective Testing,

Specification

Testing

Myers

1978

Single

program coded

in PL/I with

63 LOC

59 15 Walk-through

/inspection

Functional testing

Structural testing

Basili

and

Selby

1987

4 programs

coded in

Simpl-T or

Fortran with

169, 145, 147

and 365 LOC

74 34 Boundary value

analysis,

Statement coverage

and Stepwise

abstraction.

Kamsties

and Lott

1995

3 programs

coded C with

260, 279 and

282 LOC

50(27 in

replication1

and 23 in

replication

2)

35

(11,14,11 in

replication 1

and 6,9,7 in

replication

2)

Boundary value

analysis,

Branch, multiple

condition,loops

and relational

operators coverage

and Stepwise

abstraction.

Roper

et al.

1997

3 programs

coded C with

260, 279 and

282 LOC

47 8,9,8 Boundary value

analysis,

Branch coverage

and Stepwise

abstraction.

Juristo

and

Vegas

2003

4 programs

coded C 400

LOC

196 9*4 Equivalence

partitioning,

Branch coverage

and Stepwise

abstraction

50

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.2: Results of Hetzel Experiment

Aspect Results

Effectiveness

(Detection)

1. Subjects who applied the reading technique performed

less effectively than those who applied the testing

techniques

2. No significant difference in effectiveness was

detected among the two testing techniques.

Table 3.3: Results of Myers Experiment

Aspect Results

Effectiveness

(Detection)

1. No significant differences in effectiveness among

the three techniques.

Efficiency

(Detection)

1. The walkthrough/ inspection method required the most

time, functional testing somewhat less, and structural

testing the least amount of time.

3.4 Experimental Plan

The Experiment plan specifies and describes the experiment design of the experiment. In

addition, it also specifies the treatments and objects used in the experiment. Besides, it

also specifies the data collection and measurement techniques used in the experiment. An

effective experiment plan in very important in order to ensure that the right type of data

and a sufficient sample size are available to meet the specified objectives of the experiment

as clearly and efficiently as possible.

3.4.1 Experimental Design

Subjects applied three defect-detection techniques (first independent variable) to three differ-

ent programs (second independent variable) in different orders (third independent variable).

The experiment requires three days, but all subjects see the same program on the same day

to prevent cheating. Therefore the variable “day” is confounded with “program and is not

considered as a separate independent variable. We would have separated the confounded

factors “program” and “day”; however we were not sure that the subjects will not discuss

the program outside the experiment. Finally the subject is the fourth independent variable,

51

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.4: Results of Basili and Selby Experiment

Aspect Results

Effectiveness

(Detection)

1. Experienced subjects: Code reading better, then

functional, and then structural.

2. Inexperienced subjects: a) In one case, there is no

difference between structural, functional and reading.

b) In the other, functional is equal to reading, and

both better than structural.

3. Depends on software type

4. Intermediate behave like junior and worse than

advanced

5. Self-estimates more accurate for review, then

structural. No relationship for structural.

Effectiveness

(Observable)

1. Functional reveals more observable faults than

structural for inexperienced subjects.

2. Functional technique detects more of these

observable faults for experienced subjects.

Fault

detection

Cost

1. Experienced subjects: Equal time and fault rate.

2. Inexperienced subjects: Structural takes less time

than review, which equals to functional.

3. The fault rate with functional and structural is less

than with reading for inexperienced.

4. The fault rate depends on the program.

5. Functional testing has more computer costs than

structural.

6. Total effort is the same for all techniques.

7. Fault detection rate is related to experience.

Fault type 1. Review is equal to functional and both better than

structural for omission and for initialization faults.

2. Functional is equal to structural and both better

than review for interface faults.

3. Review is equal to structural and worse than

functional for control faults.

4. Structural is equal to functional and both worse

than review for computation faults.

5. For observable faults, functional and structural

behave equal.

52

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.5: Results of Kamsties and Lott Experiment

Aspect Results

Effectiveness

(Detection)

1. Depends on the program, not the technique.

Effectiveness

(Isolation)

1. Depends on the program and subject, not on the

technique.

Efficiency

(detection)

1. Boundary value analysis takes less time than

condition coverage.

2. The time spent on finding faults also depends on the

subject.

3. Boundary value analysis has a higher fault rate than

condition coverage

Efficiency

(isolation)

1. Depends on the program and subject, not on the

technique

2. With inexperienced subjects, boundary value analysis

takes longer than condition coverage

Efficiency

(Total)

1. With inexperienced subjects, boundary value analysis

takes less time than condition coverage

2. Time also depends on the subject.

Fault Type 1. For both detected and isolated: There is no

difference between techniques

Table 3.6: Results of Roper et al Experiment

Aspect Results

Effectiveness

(Detection)

1. Depends on the program/technique combination

2. Depends on nature of faults

Combination

of

techniques

1. Higher number of faults combining techniques

53

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.7: Results of Juristo and Vegas Experiment

Aspect Results

Effectiveness

(detected

and

observable)

1. Depends on program, technique and fault.

2. Code reading always behaves worse than the

functional and structural techniques, indistinctly

for the defect type. With regard to functional and

structural techniques, they both behave identically.

The program version influences on the number of subjects

that detect a defect.

Table 3.8: Average percentage of defects detected in existing experiments

Effectiveness

Code Reading Functional Structural

Hetzel 37.3 47.7 46.7

Myers 38 30 36

Basili and Selby 54 54.6 41.2

Kamsties and Lott Replication 1 43.5 47.5 47.4

Replication 2 52.8 60.7 52.8

Roper et al 32.1 55.2 57.5

Juristo and Vegas Replication 1 19.98 37.7 35.5

Replication 2 - 75.8 71.4

54

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.9: Average defect detection rate in existing experiments

Efficiency

Code

Reading

Functional Structural

Hetzel - - -

Myers 0.8 1.62 2.07

Basili and Selby Depends

on

program

Depends

on

program

Depends

on

program

Kamsties and Lott Replication 1 2.11 4.69 2.92

Replication 2 1.52 3.07 1.92

Roper et al 1.06 2.47 2.20

Juristo and Vegas Replication 1 - - -

Replication 2 - - -

which is however an uncontrolled independent variable.

Our dependent variables focus on failures and faults as well as the time spent to apply

the techniques. They include:

1. Number of failures detected

2. Number of faults isolated

3. Time to detect failures

4. Time to isolate faults

The following metrics were derived from the dependent variables:

1. % faults detected

2. % faults isolated

3. Time to detect faults

4. Time to isolate faults

5. Total time to detect and isolate

55

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

6. No. faults found/ time

7. No. faults isolated/hour

8. % faults detected/type

9. % faults isolated/type

The randomization consists of match of techniques, programs, order of applying the tech-

niques and assigning subjects randomly to one of three groups. Membership in a group

decides the match between technique and program for each subject as well as the order of

applying the techniques.

Repeated measurements were taken as subjects are observed multiple times (within-

subject design) as every subject applies each technique in the experiment.

The Experimental design applied to our study was randomized, fractional factorial design

[Box et al., 2005]. It involves three factors (Testing Technique, Program and the order in

which these techniques are applied). Our experiment like many other previous experiments

measures the performance of every subject on every combination of three programs and three

defect detection techniques. However, once a subject has applied one detection technique to a

program, it will have some learning effects as he will acquire some knowledge of the program

and some of the faults. It is therefore not reasonable to let them apply another detection

technique to the same program. This constrains the experimental design to the combinations

such that each subject may only apply one technique to a program as shown in Table 3.10

Table 3.10: Experimental Design Summary

Program Day Program 1

(Day 1)

Program 2

(Day 2)

Program 3

(Day 3)

Group 1 Code Reading

(CR)

Functional

Testing (FT)

Structural

Testing (ST)

Group 2 Functional

Testing (FT)

Structural

Testing (ST)

Code Reading

(CR)

Group 3 Structural

Testing (ST)

Code Reading

(CR)

Functional

Testing (FT)

The hypotheses concerning external validity correspond directly to the testable hypotheses

derived from the goals; the rest check for threats to internal validity [Lott and Rombach, 1996].

56

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

The experimental design allows us to test four null hypotheses in each case; these hypotheses

will incorporate hypothesis stated in Section 3.3.2

D.1: The technique has no effect on the results (i.e., the techniques do not differ in their

effectiveness and efficiency).

D.2: The program and day have no effect on the results; i.e., no selection effects.

D.3: The order in which subjects apply the techniques has no effect on the results; i.e., no

learning effects.

D.4: The subjects have no effect on the results; i.e., all subjects perform similarly (no

selection effects).

The primary null hypothesis for external validity in our case states that the different

techniques have no effect on the results. Additionally, null hypotheses concerning internal

validity issues help the experimenter quantify threats such as selection or learning effects.

As an example, a null hypothesis may state that the different programs or subjects have no

effect on the results. So depending on the hypothesis and questions stated in Section 3.3.2,

overall we will analyze the results by testing following null hypothesis:

N1.1: None of the independent variables (technique, program, group, or subject) affects the

percentage of total possible failures observed.

N1.2: None of the independent variables (technique, program, group, or subject) affects the

percentage of total faults isolated.

N1.3: None of the independent variables (technique, program, group, or subject) affects time

taken to reveal and observe failures.

N1.4: None of the independent variables (technique, program, group, or subject) affects time

taken to isolate faults.

N1.5: None of the independent variables (technique, program, group, or subject) affects the

total time which includes both failure detection and fault isolation time.

N1.6: None of the independent variables (technique, program, group, or subject) affects the

failure observation rate.

N1.7: None of the independent variables (technique, program, group, or subject) affects the

fault isolation rate.

N1.8: Techniques are equally effective at observing failures caused by the various types and

classes of faults.

N1.9: Techniques are equally effective at isolating faults of the various types and classes of

faults.

57

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

3.4.2 Defect Detection Techniques

Testing techniques cover black and white box tests, structural tests, functional tests, regres-

sion tests. Moreover, there are code reading, walkthroughs and error detection techniques

that belong to this category [Perry, 2006]. We used the same fault detection techniques

as used in the previous experiment: code reading, functional testing and structural testing.

These three testing techniques are mostly used to test software in real world. However differ-

ent experiments in the past have used different criteria for each technique. In our case, code

reading is applied using stepwise abstraction, functional testing using equivalence class par-

titioning and boundary value analysis and structural using 100% branch, multiple-condition,

loop, and relational-operator coverage. For example, 100% coverage of a multiple condition

using a single logical and operator means that all four combinations of true and false must

be tested, and 100% coverage of a loop means that it must be executed zero, one, and many

time(s). For the structural technique, like [Juristo and Vegas, 2003], the subjects have not

used any tool to measure coverage like GCT (generic coverage tool) which was used in [Kam-

sties and Lott, 1995] and [Roper et al., 1997] experiments. This will affect the time it will

take the subjects to generate the test cases (not the quality of the task performance, as the

programs are simple enough for subjects to be able to do without a testing tool) [Juristo

and Vegas, 2003]. All techniques are applied in a two stage process: failure observation

(observable differences between programs and the official specification) and fault isolation

(identifying the exact location of the cause of the failure in program code).

3.4.2.1 Code reading

Code reading is applied using stepwise abstraction in a 3 step process without using any

computer as program is not executed as in case of functional or structural testing. In step

1, subjects were given line numbered printed source code. They read the source code and

write their own specification using stepwise abstraction by identifying prime subroutines

(consecutive lines of code), write a specification for the subroutines, as formally as possible,

group subroutines and their specifications together, and repeat the process until they have

abstracted all of the source code After writing their own specifications, the subjects receive

the official specification. In step 2, subjects compare the official specification with their own

specification to observe inconsistencies (failure observation) between specified and expected

program behavior (analog to failures in the other techniques). In step 3, the subjects begin

58

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

to isolate the faults that led to the inconsistencies which were observed in step 2. No spe-

cial technique is specified for the fault-isolation activity. Finally, subjects hand in a list of

identified inconsistencies and isolated faults.

3.4.2.2 Functional testing

Functional testing is applied using equivalence partitioning and boundary value analysis in

4 step process. In step 1, subjects are provided with the official specification of the program

(no source code). They identify equivalence classes in the input data and construct test cases

using the equivalence class and boundary value analysis. In step 2, the subjects execute

their test cases on the computer by running the executable version of the program. They

are strictly instructed not to generate additional test cases during step 2, but we can neither

prevent nor measure this. After executing all their test cases the subjects print out their

results. In step 3, the subjects use the specification to observe failures that were revealed

in their output; No automatic test oracle was used. After observing and documenting the

failures, subjects receive the printed source code in exchange, and begin step 4. In step 4,

the subjects use the source code to isolate the faults that caused the observed failures. No

special technique is specified for the fault-isolation activity. Finally, subjects hand in a list

of observed failures and isolated faults.

3.4.2.3 Structural testing

Structural testing is applied using 100% branch, multiple-condition, loop, and relational-

operator coverage in 4 step process. In step 1, subjects receive printed source code (no

specification). They are instructed to construct test cases to get as close as possible to 100%

coverage of all branches, multiple conditions, loops, and relational operators (100% coverage

is usually unrealistic). The subjects develop additional test cases until they believe that they

have attained 100% coverage or cannot achieve better coverage. In step 2, the subjects use an

executable version of program to execute their test cases and print the output. Subjects then

receive official specification and begin step 3. In step 3, the subjects use the specification

to observe failures in their output. In step 4, the subjects isolate the faults that caused the

observed failures. No special technique is specified for the fault-isolation activity. Finally,

subjects hand in a list of observed failures and isolated faults. The requirements of testing

techniques for fault detection is shown in Table 3.11.

59

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.11: Requirements for testing techniques

Code

Reading

Functional

Testing

Structural

Testing

View Program Specification Y Y Y

View Source Code Y N Y

Execute Program N Y Y

3.4.3 Programs

No programs from the Kamsties and Lott package were used in the training session. Instead

we used some self-coded trivial programs, as training session was more a learning process

rather than a pilot study. Those programs were simple enough to understand and they were

seeded with almost all types of faults. The three programs we used in the experiment are the

same as used by Kamsties and Lott and Roper et al in their live experiment. The following

programs were used:

1. cmdline: evaluates a number of options that are supplied on the command line. The

functions in that program fill a data structure with the results of the evaluation, which

the driver function prints out upon completion.

2. nametbl: implements another abstract data type, namely a simple symbol table. The

functions support inserting a symbol, setting two types of attributes of a symbol, search-

ing for a symbol by name, and printing out the contents of the table. Again the driver

reads commands from a file to exercise the functions.

3. ntree: implements an abstract data type, namely a tree with unbounded branching.

The functions support creating a tree, inserting a node as a child of a named parent,

searching the tree for a node, querying whether two children are siblings, and printing

out the contents of the tree. The driver function reads commands from a file to exercise

the functions.

All the programs were written in a C language with which the subjects were familiar. Table

3.12 gives size data for the programs. In addition to compare the relative complexities of the

programs, cyclomatic complexity index measures (the number of binary decision points plus

one) is also shown for each program. Looking at the source code for the programs, most of

them contain no comments. This creates a worst-case situation for the code readers.

60

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.12: Size and other relevant information for programs

cmdline.c cmdline.h nametbl.c nametbl.h ntree.c ntree.h

Total Lines 245 34 251 31 235 25

Blank Lines 26 5 40 8 38 7

Lines with

Comments

0 0 4 0 4 0

Non blank

Non com-

ment Lines

219 29 207 23 193 18

Preprocessor

Directives

3 17 6 3 5 4

Cyclomatic complexity index

Minimum 1 1 1

Mean 7 2 3

Maximum 28 8 8

61

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

3.4.3.1 Faults and fault classification

The faults used in our experiment were supplied with Kamsties and Lott package. Most

faults present in the program were seeded, although we cannot guarantee that programs do

not contain any other faults. All faults cause observable failures; no fault conceals another.

The failure might be a total failure (no output at all), a serious problem (incorrect output),

or a minor problem (misspelled word in the output). No faults identified by the compiler are

taken into consideration. Fault classification was needed to classify the faults. Unfortunately,

there are not many classifications in the literature. We also classify the faults using the

two-faceted fault-classification scheme from the [Basili and Selby, 1987] experiment. Facet

one (type) captures the absence of needed code or the presence of incorrect code (omission,

commission). Facet two (class) partitions software faults into the six classes:

1. Initialization

2. Control

3. Computation

4. Interface

5. Data

6. Cosmetic

Thus we can have following combinations of fault type and class:

1. Initialization (omission and commission): An initialization fault is an incorrect ini-

tialization or non-initialization of a data structure. For example, failure to initialize

when necessary would be an error of omission, whereas assigning an incorrect value to

a variable when entering a module would be an error of commission.

2. Control (omission and commission): A control fault means that the program follows

an incorrect control flow path in a given situation. For example, a missing predicate

would be fault of omission, whereas assigning an incorrect value to a variable when

entering a module would be an error of commission.

3. Computation (omission and commission): These are faults that lead to an incorrect

calculation. For example, failure to add two numbers is error of omission whereas

62

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

an incorrect arithmetic operator on the right-hand side of an assignation would be a

computation fault.

4. Interface (omission and commission): Interface faults occur when a module uses entities

that are outside the modules local environment and assumes things that are untrue. For

example, failure to send correct number of arguments to a routine is error of omission,

whereas sending incorrect arguments to routine is an error of commission.

5. Data (omission and commission): Data faults are faults caused by the incorrect use

of a data structure. For example, not terminating a string in C is error of omission

whereas incorrectly determining the index of the last element in an array.

6. Cosmetic (omission and commission): Cosmetic faults of omission are faults where an

error message should appear and does not. Cosmetic faults of commission can result,

for example, in a spelling mistake in an error message.

There were 8 faults in total in the ntree program, 9 in the cmdline program, and 8 in the

nametbl program. Table 3.13 classifies the faults in the programs used in the experiment as

per the above classification. Figure 3.1, Figure 3.2 and Figure 3.3 shows the fault distribution

for program cmdline, nametbl and ntree respectively. Figure 3.4 shows the collective fault

distribution for all the programs.

Table 3.13: Count and classification of faults as per adopted classification

cmdline nametbl ntree Total

Omission 2 5 4 11

Commission 7 3 4 14

Initialization 2 0 0 2

Control 2 3 3 8

Computation 0 1 0 1

Interface 3 1 1 5

Data 1 2 2 5

Cosmetic 1 1 2 4

Total 9 8 8 25

63

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Figure 3.1: Fault distribution percentage for

cmdline program

Figure 3.2: Fault distribution percentage for

nametbl program

Figure 3.3: Fault distribution percentage for

ntree program

Figure 3.4: Fault distribution percentage for

all 3 programs

3.4.3.2 Failure counting scheme

There have been various efforts to determine a precise counting scheme for ”defects” in

software [Basili and Selby, 1987]. A failure is revealed if program output reveals behavior

that deviates from the specification, and observed if the subject records the deviate behavior.

In code reading, an inconsistency (analog to a failure in the other treatments) is revealed if the

subject captures the deviate behavior in his/her own specification, and observed if the subject

records an inconsistency between the specifications. Multiple failures (inconsistencies) caused

by the same fault are only counted once. For all techniques, a fault is isolated if the subject

describes the problem in the source code with sufficient precision. We distinguish between

faults isolated by using the technique (i.e., after a failure was revealed and observed) and

64

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

faults isolated by chance (i.e., no failure was revealed or observed), as summarized in Table

3.14.

Table 3.14: Different defect detection and isolation cases

Failure

revealed?

Failure

observed?

Fault

isolated?

Explanation

N N N Defect-detection technique failed

N N Y Fault was isolated by chance

N Y N Meaningless

N Y Y Code reading: constructed poor

abstractions Functional/structural

test: meaningless

Y N N Poor evaluation of

abstractions/output

Y N Y Fault was isolated by chance

Y Y N Poor fault isolation

Y Y Y Defect-detection technique succeeded

3.4.4 Subjects

Eighteen students participated in the experiment. Subjects joined the experiment for learning

benefits especially for acquiring practical knowledge of testing. The subjects of the experi-

ment were an accidental sample (selected on the basis of participation, not a random one) of

students of P. G. Department of Computer Sciences at the University of Kashmir. Actually,

twenty two students registered themselves for voluntary participation in the experiment how-

ever only twenty one were present for training session and later only eighteen students turned

up for the experiment session. They were not asked to explain why they left the experiment.

The subjects were the sixth semester students pursuing masters in computer applications.

They were already familiar with the basics of software testing, as they took a related subject

(SE) in their fourth semester, although their practical knowledge was quite limited, as no

practical training is given in that subject in their course. The subjects had completed two

years of programming classes (including classes in C programming).Each group represents a

set of people who performed the experiment individually on the same program at the same

time applying the same technique. Selection and motivation were driven by a certificate for

65

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

all participants and surprise prizes for top 3 performers. No subject was forced to join the

experiment. Participation was totally based on the consent of the subjects. They were aware

that this experiment is used for research purposes. Subjects were free to withdraw from

the experiment at any point of time. Subjects were assured that they would not be judged

personally based on their performance.

3.4.5 Data Collection and Validation Procedures

The output data (results in the raw form) was collected via data collection forms which were

used by Kamsties and Lott in their experiment. However they were changed to make them

more suitable for the experiment. After the subjects completed the experiment, we validated

their data by arranging a small interactive session with them. This helped us in investigating

whether the subjects applied the techniques as prescribed (process conformance), determine

whether the subjects understood how to supply the data that were demanded of them (data

validity), and check other issues that might cause misleading results. This also helped us in

compiling raw data into usable form.

3.4.6 Data Analysis Procedures

Parametric techniques for analysis are usually used when randomization has been performed.

Based on the randomized approach for matching techniques, programs and subjects, we used

a parametric statistics method “ANOVA to test the null hypotheses. The ANOVA proce-

dure was chosen because the design included randomization (thus satisfying a fundamental

assumption), and all analyses involved more than two groups of data.

Like [Kamsties and Lott, 1995], we also included intermediate results to make analysis

transparent. In all the tables in the subsection 3.6.2, SS refers to sum of squares and df

refers to degree of freedom. In case of between groups column, SS refers to the treatment

sum of squares and df refers to treatment degrees of freedom; whereas, in case of within

group column, SS refers to the residual sum of squares, and df refers to the residual degrees

of freedom. All these values are used to make a test against the F distribution to check

the variation between the treatments exceeds that of the variation within the treatment; the

significance level is an estimate of whether the difference is due to chance. The F value is

defined as the ratio of the variance between groups to the variance within groups. Each

variance is calculated as the sum of squares divided by its degree of freedom. In short, the

F value is computed as: ((SS/df (between groups)/(SS/df (within groups)). The computed

66

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

value is checked to see the p-value (significance level). An important issue is the choice of

significance level which specifies the probability of the result of being realistic. However, it

does not specify that the results are highly important. Common practice dictates rejecting

the null hypothesis when the significance level is less than or equal to 0.05 [Box et al., 2005].

We also rejected the null hypothesis if we attained a probability value below the generally

accepted cut off of 0.05. This refers to a 5% probability of mistakenly rejecting the null

hypothesis.

3.5 Experiment Procedures

Experiment procedures are actually the implementation of the experiment design. Experi-

mental procedures describe precisely how the experiment will be performed.

3.5.1 Training Activities

Before running the experiment, three training sessions of 2 hours each were carried out with

the subjects to give them an introduction to our experiment. Most of the subjects had some

experience with C programming language. As already mentioned, training session was more

a learning process rather than a pilot study. However, we had a good discussion on various

aspects of the experiment and also on the testing techniques to be used. Although they had

the knowledge of testing techniques; but they had never used them practically. The training

session gave them a good insight into the working and purpose of the experiment.

3.5.2 Conducting the Experiment

The live experiment was run in three parallel sessions on three consecutive days. All subjects

were aware of the 4 hours (240 minutes) time limitation for carrying out the task. The

experiment was conducted at Department of Computer Science, UoK in the year 2011. All

the 18 subjects participated in the experiment till the very end.

3.5.2.1 Threats to validity

We tried our best to eliminate maximum threats to validity. In spite of that, some threats

to validity could not be excluded.

67

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

1. Maturation effects like learning have been eliminated, as each subject applies a different

technique to different program. However, the subjects comprehension of the C language

could improve during the experiment.

2. In addition to that, there can be some fatigue effects causing subjects to lose motivation.

There was no way to measure it; however, we tried to minimize it by using a different

set of technique and program each day and by working for only 4 hours a day.

3. Selection effects are minimized by random match of subject and group and the order

of the applying the testing techniques. In addition to that, all the subjects are equally

experienced and have similar academic background. There are some instrumentation

effects as all programs have different complexities and contain different types of faults;

analysis of variance attempts to measure this effect.

4. External threats to validity are more dominant in our case. Subjects, programs and

faults do not truly represent actual software engineering practice. These threats can be

minimized by replicating the experiment using true representatives of these factors.

3.5.2.2 Giving feedback to subjects

A feedback session was held 2 months after the experiment. The feedback session was held

late because of the unavailability of the subjects. We thanked all the subjects and the results

of the preliminary analyses were presented. The subjects also asked many questions and in

return thanked us for the practical knowledge they gained through this experiment.

3.6 Results

The final outcomes of any experiment are the raw data, results of any inferential statistical

analyses performed on the raw data, and interpretations of the statistical analyses [Lott and

Rombach, 1996].

3.6.1 Raw Data

Raw data is unprocessed data collected from the sources and is not subjected to any processing

or manipulation like mathematical or statistical treatments. It is also known as source data or

atomic data. In our case, the raw data was collected from the experiment on the data forms.

Raw data requires selective extraction, organization, and sometimes analysis and formatting

68

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

for presentation before it can be used. Table 3.151 and Table 3.162 present the raw data of

the experiment. The pair of numbers in each block in Table 3.15 represents the number of

failures observed and the time in minutes that was taken to reveal and observe those failures.

The pair of numbers in Table 3.16 represents the number of faults isolated and the time taken

to isolate those faults.

Table 3.15: Raw data for effectiveness

Day 1: cmdline Day 2: nametbl Day 3: ntree

Subject Group CR FT ST CR FT ST CR FT ST

1 2 5,120 4,105 6,152

2 2 4,94 3,152 4,128

3 3 3,121 3,164 4,160

4 2 3,81 6,164 6,142

5 1 5,126 3,98 5,111

6 3 8,154 4,152 5,148

7 3 5,143 5,149 6,152

8 1 6,143 5,127 4,122

9 1 5,128 3,105 6,109

10 2 6,102 4,94 7,152

11 3 6,72 3,82 5,127

12 2 7,114 5,132 7,160

13 2 5,117 5,142 5,129

14 1 7,132 6,124 7,162

15 3 3,86 5,128 4,81

16 1 2,112 4,97 7,167

17 3 5,92 3,97 5,161

18 1 3,102 5,104 6,164

3.6.2 Interpretation

Researchers should describe their results clearly, and in a way that other researchers can

compare them with their own results. Results need to be interpreted in an objective and

critical way, before assessing their implications and before drawing conclusions.

1CR stands for Code Reading, FT stands for Functional Testing and ST stands for Structural Testing
2CR stands for Code Reading, FT stands for Functional Testing and ST stands for Structural Testing

69

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.16: Raw data for efficiency

Day 1: cmdline Day 2: nametbl Day 3: ntree

Subject Group CR FT ST CR FT ST CR FT ST

1 2 2,62 3,32 5,27

2 2 3,47 3,49 4,18

3 3 1,26 3,28 3,63

4 2 3,38 4,46 5,20

5 1 5,24 3,38 3,32

6 3 5,39 3,35 5,81

7 3 3,41 5,46 5,79

8 1 6,21 4,82 3,45

9 1 5,22 3,78 4,38

10 2 4,56 3,44 6,28

11 3 3,26 3,21 3,82

12 2 6,67 5,65 7,22

13 2 4,54 4,43 5,29

14 1 7,18 5,73 6,47

15 3 3,23 4,34 3,47

16 1 2,27 4,68 4,53

17 3 4,32 3,12 5,79

18 1 3,17 4,76 6,42

70

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

3.6.2.1 Evaluation of failure observation effectiveness

For evaluating the effectiveness of software testing techniques for observing failures, we can

either accept or reject the null hypothesis N1.1: None of the independent variables (technique,

program, group, or subject) affects the percentage of total possible failures observed. As

Table 3.17: Analysis of variance of percentage of failures observed

Indepe-

ndent

Variable

Mean percentage of

total failures observed

Between

Groups

Within

Groups

F Sig.

level

SS df SS df

Technique CR=57.56 FT=56.71 ST=61.57 242.698 2 14392.25 51 0.43001 0.652

Program

(Day)

cm=54.32 na=52.77 nt=68.75 2794.139 2 11840.81 51 6.01736 0.004

Group G1=59.64 G2=61.57 G3=55.16 388.588 2 15564.34 51 0.636648 0.533

Subject 60.18, 43.98, 40.27, 61.11,

51.85, 67.12, 64.35, 59.72,

56.01, 68.05, 47.2, 75.92,

60.18, 80.09, 48.61, 53.24,

51.85, 56.94

5622.607 17 9431.584 36 1.262428 0.270

shown in Table 3.17 we can reject null hypothesis with respect to program only. Effectiveness

on day 1 and day 2 are almost same; however a 30% increase in effectiveness on day 3 for

ntree program certainly indicates some learning effect. Null hypothesis is accepted in case of

technique, group and subject which suggest that the testing techniques were equally effective

in case of failure revelation and observation. The individual statistics for independent variable

program in case of failure observation are shown in Figure 3.5.

3.6.2.2 Evaluation for fault isolation effectiveness

For evaluating the effectiveness of software testing techniques for isolating faults, we can

either accept or reject the null hypothesis N1.2: None of the independent variables (technique,

program, group, or subject) affects the percentage of total faults isolated. We can reject null

hypothesis again with respect to program only. Increase in effectiveness in isolating faults

on each day certainly suggests a learning effect. However, as shown in Table 3.18, the

71

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Figure 3.5: Statistics of program variable for failure observation effectiveness

Table 3.18: Analysis of variance of percentage of faults isolated

Indepe-

ndent

Variable

Mean percentage of

total faults isolated

Between

Groups

Within

Groups

F Sig.

level

SS df SS df

Technique CR=54.08 FT=46.14 ST=44.52 944.0015 2 11340.66 51 2.11263 0.130

Program

(Day)

cm=42.59 na=45.83 nt=56.94 2039.609 2 10941.36 51 4.75352 0.012

Group G1=51.31 G2=51.08 G3=42.97 810.828 2 12170.14 51 1.69892 0.193

Subject 40.74, 40.27, 28.70, 48.61,

43.51 51.85, 52.77, 51.38,

47.68, 52.31 36.11, 72.22,

52.31, 71.75, 40.27 40.74,

48.14, 52.77

6046.811 17 6934.15 36 1.84665 0.601

increase factor is not uniform. The individual statistics for independent variable program for

percentage of faults isolated are shown in Figure 3.6. Null hypothesis is accepted in case of

technique and group which suggest that the testing techniques were equally effective in case

of fault isolation.

72

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Figure 3.6: Statistics of program variable for fault isolation effectiveness

3.6.2.3 Evaluation of time taken to observe failures

For evaluating the software testing techniques for time taken to observe failures we can either

accept or reject the null hypothesis N1.3: None of the independent variables (technique,

program, group, or subject) affects the time taken to observe the failures. We can reject null

Table 3.19: Analysis of variance of failure-observation time

Indepe-

ndent

Variable

Mean failure

observation time

Between

Groups

Within

Groups

F Sig.

level

SS df SS df

Technique CR=132.11 FT=117.33 ST=127.33 2047.25 2 34857.78 51 1.49766 0.233

Program

(Day)

cm=113.27 na=123.11 nt=140.38 6781.37 2 30123.67 51 5.7405 0.005

Group G1=124.05 G2=126.66 G3=126.05 67.1481 2 36837.89 51 0.04648 0.954

Subject 125.66, 124.66, 148.33, 129.00

111.66, 151.33, 148.00, 130.66,

114.00, 116.00, 93.66, 135.33,

129.33, 139.33, 98.333, 125.33,

116.66, 123.33

12855.7 17 24049.33 36 1.132 0.364

73

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

hypothesis with respect to program as shown in Table 3.19 . Increase in the time taken to

reveal and observe the failures suggest the instrumentation effect and indicate the difference

in the complexity of the programs. Figure 3.7 shows individual statistics for independent

variable program (day). Null hypothesis is accepted in case of technique, group and subject

which suggest that the testing techniques does not differ in terms of the time taken to reveal

and observe the failures.

Figure 3.7: Statistics of program variable for failure observation time

3.6.2.4 Evaluation of time taken to isolate faults

For evaluating the software testing techniques for time taken to isolate faults we can either

accept or reject the null hypothesis N1.4: None of the independent variables (technique,

program, group, or subject) affects the time taken to isolate the faults of the observed failures.

We can reject null hypothesis with respect to technique only as shown in Table 3.20 . The

results suggest that code reading took very less time to isolate time followed by structural

testing, functional testing took the longest time (CR < ST < FT) which is obvious because

the code readers take long time to develop their own specifications and identify inconsistencies,

after which they isolated faults rapidly, whereas the functional testers reveal and observe

failures rapidly but then they usually take more time to isolate faults because they had to

comprehend the code for that purpose. The individual statistics for each technique is shown

in Figure 3.8. Null hypothesis is accepted in case of program, group and subject which suggest

that they had no effect on the time taken to isolate the faults.

74

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.20: Analysis of variance of fault-isolation time

Indepe-

ndent

Variable

Mean fault

isolation time

Between

Groups

Within

Groups

F Sig.

level

SS df SS df

Technique CR=24.94 FT=65.00 ST=40.16 14717.15 2 6877.44 51 54.5678 0.000

Program

(Day)

cm=35.55 na=48.33 nt=46.22 1689.03 2 19905.56 51 2.16374 0.125

Group G1=44.50 G2=41.50 G3=44.11 95.814 2 21498.78 51 0.011364 0.892

Subject 40.33, 38.00, 39.00, 34.66,

31.33, 51.66, 55.33, 49.33,

46.00, 42.66, 43.00, 51.33,

42.00, 46.00, 34.66, 49.33,

41.00, 45.00

2173.926 17 19420.67 36 0.23704 0.998

3.6.2.5 Evaluation of total time (detection time + isolation time)

With respect to the total time taken to detect failures and isolate faults, we can either accept

or reject the null hypothesis N1.5: None of the independent variables (technique, program,

group, or subject) affects the total time which includes failure observation time and fault

detection time. We can reject null hypothesis with respect to program only as shown in

Table 3.21 . The total time taken by subjects to detect and isolate faults increased on each

day which clearly suggests the presence of an instrumentation effect. The result supports

the statement of subjects that programs significantly differed in terms of complexity. The

individual statistics for total time with respect to variable program (day) is shown in Figure

3.9. Null hypothesis is accepted in case of technique, group and subject.

3.6.2.6 Evaluation of efficiency in observing failures

For evaluating the efficiency of the testing techniques in case of failure observation, we can

either accept or reject the null hypothesis N1.6: None of the independent variables (technique,

program, group, or subject) affects the rate of failure observation. In this case, we have to

accept null hypothesis for all the factors as shown in Table 3.22. The results, in principle imply

that none of the independent variables affect the mean failure observation rate. However, as

75

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.21: Analysis of variance for total time

Indepe-

ndent

Variable

Mean total time Between

Groups

Within

Groups

F Sig.

level

SS df SS df

Technique CR=157.61 FT=182.33 ST=167.50 5574.037 2 59900.78 51 2.3728 0.103

Program

(Day)

cm=149.38 na=171.44 nt=186.61 12611.81 2 52863 51 6.0836 0.004

Group G1=169.11 G2=168.16 G3=170.16 36.03704 2 65438.78 51 0.014043 0.986

Subject 166.00, 162.66, 187.33, 163.66,

143.00, 203.00, 203.33, 180.00,

160.00, 158.66, 136.66, 186.66,

171.33, 188.66, 133.00, 174.66,

157.66, 168.33

20818.81 17 44656 36 0.998725 0.492

Table 3.22: Analysis of variance of Mean failure observation rate

Indepe-

ndent

Variable

Mean failure

observation rate

Between

Groups

Within

Groups

F Sig.

level

SS df SS df

Technique CR=2.157 FT=2.461 ST=2.496 1.25106 2 22.5782 51 1.41295 0.252

Program

(Day)

cm=2.631 na=2.103 nt=2.380 2.5122 2 21.3170 51 3.005 0.058

Group G1=2.372 G2=2.452 G3=2.290 0.23578 2 23.59175 51 0.25680 0.774

Subject 2.38, 1.87, 1.36, 2.31, 2.30,

2.24, 2.15,2.28, 2.45, 2.94,

3.18, 2.86, 2.33, 2.89, 2.46,

2.02, 2.32, 2.28

9.01475 17 14.81458 36 1.2886 0.254

76

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Figure 3.8: Statistics of technique variable for failure isolation time

the significance value for program is just above 0.05 level, we will consider it as significant.

The results therefore, suggest that the program affect the rate of failure observation. The

individual statistics for program (day) variable are shown in Figure 3.10. Null hypothesis is

accepted in case of technique, group and subject

3.6.2.7 Evaluation of efficiency in isolating faults

For evaluating the efficiency of the testing techniques in case of fault isolation, we can either

accept or reject the null hypothesis N1.7: None of the independent variables (technique, pro-

gram, group, or subject) affects the rate of fault isolation. We can reject the null hypothesis

with respect to the technique. Code reading was the most efficient followed by structural

testing technique. Functional testing was the least efficient. However we accept null hypoth-

esis with respect to program, group and subject as shown in Table 3.23 . The individual

statistics for variable technique are shown in Figure 3.11.

3.6.2.8 Evaluation of effectiveness of failures observed for each fault class

For evaluating the effectiveness of testing techniques in terms of failure observation for each

fault class and type, we can either accept or reject the null hypothesis N1.8: Techniques

are equally effective at observing failures caused by the various types and classes of faults.

We can reject the null hypothesis with respect to cosmetic faults as shown in Table 3.24

where code reading was out performed by structural testing. Functional testing was the most

effective in terms of observing cosmetic faults.

77

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Table 3.23: Analysis of variance of Mean fault isolation rate

Indepe-

ndent

Variable

Mean fault

isolation rate

Between

Groups

Within

Groups

F Sig.

level

SS df SS df

Technique CR=11.783 FT=3.641 ST=5.674 646.443 2 323.2218 51 32.91114 0.000

Program

(Day)

cm=7.930 na=5.460 nt=7.701 67.2756 2 1080.041 51 1.58839 0.214

Group G1=7.728 G2=7.508 G3=5.863 37.3891 2 1109.92 51 0.8589 0.429

Subject 6.22, 6.94, 3.86, 8.31, 7.62,

5.51, 4.90, 8.02, 7.41, 7.07,

5.89, 9.69, 6.79, 11.70, 6.23,

4.16, 8.76, 7.43

188.71 17 958.6041 36 0.41688 0.971

Table 3.24: Analysis of variance of percentage of observed failures caused by faults from each

fault class and type

Fault Class Mean percentage of

failures observed

Between

Groups

Within

Groups

F Sig.

level

CR FT ST SS df SS df

Omission 63.05 61.94 73.61 1492.593 2 35754.17 51 1.0645 0.35

Commission 58.59 61.24 61.50 93.2224 2 34358.78 51 0.0691 0.933

Initialization 22.22 16.66 25 648.148 2 67361.11 51 0.24536 0.783

Control 58.33 60.18 67.59 864.197 2 34922.84 51 0.63102 0.5361

Computation 27.77 33.33 33.33 370.37 2 116111.1 51 0.08134 0.922

Interface 68.51 61.11 61.11 658.43 2 10482 51 0.160852 0.851849

Data 69.44 50 52.77 3981.481 2 93055.56 51 1.0910 0.3435

Cosmetic 41.66 88.88 77.77 21944.44 2 70138.89 51 7.97821 0.000

78

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Figure 3.9: Statistics of program variable for total time

3.6.2.9 Evaluation of effectiveness of faults isolated for each fault class

For evaluating the effectiveness of testing techniques in terms of fault isolation for each fault

class and type, we can either accept or reject the null hypothesis N1.9: Techniques are equally

effective at isolating faults of the various types and classes of faults. We can reject the null

hypothesis with respect to cosmetic faults as shown in Table 3.25. In this case, functional

testing isolated maximum number of faults followed by structural testing which was followed

by code reading.

3.7 Summary

With respect to effectiveness of failure detection, our results suggest it depends on the pro-

gram not on the technique. The effectiveness of fault isolation also depends on the program

only. The time taken to observe the failures depends on the program only. However, the

time taken to isolate faults depends on the technique; the results suggest that functional

testing using boundary value analysis took the longest time while the code reading took very

less time to isolate the faults from observed failures (CR < ST < FT). The total time

depends only on the program. The efficiency of failure observation (mean failure observation

rate) depends on the program only. However, the efficiency of failure isolation (mean failure

isolation rate) depends on the technique only; code reading performs better than functional

and structural testing (CR > ST > FT). With respect to fault type and class detected and

79

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Figure 3.10: Statistics of program variable for failure observation efficiency

Table 3.25: Analysis of variance of percentage of isolated faults from each fault class and type

Fault Class Mean percentage of

faults isolated

Between

Groups

Within

Groups

F Sig.

level

CR FT ST SS df SS df

Omission 59.16 56.38 56.38 92.59 2 33093 51 0.071348 0.931

Commission 55.35 45.96 44.51 1247.79 2 27748.09 51 1.14670 0.325

Initialization 22.22 5.55 11.11 2592.59 2 33333.33 51 1.98333 0.148

Control 54.62 48.14 52.77 401.234 2 26635.8 51 0.38412 0.683

Computation 22.22 33.33 33.33 1481.481 2 111111.1 51 0.34 0.713

Interface 68.51 51.85 33.33 11152.26 2 112654.3 51 2.5243 0.090

Data 63.88 38.88 36.11 8425.92 2 95833.33 51 2.2420 0.116

Cosmetic 41.66 88.88 75 21203.7 2 70277.78 51 7.6936 0.001

isolated, all testing techniques were equally effective except in case of cosmetic faults where

functional testing was most effective and code reading was least effective (FT > ST > CR).

80

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

Figure 3.11: Statistics of technique variable for fault isolation efficiency

3.8 Conclusion and Future Work

The experiment was carried to evaluate the effectiveness and efficiency of the software testing

techniques. We conclude that static testing technique (code reading) and dynamic testing

technique (functional and structural testing) are all equivalent in terms of effectiveness. We

failed to observe a significant difference between testing techniques which is very much in line

with the results of the related work discussed in Section 3.3.3 with an exception of [Basili and

Selby, 1987]. However, code reading performed well in fault isolation time and fault isolation

rate as compared to dynamic testing techniques. Therefore we can conclude that techniques

differ partially in terms of efficiency. The effect of the technique was verified only for the

fault isolation time and fault isolation rate. The effect of the program was very significant

in all cases, except in case of fault isolation time and fault isolation efficiency. The group

(order) and subjects had no significant effect on the effectiveness or efficiency. In case of fault

types, all testing techniques were equally effective in terms of detection and isolation for all

types of fault classes and types except for cosmetic faults. We agree with the results of the

previous experiments that the effectiveness and efficiency depends on the program and the

faults. Rightly said by Roper et al, as the programs and faults vary, so do the results [Roper

et al., 1997].

Our effort was to provide empirical evidence that will help testing community to under-

stand the techniques effectiveness and efficiency and its dependence on various factors. We

believe that few experiments are not sufficient to understand this phenomenon. Further repli-

81

3. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
EFFECTIVENESS & EFFICIENCY

cations of this work will help in making some strong conclusion regarding the effectiveness

and efficiency of software testing techniques and other allied factors. However, carrying out

experiment in accordance with the given schema is necessary for the reasons mentioned in

chapter 2 of this thesis. The ultimate goal of our work is to move software engineering from

a craft towards an engineering discipline.

End

82

Chapter 4

Evaluating Software Testing

Techniques for Reliability

83

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

4.1 Introduction

Software reliability is a quantitative measure used in accessing the quality of software and is

significantly considered in software development. Software reliability is a key quality attribute

as identified by quality models like ISO, McCall, and FURPS etc. It is a user-oriented view

of software quality and is also most readily quantified and measured. Software reliability is

defined as the probability of software to perform its required functions (output that agrees

with specifications) without failure under stated conditions (specified environment) for a

specified period of time. Mathematically, reliability R(t) is the probability that a system will

be successful in the interval from time 0 to time t:

R(t) = P (T > t), t ≥ 0

Where T is a random variable denoting the time to failure or failure time.

Unreliability F(t), a measure of failure, is defined as the probability that the system will fail

by time t:

F (t) = P (T ≤ t), t ≥ 0.

The Reliability R (t) is related to failure probability F (t) by:

R(t) = 1 - F(t).

Developing reliable software is one of the most difficult problems facing the software industry.

Schedule pressure, resource limitations, unrealistic requirements and many other factors can

all negatively impact software reliability [Wood, 1997]. To achieve reliability we should

use software reliability engineering techniques. Having attracted major attentions in past

years from academic circles as well as industry, software reliability engineering techniques

are classified into following areas: fault avoidance, fault removal, fault tolerance, and fault

prediction [Lyu et al., 1996].

Traditionally, software reliability is achieved by fault removal techniques (verification and

validation techniques) which include software testing, to detect and eliminate software faults.

As the main fault removal technique, software testing is one of the most effort intensive and

time consuming activity during software development [Beizer, 1990]. One way to achieve

100% reliability in software is to go for exhaustive testing. Exhaustive testing which tests a

system with all possible inputs (valid as well as invalid), is generally not applicable, as the

input domain is usually very large, even infinite. So we have to use other testing methods

84

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

in order to bring the software to an acceptable level of quality. We would like to select a

testing technique that will detect maximum possible detects in an efficient manner. However,

fault finding ability measure is only useful for evaluating testing techniques when the goal of

testing is to gain confidence that the program is free from faults. Fault detection does not

necessarily inspire confidence. It is not necessary that a software testing method which will

find most faults in the software will also increase the reliability more than other methods.

The impact of the failure should be taken into account. Most previous evaluations of the

effectiveness of software testing techniques have considered all failures to be equivalent to

one another, regardless of their severity. We all know that one important goal of software

testing should be to measure the dependability of tested software and also to increase it.

Alternatively, another main objective of testing is to increase our confidence in the software.

So, there are two main goals in testing software: To achieve adequate quality (systematic

testing/debug testing); the objective is to probe the software for defects so that these can be

removed and to assess existing quality (statistical testing); the objective is to gain confidence

that the software is reliable. The names are arbitrary, and most testing techniques address

both goals to some degree [Frankl et al., 1998]. So it is evident that debug testing also has the

ability to reduce the risk in software by increasing the reliability of the software under test. In

order to increase reliability, we should not only strive to discover maximum defects possible,

we should also strive to expose those faults which affect reliability most. One sure thing is

that we have to do systematic testing for testing a software as it is necessary for things like

functionality, correctness etc. There is multitude of software testing techniques which can

be used in systematic testing. Our approach should be to select a technique which has the

maximum potential to increase the confidence in the software. But as mentioned in chapter 2

we do not have adequate knowledge about their relative quantitative and qualitative statistics.

Therefore, it will be interesting to evaluate effectiveness of different testing techniques for

reliability. In other words, testing techniques should be evaluated and compared in terms of

effectiveness in detecting different failures types, and then checking the reliability increase. In

chapter 3, we concluded that techniques are equally effective at observing faults and isolating

failures. But that does not mean that they find same types of failures. We are unaware of

their capability of increasing the confidence in the software. We would like to be able to

compare testing strategies in a way that allows us to say that if a system has been tested

using technique T1, it is likely to have less risk (more reliable) associated with its use than

if it has been tested using technique T2. This will also help us to understand what types of

85

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

faults are mostly targeted by a particular testing technique. So basically we will try to find

answers to following research questions:

1. Q1. Does testing methods differ from each other in terms of reliability improvement?

2. Q2. If yes, which among them enhances reliability most?

This chapter is organized as follows: Section 4.2 presents the background of this study, Section

4.3 presents the related work, Section 4.4 discusses statistical and systematic testing, Section

4.5 gives the description of the experiment which includes testing techniques, programs and

faults and methodology used in the experiment which are presented in subsections 4.5.1,

4.5.2 and 4.5.3 respectively. Section 4.6 presents the experiment procedure and the results.

Threats to validity are discussed in section 4.7. Section 4.8 discusses the experiment and

results and Section 4.9 presents conclusion and future work of the experiment.

4.2 Background

An important aspect of testing is to make software quality and its characteristics visible

which include the reliability of the software. Software testing has been widely used to im-

prove software reliability, not only because verification is not practical yet at this stage, but

also because sophisticated testing techniques have been developed to meet different levels of

reliability requirements. As we already know software testing has many goals which include

the goal of increasing confidence (reducing risk) in the software. Different goals of testing to

assess risk can be distinguished as [Frankl and Weyuker, 2000]:

1. Testing to detect risk: In addition to counting the number of failures that occur

during testing, one keeps track of the cost of those failures. Testing technique A will

be considered more effective than testing technique B if the (expected) total cost of

failures detected during test is higher for A than for B.

2. Testing and debugging to reduce risk: It is further assumed that each failure that

occurs leads to the correction of the fault that caused that failure, thereby reducing

the risk associated with the corrected software and results in the increase of software

reliability. Testing technique A will be considered more effective than testing technique

B if A reduces the risk more than B does, thus resulting in less risky software.

86

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

3. Testing to estimate risk: In estimating software reliability, it is assumed that some

faults will remain in the software. The goal is to estimate the probability that the

software will fail after deployment (during some specified time). Here, we will say

that testing technique A is better than testing technique B (for a given technique of

estimating risk) if A provides more accurate estimates of risk than B.

We are interested in evaluating software testing techniques for their ability to detect and

reduce the risk. It is not sufficient to detect the failures to reduce risk, as only by removing

root cause of the failures (faults) we can reduce the risk in the program.

4.3 Related Work

Most previous studies of the effectiveness of testing methods used the probability of causing

a failure, and thus finding a defect, as a measure of the effectiveness of a test series [Pizza and

Strigini, 1998]. They have employed such measures of test effectiveness as the likelihood of

discovering at least one fault (i.e., the likelihood of at least one failure occurring), the expected

number of failures that occur during test, the number of seeded faults discovered during test,

and the mean time until the first failure, or between failures. This seems inappropriate

when considering testing as a means for improving confidence in the software: what really

matters is the reliability of the delivered software, hence the improvement that is obtained

by applying the given testing method. [Li and Malaiya, 1994] [Frankl et al., 1997] and

[Frankl et al., 1998] instead adopted a different measure of test effectiveness; the increment

in reliability that would be obtained. Many studies in the past have incorporated the concept

of weightage/cost into the evaluation of testing techniques. In the work of [Tsoukalas et al.,

1993], [Gutjahr, 1995] and [Ntafos, 1997] the input domain is divided, using some partition

testing strategy, and a cost ci is associated a priori with each sub domain. A failure of

any element of the ith sub domain is assumed to cost ci. However, this is not a realistic

approximation of reality. In general, for the sub domains induced by the testing strategies

commonly studied and in use, the consequences of failure for two different elements of the

same sub domain may be very different. Furthermore, most sub domain testing strategies

involve sub domains that intersect. [Weyuker, 1996] used cost/consequence of failure as the

basis for an automatic test case generation algorithm, and to assess the reliability of the

software that had been tested using this algorithm. In practice, some failures may represent

inconsequential deviations from the specification, while others are more severe, and some

87

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

may even be catastrophic. Therefore, in evaluating the risk associated with a program, one

must distinguish between different failures in accordance with their importance. To do so,

we associate a cost with each failure. Our work employs both concepts i.e. we also assign a

cost to a failure and then evaluate testing techniques based on the increase in confidence in

the program.

4.4 Statistical Testing vs Systematic Testing

Testing is an essential activity for achieving adequate reliability. It aims to remove maximum

defects before delivering a product, but it is an expensive activity. A well-known testing

approach for reliability improvement is known as statistical testing/operational testing, where

the software is subjected to the same statistical distribution of inputs that is expected in

operation. Statistical testing is appealing as it offers a basis for assessing reliability; so we

not only have the assurance of having tried to improve the software, but also an estimate of the

reliability actually achieved. Statistical methods provide accurate assessment, but may not

necessarily be as useful for achieving reliability. On the other hand, there is a great demand

for systematic testing methods (i.e., criteria for choosing test cases and possibly stopping

rules), giving some guarantee of thoroughness and cost-effectiveness. Systematic testing

mostly employs techniques like boundary value analysis or any coverage testing technique.

[Frankl et al., 1997] [Pizza and Strigini, 1998] calls these methods, collectively, “debug” testing

methods. So we will use both terms interchangeably.

As far as the reliability is concerned, removal of faults discovered in statistical testing will

have a greater impact than removal of the faults discovered in systematic testing because it

focuses on those failures which have more probability of appearing more frequently in actual

operation. Statistical testing is easy to understand and easy to perform. If a test is successful,

we will be able to assess the reliability achieved. On the other hand, if a test fails, we will be

able to improve the reliability significantly by removing the fault revealed. Furthermore, it

is applicable to any software system, large or small, regardless of the language and paradigm

used in building the system. However, statistical testing is not always helpful in practice,

because in reality the whereabouts of failure points are unknown. For statistical testing to

deliver on its promise, it is necessary for the testing profile to be truly representative of

operational use. Otherwise, an operational test will become a debug test of arbitrary design.

We should also be aware of the fact that operational profile of a software system often changes

with time, which can create more problems for statistical testing.

88

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Although statistical testing is a surprisingly good competitor for systematic testing, it

is seldom better, and scenarios can be constructed (although their frequency of occurrence

in practice is unknown) in which systematic testing is much better at failure exposure. De-

bug testers always have the potential advantage that by adjusting the test profile and sub

domain definitions they might improve the behavior of debug methods. That is definitely

problematic for statistical testing. Systematic testing is clearly better if the probability of

selecting a failure point (i.e., an element of input domain that will cause the program to fail)

in systematic testing is greater than the probability that the point will be used in actual

operation. Moreover, a failure point in a safety-critical program may have an extremely low

probability of being used in actual operation of the system but may produce catastrophic

results. Such a failure point will never be selected as a test case in statistical testing. In

that case, debug testing is clearly better. It should be remembered, however, that there is

no guarantee that the fault will be discovered through debug testing, nor can we use debug

testing to assert the absence of such a failure point in the input domain or to assess the level

of reliability achieved.

A number of studies have compared statistical testing with systematic testing which

include [Frankl and Weyuker, 1993], [Chen and Yu, 1996], [Frankl et al., 1997], [Frankl et al.,

1998], [Frankl and Iakounenko, 1998], [Ntafos, 1998] and [Pizza and Strigini, 1998]. The

original motivation for these studies was a belief that statistical testing might be a real

alternative to debug testing for finding failures. However, no such conclusive result was

obtained. Is it better to test by probing for defects as in “debug” testing, or to assess

reliability directly as in statistical testing, uncovering defects by accident, so to speak? There

is no simple answer, as we do not have concrete evidence.

Using systematic testing techniques is necessary, as testing has many goals other than

increasing software reliability. Besides being used for other purposes, systematic testing

techniques undoubtedly contribute to the improvement of the reliability of the software under

test. Software whose reliability must be high could be tested in a number of different ways, and

because testing is an expensive and time-consuming activity, we would like to choose among

alternatives, not use them all. We will prefer to select a technique that will achieve the goal in

an effective and efficient manner. As we have already mentioned in previous chapters that we

have very limited knowledge of testing techniques in terms of their effectiveness and efficiency,

we need to evaluate different systematic testing techniques for reliability. However, we should

be aware of the potential confusion between detecting failures and achieving reliability, a

confusion that occurs when testing finds only unimportant failures. Different failures may

89

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

make vastly different contributions to the (un)reliability of the program. Thus, testing with a

technique that readily detects small faults may result in a less reliable program than would the

testing with a technique that less readily detects some large faults. If a systematic technique

consistently turns up low-frequency problems, it may be counterproductive to use it. [Frankl

et al., 1997], [Frankl et al., 1998] and [Frankl and Iakounenko, 1998] show that the choice

between testing methods depends on rather subtle details of the assumed scenarios; and that

debug testing methods that appear promising because of their ability to detect many faults

may well be vastly inferior to statistical testing, unless they preferentially discover the more

important faults.

We are interested in evaluating systematic testing methods for reliability of delivered

software. Studies like this one can thus be viewed as a first step towards examining which

testing technique to choose in systematic testing that will reduce more risk relative to other

techniques in the software.

4.5 Description of the Experiment

We used GQM (Goal-Question-Metrics) approach to state the goals of our experiment. The

GQM goal for our experiment is:

Analyze three defect detection techniques (systematic techniques) for the pur-

pose of comparison with respect to their capability of increasing confidence (reli-

ability) from the point of view of the (researcher) in the context of experiment using

small C program.

The goal is to compare code reading, functional testing and structural testing techniques.

The comparison has its focus on the improvement of reliability that is measured by number

of defects detected and individual weights associated with each failure which is discussed

in more detail in section 4.5.3. The main question this chapter tries to answer is: Which

technique is more suitable and effective in terms of increasing confidence by reducing risk in

the software under test? In other words we can state that which testing technique improves

the reliability of the software by a greatest factor.

4.5.1 Overview of Testing Methods Used

Software testing techniques cover both static and dynamic testing techniques. We selected

three software testing methods for this experiment: code reading, functional testing and

structural testing. Code reading belongs to the static testing category and come under manual

90

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

static testing approach whereas other two belong to dynamic testing and come under black

box and white box testing approach respectively, as described in chapter 2. In this study,

we applied code reading using stepwise abstraction, functional testing using equivalence class

partitioning and boundary value analysis and structural using 100% branch coverage. The

reason to select these testing methods is that they are most widely used testing methods in

the practice.

Code reading applied using stepwise abstraction requires the source code to be read.

Then we write our own specification by identifying prime subroutines (consecutive lines of

code), write a specification for the subroutines, as formally as possible, group subroutines and

their specifications together, and repeat the process until all source code will be abstracted.

After writing specifications we compare the official specification with our own specification to

observe inconsistencies (failure observation) between specified and expected program behavior

(analog to failures in the other techniques).

Functional testing techniques are used to design test cases based on the functional require-

ments of the product. The goal of functional testing is to choose a set of inputs according

to the specified functions of the program to test the program so that all functions and sub

functions are tested at least once. Functional testing using boundary value analysis analyzes

the specification to identify equivalence classes in the input data. Then we choose test cases

based on that analysis by focusing on equivalence-class boundaries, run the test cases, and

compare the actual output with the expected output to detect failures.

Structural testing techniques are used to design test cases based on the internal structure

of the component or system; most commonly internal structure is referred to as the structure

of the code. Test cases are designed to get the required coverage for the specified coverage

item. The goal of structural testing is to choose a set of inputs according to the structure

of the program and aim that all parts (statements, branches or paths) are tested at least

once. Structural testing using branch coverage analyzes a source-code listing to construct

test cases that will lead to 100% branch coverage. After running the tests, we compare the

actual output with the expected output to detect failures.

All techniques are applied in a two stage process: failure observation (observable dif-

ferences between programs and the official specification) and fault isolation (identifying the

exact location of the cause of the failure in program code).

91

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

4.5.2 Programs and Faults

The program used in this experiment is written in C language. The program (student.c)

is used store data about students. The program contains approximately 100 lines of code.

Choosing a program of this size was an obligation, as industrial or real programs were not

readily available. To seed faults in the program, we firstly need a fault classification to decide

which type of faults can be seeded in the program. Presently, there is no universal fault

classification. We will use two-faceted fault-classification scheme from the [Basili and Selby,

1987]. Facet one (type) captures the absence of needed code or the presence of incorrect code

(omission, commission). Facet two (class) partitions software faults into the six classes:

1. Initialization

2. Control.

3. Computation.

4. Interface.

5. Data.

6. Cosmetic.

Thus we can have following combinations of fault type and class.

1. Omission, Initialization

2. Commission, Initialization

3. Omission, Control

4. Commission, Control

5. Omission, Computation

6. Commission, Computation

7. Omission, Interface

8. Commission, Interface

9. Omission, Data

92

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

10. Commission, Data

11. Omission, Cosmetic

12. Commission, Cosmetic

On the basis of this classification, we manually seeded a total of 11 faults in the student

program. Still, we cannot guarantee that program do not contain any other faults. All faults

cause observable failures; no fault covers another. The failure might be a total failure (no

output at all), a serious problem (incorrect output), or a minor problem (misspelled word

in the output). No faults detected by the compiler are taken into consideration. Table 4.1

classifies the faults in the programs used in experiment as per the above classification. The

description of each fault along with fault type and failure description is given in Table 4.2.

Table 4.1: Count and percentage of faults as per the adopted classification

Student.c Percentage of total faults

Omission 3 27.27272727

Commission 8 72.72727273

Initialization 2 18.18181818

Control 3 27.27272727

Computation 2 18.18181818

Interface 0 0

Data 2 18.18181818

Cosmetic 2 18.18181818

Total 11 100

4.5.3 Methodology

We are interested in comparing testing criteria according to their ability to detect and reduce

the risk. We cannot compare the techniques for reliability based on the number of failures

detected alone. Some program failures may be more important than the others, depending on

the cost incurred by, or damages inflicted on, the user. For example, any failure that results

from misspelling a word in the output might be considered minor, while a failure that results

in the outputting of the wrong numerical value could be considered to have considerably more

severe consequences. Even here, differences in the magnitude of the numerical discrepancy

93

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

might lead to different failure modes. For example, the cost of outputting the wrong numerical

value might be fixed or might depend on how far the incorrect value is from the correct

one. We aim to evaluate the effectiveness of systematic software testing techniques in terms

of increase in reliability. To do so, we assign a weight to each defect. This weight will

approximately define the relative consequence or damage that will be caused if that failure

will surface during execution of the system (the severity of the failure). Following categories

of defect severity were taken into consideration:

1. Severity 1: Defects of this severity cause catastrophic consequences for the system. A

defect of this level can cause program execution to abort and can result in critical loss

of data, critical loss of system availability, critical loss of security, critical loss of safety,

etc.

2. Severity 2: Defects of this level cause serious consequences for the system. Such types

of defects usually cause a program not to perform properly or to produce unreliable

results. We also do not find a workaround for this type of defects For example, a

function is severely broken and cannot be used.

3. Severity 3: Defects of this level cause significant consequences for the system. There

is usually a work around for such type of defects till they are fixed. For example, losing

data from a serial device during heavy loads.

4. Severity 4: Defects of this level cause small or insignificant consequences for the

system. Such defects are easily fixed and a workaround is available for them. For

example, misleading error messages.

5. Severity 5: Defects of this level cause no negative consequences for the system. Such

defects normally produce no erroneous outputs. For example, displaying output in a

font other than what the customer desired.

Each defect was assigned a weight/cost of 1 to 5. A failure with a weight/cost of 5 will

be a catastrophic one (severity one), while a failure with weight/cost of 1 will have no seri-

ous consequence (severity five). Based on the severity of the defects and the corresponding

weight/cost assigned to them, we assigned following weights to the defects in student program

as shown in Table 4.31. As can be observed from the weights assigned, it is not necessary

that a fault of same type will have the same weight i.e. the same defect severity. E.g. in

1The weights are only an approximation as they depend on our perspective of failure consequence.

94

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Table 4.2: List and description of faults and failures

Fault

No.

Line

No.

Fault class Fault Description Causes Failure

F1 29 Omission,

Initialization

Variable count is

not initialized

with 0.

The student array is

not accessible.

F2 32 Omission,

Cosmetic

Printf function

missing

Starting message not

displayed

F3 37 Commission,

Cosmetic

The exit is

having wrong

option i.e.4, it

should be 3.

The program cannot be

terminated normally.

F4 44 Commission,

Computation

The variables

count is

pre-incremented,

it should be

post-incremented.

The students are not

indexed properly

F5 49 Commission,

Initialization

Variable i should

be initialized

with 0.

First entry and

subject will not

be displayed.

F6 49 Commission,

Control

The symbol >

should be <

The loop will not

execute.

F7 57 Omission,

Control

Break statement

missing.

Erratic behavior of

Switch Case.

F8 75 Commission,

Control

Symbol <= should

be <.

Loop will execute

count times instead

of count-1 times

F9 76 Commission,

Data

‘‘Data" is

used instead of

‘‘data[i]".

Only first element

of array will be

de-allocated

F10 97 Commission,

Data

Variable i used

instead of i + 1.

Wrong Subject ID

displayed.

F11 98 Commission,

Computation

Variable i

should not be

incremented, as

it is already

incremented in

the loop.

Improper indexing.

95

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

table 4.2 fault number F6 and F8 are of same type i.e. commission, control, still they have

the different weights assigned i.e. 4 and 1 respectively as shown in table 4.3. Figure 4.1

shows the percentage of faults of each severity in the student program, the number in the

bold in the parenthesis represents the actual number of faults of that severity in the program.

We seeded faults in such a way so that they will not be biased towards the defects of the

particular weights. After assigning the weights to the failures, we applied three systematic

defect detection techniques to the program separately. After that we analyzed which faults

are detected and isolated by each technique. Isolation of the fault is necessary because risk

is reduced only when the root cause of the failure is eradicated. We will then calculate

the sum of weights of all failures detected and isolated for each technique. A technique

with the highest weighted sum will be the one which have increased more confidence in the

program as compared to the others. The total weight for each technique will be calculated as:

Weighted Sum for technique X = 5*(Number of Severity 1 defects) + 4*(Number of

Severity 2 defects) + 3*(Number of Severity 3 defects) + 2*(Number of Severity

4 defects) + Number of Severity 5 defects - (1)

Figure 4.1: Percentage of faults of each severity along with the actual number of defects

4.5.4 Counting Scheme for the Failures

There have been various efforts to determine a precise counting scheme for ”defects” in soft-

ware [Basili and Selby, 1987]. A failure is “revealed” if program output reveals behavior that

deviates from the specification, and “observed” if the subject records the deviate behavior.

96

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Table 4.3: List of failures and their corresponding weights.

Fault No. Fault Description Causes Failure Weight/Cost

Assigned

F1 The variable count is

not initialized with

0.

The student

array is not

accessible.

5

F2 Printf function

missing

Starting message

not displayed

2

F3 The exit is having

wrong option i.e.4,

it should be 3.

The program

cannot be

terminated

normally.

2

F4 The variables count

is pre-incremented,

it should be

post-incremented.

The students

are not indexed

properly

3

F5 Variable i should be

initialized with 0.

First entry and

subject will not

be displayed.

3

F6 The symbol > should

be <.

The loop will not

execute.

4

F7 Break statement

missing.

Erratic behavior

of Switch Case.

2

F8 Symbol <= should be

<.

Loop will execute

count times

instead of

count-1 times

1

F9 ‘‘Data" is used

instead of

‘‘data[i]".

Only first

element of array

de allocated

1

F10 Variable i used

instead of i + 1.

Wrong Subject ID

displayed.

2

F11 Variable i should not

be incremented again

as it is already

incremented in the

loop.

Improper

indexing.

3

97

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

In code reading, an inconsistency (analog to a failure in the other treatments) is “revealed”

if the subject captures the deviated behavior in his/her own specification, and “observed” if

the subject records the inconsistency between the specifications. For all techniques, a fault is

“isolated” if the subject describes the problem in the source code with sufficient precision. We

distinguish between faults isolated by using the technique (i.e., after a failure was revealed

and observed) and faults isolated by chance (i.e., no failure was revealed or observed), as

summarized in Table 4.4. During experiment, we can isolate fault by chance without really

observing/revealing the corresponding failure. Even we can have poor cases of fault isola-

tion. In our experiment, we only counted those faults detected by a technique in consideration

where a failure is revealed, observed and then isolated (case 8).

Table 4.4: Explanations for failure and fault data

Case Failure

revealed?

Failure

observed?

Fault

isolated?

Explanation

1 N N N Defect-detection

technique failed

2 N N Y Fault was isolated by

chance

3 N Y N Meaningless

4 N Y Y Code reading:

constructed poor

abstractions

Functional/structural

test: meaningless

5 Y N N Poor evaluation of

abstractions/output

6 Y N Y Fault was isolated by

chance

7 Y Y N Poor fault isolation

8 Y Y Y Defect-detection

technique succeeded

98

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

4.6 The Experiment

The experiment was run at the Department of Computer Science, University of Kashmir

during the fall session of 2011. The experiment was conducted on a single day, as the

program was very simple. Each technique was applied on the program in three parallel

sessions at different locations by different subjects who were given a preliminary training

of testing techniques. No subject had any previous practical experience of software testing;

however, they had standard knowledge of computer science field. Subject and technique

combination was a purely random. They were given a total of 3 hours (180 minutes) to

complete the experiment which include both defect detection and defect isolation task. They

were not aware of the fact that techniques are being evaluated for reliability. Their focus was

only on detecting and isolating defects, similar to what we did in the last chapter where we

evaluated testing techniques for defect detection ability. The experiment results (raw data)

were collected on forms specially designed for the experiment. After the conclusion of the

experiment, the results were discussed with the subjects to avoid any sort of confusion during

the analysis of the results. The results of the experiment and their analysis are as under:

4.6.1 Number of Faults Detected and Isolated

As mentioned earlier, only those defects were taken into account, which were revealed, ob-

served and isolated by the subjects. Table 4.5 shows the number of defects detected and

isolated and the time taken by each technique. On average 63.63% defects were detected

and isolated. As shown in table 4.5 functional testing detected highest number of defects

followed by structural which was followed by code reading. Regarding time, the techniques

on average took 86% of the total time to detect and isolate the faults in the program. Code

reading was most efficient followed by structural testing which was followed by functional

testing. [Kamsties and Lott, 1995] also observed the same thing when they compared three

defect detection techniques. We also observed the same thing in previous chapter in which we

compared these techniques for effectiveness and efficiency. Figure 4.2 shows the effectiveness

and efficiency statistics of each testing technique.

4.6.2 Types of Faults Detected and Isolated

After counting the number of defects that were isolated for each technique, it was necessary

to find which defects were detected and isolated by which technique. Table 4.6 shows fault

number and the technique which detected and isolated it. As can been in table 4.6 all faults

99

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Table 4.5: Number of defects detected and isolated and time taken by each technique

Technique Number of Defects

detected and isolated

Time taken by each

technique (in minutes)

Code Reading 6 141

Functional Testing 8 169

Structural Testing 7 154

Figure 4.2: Effectiveness and efficiency of testing techniques.

except F2 were found. Table 4.7 shows the defects found by each technique categorized

as per the severity of faults. The number in the parenthesis in each column under testing

technique represents the actual number of faults of that severity in the program. As can be

observed from the table 4.7 all techniques were able to find severity one and severity two

defect. However, no technique was able to find all defects of other levels of severity with an

exception of code reading for severity 5 defects. Figure 4.3 shows the percentage of defects

found by each technique for all severity levels.

4.6.3 Total Weight Calculated for Each Technique

After that, we can calculate the weighted sum for each technique by multiplying each defect

found (see table 4.6) with the weight assigned to it (see table 4.3) and then adding them all.

The weighted sum for technique computed using equation 1 is as under:

100

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Table 4.6: Defects detected and isolated by each technique

Testing Technique

Defects detected

and isolated by

fault number

Code

Reading

Functional

Testing

Structural

Testing

F1 Y Y Y

F2 N N N

F3 N Y Y

F4 N Y Y

F5 N Y Y

F6 Y Y Y

F7 Y Y N

F8 Y N N

F9 Y N N

F10 N Y Y

F11 Y Y Y

Table 4.7: Defects detected and isolated by each technique categorized by severity

Testing Technique

Severity Level Code

Reading

Functional

Testing

Structural

Testing

1 1 (1) 1 (1) 1 (1)

2 1 (1) 1 (1) 1 (1)

3 1 (3) 3 (3) 3 (3)

4 1 (4) 3 (4) 2 (4)

5 2 (2) 0 (2) 0 (2)

101

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Figure 4.3: Percentage of Defects detected and isolated by each technique categorized by severity

Weighted Sum for Code Reading = 5*(1) + 4*(1) + 3*(1) + 2*(1) + 2

= 5+4+3+2+2

= 16

Weighted Sum for Functional Testing = 5*(1) + 4*(1) + 3*(3) + 2*(3) + 0

=5+4+9+6+0

=24

Weighted Sum for Structural Testing = 5*(1) + 4*(1) + 3*(3) + 2*(2) + 0

= 5+4+9+4+0

= 22

So as per the weight sum calculated for each technique, we can say that the functional

testing reduced more risk as compared to the other two testing methods. As can been observed

from Figure 4.4, functional testing reduced the maximum risk in the program (85.71%), which

was followed by structural testing reduced the risk by 78.57% and code reading which only

reduced risk by 57.14%. The red bar in the figure 4 represents the residual risk left in the

program after testing it with the corresponding testing technique. So the residual risk left

by code reading is 42.86%, functional testing is 14.29% and by structural is 21.43%.

4.6.4 Combining Testing Techniques

One thing that was observed in the survey of empirical studies in Section 2.4.1 of chapter 2 is

that the techniques do appear to be finding different types of faults. So an obvious extension

102

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Figure 4.4: Percentage of reduced risk and residual risk in the program

of this work is to explore the effectiveness using combinations of techniques. All possible

combinations were taken into account. They are:

1. Code Reading and Functional Testing

2. Code Reading and Structural Testing

3. Functional Testing and Structural Testing

4. Code Reading, Functional Testing and Structural Testing

Table 4.81 shows faults that were found by combination of techniques. This table represents

the union of faults found by combining respective techniques. Table 4.92 shows the defects

found by each technique categorized as per the severity of faults. The number in the paren-

thesis in each column under testing technique represents the actual number of faults of that

severity in the program.

4.6.4.1 Total Weight calculated for combination of technique

We calculated the weighted sum for every combination of testing techniques by multiplying

each defect found (see table 4.8) with the weight assigned to it (see table 4.3) and then adding

them all. The weighted sum for combination of techniques computed using 1 is as under:

1CR stands for Code Reading, FT stands for Functional Testing and ST stands for Structural Testing
2CR stands for Code Reading, FT stands for Functional Testing and ST stands for Structural Testing

103

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Weighted Sum for Code Reading +Functional Testing = 5*(1) + 4*(1) + 3*(3)

+ 3*(2) + 2

= 5+4+9+6+2 = 26

Weighted Sum for Code Reading +Structural Testing = 5*(1) + 4*(1) + 3*(3)

+ 3*(2) + 2

= 5+4+9+6+2 = 26

Weighted Sum for Functional Testing + Structural Testing = 5*(1) + 4*(1) + 3*(3)

+ 3*(2) + 0

= 5+4+9+6+0 = 24

Weighted Sum for Code Reading + Functional Testing + Structural Testing = 5*(1)

+ 4*(1) + 3*(3) + 3*(2) + 2

= 5+4+9+6+2 =26

Table 4.8: Defects detected and isolated by combination of testing techniques

Testing Technique

Defects detected

and isolated by

fault number

CR + FT CR + ST FT + ST CR + FT +

ST

F1 Y Y Y Y

F2 N N N N

F3 Y Y Y Y

F4 Y Y Y Y

F5 Y Y Y Y

F6 Y Y Y Y

F7 Y Y Y Y

F8 Y Y N Y

F9 Y Y N Y

F10 Y Y Y Y

F11 Y Y Y Y

By combining testing techniques, we observed that the combination of code reading and

functional testing, code reading and structural testing and code reading, functional and

structural testing were equally effective in reducing risk in the software (92.85%), whereas

combination of functional and structural testing reduced the risk by 85.71% only as shown

104

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Table 4.9: Defects detected and isolated by each technique categorized by severity

Testing Technique

Severity Level CR + FT CR + ST FT + ST CR + FT +

ST

1 1 (1) 1 (1) 1 (1) 1 (1)

2 1 (1) 1 (1) 1 (1) 1 (1)

3 3 (3) 3 (3) 3 (3) 3 (3)

4 3 (4) 3 (4) 3 (4) 3 (4)

5 2 (2) 2 (2) 0 (2) 2 (2)

in Figure 4.5. As expected, by combining the two testing techniques, we got better results;

however, no combination of techniques was able to find 100% defects.

4.7 Threats to Validity

Validity threats like learning have been eliminated, as the experiment was conducted in three

parallel sessions. The selection threat is also eliminated, as all the subjects were equally

experienced and had similar academic background. The difference with respect to individual

ability was minimized by random match of subject and testing technique. In spite of this

following possible threats to validity (mostly external) were identified in our experiment:

1. The experiment was conducted with post graduate students of computer science who

had no practical knowledge of testing. Our results depend on the way our subject

characterized the faults in the program.

2. The size of the C-code module is small in comparison with the size of systems in

industry. However, it is comparable to the size of programs used in other experiment

which aim at evaluating software testing techniques mentioned in section 2.4 of chapter

2. In addition to that our results are based on investigation of a single program; other

faulty programs may have different characteristics.

4.8 Discussion

One thing that is worth mentioning is that no testing technique was able to reduce the known

risk of the program to the zero level, even for this very trivial program. This thing proves

105

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

Figure 4.5: Effectiveness of combination of testing techniques

the claim of many researchers that there is no silver bullet technique for software testing. We

require different types of appropriate techniques for detecting different types of faults in the

program. We believe that the achieved level of confidence in our study will be much lower for

a program of significant size and complexity. Another interesting thing is that no technique

was able to find the fault F2 in the program. The possible reason for this is the type of fault

(Omission, Cosmetic) and its location in the source code. The subjects may have confused

themselves with the next printf () statement and treated that as a welcome message. In

addition to that, functional and structural were unable to detect fault number F8 and F9.

Although they are assigned a weight of 1 in our case, such types of fault may cause severe

problems in other cases. It also points to the significance of using code reading in the software

testing. One thing that can be observed from the Figure 4.5 is that if we would have skipped

structural testing in our case, it would have caused no effect on the result, as combination

of code reading and functional give us the same result, and combination of functional and

structural increases confidence by 85% which is 7% less what we achieved by the combination

of code reading and functional testing, and that 7% deficit in the achieved confidence level is

because of structural testing as can been observed from Table 4.8 and Table 4.9. However, we

strongly believe that this thing is the outcome of the types of faults and nature of program,

we have used in our study.

106

4. EVALUATING SOFTWARE TESTING TECHNIQUES FOR
RELIABILITY

4.9 Conclusion and Future Work

We conducted a simple but novel experiment to evaluate three software testing techniques,

code reading, functional testing and structured testing for reliability. We conclude that

every testing technique contributes to reduction of risk in the software. However, we found

functional testing to be more effective in terms of the reducing the risk in the program;

whereas, it was the least efficient in terms of time. However, at this point of time, the

results cannot be generalized due to the external validity threats. One thing that is clear

is that combination of different techniques is more effective solution to increase reliability

in the software; however that can decrease the overall efficiency. We also observed that no

technique or combination of techniques was able to reduce known risk in the software to the

zero level. Results also indicated that no technique is perfect and has its weaknesses.

Although the experiment was not run on the large scale, we strongly believe that it is

a significant step towards evaluating systematic software testing techniques for reliability.

Studies of this kind demand replication, as the results can be generalized only when we have

substantial empirical evidence. The future work includes carrying out similar experiment on

a large scale with different subjects and real programs with realistic faults of significant size.

In addition to that, other testing techniques need to be evaluated for the reliability. We also

need to examine the interaction between testing techniques and the program, subjects, faults

and other allied parameters.

End

107

Chapter 5

Conclusions & Future Work

108

5. CONCLUSIONS & FUTURE WORK

5.1 Conclusions Drawn

The knowledge of the testing techniques that contribute to quality of the software is important

to the advancement of the software testing research. This thesis presents three studies that

evaluate software testing techniques.

Chapter 2 is an exploratory work which identifies current issues in software testing tech-

niques evaluation. Thereafter, we propose a framework (set of guidelines) which aim at

mitigating the current issues in software testing techniques experimentation. In addition to

this, a set of factors are also presented which can help us in choosing appropriate testing

technique in the absence of concrete knowledge about the testing techniques statistics. The

conclusions drawn from the chapter are:

1. Present situation calls for further work on evaluation of software testing techniques

so as to acquire the basic knowledge about the relative effectiveness and efficiency of

software testing techniques for both fault finding and reliability criterion. We need to

carry out many other experiments in order to get reliable and generalizable results.

Replication of earlier work will be more useful.

2. We need to establish and follow common and standard framework for testing techniques

evaluation so that there are little variations in experimentation goals and results.

Chapter 3 presents an empirical study of testing techniques using a controlled experiment

which evaluates and compares three defect detection techniques for their effectiveness. The

experiment compared one static testing technique (code reading) and two dynamic testing

techniques (functional and structural testing). We conclude that they are all equally effective

in terms of failure detection and fault isolation. However, a difference was observed in case

of efficiency. While the effect of program was significant in most of the cases, the effect of

testing techniques was observed only in two cases. Moreover, the order and subjects had no

significant effect on the effectiveness or efficiency. In case of fault types, all testing techniques

were equally effective in terms of detection and isolation for all types of fault classes and types

except for cosmetic faults.

Chapter 4 presents an empirical study of testing techniques using a controlled experiment

which evaluates and compares three defect detection techniques (code reading, functional

testing and structural testing) for reliability using a novel method. A major conclusion of

the study was that every testing technique contributes to reduction of risk in the software.

However, we found functional testing most effective in terms of the reducing the risk in the

109

5. CONCLUSIONS & FUTURE WORK

program relative to other techniques; whereas, it was the least efficient in terms of time.

However, at this point of time, we cannot generalize the results due to the validity threats.

Results also indicated that no technique is perfect and has its weaknesses. One thing that is

clear is that combination of different techniques is more effective solution to increase reliability

in the software; however that can decrease the overall efficiency.

5.2 Future Work

There are some limitations in the present research that stem from the particular research focus

and scope that have been chosen. With so many testing techniques and the very inadequate

quantitative and qualitative knowledge about them, we strongly believe that there is a need

of much more research and evidence in the software testing techniques evaluation field. The

work in this thesis can be extended or replicated further to produce more realistic, generalized

and implementable results.

The work in the chapter 2 can be extended in the following ways:

1. Developing a uniform working definition for effectiveness which can be used as a stan-

dard comparison criteria for comparing software testing techniques.

2. Validating the proposed framework in different scenarios, so as to check whether the

proposed framework is viable for evaluation of testing techniques.

3. Refining the proposed framework, if required.

We believe that few experiments are not sufficient to understand the relative strengths and

weakness of testing techniques. Further replications of the experiments will help in making

strong conclusions regarding the effectiveness and efficiency of software testing techniques and

other allied factors. In particular, important studies would be empirical evaluations in an

industrial context which can facilitate the transfer of these techniques to practice. However,

carrying out such experiments in accordance with the common and standard is necessary for

the reasons mentioned in chapter 2 of this thesis.

The work presented in chapter 3 can be extended by evaluating different testing tech-

niques. In addition, a important extension will be the use of programs which are of significant

size and contain realistic faults. We also need to understand the effects of subject, program

type and fault type on the evaluation results in more detail by varying them under controlled

manner.

110

5. CONCLUSIONS & FUTURE WORK

The work in chapter 4 can be carried out on a large scale with different subjects and

programs with realistic faults of significant size. In addition to that, other testing techniques

need to be evaluated for the reliability. We also need to examine the interaction between

testing techniques and the program, subjects, faults and other allied parameters.

End

111

Publications

112

PUBLICATIONS

Refereed Journal Papers

2012 A Novel Approach for Evaluating Software Testing Techniques for Reliability (Sheikh Umar

Farooq, S.M.K. Quadri), ARPN Journal of Systems and Software, Volume 2, Number 3, Pages 84-96,

eISSN: 2222-9833, March 2012.

2011 Evaluating Effectiveness of Software Testing Techniques With Emphasis on Enhancing

Software Reliability (Sheikh Umar Farooq, S.M.K. Quadri), Journal of Emerging Trends in Com-

puting and Information Science, Volume 2, Issue 12, Pages 740-745, eISSN: 2079-8407, December 2011.

2011 Quality Practices in Open Source Software Development Affecting Quality (Sheikh Umar

Farooq, S.M.K. Quadri), Trends in Information Management, Volume 7, Issue 2, Pages 108-126, pISSN:

0973-4163, December 2011.

2011 3Ws of Static Software Testing Techniques (Sheikh Umar Farooq, S.M.K. Quadri), Global Journal

of Computer Science & Technology, Volume 11, Issue 6, Pages 77-86, pISSN: 0975-4350, eISSN: 0975-

4172, April 2011.

2011 Software Reliability Growth Modeling with New Generalized Exponential Growth Models

and Optimal Release Policy (S. M. K Quadri, Nesar Ahmad, Sheikh Umar Farooq), Global Journal

of Computer Science & Technology, Volume 2, Issue 6, Pages 26-41, pISSN: 0975-4350, eISSN: 0975-

4172, February 2011.

2011 Software Measurements and Metrics: Role in Effective Software Testing (Sheikh Umar

Farooq, S.M.K. Quadri, Nesar Ahmad), International Journal of Engineering Science & Technology,

Volume 3, Issue 1, Pages 671-680, eISSN: 0975-5462, February 2011.

2010 Identifying Some Problems with Selection of Software Testing Techniques (Sheikh Umar

Farooq, S.M.K. Quadri), Oriental Journal of Computer Science & Technology, Volume 3, Issue 2,

Pages 265-268, pISSN: 0974-6471, December 2010.

2010 Software Testing - Goals, Principles and Limitations (S.M.K. Quadri, Sheikh Umar Farooq),

International Journal of Computer Applications, Volume 6, Number 9, Pages 07-10, eISSN: 0975 8887,

September 2010.

2010 Effectiveness of software testing techniques on a measurement scale (Sheikh Umar Farooq,

S.M.K. Quadri), Oriental Journal of Computer Science & Technology, Volume 3, Issue 1, Pages 109-113,

pISSN: 0974-6471, June 2010.

Refereed Conference Papers

2012 Metrics, Models and Measurements in Software Reliability (Sheikh Umar Farooq, S.M.K.

Quadri, Nesar Ahmad), In Proceedings of 10th IEEE Jubilee International Symposium on Applied Ma-

chine Intelligence and Informatics, Pages 441-449, pISBN: 978-1-4577-0197-9, January 26-28, Herlany,

Slovakia, 2012.

2011 A Roadmap for Effective Software Testing (Sheikh Umar Farooq, S.M.K. Quadri,), In Proceedings

of 5th National Conference on Computing for Nation Development, Bharati Vidyapeeth’s Institute of

Computer Applications and Management, Pages 263-264, pISSN:0973-7529, pISBN:978-93-80544-00-7,

March 10-11, New Delhi, India, 2011.

113

PUBLICATIONS

2011 Notable Metrics in Software Testing (S.M.K. Quadri, Sheikh Umar Farooq), In Proceedings of

5th National Conference on Computing for Nation Development, Bharati Vidyapeeth’s Institute of

Computer Applications and Management, Pages 273-276, pISSN:0973-7529, pISBN:978-93-80544-00-7,

March 10-11, New Delhi, India, 2011.

2011 Testing Techniques Selection: A Systematic Approach (S.M.K. Quadri, Sheikh Umar Farooq),

In Proceedings of 5th National Conference on Computing for Nation Development, Bharati Vidyapeeth’s

Institute of Computer Applications and Management, Pages 279-282, pISSN:0973-7529, pISBN:978-93-

80544-00-7, March 10-11, New Delhi, India, 2011.

Presentations & Talks

2011 Quality Practices in Open Source Software Development Affecting Quality, Presented at

National Seminar on Open Source Softwares: Challenges & Opportunities, June 20-22, University of

Kashmir, India, 2011.

2010 What Should be Measured During Software Testing?, Presented at 6th JK Science Congress,

December, University of Kashmir, India, 2010.

2010 Towards More Successful Software Testing, Presented at 6th JK Science Congress, December,

University of Kashmir, India, 2010.

2010 Decisive Factors for Selecting Software Testing Techniques, Presented at 6th JK Science

Congress, December, University of Kashmir, India, 2010.

114

References

Aurum, A., Petersson, H., and Wohlin, C. State-of-the-art: software inspections after 25 years. Software

Testing, Verification and Reliability, 12(3):133–154, 2002. 20

Basili, V. and Selby, R. Comparing the effectiveness of software testing strategies. Software Engineering,

IEEE Transactions on, (12):1278–1296, 1987. 20, 29, 42, 48, 49, 62, 64, 81, 92, 96

Basili, V., Selby Jr, R., and Hutchens, D. Experimentation in software engineering. Technical report,

DTIC Document, 1985. 7, 20, 41, 45

Beck, K. Test-driven development: by example. Addison-Wesley Professional, 2003. 20

Beizer, B. Black-box testing: techniques for functional testing of software and systems. John Wiley & Sons,

Inc., 1995. 15

Beizer, B. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York, NY, USA, 1990.

ISBN 0-442-20672-0. 4, 13, 84

Bentley, J. Software testing fundamentals–concepts, roles, and terminology. In SUGI, volume 30, 2005. 2

Bertolino, A. An overview of automated software testing. Journal of Systems and Software, 15(2):133–138,

1991. 16

Bertolino, A. The (im) maturity level of software testing. ACM SIGSOFT Software Engineering Notes, 29

(5):1–4, 2004. 6, 35

Bertolino, A. Software testing research: Achievements, challenges, dreams. In Future of Software Engineer-

ing, 2007. FOSE’07, pages 85–103. IEEE, 2007. 2, 4, 5, 11

Bible, J., Rothermel, G., and Rosenblum, D. A comparative study of coarse-and fine-grained safe regres-

sion test-selection techniques. ACM Transactions on Software Engineering and Methodology (TOSEM), 10

(2):149–183, 2001. 20

Bieman, J. and Schultz, J. An empirical evaluation (and specification) of the all-du-paths testing criterion.

Software Engineering Journal, 7(1):43–51, 1992. 20

Box, G., Hunter, J., and Hunter, W. Statistics for experimenters: design, innovation, and discovery,

volume 2. Wiley Online Library, 2005. 56, 67

Briand, L. and Labiche, Y. Empirical studies of software testing techniques: Challenges, practical strategies,

and future research. ACM SIGSOFT Software Engineering Notes, 29(5):1–3, 2004. 26

115

REFERENCES

Chen, T. and Yu, Y. On the expected number of failures detected by subdomain testing and random testing.

Software Engineering, IEEE Transactions on, 22(2):109–119, 1996. 89

Chu, H. An evaluation scheme of software testing techniques. Technical Report Series, 1997. 11, 16

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. Verification of results in software mainte-

nance through external replication. In Software Maintenance, 1994. Proceedings., International Conference

on, pages 50–57. IEEE, 1994. 42

Dijkstra, E. On the reliability of mechanisms. Notes on Structured Programming, 1970. 2

Do, H., Elbaum, S., and Rothermel, G. Infrastructure support for controlled experimentation with

software testing and regression testing techniques. In Empirical Software Engineering, 2004. ISESE’04.

Proceedings. 2004 International Symposium on, pages 60–70. IEEE, 2004. 20

Do, H., Elbaum, S., and Rothermel, G. Supporting controlled experimentation with testing techniques:

An infrastructure and its potential impact. Empirical Software Engineering, 10(4):405–435, 2005. 7, 20

Elbaum, S., Malishevsky, A., and Rothermel, G. Prioritizing test cases for regression testing. ACM

SIGSOFT Software Engineering Notes, 25(5), 2000. 20

Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A., and Sundmark, D. A framework for comparing

efficiency, effectiveness and applicability of software testing techniques. In Testing: Academic and Industrial

Conference-Practice And Research Techniques, 2006. TAIC PART 2006. Proceedings, pages 159–170. IEEE,

2006. 20

Eldh, S. On Test Design. PhD thesis, Mälardalen University Press, October 2011. URL http://www.mrtc.

mdh.se/index.php?choice=publications&id=2635. 13

Farooq, A. and Dumke, R. Evaluation approaches in software testing. Univ.-Bibliothek, Hochschulschr.-und

Tauschstelle, 2008. 19

Farooq, S. and Quadri, S. Identifying some problems with selection of software testing techniques. Oriental

Journal of Computer Science & Technology, 3(2):266–269, 2010. 19, 29

Fenton, N. Software measurement: A necessary scientific basis. Software Engineering, IEEE Transactions

on, 20(3):199–206, 1994. 7

Fenton, N., Pfleeger, S., and Glass, R. Science and substance: a challenge to software engineers.

Software, IEEE, 11(4):86–95, 1994. 7

Frankl, P., Hamlet, D., Littlewood, B., and Strigini, L. Choosing a testing method to deliver reliability.

In Proceedings of the 19th international conference on Software engineering, pages 68–78. ACM, 1997. 20,

87, 88, 89, 90

Frankl, P. and Iakounenko, O. Further empirical studies of test effectiveness. In ACM SIGSOFT Software

Engineering Notes, volume 23, pages 153–162. ACM, 1998. 20, 89, 90

Frankl, P. and Weiss, S. An experimental comparison of the effectiveness of branch testing and data flow

testing. Software Engineering, IEEE Transactions on, 19(8):774–787, 1993. 20

116

http://www.mrtc.mdh.se/index.php?choice=publications&id=2635
http://www.mrtc.mdh.se/index.php?choice=publications&id=2635

REFERENCES

Frankl, P. and Weyuker, E. A formal analysis of the fault-detecting ability of testing methods. Software

Engineering, IEEE Transactions on, 19(3):202–213, 1993. 89

Frankl, P. and Weyuker, E. Testing software to detect and reduce risk. Journal of Systems and Software,

53(3):275–286, 2000. 86

Frankl, P., Hamlet, R., Littlewood, B., and Strigini, L. Evaluating testing methods by delivered

reliability [software]. Software Engineering, IEEE Transactions on, 24(8):586–601, 1998. 85, 87, 89, 90

Gibbs, W. Software’s chronic crisis. Scientific American, 271(3):72–81, 1994. 7

Goodenough, J. and Gerhart, S. Toward a theory of test data selection. ACM SIGPLAN Notices, 10(6):

493–510, 1975. 11

Graham, D. and Van Veenendaal, E. Foundations of Software Testing: ISTQB Certification. Cengage

Learning Emea, 2008. 14, 32

Graves, T., Harrold, M., Kim, J., Porter, A., and Rothermel, G. An empirical study of regression

test selection techniques. ACM Transactions on Software Engineering and Methodology (TOSEM), 10(2):

184–208, 2001. 20

Gutjahr, W. Optimal test distributions for software failure cost estimation. Software Engineering, IEEE

Transactions on, 21(3):219–228, 1995. 87

Harrold, M. Testing: a roadmap. In Proceedings of the Conference on the Future of Software Engineering,

pages 61–72. ACM, 2000. 4

Hetzel, W. An experimental analysis of program verification methods. 1976. 20, 21, 42, 47, 49

Host, M., Wohlin, C., and Thelin, T. Experimental context classification: incentives and experience of

subjects. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, pages

470–478. IEEE, 2005. 20

Howden, W. Theoretical and empirical studies of program testing. Software Engineering, IEEE Transactions

on, (4):293–298, 1978. 4

Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. Experiments of the effectiveness of dataflow-

and controlflow-based test adequacy criteria. In Proceedings of the 16th international conference on Software

engineering, pages 191–200. IEEE Computer Society Press, 1994. 20

Judd, C., Smith, E., and Kidder, L. Research methods in social relations. 1991. 46

Juristo, N. and Moreno, A. Basics of software engineering experimentation. Springer, 2001. 30

Juristo, N. and Vegas, S. Functional testing, structural testing and code reading: what fault type do they

each detect? Empirical Methods and Studies in Software Engineering, pages 208–232, 2003. 20, 42, 49, 58

Juristo, N., Moreno, A., and Vegas, S. A survey on testing technique empirical studies: How limited is

our knowledge. In Empirical Software Engineering, 2002. Proceedings. 2002 International Symposium n,

pages 161–172. IEEE, 2002. 26

117

REFERENCES

Juristo, N., Moreno, A., and Vegas, S. Limitations of empirical testing technique knowledge. SERIES

ON SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 12:1–38, 2003. 29, 35

Juristo, N., Moreno, A., and Vegas, S. Reviewing 25 years of testing technique experiments. Empirical

Software Engineering, 9(1):7–44, 2004. 20, 21, 23, 26, 32, 49

Kamsties, E. and Lott, C. An empirical evaluation of three defect-detection techniques. Software Engi-

neeringESEC’95, pages 362–383, 1995. 4, 20, 42, 49, 58, 66, 99

Kim, J., Porter, A., and Rothermel, G. An empirical study of regression test application frequency. In

Software Engineering, 2000. Proceedings of the 2000 International Conference on, pages 126–135. IEEE,

2000. 20

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., and Rosenberg,

J. Preliminary guidelines for empirical research in software engineering. Software Engineering, IEEE

Transactions on, 28(8):721–734, 2002. 7

Kurokawa, T. and Shinagawa, M. Technical trends and challenges of software testing. http://www. nistep.

go. jp/achiev/ftx/eng/stfc/stt029e/qr29pdf/STTqr2902. pdf, Lat visited on, 1(03):2010, 2008. 17

Li, N. and Malaiya, Y. On input profile selection for software testing. In Software Reliability Engineering,

1994. Proceedings., 5th International Symposium on, pages 196–205. IEEE, 1994. 87

Lott, C. and Rombach, H. Repeatable software engineering experiments for comparing defect-detection

techniques. Empirical Software Engineering, 1(3):241–277, 1996. 43, 56, 68

Luo, L. Software testing techniques. Institute for software research international Carnegie mellon university

Pittsburgh, PA, 15232:1–19, 2001. 19

Lyu, M. et al. Handbook of software reliability engineering. 1996. 84

Malik, Q. et al. Combining model-based testing and stepwise formal development. PhD thesis, 2010. 2

Moreno, A., Shull, F., Juristo, N., and Vegas, S. A look at 25 years of data. IEEE Software, 26(1):

15–17, 2009. 23, 24, 32

Myers, G. A controlled experiment in program testing and code walkthroughs/inspections. Communications

of the ACM, 21(9):760–768, 1978. 20, 42, 48, 49

Myers, G., Sandler, C., and Badgett, T. The art of software testing. Wiley, 2011. 13

Ntafos, S. On random and partition testing. In ACM SIGSOFT Software Engineering Notes, volume 23,

pages 42–48. ACM, 1998. 89

Ntafos, S. The cost of software failures. In Proc. IASTED Software Engineering Conference, pages 53–57,

1997. 87

Offutt, A. and Lee, S. An empirical evaluation of weak mutation. Software Engineering, IEEE Transactions

on, 20(5):337–344, 1994. 20

118

REFERENCES

Offutt, A., Lee, A., Rothermel, G., Untch, R., and Zapf, C. An experimental determination of

sufficient mutant operators. ACM Transactions on Software Engineering and Methodology (TOSEM), 5(2):

99–118, 1996. 20

Perry, W. Effective methods for software testing. John Wiley & Sons, Inc., 2006. 58

Pizza, M. and Strigini, L. Comparing the effectiveness of testing methods in improving programs: the

effect of variations in program quality. In Software Reliability Engineering, 1998. Proceedings. The Ninth

International Symposium on, pages 144–153. IEEE, 1998. 87, 88, 89

Rapps, S. and Weyuker, E. Selecting software test data using data flow information. Software Engineering,

IEEE Transactions on, (4):367–375, 1985. 16

Rombach, H., Basili, V., and Selby, R. Experimental software engineering issues: critical assessment and

future directions: international workshop, Dagstuhl Castle, Germany, September 14-18, 1992: proceedings,

volume 706. Springer, 1993. 41

Roper, M. Software testing. McGraw-Hill, Inc., 1995. 14

Roper, M., Wood, M., and Miller, J. An empirical evaluation of defect detection techniques. Information

and Software Technology, 39(11):763–775, 1997. 20, 42, 49, 58, 81

Rothermel, G. and Harrold, M. Empirical studies of a safe regression test selection technique. Software

Engineering, IEEE Transactions on, 24(6):401–419, 1998. 20

Rothermel, G., Untch, R., Chu, C., and Harrold, M. Test case prioritization: An empirical study.

In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on, pages 179–188.

IEEE, 1999. 20

Selby, R. Combining software testing strategies: An empirical evaluation. In Proceedings of the ACM/SIG-

SOFT IEEE Workshop on Software Testing, pages 82–90, 1986. 48

Sommerville, I. Software Engineering. Addison-Wesley, 2007. 14, 15

Taipale, O., Smolander, K., and Kälviäinen, H. Finding and ranking research directions for software

testing. Software Process Improvement, pages 39–48, 2005. 4

Tawileh, A., McINTOSH, S., Work, B., and Ivins, W. The dynamics of software testing. In Proceedings

of the 25th System Dynamics Conference, July, 2007. 17

Tichy, W. Should computer scientists experiment more? Computer, 31(5):32–40, 1998. 7

Tsoukalas, M., Duran, J., and Ntafos, S. On some reliability estimation problems in random and partition

testing. Software Engineering, IEEE Transactions on, 19(7):687–697, 1993. 87

Vegas, S. What information is relevant when selecting testing techniques. In Proceedings of the 13th Inter-

national Conference on Software Engineering and Knowledge Engineering, pages 45–52, 2001. 30

Vegas, S. Identifying the relevant information for software testing technique selection. In Empirical Software

Engineering, 2004. ISESE’04. Proceedings. 2004 International Symposium on, pages 39–48. IEEE, 2004.

31, 38

119

REFERENCES

Vegas, S. and Basili, V. A characterisation schema for software testing techniques. Empirical Software

Engineering, 10(4):437–466, 2005. 20

Vegas, S., Juristo, N., and Basili, V. Packaging experiences for improving testing technique selection.

Journal of Systems and Software, 79(11):1606–1618, 2006. 32

Vokolos, F. and Frankl, P. Empirical evaluation of the textual differencing regression testing technique.

In Software Maintenance, 1998. Proceedings. International Conference on, pages 44–53. IEEE, 1998. 20

Vos, T., Marın, B., Panach, I., Baars, A., Ayala, C., and Franch, X. Evaluating software testing

techniques and tools. 20, 35

Weyuker, E. The cost of data flow testing: An empirical study. Software Engineering, IEEE Transactions

on, 16(2):121–128, 1990. 20

Weyuker, E. Can we measure software testing effectiveness? In Software Metrics Symposium, 1993. Pro-

ceedings., First International, pages 100–107. IEEE, 1993. 36

Weyuker, E. Using failure cost information for testing and reliability assessment. ACM Transactions on

Software Engineering and Methodology (TOSEM), 5(2):87–98, 1996. 87

Wohlin, C., Runeson, P., Host, M., Ohlsson, C., Regnell, B., and Wesslén, A. Experimentation in

software engineering: an introduction. Kluver Academic Publishers, 2000. 7, 20

Wong, W. and Mathur, A. Reducing the cost of mutation testing: An empirical study. Journal of Systems

and Software, 31(3):185–196, 1995a. 4

Wong, W. and Mathur, A. Fault detection effectiveness of mutation and data flow testing. Software Quality

Journal, 4(1):69–83, 1995b. 20

Wong, W., Horgan, J., London, S., and Agrawal, H. A study of effective regression testing in practice. In

PROCEEDINGS The Eighth International Symposium On Software Reliability Engineering, pages 264–274.

IEEE, 1997. 20

Wood, A. Software reliability growth models: Assumptions vs. reality. In PROCEEDINGS The Eighth

International Symposium On Software Reliability Engineering, pages 136–141. IEEE, 1997. 84

Yang, X. Towards a self-evolving software defect detection process. PhD thesis, University of Saskatchewan,

2007. 31

Young, M. Software Testing and Analysis: Process, Principles, and Techniques. John Wiley & Sons, 2008. 6

120

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Introduction
	1.2 Research Motivation
	1.3 Research Goals & Objectives
	1.4 Research Methodology
	1.5 Contributions
	1.6 Outline

	2 Software Testing Techniques Evaluation: Issues and Mitigation
	2.1 Introduction
	2.2 Software Testing Techniques
	2.2.1 Proposed Software Testing Techniques Classification
	2.2.1.1 Static testing techniques
	2.2.1.2 Dynamic testing techniques
	2.2.1.3 Test data selection criteria

	2.3 Why to Evaluate Software Testing Techniques?
	2.4 Existing Research on Software Testing Techniques Evaluation
	2.4.1 Evaluation Results
	2.4.2 Problems with Existing Studies
	2.4.2.1 Experimentation problems
	2.4.2.2 Knowledge problems

	2.5 Where do we Stand at this Moment?
	2.6 Factors for Selecting Software Testing Technique
	2.6.1 Software Related Factors
	2.6.2 Testing Related Factors
	2.6.3 Customers Requisites and other Requirements

	2.7 Proposed Guidelines for Software Testing Techniques Evaluation
	2.8 Conclusion and Future Work

	3 Evaluating Software Testing Techniques for Effectiveness & Efficiency
	3.1 Introduction
	3.2 Schema Used
	3.3 Goals, Hypotheses and Theories
	3.3.1 Goals
	3.3.2 Hypothesis
	3.3.3 Theories and Related Work

	3.4 Experimental Plan
	3.4.1 Experimental Design
	3.4.2 Defect Detection Techniques
	3.4.2.1 Code reading
	3.4.2.2 Functional testing
	3.4.2.3 Structural testing

	3.4.3 Programs
	3.4.3.1 Faults and fault classification
	3.4.3.2 Failure counting scheme

	3.4.4 Subjects
	3.4.5 Data Collection and Validation Procedures
	3.4.6 Data Analysis Procedures

	3.5 Experiment Procedures
	3.5.1 Training Activities
	3.5.2 Conducting the Experiment
	3.5.2.1 Threats to validity
	3.5.2.2 Giving feedback to subjects

	3.6 Results
	3.6.1 Raw Data
	3.6.2 Interpretation
	3.6.2.1 Evaluation of failure observation effectiveness
	3.6.2.2 Evaluation for fault isolation effectiveness
	3.6.2.3 Evaluation of time taken to observe failures
	3.6.2.4 Evaluation of time taken to isolate faults
	3.6.2.5 Evaluation of total time (detection time + isolation time)
	3.6.2.6 Evaluation of efficiency in observing failures
	3.6.2.7 Evaluation of efficiency in isolating faults
	3.6.2.8 Evaluation of effectiveness of failures observed for each fault class
	3.6.2.9 Evaluation of effectiveness of faults isolated for each fault class

	3.7 Summary
	3.8 Conclusion and Future Work

	4 Evaluating Software Testing Techniques for Reliability
	4.1 Introduction
	4.2 Background
	4.3 Related Work
	4.4 Statistical Testing vs Systematic Testing
	4.5 Description of the Experiment
	4.5.1 Overview of Testing Methods Used
	4.5.2 Programs and Faults
	4.5.3 Methodology
	4.5.4 Counting Scheme for the Failures

	4.6 The Experiment
	4.6.1 Number of Faults Detected and Isolated
	4.6.2 Types of Faults Detected and Isolated
	4.6.3 Total Weight Calculated for Each Technique
	4.6.4 Combining Testing Techniques
	4.6.4.1 Total Weight calculated for combination of technique

	4.7 Threats to Validity
	4.8 Discussion
	4.9 Conclusion and Future Work

	5 Conclusions & Future Work
	5.1 Conclusions Drawn
	5.2 Future Work

	Publications
	References

