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INTRODUCTION 

 

Polynomials pervade mathematics and much that is beautiful in mathematics is related 

to polynomials, virtually every branch of mathematics, from Algebraic number theory and 

Algebraic Geometry to Applied Analysis, Fourier analysis and Computer sciences, has its 

corpus of theory arising from the study of polynomials. Historically, give rise to some 

important problems of the day. The subject is now much too large to attempt an 

encyclopaedic coverage. 

The most complicated problems of trade and industry called for the solutions of 

equations and the introduction of literal symbols thus arose algebra, which at the time 

amounted to a science of equations. Even in antiquity, solutions had been for equations of 

first order and for quadratic equations, those stumbling blocks of today school children. 

We recall here that an expression of the form  

       

where  are real or complex numbers with , is called a polynomial of 

degree . If there is a value of  say, such that , then  is called the zero of 

polynomial . Enormous efforts were put into solving polynomial equations of degree 

higher than the second and only in sixteenth century were such solutions forthcoming for 

equations of the third and fourth degrees. Another three centauries were spent in vain efforts 

to get the solutions of polynomial equations of degree higher than the fourth. It required the 

geneous of Abel and Galois to resolve this problem in it entirely. At the beginning of the 

nineteenth century, a young Norweigian mathematician, Neil Henrik Abel mediated long and 

Painstakingly on the problem and finally came to the conviction that equations of degree 

higher than fourth cannot, generally speaking, be solved by radicals. At about this time, 

another young mathematician Evarista Galois of France took a new approach and proved a 

similar result. 

The problems of obtaining exact new bounds, the improvements and generalisations 

of some older results for the location of the zeros of a polynomial are still of considerable 

interest. In view of this fact and that of many as yet unsettled questions this subject continues 

be an active field of research.    
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The aim of this dissertation is to present a survey of certain results concerning the 

bounds for the moduli of the zeros of a polynomial. We have divided this material into four 

chapters. 

We start chapter 1 by presenting two independent proofs of a classical result due to 

Cauchy concerning on upper bounds for the moduli of the zeros of a polynomial . Next 

we shall study an improvement of Cauchy’s theorem due to  A. Joyal, G. Labelle and Q. I. 

Rahman and Cauchy’s theorem for class of lacunary type polynomials due to A. Aziz and B. 

A. Zargar. In the same chapter, besides studying other related results, we shall state a result of 

Datt and Govil and present its generalisation due to A. Aziz and B.A. Zargar. We shall also 

state a result of J.L. Diaz-Barrero and present its generalisation due to A. Aziz and Aliya 

Qayoom which includes a variety of interesting results as a special case. Finally in this 

chapter we shall present an interesting refinement of Cauahy’s theorem due to A. Aziz and 

Aliya Qayoom. 

In chapter 2 we shall discuss a well-known theorem of Enestr m and Kakeya and 

present some of its extensions due to A. Joyal, G. Labelle and Q.I. Rahman, N.K. Govil and 

Prof. Rahman, A. Aziz and Mohammad and A. Aziz and B.A. Zargar. We shall also present a 

recent generalisation of Enestr m-Kakeya theorem due to A. Aziz and B.A. Zargar and 

finally conclude this chapter by presenting a more recent generalisation of  Enestr m-Kakeya 

theorem by the same authors. 

We shall start chapter 3 by proving a celebrated result invoked as Guass-Lucas 

theorem concerning the zeros of the derivative of a polynomial. Next we shall present a 

simple and purely analytical proof of Laguerrer’s theorem due to A. Aziz. We shall study 

Graces theorem and present its generalisation due to A. Aziz and its application to Walsh’s 

coincidence theorem. We shall also present some results due to A. Aziz which are the 

generalisation of a result due to Szeg  and DeBruijn. Finally we close this chapter by 

presenting a compact generalisation of Walsh’s two-circle theorem for the polynomials and 

rational functions A. Aziz and N.A. Rather.       

Finally we shall start chapter 4 by stating a conjecture of B. L. Sendove concerning 

the zeros of the derivative of a polynomial and present its proof for the boundary case and for 

the polynomials of degree 3 or 4 due to Z. Rubinstein. We shall also state a conjecture due to 

Goodman, Roth, Rahman and Schmeisser and present a result due to A. Meir and A.Sharma 

which is a generalisation of a result due to Goodman, Rahman and Ratti. Finally we close this 
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chapter by presenting a result which is also due to A. Meir and A. Sharma concerning the 

zeros of  order derivative of a polynomial.                                              

Before proceeding to the study of such specific results, we shall find it useful to 

mention certain general theorems to which we shall make references whenever required.   

 

1.     Fundamental Theorem Of Algebra [44, p.118] 

        Every polynomial  

                                

         where    are complex numbers with   of degree   

         has  zeros.   

2.     Rouches Theorem [37, p.2] 

         If  are analytic inside and on a closed contour  and                       

          on  then   has the same number of  

         zeros inside . 

3.   Gauss-Lucas Theorem [37, p.22]   

        Any circle  which encloses all the zeros of a polynomial  also encloses all  

        the zeros of its derivative . 

4.   Maximum Modulus Principle [44, p.165] 

         If  is analytic and non-constant in region D, then its absolute value      

        is maximum on D but not inside D. 

5.      Schwarz Lemma [44, p.168] 

         If  is analytic function, regular for  and   and  

          then     
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Estimates For The Moduli 

Of The Zeros Of A Polynomial 

 
 

We start this chapter by presenting the following classical result due to Cauchy 

 concerning the bounds for the moduli of the zeros of a polynomial.                                                           

  In order to emphasize the methods and techniques used for studying the 

location of the zeros of a polynomial, we shall give two independent proofs of this 

result. 

           THEOREM 1.1.     If  

 

 is a polynomial of degree  and   

 

then all the zeros of  lie in the circle  

. 

          FIRST PROOF OF THEOREM 1.1.    We have 

 

so that 
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Since 

 

therefore, 

 

Using it in , we get  

 

Now if   and we have  

 

 

Hence from (1.2), we get  

 

and therefore,  

 

that is, if                                     

. 

Thus   does not vanish for  

. 
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Therefore, those zeros of  whose modulus is greater than 1 lie in   But 

those zeros of  whose modulus is less than or equal to 1 already satisfy the 

inequality    

 

Hence all the zeros of  lie in  

 

This completes the first proof of Theorem 1.1. 

             Before presenting the second proof of this classical result, we shall first define 

the companion matrix of a polynomial.  

             Let  be a polynomial of degree , 

then the matrix 

                                ,
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is called the companion matrix of a polynomial . The characteristic polynomial of 

 is the polynomial  

                For the second proof of Theorem 1.1, we need the following results  

. 

              LEMMA 1.1 (HARDMARDS INEQUALITY).    If  

 

is an  matrix, then  
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if                                 

 

           LEMMA 1.2 (GRESHGORIAN DISK THEOREM).    Let                                                                                                                     

 

be   complex matrix. Then the characteristics roots of  lie in the union of disks 

 

where  

 

that is,  is the sum of the moduli of the off diagonal elements in the ith row of . 

            PROOF OF LEMMA 1.2.       We have 
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The characteristic equation of A is given by  

, 

that is,  
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By Lemma 1.1, 

 

   

Therefore, it follows that  

 

 

Hence we conclude that the characteristics roots of  lie in the union of the disks  

 

 

            SECOND PROOF OF THEOREM 1.1.    The companion matrix of the 

polynomial  

 

of degree  is  



18 
 

                        

.

1000

0010

0001

0000

1

2

1

0

































−

−

−

−

=

−

n

n

n

n

n

a
a

a
a
a
a
a
a

C

L

M

L

L

L

 

Applying Lemma 1.2, it follows that all the characteristics roots of  lie in the union 

of circles  

 

 

 

This gives that all the characteristics roots of  lie in the union of circles  

 

But all these circles are contained in the circle  

 

where  

 
it follows that all the characteristics roots of  lie in the circle 

 

But the characteristic roots of  are the zeros of the polynomial . We therefore 

conclude that all zeros of   lie in the circle  

 

where  
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This completes the second proof of Theorem 1.1.  

         Quite a few results giving bounds for the zeros depending on the moduli of the 

coefficients of a polynomial and the improvements of Theorem 1.1 may be found 

in [37] and [46]. Here we shall present the following improvement of Cauchy’s 

theorem which is due A. joyal, G. Labelle and Q. I. Rahman [31]. 

          THEOREM 1.2.      If             

 

then all the zeros of the polynomial  

 

of degree  are contained in the circle  

 

          PROOF OF THEOREM 1.2.       Since 

, 

we have  

 

Now if  

 , 

  

.                                                                                                         

This gives 

 

or                                                                                                                                                  
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Since   therefore, on dividing both sides of this inequality by   we get 

 

But  

 

and  

 

 

therefore, it follows that  

  

Hence if  

 

then from (1.5), we get 

    

                               

                               

This shows that all the zeros of  lie in the circle defined by (1.4) and hence 

completes the proof of Theorem 1.2. 

             Recently A. Aziz and B. A. Zargar [11] have extended Cauchy theorem for a 

class of lacunary type polynomials and have proved the following generalization of 

Theorem 1.1. 

            THEOREM 1.3.       If  
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is a polynomial of degree  and 

 

then all the zeros of lie in    where  is the unique positive root of the 

trinomial equation  

. 

          PROOF OF THEOREM 1.3.       We have                      

 

  

 

  

 

                               

 

 

if  

. 

This implies 

 

where is the ( unique ) positive root of the trinomial equation defined by  
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in the interval  . Hence all the zeros of  whose modulus is greater than 1 lie 

in . Since all those zeros of whose modulus is less then or equal to 1 

already lie in . Hence it follows that all the zeros of  lie in  This 

completes the proof of Theorem1.3. 

         REMARK 1.1.  If we take  in Theorem 1.3, we get Theorem 1.1. 

         The following corollary is obtained by taking  in Theorem 1.3. 

         COROLLARY 1.1.       If   

 

is a polynomial of degree  and  

 

then all zeros of   lie in the circle  

 

 From Corollary 1.1, we can easily deduce   

          COROLLARY 1.2.     If       

 

is a polynomial of degree , such that  

 , 

then all zeros of   lie in   

 

          In the Literature there exists several improvements of the generalization of 

Cauchy’s theorem. In this direction Datt and Govil [22] have obtained the following 

improvement of Theorem 1.1. 

           THEOREM 1.4.     If  
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, 

is a polynomial of degree  and  

 

then all the zeros of   lie in a ring shaped region                              

 

where  is the unique root of the equation 

 

in the interval    The upper bound in (1.6) is best possible and is attained for the 

polynomial  

.                                                       

Here we present the following generalization of Theorem 1.4 to lacunary type 

polynomials recently proved by A. Aziz  and B. A. Zargar  [11]. 

       

   THEOREM 1.5.      If  

 

is a polynomial of degree  and  , then  has all its zeros 

in the ring shaped region  

 

where is the unique root of the equation 

 

The upper bound  in (1.7) is best possible and is attained for the polynomial  
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For the proof of Theorem 1.5, we need the following lemma. 

            LEMMA 1.3.       Let                                                                                                                          

 

where  is a positive integer and  . If   then   has a unique root 

in the interval  

           PROOF OF LEMMA 3.       Consider  
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Since  the coefficients of   are positive and 

 are monotonically increasing for , it follows 

from Descartes rule of signs that  has exactly one positive root. 

Since    

 

then  

 

If  then it is clear from (1.9) that  Thus there exists a   0 

such that  in . Also , hence  has one and only one 

positive root in  and the lemma follows.                                                                                                       

          PROOF OF THEOREM 1.5.    We shall first prove that  has all its zeros 

in  and for this it is sufficient to consider the case when  

(for if , then on , .  

If                                                                                                                                                                                                                  

 

and 

, 

then,  
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Hence for every , we have on   , 

 

if  

 

which implies 

 

 

Thus by above lemma it follows that, if  is the unique root of the equation  

 

in , then every  satisfies  and hence , on   

which implies that  has all its zeros in  

 

Next we prove that   has no zero in  

 

Let us denote the polynomial  by , then 

 

 

Now if  

 

then  
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. 

Hence by Schwarz lemma we have on , 

 

 

 

                                                                                                                                   

if 

 

Hence all the zeros of  lie in  

 

Combining (1.11) and (1.13), we get all the zeros of  to be in the ring shaped 

region  

 

This completes the proof of Theorem 1.5. 

                Recently J.L. Diaz – Barreror [24] has obtain an annulus containing all the 

zeros of a polynomial involving binomial coefficients and Fibonacci’s numbers  
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where . In fact he has proved the following result. 

                THEOREM1.6.        Let 

 

be a non – constant polynomial of degree . Then all the zeros of  lie in the 

annulus   where 

 

 

            More recently A. Aziz and Aliya Qayoom [4] have proved the following more 

general result which includes not only Theorem 1.6 as a special case but also a variety 

of other interesting results can be established from Theorem 1.7 by a fairly uniform 

proceedure. 

            THEOREM 1.7.   Let  

 

be a non- constant complex polynomial of degree . If   is any set of  

real or complex numbers such that  

 

then all the zeros of  lie in the annuals , where 

 

 

              PROOF OF THEOREM 1.7.  We first show that all the zeros of lie in  
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From (1.14) it follows that  

 

and hence  

 

Now for  we have 

 

 

 

Using (1.15) and noting that by hypothesis 

 

we obtain for  

 

Thus   for   consequently all the zeros of   lie in and this 
proves the second part of Theorem 1.7. 

         To prove the first part of this theorem, we shall use the second part.  If , 
then clearly 

 

 and there is nothing to prove. So we assume that . Consider the polynomial  
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. 

By the second part of the theorem, all the zeros of the polynomial lie in 

 

 

 

 

Replacing    by   and observing that  

 

we conclude that all the zeros of  lie in 

 

The desired result follows by combining (1.14) and (1.15)  

                 We conclude Chapter 1 by presenting the following interesting and 
significant refinement of Theorem 1.1 due to A. Aziz and  Aliya  Qayoom [4]. 

                  THEOREM 1.8.       Let 

 

 be a non constant polynomial of degree , then all the zeros of  lie in the disk  

 

where  
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 PROOF OF THEOREM1.8.     Since 

 

We have 

 

we take 

 

Then with the help of (1.16) we get  

 

 

Now  

 

 

 

Using this in (1.18), we see that  
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Applying Theorem 1.7 with  defined by (1.17), it follows that all the zeros of  
lie in the disk 

 

 

 

 

 

This completes the proof of Theorem 1.8. 
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Enestr m – Kakeya Theorem And Some Of Its 

Generalizations 

 

 

          We start this chapter with the following result known as Enestr m- Kakeya 

theorem [37, p.136] on the distribution of zeros of polynomials with real coefficients. 

          THEOREM 2.1.    If 

 

be a polynomial of degree , such that  

 

then all the zeros of  lie in  

          PROOF OF THEOREM 2.1.    Consider the polynomial 

 

 , 

then 
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, 

which gives 

                          

 Therefore,        

         

             

 

. 

Thus for ,  that is,  does not vanish for . This implies that 

all the zeros of  lie in . Since all the zeros of  are also the zeros of 

, it follows that  has all its zeros in . This completes the proof of 

Theorem 2.1. 

              

             If 

 

then   
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and hence 

 

This shows that the polynomial  

 

, 

satisfies the conditions of  Theorem 2.1 and therefore, it follows that all the zeros of 

 lie in  

          

           Replacing  and noting that  we get the following more 

general result  

           COROLLORY 2.1.     If 

 

is a polynomial of degree  with real and positive coefficients, then all the zeros of 

 lie in 

 

           If in the Enestr m-Kakeya theorem (Theorem 2.1) we do not assume 

coefficients to be non-negative, then the conclusion does not hold, for example we 

may consider the second degree polynomial 

. 

Here  

 

and so  

 

But the zeros of  are 
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However in this case A. Joyal,  G. Labelle and  Q. I. Rahman [31] have 

obtained the following extension of  Enestr m –Kakeya theorem. 

          THEOREM 2.2.      If  

 

then the  polynomial  

 

of degree  has all its zeros in the circle  

 

If , this result reduces to Enestr m –Kakeya theorem. 

            PROOF OF THEOREM 2.2.     Consider the polynomial  

 

   

 

where 

 

If   then 
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                . 

Since for   

 

therefore, we have 

 

But the polynomial  is analytic in . Therefore, it follows by maximum 

modulus principle that the inequality (2.4) holds inside the unit circle also, that is  

 

Replacing  by , we get  

 

Since by hypothesis  

, 

therefore,  

 

Now if  

 

then  and we have 
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This shows that all the zeros of  lie in the circle defined by (2.3), Since all the 

zeros  are also the zeros of , we conclude that all the zeros of  lie in the 

circle defined by (2.3). This completes the proof of Theorem 2.2. 

              In the literature for references see [5, 19, 31, 34, 39], there exists some 

extensions of the Enest r m-Kakeya theorem. As regards to this theorem, it was asked 

by N. K. Govil and Prof. Rahman [28], what can be said if we drop the restriction  that 

coefficients of the polynomial  are all positive and instead assume monotoncity to 

hold for the modulli of the coefficients of a polynomial ? As an answer to this 

question they have established the following result. 

             THEOREM 2.3.      Let  

 

be a polynomial of degree  such that for some  

(2.6)                       

then  has all its zeros in 

 

where   is the greatest positive root of the trinomial equation 

     

 It was shown by A. Aziz and Q. G. Mohammad [5] that the assertion of 

Theorem 2.3 holds under much weaker assumptions.  In this connection, they have 

established the following result. 

           THEOREM 2.4.      Let 

                      

be a polynomial of degree  with complex coefficients such that for some  
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Then  has all its zeros in   
 

 where  is the greatest positive root of the equation 

 

The polynomial  

 

shows that the result is best possible. 

 For the proof of Theorem 2.4, we shall use the following result [5, Lemma 1]. 

           LEMMA 2.1.      Let  

 

be a polynomial of degree  with complex coefficients. Then for every positive real 

number , all the zeros of   lie in the circle  

 

         

 

 

 

 

 

   PROOF OF LEMMA 2.1.   The companion matrix of the polynomial  is 
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Applying Greshgorian theorem (Lemma 1.2) to the columns of the matrix , it 

follows that all the eigen values of   lie in the circle 

 

Since the matrix   is similar to the matrix  and the eigen values of  are the 

zeros of , it follows that all the zeros of  lie in the circle defined by (2.8).  

This completes the proof of the Lemma 2.1. 

              PROOF OF THEOREM 2.4.      Since by hypothesis 
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it follows by Lemma 2.1 that for every positive real number , all the zeros of  lie 

in the circle 

 

We choose   such that  

 

which gives,  

 

so that 

 

equivalently, 

 

Replacing   it follows from (2.8) that all the zeros of  lie in  

 , 

where  is the greatest positive root of the equation defined by (2.7). This completes 

the proof of the Theorem 2.4. 

             Taking   in Theorem 2.4, we get the following result. 

             COROLLORY 2.2.      Let  

                                

be a polynomial of degree  with complex coefficients such that for some  
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Then all the zeros of  lie in  

                                  , 

where  is the greatest positive root of the equation 

 

          REMARK 2.1.        If a polynomial 

 

satisfies the condition (2.6) of Theorem 2.3, then it also satisfies the conditions (2.10)  

of Corollary 2.2.  This shows that Theorem 2.3 holds under much weaker conditions 

than the Theorem 2.4 for  

         Next we present the following generalization of Enestr m-Kakeya theorem 

proved by A. Aziz and Q. G. Mohammad [6] by using Schwartz lemma. 

          THEOREM 2.5.      Let 

 

be a polynomial of degree  with real and positive coefficients. If  can be 

found such that  

 

    

Then all the zeros of  lie in  

 

          For  and  this result reduces to Enestr m - Kakeya theorem 

(Theorem 2.1). 

           PROOF OF THEOREM 2.5.      Consider the polynomial  
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Let 

 

 

                 

 

                                

where  

 

                                    

then 

 

and 

                         

 

 

. 
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Now by (2.11) all the coefficients of  are positive, therefore  

 

Thus  satisfies all the conditions of Schwartz lemma and therefore, 

                       

Hence for  

 

 

 

, 

if                    

 

that is, if  

 

Thus in  Consequently, all the zeros of   lie in   

  As  

, 

we conclude that all the zeros  and hence all the zeros of  lie in  This 

completes the proof of Theorem 2.5. 

 A. Aziz and Q. G. Mohammad have obtained several interesting 

generalizations of Enestr m-Kakeya theorem. Here we shall mention the following 

result due to A. Aziz and Q. G. Mohammad   [5]. 

          THEOREM 2.6.      Let  
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be a polynomial of degree  with complex coefficients such that  

.   

 If for some   and    , 

 

 

then  has all its zeros in the circle 

 

              Recently A. Aziz and B. A Zargar have proved several Enestr m- Kakeya 

type theorems which generalize some known results by putting less restrictive 

conditions on the coefficients of the polynomial.  Here we present a few of them.  

             THEOREM 2.7.      If  

 

is a polynomial of degree  such that for some  ,  

. 

Then  has all its zeros in  

 

We may apply Theorem 2.7 to the polynomial  to obtain the following result. 

            COROLLORY 2.3.     If 

                        

is a polynomial of degree  such that for some   
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then  has all its zeros in 

                       . 

The next corollary is obtained by taking  in Theorem 2.7. 

            COROLLORY 2.4.     If 

 

is a polynomial of degree  such that 

 

then all the zeros of   lie in the circle  

 

          Instead of proving Theorem 2.7, we present the following more general result.  

         THEOREM 2.8.     If 

                   

is a polynomial of degree  such that for some  

                   

then all the zeros of  lie in 

 

           PROOF OF THEOREM 2.8.      Consider  

                  

                               

, 

then for   we have  
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if 

 

Hence all the zeros of   whose modulus is greater than 1 lie in the circle  

 

But those zeros of  whose modulus is less than or equal to 1 already satisfies the 

inequality (2.17). Hence all the zeros of  lie in the circle defined by (2.16). 

           Since all the zeros of  are also the zeros of , therefore it follows that 

all the zeros of  lie in the circle defined by (2.8). 

           REMARK 2.2.   For , Theorem 2.8 reduces to the Theorem 2.7. 

 In [12] the author’s have relaxed the hypothesis of Theorem 2.1 by assuming 

alternate coefficients of polynomial                                                                                                                      

 

satisfies condition (2.1),  in fact they proved the following result. 

           THEOREM 2.9.        If  
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is a polynomial of degree  such that either  

                           if      is  odd 

or                     if      is even , 

then all the zeros of  lie in the circle 

 

             PROOF OF THE THEOREM 2.9.      Consider  

                        

 

 

Then for   we have 

                                 

  

 

 

                        

 

                         

                                     

 

 



50 
 

if 

 

Hence  does not vanish for  

 

Therefore those zeros of  whose modulus is greater than 1 lie in  

 

But those zeros of  whose modulus is less than or equal to 1 already satisfy the 

inequality (2.18).  Hence we conclude that all the zeros of   and hence those of  lie 

in the circle   

 

This completes the proof of Theorem 2.9. 

 If we apply Theorem 2.9 to the polynomial  we get the following result. 

          CORROLORY 2.5.      If  

                         

is a polynomial of degree  such that for some  either  

                       , 

and 

                         if is odd 

or 

                        , 

and 

                                   if  is even , 
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then all the zeros of  lie in the circle  

 

           We next present the following generalization of Enestrom-Kakeya theorem 

(Theorem 2.1) due to Govil and Rahman [28]. 

          THEOREM  2.10.    Let 

 

be a polynomial of degree . If  

      

                , 

where  , then all the zeros of  lie in the circle 

 

            PROOF OF THEOREM 2.10.     Consider the polynomial  

                     

                           

 

Applying Lemma 2.1 to the polynomial  which is of degree , with  and 

 it follows that all the zeros of  lie in the circle  

 

Since   
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therefore, 

 

 

Using it in (2.21), we get  
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Thus all the zeros of  lie in the circle 

 

Since all the zeros of  are also the zeros of , it follows that all the zeros of 

 lie in the circle defined by (2.20). 

             REMARK 2.3.   If we take  and , in 

Theorem 2.10,  then we get the Enestr m- Kakeya theorem (Theorem 2.1). 

            We shall conclude this chapter by presenting the following two results more 

recently proved by A. Aziz and B. A Zargar [13] which among other things yield 

some interesting refinements of Theorem 2.6 for  

              THEOREM 2.11.      Let 

 

be a polynomial of degree  with complex coefficients. If for some real  

            

 

                          , 

where ,  then all the zeros of  lie in the circle  
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For the proof of Theorem 2.11, we need the following lemma. 

          LEMMA 2.2.  Let 

                        

be a polynomial of degree . If for some real    

 

Then for each  

                       . 

         PROOF OF THEOREM 2.11.      Consider the polynomial  

                

                                  

 

 

Let   , then 

 

 

 

 

Now by Lemma 2.2  
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 This gives  

 

 

 

 

 

 

 

Hence 

 

Using this in (2.23), we obtain for  
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whenever 

 

Hence all those zeros of  whose modulus is greater than  lie in the circle  

 

We now show that all those zeros of  whose modulus is less than or equal to  

also satisfies (2.22) for Let  then by using Lemma 2.2 and 

hypothesis, we get  

 

 

 

                                                                   

 

whenever  
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Since by hypothesis  

 , 

it follows that (2.24) is true,  if  

 

Again by hypothesis and noting that we get  

 

 

 

 

 

Hence (2.25) holds, whenever 

 

or  

(2.26)                    whenever   

But we note that when   

 

so (2.26) holds.  Thus we have shown that if , then for , 
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Hence all the zeros of  lie in the circle defined by (2.22). But all the zeros 

of  are also the zeros of , we conclude that all the zeros of  lie in the 

circle defined by (2.22). This completes the proof of Theorem 2.11.                                                                                                                     

   REMARK 2.4.   To see that Theorem 2.11 is an improvement of Theorem 

2.6 for  We show that the circle defined by (2.22) is contained in the 

circle defined by (2.15). For this let  be any point belonging to the circle defined 

by (2.22), then 

 

This implies  

 

 

 

 

Since   it follows that (by Lemma 2.2) 

     for all  

                                                    

Using this in (2.26), we get  
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This shows that the point  belongs to the circle defined by (2.15). Hence the 

circle defined by (2.22) is contained in the circle defined by (2.15). 

           REMARK 2.5.   If we take  and   in Theorem 2.11,  

then we get the Enestr m- Kakeya theorem (Theorem 2.1). 

 Finally we present the following result which considerably improves up on the 

Theorem 2.10 for   

           THEOREM 2.12.      Let 

 

be a polynomial of degree  with complex coefficients. If 

 

(2.28)            

                               

where   then all the zeros of  lie in the circle 

 

           PROOF OF THEOREM 2.12.    Consider the polynomial  

         

                     

 

. 
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Let   then we have  

 

 

 

Now by hypothesis  

 

 

 

 

 

 

Using this in (2.30), we get for  
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whenever  

 

Hence all the zeros of  whose modulus is greater than  lie in the circle  

 

Now, if    then we have 
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This implies, 

 

This shows that all the zeros of  whose modules is less than or equal to  also 

satisfy the inequality (2.29).  Thus we conclude that all the zeros of  lie in the 

circle defined by (2.29). Since all the zeros of  are also the zeros of , it 

follows that all the zeros of  lie in the circle defined by (2.29). This completes the 

proof of Theorem 2.18. 

         REMARK 2.6.     To verify that Theorem 2.12 is an improvement of Theorem 

2.10 for  we have to show the circle defined by (2.29) is contained in 

the circle defined by (2.20). For this let  be any point belonging to the circle 

defined by (2.29), then we have  

 

This implies  
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Hence the point  belongs to the circle defined by (2.20) and therefore, the circle 

defined by (2.29) is contained in the circle defined by (2.20). 
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Composite Polynomials and Some  

Generalizations of Graces Theorem 

    

              The relative position of the real zeros and the zeros of the derivative of a real 

differentiable function is described in the well known Rolle’s theorem which states 

that, “Between any two zeros of a real differentiable function  lies at least one 

zero of its derivative”. It is a theorem which one meets in any introductory course of 

calculus. Yet its extension to the complex plane is by no means trivial. In fact Rolle ’s 

theorem is not generally true for arbitrary analytic function of a complex variable. For 

example, consider the function 

. 

We have 

 

that is,   vanishes for  and  ,  but its derivative  

 

never vanishes. This leads to the question as to what generalizations or analogues of 

Rolle’s theorem are valid for at least a suitably restricted class of analytic functions 

such as polynomials in a complex variable. This question is answered not with respect 

to Rolle’s theorem, but rather with respect to a particular corollary of Rolle’s theorem. 

It says that, any interval of the real axis which contains all the zeros of a 

polynomial , also contains all the zeros of its derivative . But this result is 
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only a special case of the following result which is known as Gauss-Lucas theorem 

[37, p.22]. 

             THEOREM 3.1.       If all the zeros of the polynomial  

 

 of degree , lie in the circle  then all the zeros of its derivative  also lie in  

 

              PROOF OF THEOREM 3.1.    Let   be the zeros of , then 

 

and   

 

 

This gives,  

 

Differentiating both sides with respect to , we get  

 

Now let  be a zero of .  If  is also a zero of , then  and therefore 

the result follows. So we suppose that is not a zero of , then , so that 

,  for any , and   Now  from (3.1) we have 

 

This gives  
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which implies 

 

or equivalently 

 

so that  

 

which gives 

 

  and  hence                      

 

 

from which we conclude that . Since  is an arbitrary zero of , it follows 

that all the zeros of  lie in the circle   and this completes the proof of 

Theorem 3.1. 

 

            COROLLORY 3.1.     If all the zeros of the polynomial  
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 of degree  lie in the circle  then all the zeros of  also lie in the circle  

. 

             PROOF OF COROLLORY 3.1.    Since the polynomial  has all its 

zeros in , it follows that all the zeros of the polynomial  lie 

in . Hence by Theorem 3.1, all the zeros of  also lie in   

Replacing   by  we conclude that all the zeros  lie in , which is 

the desired result. 

              

                POLAR DERIVATIVE OF A POLYNOMAIL. 

            Let  be a polynomial of degree  and  be real or complex number, then 

the polar derivative  of  with respect to  is defined by   

 

Clearly the polynomial   is of degree at most  and it generalizes the 

ordinary derivative   of   in the sense that  

 

Now an  degree polynomial  

 

may be regarded as a rational function which has an  order pole at infinity. A 

natural generalization of Gauss-Lucas theorem is therefore, the following, given by 

Laguerre in 1880 which concerns with the zeros of the derivative of the function 

 

              THEOREM 3.2.  If all the zeros  , of a polynomial  of degree 

 lie in a circular region  and  if   is any zero of , the polar derivative of 
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, then not both points  and  may lie outside . Further, if , any circle 

 through  and  either pass through all these zeros or separates these zeros. 

           Here by a circular region we mean the closure of not merely the interior of a 

circle but also the exterior of a circle or a half plane. 

           Several proofs of Laguerre’s theorem can be found in [36], [37] and [41].  But 

these are based mainly on considerations from mechanics (spherical and plane fields 

of forces, points of equilibrium, centre of mass etc). Here we shall present a new 

simple and purely analytic proof of this theorem, due to A. Aziz [1] which in essence 

involves no considerations from mechanics. This proof is based on the following 

lemma which is also of independent interest. 

          LEMMA 3.1.  If  are the zeros of a polynomial of degree  and if  

is any zeros of  such that , then for every complex number  

 

and 

 

            PROOF OF LEMMA 3.1.   Let  be a zero of , then we have  

 

 Since  therefore  and from (3.4), we get  

 

 If  are the zeros of , then ,  and (3.5) implies  
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which can be written as  

 

where  is given real or complex number. That is, 

 

where       

This gives  

 

so that  

 

or equivalently 

 

Now replacing  by ,   by  and  by  in (3.8), we obtain (3.2) and this 

proves the first part of the Lemma 3.1. 

To prove the second part of the lemma, we write (3.7) in the form  

 

This gives  
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which implies by (3.7)  

 

Now (3.9) can be written as  

 

This gives  

 

Now multiplying the two sides of (3.8) by , we get 

 

using this in (3.10), we obtain 

 

Replacing  by ,   by  and  by  in (3.11), we obtain (3.3) and the 

lemma is proved completely. 

             PROOF OF THEOREM 3.2.  If  

 

then  
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Therefore, we suppose that , so that . Assume that all the 

zeros  of  lie in a circular region  and let be a zero of . If  

is also zero of , then  lies in  and the result of first part of the theorem follows. 

Henceforth we assume that . Now from (3.6) we have 

 

 

with equality sign holding only if  

 

for  real. Using Cauchy-Schwartz inequality, it follows that  

 

 

 

where now equality holds on the right hand side of inequality only if  

 

Thus equality sign in both the inequalities holds only if  

 

This gives with the help of (3.6) that  
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So that   which is not the case. Hence in fact, we have 

 

To prove the result, we shall consider the three cases of  separately. 

           Case 1.   Let    ,   

 By second part of Lemma 3.1, we have   

 

Now let us assume that  lies exterior to , then . Since         

,  it follows from (3.13) that 

 

 

or 

 

which gives with the help of (3.12) that  

 

and this implies  

 

Similarly if , that is, if  lies exterior to , then from (3.13), we 

get  
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which gives with the help of (3.12) that  

 

 

and hence  

. 

Thus in this case, not both points  and  may lie outside of  . 

               Case 2.       Let now       . 

Since all the zeros of  lie in therefore, 

 

If  lies exterior to  then   and from (3.13), we get with the 

help of (3.12) that 

 

 

 

This gives   

. 

If now  lies exterior to , that is, if , then from (3.13) and with 

the help of (3.12) we get  
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which implies that . Thus in this case also not both the points  and  may 

lie outside . 

             Case 3. Finally let   be a half plane, that is, let , or , 

or   , or , where  are real numbers . We will prove 

the result for one of these four cases, say . The remaining three cases will 

follow in a similar way. Now we have  Therefore, ,  

  Since all the zeros of  lie in . Now by the first part of Lemma 3.1 ( 

with , we have   

 

where  is defined by (3.13). 

           We now assume that , that is,   lies exterior to , then 

from (3.14) we obtain  
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This gives with the help of (3.12) that  

 

so that , that is  lies exterior to . Now if we assume that , that is 

 lies exterior to , then again from (3.14) we have  

 

 

 

 

This gives  

 

This shows not both points  and  may lie outside of . Hence the first 

part of the theorem is completely proved. 

                To prove the second part of the theorem, let us suppose first that a circle 

 through  and  has atleast one   in its interior, no  in its exterior and 

the remaining s on its circumference.Then we have  

 

for at least one  and for the remaining s. This gives  
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Using this in (3.13), we obtain  

 

 

 

which is obviously a contradiction. Since we also get a contradiction if we assume that 

a circle  through   and  has atleast one  in its exterior, no  in its interior and the 

remaining s on its circumference, we conclude that any circle through  and  

either passes through all the zeros of  or separates these zeros. This completes the 

proof of the theorem in full. 

             As an application of  Laguerrer’s theorem we shall next present a result  

which is known as Graces theorem and which concerns with the relative location of 

the zeros of two apolar polynomials  and . But before we state this result, we 

shall define first apolar polynomials. 

            DEFINITION.  Two polynomials  

 

        

and  
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   where  denote the binomial coefficient , of the same degree  

are said to be apolar if their coefficients satisfies the relation  

 

                                

             Clearly, there are infinite number of polynomials which are apolar to a given 

polynomial, for example, the polynomial  is apolar to the polynomial 

 for any choice of constants  and . Since the condition of 

apolarity namely 

 

 

is satisfied for any choice of the constants  and  . 

            As to the relative location of the zeros of the polynomials  and  we 

have the following fundamental result due to Grace  and . 

           THEOREM 3.3 (GRACES THEORM).   If  

 

       and           

 

are apolar polynomials and if one of them has all its zeros in a circular region , then 

the other will also have atleast one zero in .                                                                                                                                                                                       

           For the proof of Theorem 3.3 we need the following lemma. 

          LEMMA  3.2.     If 
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is a polynomial of degree  and  are  arbitrary real or complex numbers, 

then the  polar derivative 

                 

of  with , can be written in the form 

 

where   

 

and  being the symmetric function consisting of the sum of all products of 

 taken  at a time. 

                 PROOF OF LEMMA 3.2.  We have  

 

 

 

Also 

. 

Substituting the value of   and  from (3.16) in (3.17), we get 

 

 

Equating the coefficients of , we obtain  
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which yields , 

. 

Let us now show by repeated applications of (3.18), we may derive the formula  

 

where  is the symmetric function consisting of the sum of all possible products 

 taken   at a time.  First we note that for , we have  

 

 

 

that is  

 

Also from (3.18), we have  

 

, 
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which shows that the result is true for . Supposing that the result to be true for , 

we prove that the result holds for also. From (3.18), with  replaced by , 

we get  

 

 

Using induction hypothesis, we get  

 

 

 

 

                                                             (since in the first sum                   

                                                           and in the second sum replace  by ) 

 

 

 

                                                              (Since in the second sum ) 

 

 , 
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                                                       (Since ) 

which shows that the result is true for  as well. Since the result is already true for  

, it follows by mathematical induction that the result is true for all integers . 

This completes the proof of Lemma 3.2. 

            PROOF OF THEOREM 3.3.  Since  

 

 

And  

 

                         

 , therefore, if   are the zeros of , then         

 

so that  

 

Equating the coefficients of like powers of  on the two sides, we get  
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where   and  is the symmetric function consisting of the sum of all 

possible  products of  taken  at a time.  Since  and  are apolar, 

we have  

 

 

To prove the theorem, we suppose that all the zeros of  lie in a circular region . 

We have to show atleast one zero of  lie in . If possible suppose that the zeros  

 lie exterior to . Then all the zeros of the first polar derivative of  

with respect to  lies in , that is, all the zeros of  

 

lie in . Since  lies exterior to , it follows that all the zeros of  

, 

lie in . Proceeding like this it follows by the repeated application of Lagurrer’s 

theorem that all the zeros of  

 

lie in . In particular all the zeros of  

 

lie in . But by Lemma 3.2,  can be written in the form 

 

 

where  
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and   

 

 

.] 

By (3.22) and (3.23), we have  

 

 

 

 

                    

                  

 

. 

Now we use the fact that  

  

 

 

so that we get from above  

 

 

By using (3.20), we get  
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The point is therefore the zero of  and must lie in , which is a 

contradiction. Hence our supposition that  has all its zeros exterior to  is 

wrong.Therefore, it follows that  must have atleast one zero in . This completes 

the proof of Theorem 3.3. 

        Recently in a series of papers A. Aziz has studied the relative location of the 

zeros of polynomials 

 

 

of arbitrary degree  and  respectively, , when their coefficients satisfy an 

apolar type relation. Here we first present the following result due to A. Aziz which is 

a generalization of his earlier result [3]. 

          THEOREM 3.4.      If  
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are two polynomials degree  and  respectively  such that 

, 

then the following holds. 

(i)   has all its zeros in  then   has at least one zero in . 

(ii)   has all its zeros in , then  has at least one zero in . 

        For the proof of the Theorem 3.4, we need the following lemma, which is a 

generalization of a result due to Markovitch [37, p. 64]. 

           LEMMA 3.3.     Let 

 

 

be two polynomials of degree  and , respectively . If we form  

 

then  

 

            PROOF OF LEMMA 3.3.  Since  and  are two polynomials of 

degree  and  respectively, we have 

 

Now we can write  
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from which it follows that,  

 

and     

 

Now  

 

 

so that by (3.24), we have  

 

 

 

therefore  is constant and thus 

 

Using (3.25) and (3.26), we obtain  
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This proves the lemma. 

        PROOF OF THEOREM 3.4.  Consider  

 

and  

 

 and  are two apolar polynomials of degree  and , respectively, . 

Now we have  

 

 

 

Using lemma 3.3, we obtain  

 

            (by hypothesis) 

this shows that the coefficients of the polynomials  and  satisfy the apolarity 

condition. Hence it follows from (i) and (ii) that if all the zeros of  lie in , 

then has at least one zero in   and if all the zeros of  lie in , 

then  has atleast one zero in . Replacing  by  and noting that 

 and  the conclusion of Theorem 3.4 follows 

immediately.                                                                                                                                                                 
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                 As an application of Theorem 3.4, we shall present the following result, 

which is a generalization of Walsh’s coincidence theorem [45] for the case when the 

circular region  is a circle  

               THEOREM 3.5.   Let   be a symmetric linear form of 

total   , in  and let  be a circle containing the 

 points . Then in , there exists at least one point  such that  

. 

                PROOF OF THEOREM 3.5.   We write 

 

so that                  

 

where are the symmetric functions consisting of the sum of all possible 

products of , taken  at a time. Now if  Then the 

difference   is linear, symmetric and of total degree , in the 

variables  so that by well known theorem of algebra,   

 can be expressed as a linear combination of the elementary 

symmetric functions  ,   that is, there exists  such that  

 

. 

If we define the polynomial  by  

 

 

Then the relation 
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shows that the polynomial  and  satisfy the condition of Theorem 3.4. Since 

the zeros of  lie in  we conclude from second part of Theorem 3.4 that 

 has at least one zero in the circle  that is, there 

exists at least one complex number   in  such that  

 

that is  

 

This completes the proof of theorem 3.5. 

              Next we present the following theorem due to A. Aziz [2] which is a partial 

generalization of a result due to Szeg   [37, p. 65] 

              THEOREM 3.6.     If all the zeros of a polynomial    

 

 of degree  lie in  and if  is a zero of the polynomial  

 

of degree , , then every zero of the polynomial 

 

of degree  has the form , where  is a suitably chosen point in  

                PROOF OF THEOREM 3.6.   If is a zero of  
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then  

 

Equation (3.28) shows that the polynomials  

 

 

and  

 

satisfy the condition of Theorem 3.4,  since all the zeros of   lie in , it 

follows from first part of Theorem 3.4 that   has at least one zero in 

.  If  are the zeros of , then the zeros of  are 

 Therefore one of these zeros must be some  satisfying 

 Hence we must have   for some  This complete the 

proof of Theorem 3.6. 

           The next theorem which is also due to A. Aziz [2] is a generalization of a result 

due to DeBruijn  [20]. 

          THEOREM 3.7.   From the two given polynomials 

 

 

of degree  and , respectively  . Let us form the third polynomial 
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of degree . Given a subset  of the  plane, let  for  and  for 

. Then    for  where  

 

             PROOF OF THEOREM 3.7.  Let  be a real or complex number, we replace 

the polynomial  by the polynomial  and hence  by             

. If  does not belong to , then  does not vanish in . So 

all the zeros of  lie in . By hypothesis, the zeros of   lie  Now if  

 is a zero of , then by Theorem 2 of [3],  has the form  where  is 

suitably chosen point in  and  is a zero of . Hence  

This shows  does not vanish in . If therefore,  is a value assumed by 

 in , then  is a value assumed by  in . Since  for 

, it follows that   for   and this completes the proof. 

          

             If  is a polynomial of degree  having all its zeros in the circle        

 and  is a polynomial of degree  having all its zeros in the circle 

, then according to Walsh’s two circle theorem ( [37, p. 89], [41, p. 57]) 

all the zeros of the polynomial 

 

lie in  and a third circle  

 

              In the literature for example [37], [41], there exists some implicit extensions 

of Walsh’s two circle theorem. Here in this chapter we finally present the following 

compact generalization of Walsh’s two-circle theorem for the polynomials and 

rational function due to A. Aziz  and  N. A. Rather [7]. 

               THEOREM  3.8.  If the locus of the zeros of a polynomial  of degree  

is the closed interior of the circle  with  centre  and radius  and the locus of the 
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zeros of a polynomial  of degree  is the closed interior of a circle  with centre 

 and radius . Then for every non-zero complex number  ,  the locus of the 

zeros of the polynomial 

 

consists of the closed interior of  if , of   if  and a third circle  with 

centre  and radius   where  

 

              Under the hypothesis of Theorem 3.8 if  and if the closed interior of 

 and  have no point in common, then these two circles contain all the zeros of 

 

             For the proof of Theorem 3.8, we need the following result known as Walsh’s 

coincidence Theorem [45]. 

             LEMMA 3.4.  Let  be a symmetric -linear form of totel 

degree  in  and let  be a circle containing the  points . 

Then there exists at least one point  belonging to  such that 

 

              PROOF OF THEOREM 3.8.   If    is any zero of , then  

 

           This is an equation which is linear and symmetric in the zeros of  and in 

the zeros of . By above lemma,  will also satisfy the equation obtained by 

substituting into equation (3.89) 

 

where is suitably chosen point in  and where is suitably chosen point in . 

That is  satisfies the equation  
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equivalently  

. 

First suppose that  and that the circles and   have no point in common, 

then clearly and so that  .  Hence from (3.30) we get  

                                                        

Since  is a point in ,  is a point in  and  is an arbitrary zero of , it 

follows that, in this case the two circles  and  contain all the zeros of . 

Henceforth we assume   , so that  is a polynomial of degree . 

Now from (3.30), it follows that  has the values  

 

Clearly the first  is a point in , the second  is a point in  and that the third  is 

a point in the circle  

 

follows from the fact that  

 

 

 

Since  is arbitrary zero of , it follows that every zero  lies in at least one of 

the circles  and . 
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           Conversely we now show that any point  in or on the circles    or  is a 

possible zero of . For, we may take  and choose and  as 

follows. If  and if  lies in , we choose  and  as arbitrary point in . 

Similarly, If  and  lies in , we choose  and  as an arbitrary point 

in . If however,  is any point in or on , then we may write  

 

 

  and associate with this ,  

 

  then  and  , so that  is a point in ,  is a point in  

and 

 

This completes the proof. 
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The Sendove Ilieff’s Conjecture Concerning The 

Critical Points Of A Polynomial 
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              A very familiar theorem of real analysis which is often introduced in our first 

calculus courses known as Rolles theorem states that “Between any two real zeros of a 

differentiable real function  lies atleast one critical point of   ”. 

              As discussed by Morris Marden [38] this theorem first appeared in a book 

published in 1691 by the French mathematician Michel Rolle. Its publication had 

predated the adoption of the geometric representation of complex numbers by about 

140 years. For, though this representation was devised by the Norwegian Cartographer 

Casper Wessel in 1797 and again by Swiss mathematician Jean Argand in 1806. Its 

universal acceptance had to await its invention in 1831 by none other than the great 

Karl Friedrich Gauss. 

             With this representation came the concepts of a complex variable   

and a function of a complex variable. It is not surprising that some early attention was 

directed towards constructing in the complex domain counterparts to well known 

theorems of real analysis such as Rolle’s theorem. However, the generalization of 

Rolle’s theorem to the complex plane is not obvious or trivial, as the following two 

example show. 

             First, take the function  which has zero at  and at . If 

the Rolle’s theorem were valid, at least one critical point would be situated on the 

interval . But , so that  has no zero whatsoever. 

             Secondly, take the polynomial  which has zero at the 

vertices  of an isosceles triangle. If Rolle’s theorem were valid,  

would have a critical point on each side of this triangle. But  so that 

 has a single zero at  , a point interior to the triangle. 

            As second example shows, the concept of a critical point lying between two 

real zeros (i.e. on the line segment joining the two zeros) generally is replaced in the 

complex plane by the concept of a critical point situated in some region containing the 

zeros of the given function. In the second example that region is a closed triangle, but 

in the later examples a polygon or a circular disk may be the most convenient choice. 



98 
 

            As to the importance of locating the critical points of a given function, it is to 

be recalled that, whereas for a function of a real variable the determination of the 

critical points helps in locating the maxima or minima, for a function of a complex 

variable  analytic in a region , finding the critical points aids in determining where 

the map of  by  fails to be conformal. 

           During the past dozen years considerable interest has been aroused regarding 

the location of the critical points of any polynomial   all of whose zeros lie in the unit 

disk   By Gauss-Lucas theorem we know that all the critical points of  also 

lie on the unit disk. The question recently raised is how close to each zero do the 

critical points lie [see 40]. 

           The following conjecture was made by the Bulgarian mathematician B. L.  

Sendov in 1962 but became later known as the “Ilieff Conjecture”. 

          CONJECTURE 1.  If all the zeros of an th degree polynomial  lie in the 

disk  and  is any one of the zeros, then atleast one critical point of  lies 

within the unit distance from . 

           The constant  in the above conjecture is best possible upon considering the 

polynomial . This conjecture has been open since appearing in 

Hayman’s Research Problem in Function Theory [30]. It has been verified for  

see [16, 42], for  see [35] and for  see [14, 33] and for  see [15, 17]. 

It has also been verified for some special classes of polynomials [see Schmeisser 43]. 

The proof for 6 and 7 degree polynomials where obtained through slightly different 

estimates with some involved computations.  Johnny E. Brown and Guangping Xiang 

have presented a unified method for investigating the Sendov conjecture. As an 

application, they have proved the conjecture  for polynomials of degree at most 8, 

for references see [18]. 

            Since in 1962, when conjecture  first became known, it has been the subject 

to more than 70 articles. However, it was fully verified for the polynomials of degree 

at most 8. A variety of special cases have been dealt with over the years (see [42, 43] 
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for references). Among these results we mention Miller’s qualitative result [27] 

according to which those roots of  lying sufficiently close to the unit circle satisfy 

an even stronger condition than the one stated in conjecture                                                                                                                               

           Here we shall present the following result due to Zalman Rubinstein which 

concerns the boundary case, that is when , of conjecture  

          THEOREM 4.1.  If  is a polynomial of degree  which has all its zeros in 

 and , then  has atleast one zero in the circle  

. 

The result is best possible as shown by the example  

          PROOF OF THEOREM 4.1     Since  

                       ,  

we write  

 

where  is a polynomial of degree , whose all zeros lie in . Then from 

(4.2) we get  

 

and 

 

If  is a multiple zero of , then  is also a zero of . Since this zero 

lie in (4.1), the result follows. Hence we suppose that  is a simple zero of . 

From (4.3) and (4.4), we have 

 

If  are the zeros of , then  

                            ,  
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and from (4.5), we get  

 

Let  be the zeros of , then from (4.6), we get  

 

so that  

 

Since,  . It follows that  

 

and therefore from (4.7), we have  

 

. 

If  

 

then from (4.8), we see that  

 

  . 

This implies  
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equivalently  

             , 

which is equivalent to (4.1) and the required result follows. 

              Next we shall present a proof of Sendov-Ilieff conjecture for polynomials of 

degree 3 and 4 which is also due to Zalman Rubenstein. 

              THEOREM 4.2.  Let  be a polynomial of degree 3 or 4 whose zeros lie 

in the closed unit disk, . If , then  always has a zero in the 

circle  

 For the proof of this theorem we need the following result which is known as Szegö’s 

composition theorem. 

              LEMMA 4.1.  From the given polynomials                         

 

 and           

 

let us form a third polynomial 

 

If all the zeros of  lie in a circular region , then every zero  of  has the form 

                   

where  is suitably chosen point in  and  is a zero of . 

             PROOF OF LEMMA 4.1.   We have  
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Let  be any zero of  , then 

                   

this gives  

 

Consider the polynomial  

 

 

 

Now the polynomial  

 

will be apolar to the polynomial  if  

 

which is true by (4.9). Hence  and  are apolar polynomials. Since all the 

zeros of  lie in the circular region , therefore, it follows by Graces theorem that 

 has at least one zero in . Now if  are the zeros of , then 

 

This implies  
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or  

 

This shows that the zeros of  are  . 

Since  has atleast one zero in , therefore , for atleast one           

 where . This gives , for at least one , which 

shows , when , and  is a zero of . This completes the proof of 

Lemma 4.1. 

          PROOF OF THEOREM 4.2.   We may assume that  

 

and the zeros   ,  of  lie in . We shall prove the polynomial  

 has a zero in . 

         Consider the polynomials  

 

 

 

by Lemma 4.1 every zero  of  has the form  

 

where  is a zero of and  is a point belonging to a circular region containing all 

the zeros of . The zeros of  have the form  
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such that  . For , . If . We may choose  such 

that . Thus .  

 

Since 

                  

 

it follows that all the zeros of  satisfy and  and no zero of  

lies in  

. 

Consider the polynomial  

 

where, 

 

No zero of  lies in , by Theorem 4.1, we shall obtain a contradiction if 

we show that all the zeros of  lie in . Indeed the zeros of  satisfies the 

inequality  

                               

where  

 

Now  

 

which  gives  
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Squaring both sides, we get  

                       

it follows that  

 

 

and  

 

which gives  

                      

or   

                      . 

Since , therefore , so that . Multiplying both sides of 

this inequality by , we have 

 

Combining (4.10) and (4.11), we get  

 

or  

                      

which implies   

                      

 

This completes the proof of the Theorem 4.2. 
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               In connection with conjecture , the following conjecture was made in 1969 

by the American mathematicians Goodman and Roth, the Canadian-Indian 

mathematician Rahman and the German mathematician Schmeisser. 

               CONJECTURE 2.   Under the same hypothesis as for conjecture , at least 

one critical point of  lies on the disk  

 

              The boundary case, that is when , of this conjecture was proved by 

A. W. Goodman, Q. I. Rahman and J. S. Rath [38]. 

              We present the following result due to A. Meir and A. Sharma [35] which is 

an extension of a result due to Goodman, Rahman and Ratti [27] for the boundary case 

of conjecture 2 for the zeros of higher derivatives of polynomials having multiple 

zeros.  

               THEOREM 4.3.     Let 

 

where  

 

with , and  . 

Then at least one zero of    lies in the disk 

 

For  strictly inequality will hold in  (4.12)  except when  and                   

  

             PROOF OF THEOREM 4.3.   We have 
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where  

 

Without loss of generality, we may suppose that  and . Now 

 

 

Now  

 

Therefore  

 

Thus from (4.3), we have  

 

 

Since  is a polynomial of degree , it follows that  is a polynomial of 

degree . Also  is a polynomial of degree , therefore  is a 

polynomial of degree . 

              If  are the zeros of  and  are the zeros of  

  Then from (4.13), we have  

 

So that  
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Since the zeros of  lie in , it follows by Gauss-Lucas theorem that the zeros 

of  also lie in  and therefore  for all , this 

implies 

                  . 

Hence from (4.14), we get  

 

 

Now if  

 

Then from (4.15), we have  

 

 

equivalently  

 

This gives  

 

that is  
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or      

 

which is equivalent to (4.12) and this proves the result. 

              REMAK 4.1.  The conjectured result of Goodman, Rahman and Ratti [27] 

for zeros on the boundary is included in Theorem 4.3 as a special case when          

. 

              Finally we conclude this chapter by present the following result which is also 

due to A. Meir and A. Sharma [35] concerning the zeros of  order derivative 

of a polynomial. 

             THEOREM 4.4.   If   

 

where  

 

 for all , then at least one zero of  lies in the 

closed disk  

 

           For the proof of this result we need the following lemmas. 

           LEMMA 4.2.    Let 
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and suppose that the zeros of  lie in the annulus , and those zeros of 

 lie in   then the zeros of  lie in . 

            If  is a polynomial of degree , and  and        

, then the polynomial  of the above lemma may be 

chosen, except for a constant factor, as follows, 

 

             LEMMA 4.3.  Let  and suppose  is a point in the closed unit disk. 

Then 

 

        PROOF OF THEOREM 4.4.   Without loss of generality, we may take   

, . Setting in Lemma 4.2, 

 

and  

                         ,                  

we have by (4.17) 

 

The zeros of  are given by 
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Therefore if  and  are the zeros of , then  

 

Assuming that  and , where  

 

 

  we have by lemma 4.2 

 

 

Suppose now the theorem is false. Then  

 

and thus 

 

Also from (4.18) and (4.19) and from , we have , which for  

yields the desired contradiction.  If , then since  
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we get from (4.19) and Lemma 4.3, 

 

 

 

 

Observing that . Since  , (4.21) yields a 

contradiction to (4.19) which completes the proof of the theorem.  
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