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eliminating insignificant experimental conditions. Experi-
mental data fitted Langmuir and Dubinin–Radushkevich 
models indicating that physical and chemical absorption 
take place at the same time. Further studies are necessary 
to verify how sorption–desorption cycles affect A. platensis 
cells.

Keywords Arthrospira platensis · Lead · Paper filter · 
Biosorption · Principal component analysis

Introduction

Lead is toxic at very low doses and it accumulates in tis-
sues of living organisms. Moreover, this element is the only 
heavy metal which does not pose any beneficial effects to 
human body (Damstra 1977). Currently, except from work-
ers employed in industries involving heavy metal process-
ing, children are mostly subjected to lead exposure (Damstra 
1977). Therefore, it is necessary to prevent contamination of 
potable water or food with that element. The group of alter-
native technologies applied for gaining that goal are based 
on biosorption—processes involving living or inactivated 
biomass for heavy metal recovery (Volesky and Naja 2005).

Cyanobacteria belonging to the Arthrospira genus have 
been tested as biosorbents in various studies (Augusto Da 
Costa and De França 1998; Gong et al. 2005a; Chen and Pan 
2005a, b; Vannela and Verma 2006; Gokhale et al. 2008; 
Lodi et al. 2008). According to Chen and Pan (2005a) who 
carried out the research involving living cells of Arthrospira 
platensis, the biomass removed lead from solutions at con-
centrations below 10 mg/l. Moreover, in our previous study 
(Duda-Chodak et  al. 2013), we successfully conducted 
biosorption at higher lead concentrations by engaging immo-
bilised cyanobacterium biomass and at the same time we 

Abstract Current study was focused on optimising lead(II) 
biosorption carried out by living cells of Arthrospira plat-
ensis using Principal Component Analysis. Various experi-
mental conditions were considered: initial metal concentra-
tion (50 and 100 mg/l), solution pH (4.0, 4.5, 5.0, 5.5) and 
contact time (10, 20, 30, 40, 50 and 60 min) at constant 
rotary speed 200 rpm. It was found that when the biomass 
was separated from experimental solutions by the filtration, 
almost 50% of initial metal dose was removed by the fil-
ter paper. Moreover, pH was the most important parameter 
influencing examined processes. The Principal Compo-
nent Analysis indicated that the most optimum conditions 
for lead(II) biosorption were metal initial concentration 
100 mg/l, pH 4.5 and time 60 min. According to the analy-
sis of the first component it might be stated that the lead(II) 
uptake increases in time. In overall, it was found to be useful 
for analysing data obtained in biosorption experiments and 
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demonstrated that free cells of Arthrospira platensis sur-
vived for at least 24 h in solutions containing up to 100 mg 
Pb/l regardless the pH of solutions. Therefore, we decided 
to continue the research involving living cells of A. platensis 
for lead biosorption. We applied Principal Component Anal-
ysis (PCA) for analysing that phenomenon and for selecting 
most optimum parameters of that process.

PCA has been scarcely used for describing biosorption 
experiments. It has been already applied for optimising 
bioremediation of dyes used in the food industry with Pitts-
burgh commercial activated carbon (Al-Degs et al. 2012). 
It also allowed formulating mathematical model describing 
those processes. Moreover, the PCA has been applied for 
optimising the removal of orange 12 dye by activated car-
bon coated with copper sulfide nanoparticles (Ghaedi et al. 
2014). Another research which involved PCA was focusing 
on soil bioremediation with indigenous microflora but PCA 
was only used for interpreting patterns obtained by denatur-
ing gradient gel electrophoresis (DGGE), not for describing 
biosorption processes (Chen et al. 2011). PCA also proved to 
be very useful tool for analysing metal removal by two spe-
cies of earthworm and it allowed comparing DNA sequences 
of those organisms (Dai et al. 2004). It also indicated how 
each metal influenced Biota-to-Soil accumulation factors.

However, PCA has not been used for optimising heavy 
metal biosorption so, to the best of our knowledge, current 
study is the first where that statistical tool was applied. We 
determined optimum pH, lead initial concentration and con-
tact time of the biosorbent with the solution. Moreover, we 
discovered that lead is absorbed by filter paper used for sepa-
rating the cyanobacterium biomass from model solutions.

Materials and methods

If not stated otherwise, all chemicals used in the study were 
manufactured by POCh (Gliwice, Poland). Arthrospira 
platensis (SAG 257.80) was purchased from Sammlung 
von Algenkulturen Universität Göttingen and cultivated in 
Zarrouk medium.

Cyanobacterium culture

The biomass was cultivated at 20 ± 1 °C under a fluorescent 
lamp 40 W, 2000–3000 lx in cycles of 12 h of light followed 
by 12 h of darkness. Cell growth was determined by deter-
mining dry matter content (laboratory dryer, 105 °C, 2 h) 
which was sufficient for further experiments after approxi-
mately 3–4 weeks. Cells were collected by centrifugation 
(2750g, 20 °C), washed thoroughly with deionized water and 
centrifuged again under the same conditions. The cell pellet 
was re-suspended in 25 ml of deionized water and will be 
further referred to as the ‘cell suspension’. The dry matter 

content of cell suspension was determined each time using 
a moisture analyser (MAC50, Radwag, Poland).

Biosorption experiments

Lead solutions (50 or 100 mg  Pb2+/L) were prepared using 
analytical grade lead nitrate [Pb(NO3)2] and their pH (4.0, 
4.5, 5.0, and 5.5) was adjusted with 0.1 M NaOH or 0.1 M 
HCl. All glassware was washed with 3%  HNO3 (12 h) before 
and after each experiment to wash out all potential contami-
nants. Cell suspension (1.000 ± 0.001 g) was introduced into 
50 ml of lead solution containing different initial metal dose 
(50 or 100 mg Pb/L) and holding various initial pH (4.0, 4.5, 
5.0, and 5.5). Then samples were incubated with continuous 
shaking (200 rpm) at room temperature. Cyanobacterium 
cells were removed from solutions by filtration (filter paper, 
grade 3 m/N, diameter 110 mm, Munktell, Sweden) after 10, 
20, 30, 40, 50, or 60 min.

Obtained filtrates were adjusted to pH 2 with 1  M 
nitric(V) acid and lead concentration was determined by 
atomic absorption spectrophotometry (AAS) (Varian AA 
240 FS, Varian Inc. Agilent Technologies). In the case of 
control samples (lead solutions without cell suspension) 
filter paper disks were mineralized after estimated time 
with concentrated nitric(V) acid (MARSXpress Microwave 
Digestion System, Warszawa Poland) at 170 °C for 15 min. 
The quantity of metal absorbed by the filter was determined 
as in the case of liquid samples. All experiments were per-
formed at least in three replicates.

Sorption isotherms

The lead uptake (q) of cyanobacterium biomass was cal-
culated twice. Firstly, the following mass balance equation 
(Eq. 1) for the biosorbent was used (Volesky 2004): 

For the second time, the corrected equation (Eq. 2) which 
considers the quantity of lead absorbed by the filter paper 
was used: 

In both equations, the following symbols were used: 
q—lead uptake at equilibrium (mg Pb/g biosorbent dry mat-
ter); V—volume of metal-bearing solution (l); C0—initial 
lead concentration (mg/l); Ci—corrected lead concentration 
after subtracting the quantity of the metal absorbed by the 
paper filter (mg/l); Cf —final lead concentration (mg/l); S—
dry matter of the biosorbent (g).

(1)q =

[

V ×
(

C0 − Cf

)]

S

(2)qcorr =

[

V ×
(

Ci − Cf

)]

S
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Langmuir isotherm was based on the following equation 
(Eq. 3): 

Qmax and b are Langmuir constants indicating maximum 
sorption capacities (mg/mg of dry matter) and sorbent/
sorbate affinity, respectively (Volesky 2004) while qe is the 
amount of metal adsorbed at equilibrium. Both constants 
were calculated by plotting 1/qcorr versus 1/Ci and add-
ing trend line. Then Qmax and b were obtained as follows: 
slope = 1/(Qmax·b) and intercept = 1/b. Langmuir isotherm 
was obtained by plotting Ci/qcorr versus Ci.

Linearised form of Freundlich model applied in the cur-
rent study was as follows (Eq. 4): 

where k and n are Freundlich constants were obtained by 
plotting log(qcorr) versus log(Ci) while qe is the amount of 
metal adsorbed at equilibrium. Constants were calculated 
according to Volesky (2004).

Another biosorption isotherm which was examined in the 
current study was Dubinin–Radushkevich isotherm (Dada 
et al. 2012) (Eq. 5): 

where  qs is the theoretical isotherm saturation capacity (mg 
 Pb2+/g),  Kad is Dubinin–Radushkevich isotherm constant 
 (mol2/kJ2). Mean free energy of metal ions (E) was obtained 
from the Eq. (6) following equation where  BDR is the iso-
therm constant: 

While ε constant was obtained in Eq. (7): 

R is the gas constant (8.314 J/mol K) and T is the absolute 
temperature (301.15 K). Isotherm parameters were calcu-
lated from the slope  (Kad) of the plot of  lnqcor versus ε2 and 
the exponent calculated from the intercept of the plot gave 
 qm (Erhayem et al. 2015).

Lagergren pseudo-first (Eq. 8) and pseudo-second (Eq. 9) 
order equations were applied for estimating kinetic models 
as in Erhayem et al. (2015): 

(3)qcorr =
(Qmax × b × Ci)

(1 + b × Ci)

(4)qcorr = k × C
1∕n

i

(5)ln qcorr = ln qs − Kad × �
2

(6)E =
1

√

2 × BDR

(7)� = RT

(

1 +
1

Cf

)

(8)log
(

qe − qt
)

= log qe −

(

k1

2.303

)

t

Symbols used in the equations demonstrated above were: 
 qe—the adsorption equilibrium capacity (mg/g),  qt—the 
quantity of lead(II) adsorbed (mg/g) at time t,  k1—the rate 
constant of pseudo-first-order (min −1),  q2—the maximum 
adsorption capacity (mg/g) and  k2—the rate constant of 
pseudo-second-order (g/mg·min). Constants  (k1,  k2 and  q2) 
were obtained from slope and intercept of pseudo-first-order 
and pseudo-second-order plots between log(qe –  qt) versus 
t and t/qt versus t.

Statistical analysis

All experiments were carried out at least in triplicates. The 
results are shown as arithmetic means (± standard devia-
tion). The normality of distribution was assessed by Shap-
iro–Wilk test and significance of differences between means 
was assessed by one-way variance analysis (ANOVA) with 
post hoc Tukey test. The Principal Component Analysis 
(PCA) with varimax rotation was applied to assess correla-
tions among variables. All statistical analyses were carried 
out using R: A language and environment for statistical com-
puting, version 3.1.3 (Foundation for Statistical Computing, 
Vienna, Austria, 2015). ANOVA was carried out using “lm” 
function and Tukey test was done using “HSD.test” func-
tion in the “agricolae” package. The PCA was carried out 
in “psych” package (Beaumont 2012). Cortest-Bartlett test 
was carried out using “cortest.bartlett” function in “psych” 
package as well. The data demonstrated normal distribution 
so its transformation was not necessary. Strong correlations 
between loads and scores were considered when values 
obtained in correlation matrix exceeded 0.3.

Results

It seems that pH 4.0 was optimum when lead initial con-
centration 50 mg/l, while pH 4.5 supported metal recovery 
at 100 mg/l (Tables 1, 2). Equilibrium was reached after 
40 min at most of cases. At both initial lead concentra-
tions, the quantity of metal adsorbed by paper disks did not 
exceed half of its initial quantity in experimental solutions 
(Tables 1, 2). Due to that fact, all q values were recalculated 
according to the Eq. (2) and it appears that the efficiency 
of lead removal did not exceed 70%, while it was approxi-
mately 90% before implementing corrections to the Eq. (1) 
(Tables 1, 2).

Principal Component Analysis of lead(II) uptake was car-
ried out only for results obtained from the Eq. (2). Scripts 
prepared by Beaumont (2012) were applied for all calcula-
tions. Different pH values were considered as loadings and 

(9)
t

qt
=

1

k2q
2
2

+
t

q2
t
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lead uptake values  (qcorr) obtained at different time inter-
vals and two different lead initial concentrations (50 and 
100 mg/l) were considered as scores (samples). Correlation 
matrix (Table 3) showed significant dependencies among 
considered components (correlation factors above 0.3) that 
formed two clusters. The p value obtained in Cortest-Bartlett 
test was relatively low (0.00004), yet it allowed continuing 
the analysis. In case of both initial lead concentrations it 
was shown that the first three components explained over 
95% variance which indicates that pH 5.5 is not significant 
for lead biosorption carried out by A. platensis so this value 
could be omitted in further experiments. The strongest cor-
relation (r = 0.8990) was found between pH 4.5 and pH 5.5 
(Fig. 1).

It was also indicated that  qcorr values obtained after 20, 
30 and 40 min contact time are correlated with pH 4.5 when 
initial metal concentration was 100 mg/l (Fig. 1). Another 
conclusion is that  Pb2+ recovery at 100 mg/l is correlated 
with pH values 4.0, 4.5 and 5.5. Moreover, it was found that 
shaking time is less significant factor in biosorption phe-
nomenon. The optimum parameters for lead(II) biosorption 

carried out by A. platensis are pH 4.5, initial  Pb2+ concentra-
tion 100 mg/l and shaking time 60 min.

The first principal component was strongly correlated 
with five of the original variables at lead initial concentra-
tion 100 mg/ml: 10, 20, 30, 40 and 60 min (Table 4). This 
suggests that the lead uptake increases in time of the process. 
Furthermore, the first principal component correlates most 
strongly with the time 30 min which suggests that it has got 
the most significant impact on lead biosorption. It might 
be also stated that metal biosorption reaches equilibrium 
after 40 min. The third principal component influences more 
variables, however, that influence is much weaker since it 
explains 28.6% of the variance while the first principal com-
ponent explains 41.7% of the variance. Nevertheless, based 
on values obtained for the third component it might be stated 
that the equilibrium of lead(II) biosorption is reached within 
30 min at metal initial concentration 50 mg/l. Another con-
clusion obtained from analysing the third component is that 
at lead initial concentration 100 mg/l maximum metal uptake 
was reached after 50 min (the highest principal component 
value 1.2829, Table 4).

Table 1  The comparison of 
lead uptake (q) by A. platensis 
at  Pb2+ initial concentration 
50 mg/l calculated per Eqs. 
(1, 2)

a,b,c The same letters next to values of lead uptake calculated according to the Eq. (1) or Eq. (2) at certain 
pH value (column) indicate the lack of statistically significant differences between means (p < 0.05), n = 6

pH Contact time 
[min]

Corrected lead 
concentration
Ci [mg/l]

Final lead con-
centration
Cf [mg/l]

Lead uptake 
q (Eq. 1)
[mg/g d.m.]

Corrected lead uptake 
qcorr (Eq. 2)
[mg/g d.m.]

4.0 10 26.76 14.30 ± 1.43 54.09 ± 1.94b 18.9 ± 4.1b

20 9.62 ± 0.96 61.19 ± 1.32b 26.0 ± 6.7b

30 6.93 ± 0.69 65.26 ± 0.92b 30.0 ± 6.5b

40 9.52 ± 0.95 134.93 ± 2.88a 57.5 ± 4.9a

50 10.56 ± 1.06 131.46 ± 3.11a 54.0 ± 8.8a

60 10.67 ± 1.07 131.10 ± 3.13a 53.6 ± 3.3c,d

4.5 10 18.52 16.53 ± 1.65 79.69 ± 3.52c,d 4.7 ± 2.4d

20 17.94 ± 1.79 76.33 ± 3.23d 1.4 ± 0.0d

30 16.46 ± 1.65 79.86 ± 3.51b,c,d 4.9 ± 3.6b,c,d

40 12.86 ± 1.29 88.43 ± 2.80a 13.5 ± 1.6a

50 14.71 ± 1.47 84.02 ± 3.09a,b,c 9.1 ± 1.6a,b.c

60 13.50 ± 1.35 86.90 ± 2.82a,b 11.9 ± 3.8a,b

5.0 10 21.12 7.36 ± 0.74 152.29 ± 2.40a 49.1 ± 1.1a

20 19.80 ± 1.98 107.85 ± 6.39b 7.3 ± 3.5b

30 19.94 ± 1.99 107.36 ± 6.39b 6.3 ± 4.3b

40 14.75 ± 1.47 125.89 ± 4.63b 22.8 ± 3.5b

50 19.19 ± 1.92 110.04 ± 6.23b 6.9 ± 5.4b

60 17.69 ± 1.77 115.39 ± 5.59b 12.2 ± 5.4b

5.5 10 14.03 12.90 ± 1.29 92.75 ± 2.91b 2.8 ± 0.0b

20 4.35 ± 0.43 114.13 ± 0.92a 24.2 ± 1.2a

30 5.94 ± 0.59 110.15 ± 1.23a 20.3 ± 0.9a

40 7.73 ± 0.77 105.68 ± 1.79a 15.8 ± 1.4a

50 9.06 ± 0.91 102.35 ± 1.90a,b 12.4 ± 7.0a,b

60 8.88 ± 0.89 102.80 ± 2.01a,b 12.9 ± 3.3a,b
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Freundlich model verifies if the biosorbent surface 
is homogenous while Langmuir isotherm allows deter-
mining the affinity of metal ions to the biosorbent and 
estimating the number of binding sites (Volesky 2004). 
Dubinin–Raduskhevich model is used for estimating mate-
rial porosity and the apparent energy of adsorption (Hutson 
and Yang 1997). Freundlich, Lngmuir and Dubinin–Radush-
kevich isotherms were plotted for  qcorr obtained at different 
time intervals at pH 4.5 and lead(II) initial concentration 
100 mg/l (Figs. 2, 3, 4) since those conditions were indi-
cated by the PCA as the most optimum for the biosorption 

process. The experimental data fitted best Langmuir and 
Dubinin–Radushkevich models (Table 5). In the case of 
pseudo-first kinetic model it was demonstrated that biosorp-
tion performance did not fit the linear model (Fig. 5a) 
because it was changing its course after the first 20 min of 
the process—the lead uptake did not increase linearly after 
that time. This means that the phenomenon considered in the 
current study did not follow pseudo-first order. On the other, 
the experimental data fitted pseudo-second kinetic model 
very well (Fig. 5b).

Discussion

Various authors have demonstrated that lead(II) biosorp-
tion reaches low efficiencies at pH below 4.0 (Gong et al. 
2005b; Wang and Chen 2006; Raoof et al. 2006; Benaïssa 
and Elouchdi 2007) so in the recent study only the range 
from 4.0 to 5.5 with 0.5 increment was tested. Hydrogen cat-
ions at high concentrations compete for active binding sites 
with heavy metal ions. On the other hand, lead precipitation 
occurs at pH above 5.5 which inhibits metal recovery by 

Table 2  The comparison of 
lead uptake (q) by A. platensis 
at  Pb2+ initial concentration 
100 mg/l calculated per Eqs. 
(1, 2)

a,b,c The same letters next to values of lead uptake calculated according to the Eq. (1) or Eq. (2) at certain 
pH value (column) indicate the lack of statistically significant differences between means (p < 0.05), n = 6

pH Contact time
[min]

Corrected lead 
concentration
Ci [mg/l]

Final lead concentration
Cf [mg/l]

Lead uptake 
q (Eq. 1)
[mg/g d.m.]

Corrected lead uptake 
qcorr (Eq. 2)
[mg/g d.m.]

4.0 10 68.38 35.42 ± 3.54 111.35 ± 5.40c 56.8 ± 6.4c

20 33. 89 ± 3.39 113.98 ± 5.25c 59.5 ± 13.3c

30 31.10 ± 3.11 118.79 ± 4.98b.c 64.3 ± 6.1b,c

40 23.58 ± 2.36 131.76 ± 2.56a 77.2 ± 4.1a

50 21.90 ± 2.19 134.66 ± 2.59a 80.1 ± 4.2a

60 25.38 ± 2.54 128.66 ± 3.46 a,b 74.1 ± 2.5a,b

4.5 10 64.77 34.14 ± 3.41 173.16 ± 5.72d 80.6 ± 12.4d

20 29.53 ± 2.95 185.45 ± 3.59b,c 92.7 ± 9.8b,c

30 29.33 ± 2.93 185.97 ± 5.49b,c 93.3 ± 9.9b,c

40 31.33 ± 3.13 180.71 ± 6.06c,d 88.0 ± 9.2b,c,d

50 26.15 ± 2.61 194.34 ± 5.00a,b 101.6 ± 8.1a,b

60 23.25 ± 2.32 201.97 ± 4.91a 109.3 ± 9.8a

5.0 10 41.43 30.15 ± 3.01 183.82 ± 5.75a,b 29.7 ± 4.3a,b

20 31.89 ± 3.12 179.24 ± 6.26b 25.1 ± 19.1b

30 31.21 ± 3.12 181.03 ± 5.08b 26.9 ± 14.3b

40 26.36 ± 2.36 193.78 ± 5.47a 39.7 ± 6.7a

50 26.24 ± 2.62 194.10 ± 5.05a 40.0 ± 5.7a

60 27.43 ± 2.74 190.97 ± 8.28a,b 36.8 ± 4.5a,b

5.5 10 53.06 31.47 ± 3.15 131.79 ± 4.11b 41.5 ± 14.9b

20 28.98 ± 2.90 136.58 ± 4.66b 46.3 ± 11.6a

30 26.67 ± 2.67 141.02 ± 3.32a,b 50.8 ± 0.6a,b

40 21.93 ± 2.19 150.14 ± 3.45a 59.9 ± 23.4b

50 31.48 ± 3.15 131.76 ± 2.98b 41.5 ± 18.3a,b

60 30.30 ± 3.03 134.04 ± 3.91b 43.8 ± 7.5b

Table 3  Correlation matrix for lead initial concentrations 50 and 
100 mg/l

Squares indicate clusters of correlated data

pH 4.0 pH 4.5 pH 5.0 pH 5.5

pH 4.0 1.0000
pH 4.5 0.8055 1.0000
pH 5.0 0.3671 0.5760 1.0000
pH 5.5 0.7229 0.8990 0.3605 1.0000
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the biomass (Xuan et al. 2006; Oluyemi et al. 2012; Samra 
et al. 2014). Based on the obtained results, pH 4.0 and 4.5 
provided conditions for more efficient  Pb2+ recovery which 
might be explained by the fact that only ionic forms of heavy 
metals are available to the microbial biomass.

Chen and Pan (2005a) demonstrated that lead did not 
cause significant damage of A. platensis cells over 7 days 
of incubation at metal concentration ranging up to 20 mg/l. 

In the current study, higher heavy metal concentration 
increased chances of “contacting” ions with active binding 
sites which resulted in enhanced sorption. The adsorption of 
metal ions by filter paper has not been considered in previous 
studies where the same procedure of separating biosorbent 
from test solution was applied (Gong et al. 2005b; Parvathi 
et al. 2007; Şeker et al. 2008; Solisio et al. 2008). Therefore, 
it would be needed to revise results and findings reported in 
cited papers to verify actual efficiencies of lead(II) removal 
by microbial biomass.

According to the results obtained in PCA the strongest 
correlation was noted between pH 4.5 and 5.5 (Fig. 1) which 
might be explained by the fact that at pH 5.5 partial pre-
cipitation of lead occurs which means that metal ions are 
less available to cyanobacteria cells (Akar and Tunali 2006) 
while the highest metal recovery was obtained at pH 4.5. On 
the other hand, pH values 4.0 and 4.5 are the most significant 
parameters in lead(II) biosorption. That correlation could be 
explained by the fact that at both lead initial concentrations 
extending the time of shaking experimental flasks did not 
improve lead recovery, except for experiments carried out 
at 100 mg of  Pb2+/L at pH 4.5 where slight improvement of 
 qcorr values was noted (Tables 1, 2).

Another strong correlation was noted between pH 4.0 
and 4.5 (Fig. 1) and it might be explained by the fact that 
biosorption was the most effective at these two pH values 
at lead initial concentrations 50 and 100 mg/l, respectively. 

Fig. 1  PCA analysis of 
corrected  qcorr (lead uptake) 
obtained at different times 
and initial lead concentrations 
(scores) under various pH 
conditions (loadings) for the 
first three components; circles 
indicate correlated loads and 
scores

10 min 50 mg/l 

20 min 50 mg/l 

30 min 50 mg/l 

40 min 50 mg/l 
50 min 50 mg/l 60 min 50 mg/l 

10 min 100 mg/l 
20 min 100 mg/l 

30 min 100 mg/l

40 min 100 mg/l 

50 min 100 mg/l 

60 min 100 mg/l pH 4.0

pH 4.5
pH 5.0 pH 5.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
PC

3 
(2

6.
8%

)

PC1 (41.7%)

Table 4  Correlations between principal components and original 
variables

Values marked in bold indicate significant correlations

Variables PC1 PC3 PC2

10 min 50 mg/l − 1.33762 − 1.7467 2.17395231
20 min 50 mg/l 0.2700 − 1.5380 − 1.22019895
30 min 50 mg/l − 0.0280 − 1.1301 − 1.22599243
40 min 50 mg/l − 1.2922 0.7610 − 0.05009083
50 min 50 mg/l − 1.1751 0.7645 − 1.09187203
60 min 50 mg/ml − 1.1917 0.6764 − 0.71562856
10 min 100 mg/l 0.7411 − 0.2390 0.24560266
20 min 100 mg/l 1.1202 − 0.1837 − 0.12150744
30 min 100 mg/l 1.1986 0.0028 − 0.08520182
40 min 100 mg/l 1.0654 0.5373 0.58681293
50 min 100 mg/l 0.0998 1.2829 0.84502001
60 min 100 mg/ml 0.5296 0.8037 0.65910415
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Strong correlation also occurred between pH 4.0 and 5.5 
(Table 3). Possible explanation to this phenomenon could be 
that at those pH values lead uptake  (qcorr) was increasing up 

to 30 or 40 min and it was decreasing afterward. In conclu-
sion, PCA was found useful for analysing biosorption data 
obtained from preliminary studies.

Fig. 2  Langmuir isotherm of 
lead(II) sorption by living cells 
of A. platensis at different time 
intervals [pH = 4.5, lead(II) 
initial concentration = 100 mg/l, 
rotary speed = 200 rpm]
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Fig. 3  Freundlich isotherm of 
lead(II) sorption by living cells 
of A. platensis at different time 
intervals [pH = 4.5, lead(II) 
initial concentration = 100 mg/l, 
rotary speed = 200 rpm]
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Fig. 4  Dubinin–Raduskhevich 
of lead(II) sorption by living 
cells of A. platensis at different 
time intervals [pH = 4.5, lead(II) 
initial concentration = 100 mg/l, 
rotary speed = 200 rpm]
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There was a higher regression coefficient obtained for 
Langmuir isotherm (Table 5) which indicates that the main 
mechanism responsible for lead(II) recovery was physical 
absorption. It might be concluded that heavy metal ions were 
organised in a monolayer (Volesky 2004) but their affinity 
to cell walls of tested cyanobacterium was relatively low 
(Table 5) due to the fact that b constant was very low. This 
might explain why after first 10 min  qcorr values were high 

and they decreased after another 10 min. On the other hand, 
relatively high  Qmax value (254.4 mg/g of d.m.) indicates 
that cyanobacterium biomass could be more effective at 
higher  Pb2+ concentrations or remove the metal more effec-
tively after further optimisation. The value of that constant 
also suggests that there are many binding sites available 
on the surface of the cyanobacterial cell walls. Moreover, 
results obtained for Freundlich model indicate that the 

Table 5  The summary of 
sorption isotherms

Isotherm type Isotherm constants Regression 
coefficient 
 [R2]

Langmuir Qmax = 254.4, b = 0.020361 0.9896
Freundlich Kf = 0.010629, n = 1.541545 0.6854
Dubinin–Radushkevich qs = 64.70 mg/g,  Kad = 100  mol2/J2 0.9124
Pseudo-first order k1 = 1.54/min 0.3755
Pseudo-second order q2 = 0.0512 mg/g,  k2 = 0.0088 [min·g/mg] 0.9551

Fig. 5  Pseudo-first (a) and 
pseudo-second (b) kinetic mod-
els of lead(II) sorption by living 
cells of A. platensis at different 
time intervals [pH = 4.5, lead(II) 
initial concentration = 100 mg/l, 
rotary speed = 200 rpm]
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biosorbent surface was not homogenous (Volesky 2004) 
which is not surprising when complex chemical composi-
tion and structure of cell walls are considered (Van Eykelen-
burg 1978). High material porosity was also confirmed by 
the data obtained from Dubinin–Raduskhevich model and 
the value of free sorption energy E, which was higher than 
8 (Table 5), confirmed that the biosorption phenomenon 
performed by living cells of A. platensis was based on the 
chemical sorption (Erhayem et al. 2015). Additionally, the 
fact that the process follows according to the pseudo-second 
order confirms that chemical biosorption was very signifi-
cant mechanism taking place during processes described in 
the current paper.

The most significant factor influencing lead(II) biosorp-
tion by living cells of A. platensis is pH and initial metal 
concentration, while the influence of the contact time is less 
significant. Moreover, when filter paper is used for separat-
ing biomass from the test solution, it has to be determined 
how much metal is absorbed by that material or that step 
should be replaced with other separation techniques (i.e. 
centrifugation). PCA indicated that pH 5.5 was not signifi-
cant for lead(II) biosorption under tested conditions and 
optimum parameters for this process were initial metal con-
centration 100 mg/l, pH 4.5 and contact time 60 min, how-
ever, equilibrium was reached after 30 min. It seems that 
physical sorption is the main mechanism of the described 
processes. Further studies are necessary to investigate the 
mechanism of  Pb2+ biosorption by living cells of A. plat-
ensis and examine the influence of other factors that have 
an influence on that phenomenon. Moreover, it should be 
verified if cyanobacterium cells survive continuous sorp-
tion–desorption cycles and how that process could be 
optimised.
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