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A B S T R A C T

Environmental cues, such as photoperiod, regulate the timing of major life-history events like breeding through
direct neuroendocrine control. Less known is how supplementary environmental cues (e.g., nest sites, food
availability) interact to influence key hormones and behaviors involved in reproduction, specifically in mi-
gratory species with gonadal recrudescence largely occurring at breeding sites. We investigated the behavioral
and physiological responses of male European starlings to the sequential addition of nest boxes and nesting
material, green herbs, and female conspecifics and how these responses depend on the availability of certain
antioxidants (anthocyanins) in the diet. As expected, cloacal protuberance volume and plasma testosterone of
males generally increased with photoperiod. More notably, testosterone levels peaked in males fed the high
antioxidant diet when both nest box and herbal cues were present, while males fed the low antioxidant diet
showed no or only a muted testosterone response to the sequential addition of these environmental cues; thus
our results are in agreement with the oxidation handicap hypothesis. Males fed the high antioxidant diet
maintained a constant frequency of breeding behaviors over time, whereas those fed the low antioxidant diet
decreased breeding behaviors as environmental cues were sequentially added. Overall, sequential addition of the
environmental cues modulated physiological and behavioral measures of reproductive condition, and dietary
antioxidants were shown to be a key factor in affecting the degree of response to each of these cues. Our results
highlight the importance of supplementary environmental cues and key resources such as dietary antioxidants in
enhancing breeding condition of males, which conceivably aid in attraction of high quality females and re-
productive success.

1. Introduction

Male reproductive success relies heavily upon securing key re-
sources and attracting mates (Emlen and Oring, 1977; Klug, 2011;
Reynolds, 1996). Increased availability of breeding resources such as
food or nesting sites can directly enhance male reproductive condition
(Hau et al., 2000; Nelson et al., 1995). Key resources acquired by males
can directly (e.g. via behavior; Godin and Dugatkin, 1996; Reaney and
Backwell, 2007) or indirectly (e.g. via territory quality; Dijkstra et al.,
2008) indicate the quality of males and thus influence female mate
choice and presumably offspring quality. For example, certain types of
vocalizations (Dreher and Pröhl, 2014) and aggressive behaviors

(Buzzard et al., 2014), and high intensity of behavioral display rates
(Kodric-Brown and Nicoletto, 1996), are preferred by females across
several distinct taxa including the Neotropical poison frog (Oophaga
pumilio), wild yak (Bos mutus), and the guppy (Poecilia reticulata). Fur-
thermore, in birds males may also attract females by adorning nests
with attractive items, both natural and anthropogenic (Brouwer and
Komdeur, 2004; Gwinner, 1997; Östlund-Nilsson and Holmlund, 2003).
For example, male European starlings (Sturnus vulgaris) will adorn nests
with green plant material (herbs) before females arrive, and males will
also display greenery in an eye-catching manner when females are in
close proximity to their nest box (Brouwer and Komdeur, 2004;
Gwinner, 1997). Less studied is how availability and phenology of these
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key resources directly influences male breeding condition and con-
specific interactions associated with breeding.

The ability of male vertebrates to successfully reproduce depends on
the interplay between initial predictive information such as photo-
periodically-induced physiological changes that are required for re-
production (e.g., stimulation of the hypothalamic-pituitary-gonadal
(HPG) axis; Wingfield et al., 1992) and supplementary information
(e.g., presence of females, diet quality). For migratory birds, photo-
period is considered the initial predictive cue involved in transitioning
individuals from migration to reproduction (reviewed by Dawson,
2008), although supplementary environmental cues, like food, water
and social cues, are needed to induce appropriate breeding behavior
and displays (reviewed by Visser et al., 2010). Male breeding condition
is largely regulated by testosterone including the expression of re-
productive behaviors such as aggressive and territorial behaviors (re-
viewed by Wingfield and Farner, 1993; Wingfield and Silverin, 2002),
courtship behaviors (Fusani et al., 2007), and singing (Foerster et al.,
2002), and development of secondary sex characteristics, such as
cloacal protuberance in passerines (Hegner and Wingfield, 1987). Po-
sitive relationships between testosterone levels and indicators of
breeding success have been established in several bird species, and
include testosterone and the number of nest sites (Gwinner and
Gwinner, 1994), the successful rearing of chicks (Moss et al., 1994),
and, indirectly, vocalizations (De Ridder et al., 2000; Hunt et al., 1997).
However, maintenance of elevated testosterone levels is also known to
directly induce oxidative stress in various tissues (Alonso-Alvarez et al.,
2007; Chainy et al., 1997) as does increased metabolic rate (Costantini,
2014) that occurs during the energetically demanding breeding season
(Drent and Daan, 1980). Vertebrates can defend against such oxidative
stress by consuming dietary antioxidants (e.g., Blount, 2004; reviewed
by Monaghan et al., 2009) and by up-regulating their endogenous an-
tioxidant system (reviewed by Cooper-Mullin and Mcwilliams, 2016).
Insufficient dietary antioxidant consumption is known to impair an
individual's ability to repair oxidative damage to tissues (Guarnieri
et al., 2008; reviewed by Skrip and Mcwilliams, 2016), which could
impede reproductive success. No study to date has determined whether
the availability of dietary antioxidants affects the interaction between
environmental cues and physiological changes (e.g., circulating tes-
tosterone) associated with reproduction in a wild vertebrate.

Many temperate and arctic breeding birds migrate to more benign
areas during winter, and for many species, including the European
starling, there is an associated sex-biased migration phenology.
Typically, males arrive at breeding grounds prior to females (protandry)
and then acquire and defend a territory (reviewed by Morbey and
Ydenberg, 2001) while preparing nests for female arrival. After females
arrive, the males begin to court females with song and displays
(Gwinner et al., 1987; Gwinner and Schwabl, 2005; Kessel, 1957). For
European starlings, an adequate nest box or natural cavity and the
presence of females are among the most important cues for eliciting
male courtship behavior and elevating testosterone levels (Gwinner and
Gwinner, 1994; Gwinner et al., 2002; Pinxten et al., 2003). For star-
lings, decorating nests with locally-collected herbs (e.g., Daccus carota,
Anthriscus sylvestris, Achillea millefolium) and male displays with herbs
positively correlate with female attraction/choice (Brouwer and
Komdeur, 2004; Gwinner, 1997; Veiga et al., 2006). The short distance
migratory starlings arrive at the breeding grounds many weeks before
the first eggs are laid and testicular recrudescence largely occurs during
this period (Berthold, 1967). Thus, gonadal recrudescence may in fact
interact with the outlined environmental and social cues, as well as
resources available through dietary intake.

We studied the behavioral and hormonal changes of captive male
European starlings during spring when presented with sequential ad-
ditions of the following supplementary environmental cues: nest boxes
and nest building material, green herbs, and finally female conspecifics.
This sequential addition of environmental cues matches that experi-
enced by free-living males from migratory populations arriving prior to

females (Gwinner and Schwabl, 2005). Additionally, we determined the
effect of high and low levels of dietary antioxidants (anthocyanin) on
male physiology, condition, and behavior. We tested four hypotheses:
(1) cloacal protuberance volume and testosterone levels of males in-
crease additively with the addition of nest box, herbs, and female cues;
(2) testosterone levels are enhanced in males fed the high antioxidant
diet (oxidation handicap hypothesis; Alonso-Alvarez et al., 2007); (3)
sequential addition of supplementary environmental cues increases the
frequency of breeding behaviors; and (4) male breeding behaviors are
enhanced in males fed the high antioxidant diet.

2. Methods

2.1. Starling care, aviaries, and experimental diets

Forty-five male and 33 female 5–8 day-old European starlings were
collected from nest boxes in late-April to early-May 2015 from a colony
in Upper Bavaria, South Germany (47°58′ N, 11°13′ E). We hand-raised
the chicks at the Max Planck Institute for Ornithology (MPIO),
Seewiesen, Germany until they were able to feed independently (ca.
35 days old) and then maintained them in separate male and female
aviaries until August 2016 (see Supplementary materials for details).
Before males were exposed to low or high antioxidant diets, all birds
received the standard MPIO maintenance diet (insect powder, produce
(apples, oranges, lettuce), dried fruit pellets, and live mealworms) for at
least 1.5 months. At the start of the spring breeding experiment be-
ginning on February 9, 2017, males were switched to a semi-synthetic
high polyunsaturated fat diet (Table 1) containing either high or low
levels of dietary antioxidant (anthocyanin).

All procedures adhered to the ethical guidelines of the North
American Ornithological Council (Fair et al., 2010) and were approved
by the University of Rhode Island IACUC (Protocol #AN08-02-014) and
the Government of Upper Bavaria, Germany (AZ 55.2-1-54-2532-216-
2014).

Starting on February 9, 2017, and continuing every 3–9 days, 7–8

Table 1
Composition of the high polyunsaturated fat, high-antioxidant diet fed to
European Starlings for the spring 2017 breeding experiment. Half the males
(n=23) were fed this semi-synthetic diet without supplemental anthocyanin
(low-antioxidant diet) while the other males (n=22) were fed this semi-syn-
thetic diet with supplemental anthocyanin (high-antioxidant diet).

High polyunsaturated diet

Ingredients % wet mass % dry mass
Glucosea 16.84 39.19
Caseinb 8.21 19.12
Cellulosec 2.14 4.97
Salt mixtured 2.05 4.78
Canola oile 5.18 12.05
Sunflower oilf 3.03 7.06
Anthocyaning 0.18 0.42
Amino acid mixh 1.15 2.68
Vitamin mixi 0.16 0.38
Ground meal worms 2.65 6.16
Agarj 1.37 3.19
Water 57.04 –

a Glucose, VWR International GmbH, Darmstadt, Germany.
b Casein, Affymetrix UK Ltd., High Wycombe, UK.
c Alphacel, MP Biomedicals, Solon, OH, USA.
d Brigg's salt mix, MP Biomedicals, Solon, OH, USA.
e Canola oil, Jedwards International, Inc., Braintree, MA, USA.
f Sunflower oil, Jedwards International, Inc., Braintree, MA, USA.
g Standardized Elderberry 6.5% Powder; Artemis International, Inc., Fort

Wayne, IN, USA; no anthocyanin was included in the low antioxidant diet.
h Amino Acid Mix, Sigma-Aldrich, St. Louis, MO, USA.
i AIN vitamin mix, MP Biomedicals, Solon, OH, USA.
j Agar, Ombilab-laborenzentrum GmbH, Bremen, Germany.
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males were randomly selected and transferred from the outdoor
maintenance aviary to one of six empty outdoor breeding aviaries, that
contained only sawdust, perches, food, and water (see Supplementary
materials for size and configuration of the breeding aviaries). On the
day males were moved into the outdoor breeding aviaries (background
day; see Fig. 1), we measured each male's tarsus and wing chord, which
were later used in calculating a body condition index (Peig and Green,
2009). The staggered start times for each of the six aviaries (Aviary 1
introduced on 9 Feb, Aviary 2 on 12 Feb, Aviary 3 on 21 Feb, Aviary 4
on 24 Feb, Aviary 6 on 5 March, and Aviary 5 on 8 March) were de-
signed to accommodate the flight training schedule of females as part of
a separate study. Males moved to these breeding aviaries were fed ad
libitum the same high or low antioxidant semi-synthetic diets (Table 1)
fed to females that would later be introduced into the breeding aviaries
on day 21 of their breeding timeline (Fig. 1). Birds in aviaries 1, 3, and
5 were fed the antioxidant low diet (n=23), while those in aviaries 2,
4, and 6 were fed the antioxidant high diet (n=22).

2.2. Light cycles

During January 2017 males in the outdoor maintenance aviaries
were maintained on a light cycle (bulbs were Osram LUMILUX T8 58
W/865) typical of their wintering area (civil twilight at Rome, Italy;
10 h 12min light: 13 h 48min dark). Starting on January 19, 2017, we
photostimulated males by adding 1 h light each week to the outdoor
maintenance aviaries so that by 31 January 2017 males had been
switched to an early breeding (March 21) local light cycle (civil twilight
at Seewiesen, Germany; 13 h 12min light: 10 h 48min dark). Outdoor
breeding aviaries were kept on a light cycle representative of Rome on
December 22 (civil twilight: 10 h 11min light: 13 h 49min dark).
However, after 21 January, the natural light transmitted through the
opaque ceiling and front window of each outdoor breeding aviary was
longer than the provided aviary lights so thereafter the birds were ex-
posed to natural photoperiod (see Supplementary materials). In this
way, when males were moved from their outdoor maintenance aviaries
to the breeding aviaries throughout February and early-March they
moved from longer to shorter day length, just as wild starlings that
migrate in spring to shorter day length experience as they move north
to breed.

2.3. Breeding stages and timeline of blood sampling

To simulate the natural breeding phenology of starlings, we se-
quentially added nest boxes and nesting material (nest box stage), herbs
(herb stage), and then females (female stage) to the breeding aviaries
(Fig. 1). Hereafter we refer to each sequential addition of these en-
vironmental cues as ‘stages’ (Fig. 1).

One week after males had been moved to their breeding aviary, we
installed eight identical nest boxes (nest box stage; Fig. 1) that were
arranged in a given aviary as shown in the supplementary materials.
Nest material consisting of dry grass and reeds was also added at this
time and thereafter was available ad libitum on the ground of the
aviary. Six days later (herbal stage; Fig. 1) we added herbs by supply of
two buckets of locally collected elderberry and willow branches with
young leaves, eight 3-inch pots of wild carrot (Daucus carota), and a
plate of ribbon and birch bark for use as nest ornaments. Nest boxes
were checked for male nests six days after herbs were added and, if
none were built, we added a mixed handful of reeds and dried grasses to
empty nest boxes to promote nest building (according to Gwinner,
1997). As a result, we added nest material to all boxes in the first four
aviaries and none in the last two aviaries as birds built such male nests
on their own, suggesting that males in aviaries 1–4 were behaviorally
and/or physiologically distinct from aviaries 5–6. Hereafter, we refer to
birds in aviary 1–4 as “season 1” and those in aviary 5–6 as “season 2”.
Eight days after herbs were added 5–6 females, who had finished their
15-day flight training (or were sedentary controls as part of separate
female experiment), were placed with the 7–8 males already present in
the breeding aviary (female stage; Fig. 1). There was always a male
biased sex ratio of 1.5:1 males to females so that the males were in
excess. The experiment ended for male starlings in a given breeding
aviary six days after the females were introduced.

We sampled blood four times from each male starling to determine
the separate and sequential effect of the three stages (Nest Boxes: NB,
Herbs: HB, and Females: FM) on testosterone (Fig. 1). Aviaries were
entered the same time on each of the four blood-sampling days (1500 to
1515 h) and all males were captured and bled within 30min; we re-
corded the exact time each blood sample was taken and found no sig-
nificant effect of bleeding time on plasma testosterone levels
(r=−0.003, p=0.969). We sampled 75 μl of blood from the brachial
vein using heparinized capillary tubes after puncture with a 17 G
needle. Blood samples were immediately transferred to 0.5ml Eppen-
dorf tubes and kept on ice for no longer than 90min before spinning in

 Day 1 2 3 4 5 6 8 9 10 11 12 14 15 16 17 18 19 20 22 23 24 25 26 27

NB HB FM
FO

BG BL NB HB FM
 Day 1 2 3 4 5 6 8 9 10 11 12 14 15 16 17 18 19 20 22 23 24 25 26 27

21

7 13 21

          Nest Boxes

          Herbs

        Females

 Stage

Observations

Sampling

7 13

Fig. 1. General timeline of the sequential addition of three breeding stages (nest boxes: NB, herbs: HB, and females: FM), as well as when behavioral observations and
blood sampling of the European Starlings was conducted at the Max Planck Institute for Ornithology during February–April 2017. For each of the six breeding
aviaries, the males were introduced to the aviaries on background day (BG), which is when they were first fed their semi-synthetic diets, and the three stages were
introduced to each aviary at 7, 13 and 21 days, respectively. Plasma testosterone, indicated as blood droplets, was measured for each of the three stages and at one
additional point, Baseline (BL), designed to establish baseline testosterone levels once males were acclimated to their semi-synthetic diets. Behavioral observations,
indicated as magnifying glasses, were conducted at lights on (0700 h) the last day before the start of the subsequent stage to assess how male breeding behaviors were
affected by the sequential addition of nest, herbs, and then females and behavior of females was measured once (Female Observation: FO).
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the centrifuge for 5min at 214g. Plasma was separated from red blood
cells for the testosterone assay. Samples were kept at −20 °C for no
longer than a week and then stored at −80 °C until analysis.

Following blood sampling, the same person (KC) measured cloacal
protuberance (width at base, width at opening, height) to 0.01mm
using sliding calipers (for width measurements) and a millimeter ruler
to 1.0 mm or height measurements. From these measures, cloacal pro-
tuberance volume was calculated assuming a cylindrical shape
(π×radius2× height; Mulder and Cockburn, 1993).

2.4. Behavioral observations of male and female starlings

Three 24-min behavioral observations were conducted to document
how males responded to the sequential stages (nest boxes, herbs, and
females) across the 27-day breeding period (Fig. 1). In addition, we also
conducted a single 24-min behavioral observation of females im-
mediately after we completed the 24-min observation period for males
in that same breeding aviary (Female Observation: FO; Fig. 1) to
characterize male/female interactions and behaviors indicating pair
bonding. Each 24-min behavioral observation began on the specified
day within 10min of lights on (0700 h). Birds were observed from one
of the three windows in a given breeding aviary (see Supplementary
materials). It was dark outside the aviary and brightly lit inside the
aviaries, and this contrast combined with the opaqueness of the window
prevented birds from clearly seeing the observer outside the aviaries.
Before each observation period began, we waited 10min to allow the
birds to acclimate to any noise disturbance associated with the observer
and to allow the observer to identify all birds in sight. In order to reduce
variability, a single observer (KC) performed all behavioral observa-
tions.

Each 24-min behavioral observation period was subdivided into
four 6-min periods, during which observations focused on two of the
eight nest boxes. Each pair of next boxes was observed for 6-min in the
same sequential order during each 24-min period. During each 6-min
sub-period, the observer recorded every 20 s. the behaviors of in-
dividual males, identified via unique colored leg bands that were ob-
served at either of the two focal nest boxes. We used the following
behavioral categories: perched on nest box (P), perched on nest box and
singing (PS), perched on nest box with dry nest material (PD), visual
display (VD), aggression (A), and inside nest box (IN; Table 2). In ad-
dition to this 20-sec interval sampling of males at focal nest boxes, the
observer also recorded the number of times a given individual was
observed in aggression (A) or inside nest box (IN) at any of the eight
nest boxes throughout the 24-min observations (Table 2). These were

behaviors that we considered crucial to assess breeding status but might
go unnoticed during focal 6-min observations on a given two nest boxes
at a time. For each aviary, total observation time was 72min for males
(24min for each of the three stages) and 24min for females.

2.5. Testosterone analyses

Testosterone concentration was determined by 3 direct radio-
immunoassays (RIA, following Goymann et al., 2006). Plasma samples
were extracted with dichloromethane (DCM) after overnight equili-
bration (4 °C) of the plasma with 1500 dpm of tritiated testosterone
(Perkin Elmer, Rodgau, Germany). The organic phase was then sepa-
rated from the aqueous phase by plunging the extraction tubes into a
methanol-dry ice bath and decanting the dichloromethane phase into a
new vial. This extraction step was repeated twice to increase extraction
efficiency. Then, the DCM phase was dried under a stream of nitrogen
at 40 °C, dried samples resuspended in phosphate buffered saline with
1% gelatine (PBSG) and left overnight at 4 °C to equilibrate. An aliquot
(80 μl) of the redissolved samples was transferred to scintillation vials,
mixed with 4ml scintillation fluid (Packard Ultima Gold) and counted
to an accuracy of 2–3% in a Beckman LS 6000 β-counter to estimate
individual extraction recoveries. The remainder was stored at −40 °C
until RIA was conducted. Mean ± SD extraction efficiency for plasma
testosterone was 90.2 ± 0.4%. For the RIA a standard curve was set up
in duplicates by serial dilution of stock standard testosterone ranging
from 0.39–200 pg. Testosterone antiserum (T3-125, Esoterix En-
docrinology, Calabasas, CA, USA) was added to the standard curve, the
controls and to duplicates of each sample (100 μl). Cross reactivities of
this antiserum are testosterone (100%), 5a-dihydrotestosterone (44%),
d-1-testosterone (41%), d-1-dihydrotestosterone (18%), 5a-androstan-
3b, 17b-diol (3%), 4-androsten-3b, 17b-diol (2.5%), d-4-androstene-
dione (2%), 5b-androstan-3b, 17b-diol (1.5%), estradiol (0.5%),
and< 0.2% with 23 other steroids tested. After 30min testosterone
label (13,500 dpm) was added and the assay incubated for 20 h at 4 °C.
Then, bound and free fractions were separated at 4 °C by adding 0.5ml
dextran-coated charcoal in PBSG assay buffer. After 14min incubation
with charcoal samples were spun (3600 g, 10min, 4 °C) and super-
natants decanted into scintillation vials at 4 °C. After adding 4ml
scintillation liquid (Packard Ultima Gold) vials were counted. Standard
curves and sample concentrations were calculated with Immunofit 3.0
(Beckman Inc. Fullerton, CA), using a four-parameter logistic curve fit.
The lower detection limits of the standard curves were determined as
the first value outside the 95% confidence intervals for the zero stan-
dard (Bmax) and ranged from 0.30 to 0.39 pg/tube for the three assays.
The intra-assay coefficients of variations of standard testosterone were
10.6%, 7.5% and 4.5%. The intra-extraction coefficients of variation of
a chicken plasma pool of the three assays were 6.0%, 6.9% and 16.5%.
The inter-assay variation of standard testosterone was 6.9% and the
inter-extraction variation of the chicken plasma pool was 7.0%. Because
the testosterone antibody used shows significant cross-reactions with
5a-dihydrotestosterone (44%) our measurement may include a fraction
of 5a-DHT.

2.6. Statistical analyses

All the analyses were performed in R (R Core Team, 2017). We used
linear mixed-effect models (Bates et al., 2014) to infer the effect of stage
(4 levels: baseline, nest box, herbal, and female), Diet (2 levels: high or
low antioxidant), and Season (3 pairs of aviaries), as well as all inter-
actions on cloacal protuberance volume, body condition index, and
testosterone, the latter after log transformation. We included individual
identity and aviary as random factors. When possible we removed un-
informative interactions to simplify the models, which resulted in
having only Stage and Season for cloacal protuberance, Stage and Diet
for testosterone, and Stage and Diet for body index. We used general-
ized linear mixed-effect models with the Poisson link function to

Table 2
Behaviors recorded during each of the three 24-min observations of males (nest
box stage, herbal stage, and female stage) and the single 24-min observation of
females (FO) for each of the six breeding aviaries at MPIO.

Behavior Code Operational definition

Perched P Perched on nest box
Perched singing PS Perched on nest box while singing
Perched with dry

nest material
PD Perched on nest box with dry nest material (reeds or

dried grass)
Visual display VD Perched on roof of nest box while singing and

waving wings (Eens and Pinxten, 1990)
Aggressiona A Hostile interaction between two individuals

characterized by obvious fighting (i.e., rapid
pecking, biting, wing flapping) and usually resulting
from displacement of one male from a nest box

Inside nest boxa IN Entered nest box through front facing hole and
remained inside

a Indicates a rare behavior, which was recorded during each 6-min focal
observation of a pair of nest boxes as well as for all males associated with any
nest box throughout the entire 24-min observation period conducted in each
aviary.
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analyze male and female behaviors and rare behaviors. These models
included Stage (3 levels: excluding baseline), Diet (2 levels since cloacal
protuberance and testosterone did not differ for the first two pairs of
aviaries – see Results) and their interaction as fixed effects, and in-
dividual identity and aviary nested into Season as random factors. The
model used for the analysis of female behavior was similar but did not
contain Stage as an explanatory variable.

Before interpreting the results, we checked whether model as-
sumptions were met by inspecting the residuals for normality, homo-
scedasticity, and lack of remaining pattern. For the generalized linear
mixed-effect model we further controlled for overdispersion using the
function dispersion_glmer (Korner-Nievergelt et al., 2015). In order to
obtain parameter estimates, we used Maximum Likelihood (ML) esti-
mation because we were most interested in fixed effects (Zuur et al.,
2009). To infer the explanatory power of the different fixed factor and
relative interaction we ran an ANOVA on the mixed model output and
used the F-test to calculate p-values with the package “lmerTest”
(Kuznetsova et al., 2014). When necessary, we used a post hoc test
using the function lsmeans of the homonym package (Lenth, 2016)
setting a Bonferroni correction for multiple testing. We calculated the
effect size as eta squared (η2) for ANOVAs and Cohen's d (d) for post-
hoc pair-wise comparisons.

To investigate the correlations between testosterone level, body
condition, and behaviors within stages we used linear mixed models
with diet, season and aviary as random factors and extrapolated mar-
ginal and conditional r2 values (Barton, 2017; Nakagawa and
Schielzeth, 2013; i.e. how much of the variance is explained by fixed
effects alone and by the combination of fixed and random effects). We
used contingency table analysis, specifically a Model II G-test of in-
dependence (Sokal and Rohlf, 2012), to investigate whether the fre-
quency of reproductively active males changed with stage, diet, or
season.

3. Results

3.1. Effect of time and stage on male physiology

The cloacal protuberance volume of early season birds remained
constant during all stages, from baseline until after females were added
(x ± SE=232.94 ± 10.74mm3 to 237.80 ± 22.14mm3, n=29,
t=−0.242, p=1, d= 0.052), whereas the cloacal protuberance vo-
lume increased in late season birds from baseline to after females were
added (300.78 ± 30.06mm3 to 506.95 ± 47.24mm3, n=16,
t=−7.631, p≤0.0001, d= 0.516; Fig. 2). Diet antioxidant content
did not affect these trends (low antioxidant diet: 271.92 ± 29.44mm3,
n=23; high antioxidant diet: 299.70 ± 30.20mm3, n=22,
t=0.987, p=0.3290, d=0.196; Fig. 2).

There was also an effect of season on testosterone levels, as early
season birds (aviaries 1–4) had significantly lower testosterone than
late season birds (aviaries 5–6; 304.26 ± 116.63 pg/ml, n=29, vs.
1424.635 ± 457.95 pg/ml, n=15, t=−6.585, p < 0.0001,
d= 0.842; Fig. 2). Just as with cloacal protuberance, the seasonal
change in testosterone was best explained by the simpler two season
model (AIC values were 530.7 and 531.6 for the two-season and three-
season, respectively). Both diet and stage significantly affected testos-
terone levels (Diet: F= 21.806, p < 0.0001, η2=0.152; Stage:
F= 17.051, p < 0.0001, η2=0.356); moreover, there was also a
strong interaction between the two factors that resulted in a significant
effect on testosterone levels (Diet× Stage: F= 8.046, p < 0.0001,
η2= 0.168). Specifically, testosterone levels of birds within a high
antioxidant aviary were always greater than testosterone levels of their
paired low antioxidant aviary, and testosterone levels peaked before (at
the herbal stage) cloacal protuberance volume did (baseline: high an-
tioxidant diet 493.68 ± 240.31 pg/ml, n=22 vs. low antioxidant diet
159.802 ± 65.73 pg/ml, n=23, t=1.082, p=0.2813, d=0.403;
nest box stage: high antioxidant diet 916.44 ± 370.72 pg/ml vs. low

antioxidant diet 417.97 ± 209.50 pg/ml, t=2.238, p=0.0269,
d= 0.351; herbal stage: high antioxidant diet 1643.05 ± 240.19 pg/
ml vs. low antioxidant diet 702.77 ± 344.9 pg/ml, t=6.439,
p < 0.0001, d= 0.664; female stage: high antioxidant diet
864.68 ± 279.74 pg/ml vs. low antioxidant diet 427.30 ± 216.98 pg/
ml, n=22, t=3.130, p=0.0021, d=0.372; Fig. 2). Given that tes-
tosterone levels peaked earlier than cloacal protuberance volumes, we
wanted to determine if these physiological measures of breeding con-
dition were strongly related. Notably, at the herbal stage there was a
strong positive correlation between cloacal protuberance volume and
testosterone levels across the six aviaries (r2m=0.40, r2c= 0.51,
t=5.238, p < 0.0001). At the nest box and female stages there was a
moderate positive correlation between cloacal protuberance volume
and testosterone levels across the aviaries (NB: r2m=0.08,
r2c= 0.375, t=3.960, p=0.0002; FM: r2m=0.08, r2c= 0.49,
t=3.803, p=0.0004).

We detected a small increase in body condition index between the
baseline and the female stage during the early season (80.87 ± 2.15 to
82.66 ± 2.06, t=−3.592, p=0.0027, d= 0.157), but not the late
season (82.95 ± 1.85 to 81.49 ± 2.00, t=2.231, p=0.1641,
d= 0.189). Moreover, there was no significant effect of diet alone on
body condition (F= 2.5212, p=0.1624, η2= 0.051), but a significant
interaction between stage and diet (F= 4.9400, p=0.0027,
η2=0.311) that did not result in significant difference between the
two diets at each single stage (t < 2, p > 0.09). We found no corre-
lation between testosterone levels and body condition index at any of
the three stages and considering antioxidant diet type (r2m < 0.07,
r2c < 0.18, p > 0.10).

3.2. Effect of time and stage on male activity

The frequency of males actively engaged in at least one of six be-
havior(s) on a nest box (Table 2) significantly increased over the season
(G=22.96, p < 0.001), and significantly decreased as nest boxes,
herbs, and females were sequential added (G=1116.72, p < 0.001;
Table 3). Frequency of active males was independent of dietary anti-
oxidants (G= 0.02, p > 0.05).

3.3. Effect of diet and stage on behavior

About half the nest boxes (n=25/48) were found to have herbs in
them, with nearly all late season nest boxes adorned with herbs
(n=15/16 nest boxes) whereas only 10 of the 32 early season nest
boxes had herbs. Perching on nest box, inside nest box and perched on
nest box singing were the most common behaviors recorded (645, 121,
and 106 times, respectively), whereas visual display, perched with dry
nest material and aggression were observed less commonly (30, 4, and
2 times, respectively). The three most common behaviors as well as
visual display were not strongly correlated with one another (< 0.22 in
all cases) and a Principal Component Analysis (PCA) produced PC
loadings that confirmed the independence of these four primary beha-
viors (i.e., each of the four PC axes had loadings> 0.98 for each of the
four behaviors). Thus, we used the summed frequency of behaviors as
the independent variable to assess the effect of diet and stage on male
breeding behavior.

The number of behaviors performed by males per stage was diet
dependent (Fig. 3). Males fed the low antioxidant diet decreased the
number of behaviors performed as the stages progressed, showing a
significant decrease comparing the nest box stage (8.00 ± 1.30,
n=22) and female stage (5.68 ± 0.94, n=19, z=3.297,
p=0.0029, d=0.446; Fig. 3), while the number of behaviors per-
formed at the herbal stage (6.00 ± 1.12, n=20) was not significantly
different from the nest box stage (z=1.900, p=0.172, d= 0.361) or
the female stage (z=1.277, p=0.605, d=0.071). Conversely, males
fed the high antioxidant diet performed a constant number of behaviors
across all stages (nest box stage: 9.29 ± 1.20, n=21; herbal stage:
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9.21 ± 1.32, n= 19; female stage: 8.93 ± 1.37, n=15; nest box to
herbal stage: z=0.32, p=1, d=0.014; nest box to female stage:
z=0.743, p=1, d=0.066; herbal to female stage: z=0.439, p=1,
d= 0.050; Fig. 3). This interaction between diet and stage resulted in a
significant difference in the number of behaviors displayed at the fe-
male stage between the two diets (z=2.187, p=0.0287, d=0.685;
Fig. 3). As expected, plasma testosterone concentration and frequency
of behaviors across the six aviaries at the three stages were positively
correlated (nest box stage: r2m=0.16, r2c= 0.17, t=2.752,
p=0.009; herbal stage: r2m=0.12, r2c= 0.14, t=2.217, p=0.034;
female stage: r2m=0.19, r2c= 0.34, t=2.838, p=0.008).

The frequency of rare behaviors (IN and A) did not change across
the stages (nest box to herbal stage: z=−1.558, p=0.119; nest box to
female stage: z=−0.142, p=0.887) and there were no differences
between antioxidant diets (z=0.508, p=0.611). The frequency of
female behaviors also did not differ across antioxidant diet type

(z=0.839, p=0.402).

4. Discussion

By simulating the natural breeding phenology of European starlings,
we determined how the sequential availability of nesting opportunities,
herbs, and females interacted with dietary antioxidant availability to
influence physiological and behavioral traits of male starlings. As an-
ticipated, increased day length in spring induced changes in physiology
(i.e., cloacal protuberance volume, testosterone levels) and breeding
activity level (number of individuals active on nest boxes at each stage).
Sequential addition of nest boxes, herbs and then females progressively
increased cloacal protuberance volume of late season birds, while tes-
tosterone levels peaked when both nest boxes and herbs were available.
Males fed diets with less dietary antioxidants decreased their frequency
of breeding behaviors across the sequential stages, whereas males fed
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Fig. 2. (a–b) Average (± SE) cloacal protuberance (CP) volume (mm3) and (c–d) plasma testosterone levels (pg/ml) of male starlings in each experimental aviary at
Baseline (BL) and each of three stages (Nest Box: NB, Herbal: HB, and Female: FM) ca. one week apart. The pattern of change in cloacal protuberance and testosterone
across stages was different for males tested early in the season (aviaries 1–4) compared to late in the season (aviaries 5–6) – see text for details. From February–April
2017 each aviary housed 7–8 male (n=45 males) during the BL, NB, and HB stages and an additional 5–6 female European Starlings (n=33 females) during the FM
stage. Males were fed diets either low in antioxidants (red, •; Aviaries 1, 3, 5) or high in antioxidants (blue,⬜; Aviaries 2, 4, and 6) and both diet types were paired in
time. Hours of light experienced by starlings at BL and FM stages (mid-point for each pair of aviaries) are indicated in the CP volume panels.

Table 3
Percentage and proportion of male European Starlings (N=45) active (defined as performing at least 1 behavior on a nest box) at three stages (Nest Boxes: NB,
Herbs: HB, and Females: FM) during reproduction within each of the six paired aviaries at Max Planck Institute for Ornithology across the breeding season
(February–April 2017). Given that male starlings must acquire and defend nest boxes during the breeding period, the proportion of male starlings in each aviary that
were associated with a nest box indicates the level of male breeding activity. The introduction of nest boxes, herbs, and females in each aviary was staggered over
time in part to determine the interaction between the effects of photoperiod and the three stages on male behavior and physiology (see Methods).

Date range Antioxidant diet (aviary number) Nest box stage Herbal stage Female stage Seasonal average

Percent Proportion Percent Proportion Percent Proportion

Feb 9–Mar 7 Low (1) 86% 6/7 57% 4/7 71% 5/7 80%
Feb 12–Mar 10 High (2) 86% 6/7 86% 6/7 43% 3/7
Feb 21–Mar 19 Low (3) 100% 8/8 100% 8/8 75% 6/8
Feb 24–Mar 22 High (4) 100% 7/7 86% 6/7 71% 5/7
Mar 5–Mar 31 Low (5) 100% 8/8 100% 8/8 100% 8/8 96%
Mar 8–Apr 3 High (6) 100% 8/8 88% 7/8 88% 7/8
Stage average 95% – 86% – 75% –
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the high antioxidant diet were able to avoid this decrease, maintained a
higher frequency of breeding behaviors across the stages, and this en-
hanced the effects of addition of stages on testosterone level.

4.1. Photoperiod initiates gonadal maturation

Cloacal protuberance is a photoperiod-dependent, copulatory organ
that has been shown to increase in size during the breeding season as a
result of an accumulation of sperm in the seminal glomeruli (Wolfson,
1952). This increase in size facilitates sperm transfer to females (Sax
and Hoi, 1998) and has been used in the past as an indication of a
male's readiness to reproduce (e.g. Tonra et al., 2011; Wolfson, 1952).
Male starlings in our study that were tested later in spring (aviaries 5
and 6) increased cloacal protuberance volume and testosterone levels to
a greater extent than those tested earlier in spring (aviaries 1–4) in
support of a strong photoperiodic response (Fig. 2). The link between
increasing day length and gonadal maturation has long been estab-
lished (Rowan, 1925) and other studies have provided evidence that
plasma testosterone levels increase when birds are subjected to long
light cycles (Donham et al., 1982). We also observed a greater number
of individuals active on nest boxes in the late season as compared to the
early season, suggesting that photoperiod also contributed to increased
levels of breeding activity (Table 3). These findings are consistent with
those outlined by Dawson (2008), highlighting that photoperiod is
widely understood to be the initial predictive cue stimulating birds to
adapt their physiology (e.g., cloacal protuberance as proxy for the
amount of fertile sperm, testosterone levels) for breeding.

4.2. Environmental cues (i.e., nest boxes, herbs, and females) affect
temporal changes in male behavior and physiology

We were able to uniquely characterize how initial predictive in-
formation (i.e., photoperiod) and supplementary environmental cues
(i.e., nest boxes, herbs, and females) interact to affect male starling
behavior and physiology during the spring breeding period. We found
only partial support for hypothesis 1 in that cloacal protuberance vo-
lume increased with sequential additions of nest boxes, herbs, and fe-
males, but only for late season birds (Fig. 2). This suggests that both
photoperiod and environmental cues, such as nest boxes, herbs, and
females, contribute to cloacal protuberance growth and potentially
development of other secondary sex characteristics. In contrast, we
found that testosterone was highest in males when both nest boxes and
herbs were available (Fig. 2b) across the spectrum of photoperiods,
suggesting that the peak in testosterone levels was directly affected by

availability of nest boxes and herbs, not photoperiod alone, which was
inconsistent with hypothesis 1. Casto et al. (2001) experimentally in-
creased testosterone in male dark-eyed juncos and found that cloacal
protuberance volumes of testosterone-implanted male dark-eyed juncos
(Junco hyemalis) were significantly larger than those of control males,
suggesting that a certain threshold testosterone level was required for
upregulation of spermatogenesis and hence increases in cloacal protu-
berance volume. No previous studies have directly investigated the
relationship between testosterone levels and herbs, though Gwinner
et al. (2002) showed that the presence of nest boxes was an important
factor for the increase in testosterone, which is not surprising since wild
starlings occupy nest cavities before acquiring a mate (Feare, 1984).
Our results indicate that presence of both nest boxes and herbs may
provide a stronger cue for testosterone increase than just nest boxes
alone, and that cloacal protuberance volume may increase in response
to an initial increase in testosterone and then may be maintained even
as testosterone decreases (e.g., after the herbal stage in our experi-
ment).

Several studies have sought to determine the reason(s) starlings
exhibit such distinct behaviors involving herbs (e.g., Gwinner, 1997;
Gwinner et al., 2000; Gwinner and Berger, 2005; Veiga et al., 2006),
which has resulted in support of several hypotheses, including mate
attraction, defense against parasites and pathogens, and/or for stimu-
lating nestling development (Clark, 1991, reviewed by Dubiec et al.,
2013). Although our study was not designed to explicitly test these
hypotheses, the ability of males to attract mates would be facilitated by
the increase in their reproductive condition when both nest boxes and
herbs were available. Surprisingly, the introduction of females resulted
in a slight decline of testosterone in the four aviaries that were re-
sponsive to the stages. It is possible that testosterone levels increased
once females were added and subsequently decreased prior to sampling
as males had adequate time to interact with and copulate with females.
However, during our behavioral observations we did not observe any
copulations. Dittami et al. (1986) also found that the presence of female
starlings in aviaries had limited effects on male reproductive condition.
Thus, it seems testosterone levels were more strongly regulated by nest
box and herb cues suggesting that males may pre-emptively increase
testosterone levels in anticipation of female arrival.

A consistent decrease in the number of males active on nest boxes
was recorded as we subsequently added herbs and then females. Such a
decrease in activity of male European starlings was somewhat un-
expected since at least in the wild they are highly aggressive during the
breeding season and defend their nest sites from intraspecific compe-
titors (Feare, 1984; Eens and Pinxten, 1996). This behavior may be a
result of the limited number of nest sites for cavity nesting birds in the
wild (reviewed by Newton, 1994), making intraspecific competition
between males necessary to secure a mate, which is dependent on ac-
quiring a nest box/cavity. Our experimental design provided at least
one nest box per male in an aviary, which likely reduced competition
between males. More males were active around the nest boxes soon
after they were provided in part because individuals were competing to
establish ownership of the nest boxes. Perhaps once males established
nest box ownership and were familiar with their aviary residents, the
frequency of behaviors and activity decreased, although this response
was diet-dependent.

4.3. Dietary antioxidants influence the physiological and behavioral
responses of males to environmental cues

In agreement with hypothesis 2, males fed the high antioxidant
diet also consistently had higher testosterone than males fed the low
antioxidant diet. It is widely accepted that testosterone is primarily
responsible for driving breeding behavior in avian species. For example,
males with higher testosterone have heightened responses toward ag-
gressors in reproductive contexts (Wingfield et al., 1987), have more
elaborate courtship displays (Hill et al., 1999), and are more likely to

Fig. 3. Frequency of behaviors per individual male (fitted value ± CI) at three
consecutive stages (nest box, herbal and females) during the breeding season.
Males were fed diets either low in antioxidants (red, •; Aviaries 1, 3, 5) or high
in antioxidants (blue, □; Aviaries 2, 4, and 6).
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defend larger territories (Chandler et al., 1994; Wingfield, 1984) than
individuals with lower testosterone. The increase in testosterone in
males fed more dietary antioxidants was not associated with an increase
in body condition index so this effect may likely be related to the direct
influence of such micronutrients on testosterone and its regulation of
both reproductive physiology and breeding behavior of starlings. High
levels of testosterone in past experiments have resulted in increased
oxidative stress in male zebra finches and rats (Chainy et al., 1997;
Alonso-Alvarez et al., 2007), potentially via elevated metabolic rate
(e.g., Buchanan et al., 2001). However, dietary antioxidants can neu-
tralize the imbalance between reactive oxygen species and antioxidant
defenses (oxidative stress). Possibly, the dietary antioxidants protected
males from the potential oxidative damage thereby allowing males fed
high antioxidant diets to maintain higher levels of testosterone than
males fed low antioxidant diets. This is the first study to directly ma-
nipulate levels of dietary antioxidants and then document a consistent
increase in plasma testosterone levels in response to certain environ-
mental cues somewhat independently of photoperiod alone.

Contrary to hypothesis 3, we found that frequency of behaviors for
active males decreased, rather than increased, with the addition of nest
boxes, herbs and then females, but interestingly only for those fed the
low antioxidant diet. In contrast, males fed the high antioxidant diet
maintained the frequency of behavioral displays across the experiment
(Fig. 3). This effect of dietary antioxidants on male starling behavior is
consistent with hypothesis 4 in that breeding behaviors were enhanced
in those fed the high antioxidant diet. Oxidative stress has been iden-
tified as a proximate mechanism for the cost of reproduction in captive
zebra finch, Taeniopygia guttata (Alonso-Alvarez et al., 2004; Wiersma
et al., 2004), and it is widely accepted that antioxidants defend against
oxidative stress (Monaghan et al., 2009). Performing a high frequency
of behaviors may impose energetic/fitness related trade-offs on an in-
dividual that a diet rich in antioxidants could conceivably mitigate. It is
feasible that males fed the low antioxidant diet were faced with a
physiological trade-off: reduced availability of antioxidants made it
difficult to defend against oxidative stress, so males reduced behavioral
activity, the associated energy demands, and thus also the potential for
oxidative stress.

5. Conclusions

By sequentially introducing nest boxes, herbs, and females to cap-
tive male European starlings, we investigated how these supplementary
environmental cues initiate and maintain male reproductive condition
(i.e., cloacal protuberance volume, plasma testosterone) and breeding
behavior. Our results confirmed the oft-demonstrated effect of photo-
period on initiating reproductive condition in birds, while also showing
that certain supplementary environmental cues (nest boxes, herbs)
significantly influenced male physiology (e.g., testosterone) and beha-
vior during the breeding period. We revealed for the first time that the
availability of dietary antioxidants consistently enhanced the level of
male testosterone response to the sequential addition of nest boxes,
herbs, and then females. Dietary antioxidants in natural foods such as
fruits are readily available for many songbirds during their fall migra-
tion (Smith et al., 2007). Unfortunately, we know little about sources of
dietary antioxidants for free-living migratory songbirds in spring as
they prepare for breeding. Even less is known about whether these
beneficial effects of dietary antioxidants depend on type (i.e., antho-
cyanins are only one of many antioxidants) and the extent to which
availability of these dietary antioxidants may protect migrating birds
from oxidative damage associated with long-duration flights almost
immediately followed by expectations for breeding.
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