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Abstract 

Purpose: Individualization of therapeutic outcomes in NSCLC radiotherapy is likely to be 

compromised by the lack of proper balance of biophysical factors affecting both tumor local 

control (LC) and side effects such as radiation pneumonitis (RP), which are likely to be 

intertwined. Here, we compare the performance of separate and joint outcomes predictions 

for response-adapted personalized treatment planning.  
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Methods: 118 NSCLC patients treated on prospective protocols with 32 cases of local 

progression and 20 cases of RP grade two or higher (RP2) were studied.  68 patients with 297 

features before and during radiotherapy were used for discovery and 50 patients were 

reserved for independent testing. A multi-objective Bayesian network (MO-BN) approach 

was developed to identify important features for joint LC/RP2 prediction using extended 

Markov blankets as inputs to develop a BN predictive structure. Cross-validation (CV) was 

used to guide the MO-BN structure learning. Area under the free-response receiver operating 

characteristic (AU-FROC) curve was used to evaluate joint prediction performance.  

Results: Important features including single nucleotide polymorphisms (SNPs), micro RNAs, 

pre-treatment cytokines, pre-treatment PET radiomics together with lung and tumor gEUDs 

were selected and their biophysical inter-relationships with radiation outcomes (LC and RP2) 

were identified in a pre-treatment MO-BN. The joint LC/RP2 prediction yielded an AU-

FROC of 0.80 (95% CI: 0.70-0.86) upon internal CV. This improved to 0.85 (0.75-0.91) with 

additional two SNPs, changes in one cytokine and two radiomics PET image features through 

the course of radiotherapy in a during-treatment MO-BN. This MO-BN model outperformed 

combined single-objective Bayesian networks (SO-BNs) during-treatment (0.78 (0.67-0.84)). 

AU-FROC values in the evaluation of the MO-BN and individual SO-BNs on the testing 

dataset were 0.77 and 0.68 for pre-treatment, and 0.79 and 0.71 for during-treatment, 

respectively.  

Conclusions: MO-BNs can reveal possible biophysical cross-talks between competing 

radiotherapy clinical endpoints. The prediction is improved by providing additional during-

treatment information. The developed MO-BNs can be an important component of decision 

support systems for personalized response-adapted radiotherapy.   

Keywords: Non-small-cell lung cancer, multi-objective Bayesian networks, joint prediction 

of LC and RP2, response-adapted radiotherapy.  
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1. INTRODUCTION  

The treatment outcomes of lung cancer patients who undergo radiation therapy are 

recognized to be multi-factorial and may depend on radiation dose, and their clinical, 

biological, imaging, and genomic characteristics before and during a course of 

radiotherapy1,2. For instance, the relationship between different clinical/physical features and 

radiation outcomes in non-small-cell lung cancer (NSCLC) can be analyzed prior to radiation 

treatment3-5. It has been reported that the release of cytokines in response to radiation is an 

important predictor of subsequent radiation-induced lung toxicities (RILT)6,7 and tumor 

growth/metastasis8. Through the presence of advanced high-throughput biotechnologies for 

measurement of patient’s molecular profile such as single nucleotide polymorphisms SNPs 

and micro RNAs (miRNAs), research has shown that taking variations in gene 

structures/expression levels into consideration when planning radiotherapy can help identify 

patients susceptible to risks and improve their treatment outcomes9. Moreover, imaging 

information before and during the course of radiation treatment has been shown to help 

physicians reduce radiation risks and identify whether the tumor can be controlled locally 

(LC)10-12
. However, the above technologies have generated mixed results when applied 

independently and are not yet realizing their potentials in routine radiotherapy practice13.  

Furthermore, although radiation dose escalation can generally improve patients’ tumor LC, 

it may also increase the risks of RILTs such as radiation pneumonitis with grade ≥ 2 

(RP2)14,15. These endpoints are typically modeled separately for each outcome compromising 

their predictive value for personalizing treatment. Treating these clinical endpoints separately 

may also overlook any potential intercrossing biophysical relationships when optimizing their 

competing risks/benefits. Therefore, the intent of this study is to attempt to fill this gap by 

developing an interpretable and efficient joint LC and RP2 prediction model from pre- and 
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during-treatment high dimensional datasets for personalized response-adapted NSCLC 

radiotherapy.  

The purpose of personalized radiotherapy in NSCLC is to develop an appropriate 

treatment plan for an individual patient by maximizing LC while minimizing RILTs. Several 

modeling approaches can be employed for NSCLC treatment outcomes including analytical 

and data-driven methods16. Among these that would allow for good prediction while 

unveiling relationships between variables are Bayesian networks (BNs), which can achieve 

competitive performance compared to traditional statistics and other machine learning 

methods while remaining transparent and interpretable17,18. Moreover, given its graph-based 

nature, this approach can effectively handle multiple objectives simultaneously and deal with 

missing, imbalanced or uncertain input data. Thus, the BN modeling approach has been 

employed to explore possible biophysical interactions influencing radiation outcomes in a 

variety of cancers19-21. But these studies, including our previous work22,23
, have focused on 

single outcome predictions instead of simultaneously considering the possible trade-offs of 

multiple competing radiation outcomes necessary to support clinical decision making. Hence, 

a multi-objective Bayesian network (MO-BN) model is developed in this paper to identify 

signaling cross-talks and predict LC and RP2 simultaneously before or during radiotherapy. 

Towards this goal, the development of a robust MO-BN would require the ability to 

overcome the difficulty of interrogating a large number of heterogeneous variables in small 

clinical datasets, which is a common challenge in cancer treatment predictive modeling. This 

is demonstrated in this study by utilizing prior knowledge as constraints and statistical re-

sampling for robust model building and rigorous evaluation.  
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2. MATERIALS AND METHODS

    2.A. Study participants and data collection

To demonstrate our approach, we conducted a secondary analysis of 68 non-small cell lung 

cancer (NSCLC) patients who were treated in and before year 2009 including 20 cases of 

local progression and 17 cases of RP2 for discovery and model building, and 50 additional 

patients who were treated after year 2009 with 12 cases of progression and 3 cases of RP2 for 

model testing. All the patients underwent conventional fractionated radiotherapy using 3D 

conformal techniques. These techniques were the same prior to 2009 and after 2009. Thus, 

this data splitting follows the TRIPOD type 2b criteria24. The median follow-up was 61 and 

65 months for surviving patients in the discovery and validation datasets, respectively. If 

patients’ clinical, radiographic, or biopsy evidence of progression were observed with a

minimum follow-up of six months, they were considered to have local progression. A 

patient’s RP was classified from five grades (CTCAE 3.0) based on clinical assessment and

imaging findings, and the level of RP was defined by the maximal RP grade during follow-

up. Here, RP2 was used to represent a complication from radiation treatment.   

The patients had been treated on prospective protocols under IRB approval as described 

previously22. The first three protocols treated patients to standard doses (60-66 Gy) and the 

fourth protocol was a dose escalation study intensifying doses to persistent positron emission 

tomography (PET)-avid target volumes during treatment with 2.1-2.85 Gy per fraction up to a 

total dose of 85.5 Gy over 30 fractions25-27. Due to different doses per fraction to the tumors 

and varying doses per fraction across the lungs, all tumor and lung 3D total dose values were 

converted into their 2 Gy equivalents (EQD2)28 by an in-house software tool using the linear-

quadric model with an     of 10 Gy and 4 Gy, respectively. Generalized equivalent uniform 

doses (gEUDs) with various “a” parameters were calculated for gross tumor volumes (GTVs) 

and uninvolved lungs (lung volumes exclusive of GTVs). 
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FDG-PET/CT images were acquired using clinical protocols and the pre-treatment and 

intra-treatment PET images were registered to the treatment planning CT using rigid 

registration. Radiomics image analysis for extracting global and texture-based metrics (Table 

1) was performed on the GTV using customized routines in MATLAB29. Since the protocols 

associated with our data involved dose escalation based on avid FDG-PET regions, we opted 

to utilize radiomics features extracted from PET images. However, we also recognize the 

complementary value of CT30, which we would like to incorporate in future studies with 

larger sample size. Blood samples were obtained at baseline and after approximately 1/3 and 

2/3 of the scheduled radiation doses were completed. Pre-treatment blood samples were 

analyzed for cytokine levels, micro RNAs (miRNAs), and single nucleotide polymorphisms 

(SNPs), which have been identified as candidates from the literature related to lung cancer 

response. The slopes of cytokine changes and the relative differences of PET tumor features 

(delta radiomics) from before to during treatment were also analyzed. All the features 

considered are summarized in Table 1 and their pre-processing steps can be described as 

follows.  

 

       2.B. Data pre-processing 

Each patient in the discovery dataset had 297 features from eight categories including 15 

common dosimetric parameters (e.g., Tumor_gEUD, Lung_gEUD, D5, D90, and D95 for 

tumor) extracted from EQD2-corrected dose-volume histograms, 14 clinical factors (e.g., age, 

stage, KPS), 30 pre-treatment cytokines (e.g., pre_IL_4), the slopes (SLP) of 30 cytokine 

changes during the treatment course (e.g., SLP_IP_10), 62 miRNAs (e.g., miR_20a_5p), 60 

SNPs (e.g., cxcr1_Rs2234671), 43 pre-treatment PET radiomics information (e.g., pre_MTV) 

from the tumor region, and the relative differences (RD) of 43 PET information during the 

treatment course (e.g., RD_GLRLM_ZSV).   
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While continuous variables, such as pre_IL_10, miR_191_5p, GLSZM_LZLGE, were 

discretized into three categories using the Hartemink’s pairwise mutual information method, 

categorical variables such as Gender, COPD, SNPs, were pre-processed based on interval 

discretization. In general, characters are employed to describe SNPs’ three different 

genotypes including wild type homozygote, minor allele homozygote, and heterozygote. 

After identifying each SNP’s ancestral allele, numbers “0”, “1”, “2” were assigned to the 

homozygotes with it, the heterozygote, and the homozygotes without it, respectively. The 

MO-BN approach was implemented based on the “bnlearn” package in the R environment. 

 

    2.C. Multi-objective Bayesian network (MO-BN) development  

An appropriate MO-BN for joint prediction of LC and RP2 was established via the following 

two main steps: 

Step 1: Large-scale feature selection:  This is a variable reduction step by identifying 

separate extended Markov blankets (MBs) for LC and RP2 from the high-dimensional 

dataset. An MB of LC (or RP2) is an inner family found by the Hiton algorithm31 containing 

all variables carrying information about LC (or RP2) that cannot be obtained from any other 

variables. Then, for each member in the MB of LC (or RP2), a next-of-kin MB for this 

member was also derived. An extended MB includes both the inner family and its next-of-kin 

MB.   

Step 2: Network structure learning: The main purpose of this step is to combine the 

important features from the LC’s and RP2’s extended MBs and search for the best stable 

MO-BN structure for joint prediction based on them. The details of Step 2 can be described 

as follows.  
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Let N be the total number of candidate features from LC’s plus RP2’s extended MBs (Step 

1) for joint prediction of these radiation outcomes, N + 2 represents the maximum number of 

nodes in the MO-BN including outcome nodes LC and RP2, n be the index of possible 

pruned variables from the candidate features (nodes) (n =0, 1, 2, 3…N). After 

accommodating biophysical rules (i.e., radiobiologically plausible relationships based on 

reported literature), Tabu Search32 is employed to generate a stable MO-BN structure from 

300 randomly generated bootstrap samples. The Bayesian Dirichlet equivalent (BDe) that 

provides an inherent penalty for model complexity is used as a scoring function to obtain the 

best BN structure. The stable BN may not be the best MO-BN for joint LC and RP2 

prediction, since the features were selected according to LC and RP2 separately. Then the 

process of finding the best MO-BN is equivalent to identifying the most important features 

and their strong relationship with both LC and RP2.  

Suppose nt  be the threshold for minimum edge strength connecting any two nodes in the 

stable MO-BN (n =0, 1, 2, 3…N), and its associated BN can be denoted as )(_ ntBNMO . In a 

generated MO-BN, a node that has no direct or indirect connection to nodes LC and RP2 is 

considered as a leaf node of the BN. Clearly, in order to find the best MO-BN, it has the first 

priority to be eliminated due to its unimportant or redundant property. The edge strength of 

two nodes in the MO-BN was obtained from the retrospective dataset, and edge direction is 

determined from which direction has a larger probability. Then the initial threshold nt  of 

edge strength is considered as 0.5. In our study, the threshold is increased in steps of 0.02 

before finding a leaf (marginal) node, and the )(_ ntBNMO  can be updated accordingly. 

Let )( ntF  be the prediction performance AU-FROC of the )(_ ntBNMO  based on the 

internal cross validation and its value can be recalculated after eliminating a leaf node from 

the BN. Then an optimal threshold ( *
nt ) of edge strength can be obtained accordingly from the 
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maximal )( *
ntF  and its corresponding optimal )(_ *

ntBNMO . This process is repeated until a 

stable )(_ *
*ntBNMO  with the best number    of pruned nodes and its associated optimal 

threshold      that maximal overall performance is achieved. This process of learning the 

optimal MO-BN for joint prediction of LC and RP2 is summarized in Figure 1.        

Statistical re-sampling by cross-validation was used to prevent over-fitting by assessing 

how a statistical model will generalize to an independent dataset (internal validation). For 

prediction evaluation of multiple endpoints simultaneously (LC/RP2), a free-response 

receiver operating characteristic (FROC) curve was employed, which is an extension of the 

conventional ROC used with single endpoints33. In this case, a score of “0.5” represents a 

joint prediction situation that either LC or RP2 prediction is wrong, while “1” and “0” 

describe the conditions that both LC and RP2 predictions are correct and wrong, respectively. 

The FROC curve was plotted from evaluating joint prediction as its threshold is varied. The 

value of area under the FROC (AU-FROC) was calculated to summarize the prediction 

power of the generated MO-BN model using k-fold cross-validation, where 0.5 presents a 

random signal and 1.0 denotes a perfectly discriminate signal. The best pre-treatment and 

during-treatment MO-BNs were obtained from the structures yielding the highest AU-FROC 

values. The biophysical pathways between patients’ important characteristics and radiation 

outcomes in terms of radiation dose were evaluated from the resulting MO-BNs.        

     

      2.D. Single-objective Bayesian network (SO-BN) approach  

The objective for evaluating single-objective BNs (SO-BNs) in this study is to compare the 

performance of the two separate SO-BNs (LC/RP2) to MO-BNs in terms of joint biophysical 

relationship discovery and the prediction power of joint radiation outcomes. The 

methodology for generating SO-BN, including extended MBs for feature selection, the best 

BN structure learning based on bootstrap samples, followed our previous work on RP222 and 
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LC23. For the sake of fair comparisons, both the SO-BNs and the MO-BNs were developed 

based on the whole discovery dataset, and they are also referred to as “biophysical MO-BNs” 

and “biophysical SO-BNs” respectively in this paper. The information related to SO-BNs 

obtained from our previous research for the implementation of the SO-BN approach are 

described as follows.   

Figure 2(a) shows a stable pre-treatment SO-BN with an edge strength ≥ 0.68 for local 

control (LC) prediction based on our previous research23, where 9 important biophysical 

predictors are identified. Their relationships in terms of radiation outcome prediction are 

indicated by directed edges, and the thickness of an edge represents the strength of a 

connection. While the green and red lines represent positive and negative influences between 

the connected predictors, respectively. The gray lines indicate a mixed effect between 

predictors, where their relationship is not necessarily monotonic (positive or negative only) 

and depends on the variable status and other involved variables’ state. For example, in Figure 

2(a), if pre-IL4 is below a certain threshold, it will have a negative relationship with LC. 

However, if it is above that threshold, the relationship would be positive. 7-fold cross-

validation was conducted to evaluate the pre-treatment SO-BN, and its AUC value is 0.81 

with a 95% confidence interval (CI) of 0.74-0.88 based on 2000 stratified bootstrap 

replicates. Figure 2(b) shows a stable pre-treatment SO-BN with an edge strength ≥ 0.65 for 

RP2 prediction from our previous work22. Based on 7-folds cross validation, the AUC value 

is 0.82 with a 95% CI of 0.72-0.87.  

The extended MBs to obtain pre-treatment SO-BNs for LC and RP2 prediction based on 

pre-treatment training data are shown in Figure 3, where the inner family and the extended 

family of the radiation outcomes were obtained from the first and the second layers of their 

extended MB neighborhoods. An example to illustrate the extended MBs of RP2 can be 

found in our previous work 22. 
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During the course of radiotherapy, the slopes of cytokine levels from before to during 

treatment (SLP) and the relative changes of PET tumor radiomics before and during 

treatment (RD) were incorporated into the BN model building process. Figure 4(a) shows a 

during-treatment SO-BN with an edge strength ≥ 0.7 for LC prediction, and the AUC of 7-

fold cross-validation is 0.84 with a 95% CI of 0.78-0.91 based on 2000 stratified bootstrap 

replicates. Figure 4(b) shows a stable during-treatment SO-BN with an edge strength ≥ 0.65 

for RP2 prediction from our previous work22, and its AUC value is 0.87 with a 95% CI of 

0.80-0.91 based on 7-folds cross validation. The extended MBs to obtain during-treatment 

SO-BNs for LC and RP2 prediction based on during-treatment training data are shown in 

Figure 5.  

During the internal k-fold cross-validation, the predicted LC or RP2 from corresponding 

SO-BNs before and during radiation treatment was evaluated, and the joint prediction in each 

patient was obtained by reference to his/her observed events using AU-FROC scoring as in 

the MO-BN approach. These results were compared to those of pre- and during-treatment 

MO-BNs.   

 

      2.E. External model testing  

As stated previously, an additional 50 patients with 12 cases of local progression and 3 

cases of RP2 were reserved for external testing. As these patients had some data missing from 

one or more categories (first column of Table 1), they were not considered in the discovery 

phase of the BNs. After marginalizing the missing data from the obtained biophysical MO-

BNs, these patients were treated as validation dataset in our study. This also allows for the 

evaluation of another important advantage of BNs, which is their ability to perform reliably 

with missing/imbalanced information by inherent imputing of such data. 
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3. RESULTS  

      3.A. Pre-treatment MO-BN model building and internal validation  

The extended MBs to obtain pre-treatment SO-BNs for LC and RP2 prediction are shown in 

Figure 3, and all members of the two extended MBs were considered as potential variables of 

pre-treatment MO-BN. Note that the gEUDs of GTV-Composite with a = -10 and    = 10 

Gy, which approaches minimum GTV dose, and Lungs-GTV with a = 1 and    = 4 Gy, 

which corresponds to mean lung dose, were selected from the LC and RP2’s extended MBs, 

and they are described by “Tumor_gEUD” and “Lung_gEUD”, respectively. 

Figure 6(a) shows a stable pre-treatment MO-BN with edge strength ≥ 0.75 for joint 

prediction of LC and RP2, where one SNP (cxcr1-Rs2234671), two miRNAs (miR-191-5p 

and miR-20a-5p), three pre-treatment cytokines (IL-15, IL-4, IL-10), one pre-treatment PET 

radiomics (metabolic tumor volume (MTV)) and two kinds of dosimetric information (lung 

and tumor gEUDs) are selected. The figure also may reveal that given the radiation outcomes, 

a patient is likely to receive a radiation dose that is associated with his/her bio-profile in this 

particular cohort. Figure 6(b) shows the pre-treatment MO-BN FROC curve based on internal 

cross-validation during structure learning from the discovery dataset, with an AU-FROC 

value of 0.80 and a 95% CI of 0.70-0.86. In contrast, using the two separate pre-treatment 

SO-BNs has an AU-FROC=0.75 with a 95% CI of 0.65-0.80.  

For comparison, conventional clinical factors (age, gender, stage, smoking, COPD, 

location, chemo, KPS) were combined with dosimetric (tumor and lung doses) to build a 

conventional (dose/clinical) BN for LC/RP2 prediction. The resulting SO-BNs and MO-BN 

achieved AU-FROCs of only 0.65 (95% CI: 0.57-0.72) and 0.72 (95% CI: 0.60-0.77), 

respectively. 
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    3.B. During-treatment MO-BN model building and internal validation   

All members of the two extended MBs to obtain during-treatment SO-BNs for LC and 

RP2 prediction as shown in Figure 5 were considered as potential variables of during-

treatment MO-BN. Figure 7(a) illustrates a stable during-treatment MO-BN with edge 

strength ≥ 0.75 developed via the MO-BN structure learning, and Figure 7(b) shows the 

internal validation FROC curve of the during-treatment MO-BN from 7-fold cross validation. 

It turns out that the structure learning AU-FROC of the MO-BN with errc2-Rs238406, ercc5-

Rs1047768 and additional during-treatment information such as the SLP of IP-10 and the RD 

of radiomics PET image features GLSZM-LZLGE and GLSZM-SZV improved to 0.85 (95% 

CI: 0.75-0.91) based on the internal cross-validation, which is better than that of pre-

treatment MO-BN mentioned in section 3.A. The during-treatment MO-BN performs better 

than the corresponding combined SO-BNs (0.78 [95% CI: 0.67-0.84]). 

The conditional probability tables (CPTs) of during-treatment biophysical MO-BN for LC 

and RP2 prediction are summarized in Appendix A. It is noted that the CPT also reveals cases 

where prior knowledge could be modified by conditional probabilities connected nodes and 

cases where it cannot (e.g., cases where the prediction is 50% due to lack of sufficient 

representative information in the discovery dataset).   

 

     3.C. External model testing of the MO-BN and the SO-BN approaches  

The FROC curves of the biophysical MO-BNs based on validation dataset before and during 

the treatment are illustrated in Figures 6(c) and 7(c), respectively. With additional during-

treatment information, the performance AU-FROC of the MO-BN increase from 0.77 to 0.79 

on external testing. We also found out that two SO-BNs had AU-FROCs of only 0.68 or 0.71 

before or during radiation treatment. In comparison, with conventional (dose/clinical) BNs 
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for LC/RP2 prediction, the resulting SO-BNs and MO-BN achieved AU-FROCs of only 0.62 

and 0.66, respectively. A summary of AU-FROC values is provided in Table 2.  

 

4. DISCUSSION 

The manuscript presents a novel approach based on Bayesian network for combining multiple 

radiation outcomes for personalized response-adapted decision making in radiotherapy for 

NSCLC. The focus of the study was to present this methodology and analyze its performance 

in comparison with more frequent single output approaches using a population of 118 

NSCLC patients treated on prospective protocols with competing clinical endpoints of LC 

and RP2. 

 

       4.A. Feature selection and biophysical MO-BNs building 

There are many constraint-based, score-based, and hybrid learning algorithms for Bayesian 

network learning. However, they either handle a small dimensional dataset or act as a feature 

selection tool. There is no specific BN learning algorithm to obtain a stable BN structure 

from a dataset with a large number of features and a limited discovery sample size, which is 

quite common in clinical datasets. To overcome this under-powered challenge, the current 

novel BN model building process is decomposed into two steps to find the appropriate 

number of nodes and strength of edges from a retrospective dataset. First, MB features are 

selected for LC or RP2 separately, which reduces the number of variables to about 50. 

Second, a BN structure learning is conducted by balancing trade-offs between prediction 

noise and information loss for optimal prediction.  
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          The purpose of this data-driven approach is to capture knowledge patterns from a 

retrospective dataset. How well the patterns represent the dataset was measured by the 

resulting prediction performance based on internal cross-validation within the discovery 

dataset. In an MO-BN, while the nodes represent important predictors for radiation outcomes 

prediction, the edges are used to indicate their connections, and the strength of an edge 

denotes how strong a node will affect another node. The importance of a predictor for an 

outcome mainly depends on its connection strength to the radiation outcome nodes directly or 

indirectly.  

Since data noise may still impact prediction after the first step, an edge threshold was 

employed in the BN structure learning process to capture the most efficient BN structure to 

represent the dataset under study. If the strength of an edge is greater than or equal to the 

threshold, this edge will be kept in the MO-BN; otherwise, it will be eliminated, which may 

result in leaf nodes. Since the leaf nodes have no potential connection with LC and RP2, they 

were identified as nodes with relatively less impact on the radiation outcomes. However, 

whether to eliminate the leaf nodes or not depends on the prediction performance of the 

resulting MO-BNs. During the iterative process of increasing edge threshold and eliminating 

leaf nodes, the resulting AU-FROC values could increase initially and decrease after a certain 

point, and the optimal MO-BN with the appropriate edge strength can be identified from all 

the possible BNs. Figures 6(a) and 7(a) show the best knowledge discovered from the 

retrospective dataset based on the current MO-BN approach before and during the 

radiotherapy, respectively. Moreover, a naive MO-BN architecture could be derived from the 

general MO-BN through the marginalization of the grandparent nodes, and the MO-BN has 

the potential to achieve a better performance than that of a Naive MO-BN due to additional 

biophysical information and interaction.  
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       4.B. Internal and external biophysical MO-BN models’ validations 

FROC was used here to evaluate the joint BNs for LC and RP2 predictions, and the value of 

AU-FROC was employed to measure its performance. FROC allows for simultaneous 

evaluation of multiple objectives. However, alternative approaches also exist34. The optimal 

threshold cutoffs for prediction can be derived from these FROC curves using the Youden 

index35.  

         Given the nature of our unique and heterogeneous datasets, we followed a TRIPOD 

level 2b approach for model evaluation. That is, we built the MO-BN models with the most 

complete dataset in the discovery stage and evaluated performance using internal cross-

validation re-sampling. Then, additional NSCLC patients who had missing information were 

allocated to a separate cohort comprising of 50 patients, which were imputed (marginalized) 

using the biophysical MO-BNs. This highlights another strength of the proposed BN 

methodology, which is its ability to perform well in such clinically practical situations. 

Moreover, if the uncertainties of each measurement are known, they could be incorporated 

into estimating the resulting conditional probabilities using Bayes’ rule.  

However, there are limitations associated with our evaluation, such as the characteristics 

of the discovery and testing datasets were not similar for comprehensive assessment; while 

the LC rate was similar in both datasets, the event rate of RP2 was lower in our testing 

dataset compared to the discovery dataset.  Therefore, further validation on complete external 

datasets would still be needed (TRIPOD levels 3, 4).                   

 

      4.C. Comparison of SO-BNs and MO-BN for multiple radiation outcomes prediction  

Competing radiation outcomes for NSCLC treatments are intuitively expected to be 

associated with each other, as would be their selected variables to predict treatment response. 

For personalized NSCLC radiation treatment, an individual patient’s characteristics, 
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treatment plans, and radiation outcomes should be treated as a whole biophysical system. If a 

patient’s characteristics changes, the related radiation treatment plan may be modified 

accordingly to achieve the same treatment outcomes. While it is possible to combine separate 

conventional (dose/clinical) SO-BNs or biophysical SO-BNs to create composite utilities for 

decision making by applying subjective heuristics, optimality is not guaranteed as in the case 

of MO-BN, which also would account for cross-talks among competing outcomes.   

Although the extended MBs for LC and RP2 used to find the biophysical SO-BNs and 

MO-BNs are the same, the radiation outcomes (objectives) to guide the structure learning of 

these BNs are different. For each SO-BN approach, the variables and their biophysical 

interactions were obtained from network structure learning by maximizing the performance 

of a single radiation outcome prediction. Due to the relaxation of multi-objectives in a BN, 

the joint prediction performance of separate SO-BNs would only provide a lower bound to 

that of a MO-BN, and this relationship is supported by the AU-FROC results shown in Table 

2. The idea could be further extended to include other outcomes besides LC and RP2. On the 

other hand, if a MO-BN is employed to predict either LC or RP2 alone, the prediction 

performance may be less in some instances than using an SO-BN to predict that single 

outcome due to numerical instabilities with optimization of larger number of variables in 

such a utility approach.  

  

       4.D. Identification of important features and “cross-talk” from biophysical MO-

BNs  

The use of separate SO-BNs may provide better predictions in some instances, but has a 

limited capacity to reveal the interaction between individual patients’ characteristics and 

multiple radiation outcomes in terms of radiation treatment plans before and during a course 

of the radiotherapy, but a MO-BN can achieve this. Our MO-BNs analyses revealed that 
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cxcr1-Rs2234671, errc2-Rs238406, ercc5-Rs1047768, miR-20a-5p, miR-191-5p, pre-

treatment cytokines IL-10, IL-15, and IL-4, pre-treatment PET radiomics MTV, tumor and 

lung gEUDs, the SLP of cytokine IP-10, and the RD of PET radiomics GLSZM-ZSV and 

GLSZM-LZLGE are important features for both LC and RP2 prediction over the course of 

the radiotherapy. Moreover, the inter-relationship of these features may reveal relevant 

biophysical pathways impacting radiation outcomes with different treatment planning 

conditions. These biophysical interactions can be used to explore an in-depth understanding 

of underlying LC and RP2 radiobiology, which is essential for the development of 

molecularly targeted intervention adjuvant to radiotherapy (sensitizing the tumor while 

protecting uninvolved normal tissue).  

The biophysical MO-BNs shown in Figures 6(a) and 7(a) can also be displayed in another 

manner to unravel their overlapping relationships as illustrated in Figures 8(a) and 8(b), 

respectively. For instance, MO-BN reveals that a cxcr1 SNP (Rs2234671) plays a dual role in 

RP2 and LC responses. This is corroborated by literature where it was reported that the cxcr1 

SNP  mediates inflammatory response through IL-836, and it was also found to predict tumor 

response37. Moreover, miRNAs in our MO-BNs act as master regulators of biophysical 

pathways. For instance, mir-20a can impact both RP2 and LC signaling, where it is involved 

in lung cancer progression through oncogenic processes like cellular proliferation, and 

apoptosis38 and it was also shown in 39 to sustain T cell response in favor of an antitumor 

activity impacting cytokines changes (e.g., IP-10), which are associated with higher grade 

toxicities40 as could be inferred from our network. Moreover, both LC and RP2 were also 

affected by the interaction of different cytokines. For example, IL-10 is able to favor tumor 

growth both directly by affecting the tumor cells and indirectly by inhibiting immune cells41. 

Interleukin-15 (IL-15), a key pro-inflammatory cytokine42, can induce NK cell activation and 

cytotoxic T-lymphocyte responses leading to tumor regression43.  
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PET tumor radiomics can help predict response in NSCLC44. Yang et al. found that 

GLSZM-LZLGE exhibited significant temporal changes in partial metabolic responders45. 

Cheng et al. showed that texture parameters (GLSZM-ZSV) can help predict the survival in 

NSCLC patients46. These findings corroborate the interaction between PET information and 

the radiation outcomes found in our MO-BNs. Further details on the biophysical 

interpretations of the MO-BNs and their supporting literature are summarized in Appendix B. 

The Markovian property of a MO-BN reveals that given a set of parents’ nodes, the children 

nodes are independent from the rest of the nodes, which can be explored from the discovery 

dataset by using our BN approach. Considering that the parents of these “parent” nodes can 

also be discovered, the biophysical MO-BNs with hierarchical Parents-Children relationships 

can improve our understanding of radiobiological signaling pathways. However, caution 

should be used in interpreting these results despite their promise, and additional external 

validation of the biophysical MO-BNs described here using multi-institutional data and in 

vitro and in vivo experimentation are still necessary.  

 

       4.E. Utilization of biophysical MO-BNs in clinical practice 

Patients may have their own preferences to trade-off between tumor LC and possible risks of 

RILT to achieve their own therapeutic ratio contentment. While a pre-treatment MO-BN 

helps a practitioner choose an initial plan to reach a desired treatment outcome, a during-

treatment MO-BN can refine this relationship based on early patient’s response and guide 

decisions to maximize satisfaction, which is the underlying idea of our personalized adaptive 

radiotherapy decision support system (PARDSS). Based on the FROC curves from the 

discovery and validation datasets as shown in Figures 6 and 7, here we found that the during-

treatment MO-BN has the potential to improve RP2 and LC prediction with additional 

during-treatment information.   
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Our approach is primarily data-driven and in this NSCLC population, the radiation dose 

could be predicted by the biological characteristics, which are likely influencing conventional 

clinical factors. As summarized in Table 2, the conventional (dose/clinical) only models 

under-perform compared to biophysical BNs highlighting the need to include such 

biophysical factors in developing more informative PARDSS. By tracing the path entering 

nodes “Tumor_gEUD” and “Lung_gEUD” in Figures 6(a) and 7(a), appropriate radiation 

doses could be tuned to increase the predicted probability of local control and reduce RP2 

risk given certain patient’s characteristics (SNPs, miRNAs, cytokines, and PET information). 

For instance, a patient with following genetic characteristics (heterozygote allele for errc2-

Rs238406 and ercc5-Rs1047768, homozygotes without ancestral allele for cxcr1-Rs2234671, 

middle level expressions of miR-191-5p and miR-20a-5p) is selected as an example to 

demonstrate how pre- and during-treatment MO-BNs can be used in the clinic for response-

adapted radiation treatment based on the patient’s personal molecular profile. The patient’s 

pre- and during-treatment MO-BNs from Figures 6(a) and 7(a) can also be represented by 

Figures 9(a) and 9(b)/9(c) using Netica (Norsys Software Corp, Vancouver, BC, Canada) as 

an interactive user-interface for BNs, respectively.  

In the example of Figure 9, a patient is presented with low expression of cytokines (IL15, 

IL-4, IL-10), and medium MTV size prior to starting radiotherapy. Then, a medium tumor 

and lung gEUDs doses specified by red arrows in Figure 9(a) were prescribed for the first 

portion of the treatment, which is estimated to achieve 83.2% LC and 20.1% RP2. After the 

initial portion of the treatment was delivered, the patient’s changes in cytokines and PET 

radiomics features were measured. Assuming the patient had presented a medium SLP of IP-

10 and high RDs of PET textures (GLSZM-LZLGE and GLSZM-ZSV), then this would 

indicate that this patient was possible not as sensitive to radiation dose as originally projected 

with an updated very low RP2 risk estimate, but with a modest updated LC estimate (62.5%) 
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as achieved with the medium tumor gEUD as illustrated by Figure 9(b). Then, the optimal 

treatment plan for the rest of the radiotherapy course can be adapted by escalating the tumor 

gEUD to the high level range in this population while maintaining the medium lung gEUD 

level range as indicated by red arrows in Figure 9(c). This response-adaptation would result 

in an estimated 99.9% LC and 0.17% RP2. This simple example presents a proof-of-principle 

on how such pre- and during-treatment MO-BNs can be applied to customize and guide 

prescribed radiation dosage to an individual patient and potentially improve their outcomes 

compared to receiving a non-adaptive population-based treatment.   

The impact of the limited dataset on the performance of the current data-driven BN 

approach is acknowledged. Since the radiation outcomes are random before knowing 

patients’ characteristics, the prior probabilities of their radiation outcomes can be represented 

by 0.5. If there is no representative patient(s) in the dataset falling into a scenario defined by 

a certain combination of different categories, the posterior probabilities of LC or RP2 will 

follow their priors and remain 0.5 as shown in some scenarios in Appendix A. Otherwise, the 

previous patients’ radiation outcomes can help identify the posterior probabilities of LC or 

RP2 in a given scenario and shift their estimates upwards or downwards, accordingly. 

Moreover, it is possible that some outlier type patients, who had unexpected relationship 

between their biophysical characteristic and radiation outcomes, exist in certain scenarios 

creating false predictions that should be cautiously flagged too.  

 

5. CONCLUSIONS 

A MO-BN structure learning approach has been developed to identify the probabilistic inter-

relationship among the different (genetic, cytokines, imaging) factors and their potential 

relationships with both LC and RP2 estimates before and during the course of NSCLC 

radiotherapy for the joint prediction of competing radiation outcomes. The MO-BN approach 
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treats individual patient’s biophysical properties, treatment plan, and radiation outcomes as 

an integrated biophysical system. Compared to conventional dose/clinical factors only 

models or separate SO-BNs, MO-BN not only may provide a deeper understanding of the 

biophysical pathways underlying the radiation outcomes, but also could help improve the 

prediction of multiple radiation outcomes simultaneously. Future work will include 

consideration of more radiation outcomes in the MO-BN architecture, incorporation of CT 

radiomics, and clinical preferences, and the validation of the MO-BN prediction model with 

larger external datasets to advance adaptive radiation treatment planning. 
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Supplemental Material  

 

Appendix A 

Appendix B 

Biophysical interactions interpretation of MO-BNs in the section of Results   

Based on our study of genetic variants, ercc2_Rs238406, cxcr1_Rs2234671, and ercc5_Rs 

1047768 were identified as specifically prominent SNPs in our dataset. The protein encoded 

by ercc2_Rs238406 is involved in transcription-coupled nucleotide excision repair of 

damaged DNA 47. Lee et al. found that this ercc2 SNP contributes to additional risk of death 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

and disease progression in chemoradiation therapy of esophageal cancer 48. Rs2234671 is a 

SNP in CXCR1 gene, which overlaps both LC and RP2, it has been reported that the protein 

encoded by this gene is a specific receptor for the interleukin 8 (IL-8), which is 

chemoattractant for neutrophils and has an important role in the inflammatory response 36. On 

the other hand, Khan et al. demonstrated that cxcr1 gene is upregulated in lung cancer 

patients 49. Moreover, while investigating germline polymorphisms in genes involved in 

VEGF dependent and independent angiogenesis pathways to predict clinical outcome and 

tumor response in metastatic colorectal cancer patients (mCRC), Gerger et al. found that 

CXCR1 Rs2234671 G>C predicted tumor response in a significant level in multiple testing 

50.  

The role of miRNAs was also demonstrated in the early stages of the disease progression 

and metastasis 51 and an excellent biomarker for cancer diagnosis and prognosis 52,53
. Mir-20a 

was found to be associated with lung cancers, and is encoded by a gene located on 

chromosome 13q31, and is involved in several oncogenic processes like cellular proliferation, 

angiogenesis and apoptosis 38. O’Donnell et al. mentioned that the transcription factor E2F1, 

which is involved in cell cycle progression is regulated by two miRNAs of this family, miR-

20 and miR-17-5p 54. Mir-191 has been reported to be abnormally expressed in several 

cancers (>20) and various other diseases, and it regulates important cellular processes such as 

cell proliferation, differentiation, apoptosis, and migration by targeting important 

transcription factors, chromatin remodelers, and cell cycle associated genes 55. Taken 

together, these findings support the relationships between genetic variants and radiation 

outcomes LC and RP2 in our BNs. 

Both LC and RP2 are also affected by the interaction of different cytokines. IL-10 is able 

to favor tumor growth both directly by affecting the tumor cells and indirectly by inhibition 

of immune cells 41. Lung cancers are known to produce Th2 polarization by releasing 
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cytokines, besides IL-10, IL-4, IL-5, IL-6, and IL-13 may work in concert with other 

immunosuppressive agents or suppressor cells to produce pro-tumorgenesis effects 56. 

Previous studies have demonstrated that human lung tumor cell lines express interleukin 4 

(IL-4) receptors, and IL-4 can mediate modest to moderate anti-proliferative activity in vitro 

and in vivo in animal models of human lung tumors 57. Vokes et al. also reported that IL-4 

showed only minimal antitumor activity in lung cancer patients 58. Interleukin-15 (IL-15) is a 

pro-inflammatory cytokine that stimulates the differentiation and proliferation of T, B, and 

NK cells. Over expression of IL-15 has been shown to induce NK cell activation and 

cytotoxic T-lymphocyte (CTL) responses leading to tumor regression 43. Also, IL-15 has been 

hypothesized to sit at the apex of a pyramid of pro-inflammatory cytokines that includes 

TNFα, IL-1β, IL-6, IL-8, granulocyte-macrophage colony stimulating factor (GM-CSF), 

macrophage inflammatory protein-1 alpha (MIP-1α), and MIP-1β 42. Cytokine changing 

during radiation treatment can also help the joint prediction of LC and RP2. Siva et al. 

investigated the kinetics of RT induced plasma inflammatory cytokines in order to identify 

clinical predictors of toxicity, and they found that early changes in levels of IP-10, MCP-1, 

Eotaxin, IL-6 and TIMP-1 were associated with higher grade toxicity 40. 

PET tumor radiomics can help identify the status of tumor response. In a multi-institutional 

analysis that included 101 patients with stage I-III NSCLC, MTV, disease stage, and another 

tumor PET heterogeneity information were deemed to provide complementary prognostic 

information with regards to OS 44. Yang et al. performed texture analysis for the primary 

tumors as delineated on PET scans at each time point to examine how the extracted texture 

features evolved during the course of disease, and they found that GLSZM-LZLGE exhibited 

significant temporal changes in patients of partial metabolic responders during the course of 

disease 45. Cheng et al. compared attenuation correction of PET images with helical CT 

(PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung 
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cancer (NSCLC) to investigate the impact of respiration-averaged CT on 18F FDG PET 

texture parameters, and they showed that texture parameters from PET/ACT such as 

GLSZM-ZSV are clinically useful in the prediction of survival in NSCLC patients 46. These 

findings confirm the interaction between PET information and the radiation outcomes shown 

in our BNs. Table B summarizes supporting literature for the important determinants of LC 

and RP2 in the biophysical MO-BNs.  
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Figure Legends 

Figure 1. The process of learning the best MO-BN for joint prediction of LC and RP2 from a 

high dimensional dataset. 

Figure 2. Pre-treatment SO-BN for LC (a) and RP2 (b) prediction. 

Figure 3. Extended MBs for LC and RP2 prediction before radiation treatment including the 

radiation outcome’s inner family and the next-of-kin of each inner family member.  

Figure 4.  During-treatment SO-BN for LC (a) and RP2 (b) prediction. 

Figure 5. Extended MBs for LC and RP2 prediction during radiation treatment including the 

radiation outcome’s inner family and the next-of-kin of each inner family member.  

Figure 6. (a) Pre-treatment MO-BN for joint prediction of LC and RP2. (b) The FROC curve 

of pre-treatment MO-BN based on internal cross-validation. (c) The FROC curve of pre-

treatment MO-BN for the independent external validation based on the testing dataset. 

Figure 7. (a) During-treatment MO-BN for joint prediction of LC and RP2; (b) The FROC 

curve of during-treatment MO-BN based on internal cross-validation; (c) The FROC curve of 

during-treatment MO-BN for the independent external validation based on validation dataset. 

Figure 8. Biophysical MO-BNs can reveal the interaction of important biophysical features 

based on the LC’s and RP2’s extended MBs for joint prediction of these radiation outcomes 

before (a) and during (b) the radiotherapy. Green and red nodes in the figures represent the 
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features selected from the LC and RP2 extended MBs, respectively, and yellow nodes 

indicate the predictors originating from both of them. 

Figure 9. An example application of pre- and during-treatment MO-BNs for personalized 

response-adapted radiotherapy. (a) Identification of an individual patient’s best treatment 

plans (indicated by red arrows) before the treatment based on pre-treatment MO-BN using 

Netica as an interface, where single full-size black bars in shadowed boxes indicate a 

patient’s characteristics, and the black bars in un-shadowed boxes show the probability 

distribution of the radiation outcomes based on the retrospective dataset analysis; (b) 

Estimated patient’s treatment outcomes (LC/RP2) with the best pre-treatment plan based on 

during-treatment MO-BN, note the changes in the estimates of LC/RP2 by incorporating the 

during information; (c) Adjustment of tumor dose   in the during-treatment plan following 

estimate changes to improve LC by increasing dose noting that RP2 risk is smaller than what 

was originally projected in this case (specified by red arrows). 
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Table 1. Biophysical data description. 

Categories Names 

Dosimetric 

Information (15) 

Dosimetric information related to GTV composite:          gEUD with          , Mean Dose, D5, D90, D95; dosimetric information related to Lungs_GTV:        gEUD with  =1, 5, 10, 20, V5, V13, V20, D0.5cc
 a

; dosimetric information 

related to heart: Heart gEUD
 b

   

Clinical Factors 

(14) 

Smoking, COPD, Chemo, Gender, Adenocarcinoma, Squamous cell carcinoma, Large 
cell carcinoma, Poorly differentiated carcinomas, Stage, Age, GTV, KPS, Weight, 
Race. 
 

Cytokines for 

pre and during 

treatment 

(30+30)   

EGF, eotaxin, fractalkine, G-CSF, GM-CSF, IFN-γ, IL-10, IL-12p40, IL-12p70, IL-13, 
IL-15, IL-17, IL-1α, IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, 
MIP-1α, MIP-1β, sCD40L, TGFA, TNFA, VEGF, TGF-β1 

PET 

information for 

pre and during 

treatment
 c
  

(43+43) 

MTV, Global-Var, Global-Skewness, Global-Kurtosis, GLCM-Energy, GLCM-
Contrast, GLCM-Entropy, GLCM-Homogeneity, GLCM-IDM, GLCM-Correlation, 
GLCM-SumMean, GLCM-Variance, NGTDM-Coarseness, NGTDM-Contrast, 
NGTDM-Busyness, NGTDM-Complexity, NGTDM-Strength, GLRLM-SRE, 
GLRLM-LRE, GLRLM-GLN, GLRLM-RLN, GLRLM-RP, GLRLM-LGRE, 
GLRLM-HGRE, GLRLM-SRLGE, GLRLM-SRHGE, GLRLM-LRLGE, GLRLM-
LRHGE, GLRLM-GLV, GLRLM-RLV, GLSZM-SZE, GLSZM-LZE, GLSZM-GLN, 
GLSZM-ZSN, GLSZM-ZP, GLSZM-LGZE, GLSZM-HGZE, GLSZM-SZLGE, 
GLSZM-SZHGE, GLSZM-LZLGE, GLSZM-LZHGE, GLSZM-GLV, GLSZM-ZSV 

miRNAs (62) 

let-7a-5p, miR-100-5p, miR-106b-5p, miR-10b-5p, miR-122-5p, miR-124-3p, miR-
125b-5p, miR-126-3p, miR-134, miR-143-3p, miR-146a-5p, miR-150-5p, miR-155-
5p, miR-17-5p, miR-17-3p, miR-18a-5p, miR-192-5p, miR-195-5p, miR-19a-3p, miR-
19b-3p, miR-200b-3p, miR-200c-3p, miR-205-5p, miR-21-5p, miR-210, miR-221-3p, 
miR-222-3p, miR-223-3p, miR-224-5p, miR-23a-3p, miR-25-3p, miR-27a-3p, miR-
296-5p, miR-29a-3p, miR-30d-5p, miR-34a-5P, miR-375, miR-423-5p, miR-574-3p, 
miR-885-5p, miR-92a-3p, let-7c, miR-10a-5p, miR-128, miR-130b-3p, miR-145-5p, 
miR-148a-3p, miR-15a-5p, miR-193a-5p, miR-26b-5p, miR-30e-5p, miR-374a-5p, 
miR-7-5p, miR-103a-3p, miR-15b-5p, miR-191-5p, miR-22-3p,  miR-24-3p, miR-26a-
5p, miR-20a-5p, miR-93-5p, miR-16-5p 

SNPs (60) 

Rs3857979, Rs235756, Rs1800587, Rs17561, Rs2070874, Rs1801275, Rs1800795, 
Rs4073, Rs2234671, Rs1800896, Rs3135932, Rs1800872, Rs180925, Rs11556218, 
Rs4760259, Rs1799983, Rs689470, Rs11939979, Rs11724777, Rs12102171, 
Rs6494633, Rs4776342, Rs12456284, Rs12913975, Rs12906898, Rs7227023, 
Rs7333607, Rs1800468, Rs1800469, Rs4803455, Rs1061622, Rs664677, Rs664143, 
Rs373759, Rs189037, Rs609261, Rs1800057, Rs3212961, Rs3212948, Rs11615, 
Rs238406, Rs13181, Rs17655, Rs1047768, Rs12917, Rs1805794, Rs1625895, 
Rs1042522, Rs25489, Rs25487, Rs6464268. Rs3218536, Rs1799796, Rs9293329, 
Rs1478486, Rs1040363, Rs2075685, Rs2228000, Rs2228001  

 

a D0.5cc is the dose to 0.5 cc, which indicates a maximal lung dose here. 

b Heart gEUD represents mean heart dose (a=1). 

c PET features were extracted included widely used global, gray level co-occurrence matrix 
(GLCM), neighborhood gray-tone difference matrix (NGTDM), run-length matrix (RLM), 
and gray-level size-zone matrix (GLSZM).  
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Table 2. Pre- and during-treatment concurrent prediction performances (AU-FROC) of both 
LC and RP2 from conventional (dose/clinical) SO-BNs, and from combined biophysical SO-
BNs, and corresponding MO-BNs on the discovery and validation datasets.  

Patients 

Information 

Time of 

Prediction  

SO-BNs 

(dose/clinical  

factors only) 

MO-BN 

(dose/clinical  

factors only) 

SO-BNs         

(including 

biophysical 

factors)  

MO-BN         

(including 

biophysical 

factors)            

Discovery 

dataset: 

68 patients 
with 48 LCs 
and 17 RP2s 

pre- 

treatment 

0.65             
(0.57-0.72) a 

0.72           
(0.60-0.77) 

0.75      
(0.65-0.80)             

0.80              
(0.70-0.86) 

during- 

treatment 
NA b NA 

0.78        
(0.67-0.84) 

0.85           
(0.75-0.91) 

Validation 

dataset:          

50 patients 
with 38 LCs 
and 3 RP2s 

pre- 

treatment  
0.62 0.66 0.68 0.77 

during- 

treatment 
NA NA 0.71 0.79 

a The numbers in the parentheses represent the 95% CIs of AU-FROC.  

b NA=not applicable.  
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Table A. The table of conditional probabilities P (LC| Tumor_gEUD, RD_GLSZM_ZSV, 
cxcr1-Rs2234671) and P (RP2|Lung_gEUD, SLP_IP_10, cxcr1-Rs2234671). 

 

 

 

 

 

 

 

 

 

cxcr1_ 

Rs2234671 
[0.999, 1.5] 

Tumor_ 

gEUD 
[16.8, 67.8] (67.8, 74.8] (74.8, 95.4] 

RD_GLSZM 

_ZSV 

[-7.77e+3, 

-0.354] 

(-0.354, 

0.58] 

(0.58, 

0.964] 

[-7.77e+3, 

-0.354] 

(-0.354, 

0.58] 

(0.58, 

0.964] 

[-7.77e+3, 

-0.354] 

(-0.354, 

0.58] 

(0.58, 

0.964] 

Local Control Prediction  P (LC|Tumor_gEUD, RD_GLSZM_ZSV, cxcr1-Rs2234671) 

No 0.99 0.99 0.99 0.99 0.99 0.01 0.5 0.5 0.005 

Yes 0.01 0.01 0.01 0.01 0.01 0.99 0.5 0.5 0.995 

Lung_ 

gEUD 
[4.35, 13.6] (13.6, 17.6] (17.6, 21.2] 

SLP_IP_10 
[-608,       

-23.9] 

(-23.9, 

57.2] 

(57.2, 

2.15e+03] 

[-608,            

-23.9] 

(-23.9, 

57.2] 

(57.2, 

2.15e+03] 

[-608,        

-23.9] 

(-23.9, 

57.2] 

(57.2, 

2.15e+03] 

RP2 Prediction P (RP2|Lung_gEUD, SLP_IP_10, cxcr1-Rs2234671) 

No 0.5 0.5 0.99 0.99 0.99 0.99 0.5 0.99 1 

Yes 0.5 0.5 0.01 0.01 0.01 0.01 0.5 0.01 0 

cxcr1_ 

Rs2234671 
(1.5, 2] 

Tumor_ 

gEUD 
[16.8, 67.8] (67.8, 74.8] (74.8, 95.4] 

RD_GLSZM 

_ZSV 

[-7.77e+3, 

-0.354] 

(-0.354, 

0.58] 

(0.58, 

0.964] 

[-7.77e+3, 

-0.354] 

(-0.354, 

0.58] 

(0.58, 

0.964] 

[-7.77e+3, 

-0.354] 

(-0.354, 

0.58] 

(0.58, 

0.964] 

Local Control Prediction P (LC|Tumor_gEUD, RD_GLSZM_ZSV, cxcr1-Rs2234671)  

No 0 0.2 0.5 0.6 0 0.38 0.22 0 0 

Yes 1 0.8 0.5 0.4 1 0.62 0.78 1 1 

Lung_ 

gEUD 
[4.35, 13.6] (13.6, 17.6] (17.6, 21.2] 

SLP_IP_10 
[-608,       

-23.9] 

(-23.9, 

57.2] 

(57.2, 

2.15e+03] 

[-608,            

-23.9] 

(-23.9, 

57.2] 

(57.2, 

2.15e+03] 

[-608,        

-23.9] 

(-23.9, 

57.2] 

(57.2, 

2.15e+03] 

RP2 Prediction P (RP2|Lung_gEUD, SLP_IP_10, cxcr1-Rs2234671) 

No 1 1 0.9 0.29 0.71 1 0.8 0.33 0.33 

Yes 0 0 0.1 0.71 0.29 0 0.2 0.67 0.67 
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Table B. Supporting literature for the important determinants of LC and RP2 in the 
biophysical MO-BNs  

Categories 
Important  

Features  
LC RP2 

SNP 

cxcr1- 

Rs2234671 

It was found to predict tumor response 
37 

It was reported to mediate 
inflammatory response through IL-8 
36 

ercc2- 

Rs238406 

It contributes to additional risk of 
cancer progression 59 and may 
determine OS of NSCLC patients 
treated with radiation therapy 60   

It is involved in transcription-
coupled nucleotide excision repair of 
damaged DNA 47 

miRNA 
miR- 

20a-5p 

It is involved in lung cancer 
progression through oncogenic 
processes like cellular proliferation, 
and apoptosis 38 

It was shown in 39 to sustain T cell 
response in favor of an antitumor 
activity impacting cytokines 
changes, which are associated with 
higher grade toxicities 40 

Cytokines 

IL-10 

It favors tumor growth both directly by 
affecting the tumor cells and indirectly 
by inhibition of immune cells 41 

Its early variations during 3D-CRT 
are significantly associated with the 
risk of radiation pneumonitis 61 

IL-15 

Its over expression has been shown to 
induce NK cell activation and 
cytotoxic T-lymphocyte responses 
leading to tumor regression 43 

It has been hypothesized to sit at the 
apex of a pyramid of pro-
inflammatory cytokine 42 

IP-10 

 It is a chemokine implicated in many 
inflammatory diseases 62, and early 
changes in its levels were associated 
with higher grade toxicity 40 

PET 

Radiomics 

GLSZM-

ZSV 

It is clinically useful in the prediction 
of survival in NSCLC patients 46 
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