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Abstract

A challenging problem arising in brain imaging research is principled incorporation of in-
formation from different imaging modalities. Frequently each modality is analyzed separately
using, for instance, dimensionality reduction techniques which result in a loss of mutual infor-
mation. We propose a novel regularization method to estimate the association between the
brain structure features and a scalar outcome within the linear regression framework. Our reg-
ularization technique provides a principled approach to utilizing external information arising
from the structural brain connectivity to inform the estimation of the regression coefficients.
Our proposal extends the classical Tikhonov regularization framework by defining a penalty
term based on the structural connectivity-derived Laplacian matrix. In the work presented, we
address both theoretical and computational issues. The approach is illustrated using simulated
data and compared with other penalized regression methods. Finally, we apply our regulariza-
tion method to study the associations between the alcoholism phenotypes and brain cortical
thickness using a diffusion tensor imaging (DTI) derived measure of structural connectivity.

1 Introduction

In vivo brain imaging studies usually collect multiple imaging data types, but most often the analysis
is done for each data type separately, which does not adequately take into account the brain’s
complexity. Statistical methods that simultaneously utilize and combine multiple data types can
provide a more holistic view of brain (dys)function. We propose a novel statistical methodology
that combines imaging data to derive a more complete picture of disease markers. In particular,
we rigorously model associations between scalar phenotypes and imaging data while incorporating
prior scientific knowledge. Specifically, we incorporate structural connectivity measures to model
the association between the brain cortical thickness and alcoholism-related phenotypes. However,
our methodology is more general and applicable to a variety of continuous outcomes and connectivity
measures.

We work with a linear regression model where the scalar outcome for each subject i, yi (vector
of outcomes y) is modeled as a linear combination of covariates x1, . . . , xm (matrix of covariates,
X) whose contribution is not penalized and predictors z1, . . . , zp (matrix of predictors, Z) whose
contribution is penalized. Optimization problem for the parameter estimation can be written as

arg min
β,b

{
‖y −Xβ − Zb‖22 + λbTQb

}
,

where the estimates of β and b are the best linear unbiased estimators (BLUE) and the best linear
unbiased predictors (BLUP), respectively; Q incorporates the penalization information and λ is
regularization parameter.

The general idea of incorporating structural information into regularized methods is well estab-
lished (see e.g. Bertero and Boccacci (1998), Engl et al. (2000), Phillips (1962)). Such information
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is provided by a matrix that is inserted into the penalty term and constructed depending on the
application. One of the most commonly used matrices are the second–difference matrices, which
impose smoothness on the estimates (Huang et al., 2008). Hastie et al. (1995) note that under the
situation with many highly correlated predictors it is “efficient and sometimes essential to impose
a spatial smoothness constraint on the coefficients, both for improved prediction performance and
interpretability.” A more general way of viewing the problem is that the modified penalty should
take into account some presumed structure (a priori association) in the signal (Tibshirani and Tay-
lor, 2011; Slawski et al., 2010). Such presumed structure can be represented mathematically in
terms of an adjacency matrix which shows strength of connections between variables (correspond-
ing to nodes of the graph), and is reflected in the penalty term via Laplacian (Chung, 2005). This
procedure constitutes the basis for approaches presented by Li and Li (2008) and Randolph et al.
(2012).

Prior information represented by a matrix Q may be incorporated into a regression framework
using various types of penalty terms. Tikhonov regression (Tikhonov, 1963) and PEER (Partially
Empirical Eigenvectors for Regression) (Randolph et al., 2012), employ the penalty of the form
λbTQb, with a symmetric semipositive definite matrix Q. The choice Q = I results in an ordinary
ridge regression, which is the most commonly used method of regularization of the ill–posed prob-
lems. The connection of this type of penalty with `1 norm was analyzed by Li and Li (2008) and
Slawski et al. (2010). The penalized version of a linear discriminant analysis (LDA) was considered
by Hastie et al. (1995), while Tibshirani and Taylor (2011) proposed the `1 norm imposed on the
matrix Q times the coefficient vector. In each of these, different choices of Q give rise to a variety
of well–known models, including the fused lasso (Tibshirani et al., 2005).

The natural problem that arises with penalized methods is the selection of a regularization
parameter. Standard techniques to address this issue include the L–curve criterion and either
cross-validation (CV) or generalized cross-validation (GCV) (see Craven and Wahba (1979), Hansen
(1998), Brezinski et al. (2003)). In Randolph et al. (2012), authors take an advantage of the
equivalence between the considered optimization problem and the Restricted Maximum Likelihood
(REML) estimation (Ruppert et al., 2003; Maldonado, 2009) in the linear mixed model (LMM)
framework. GCV and REML proceed by optimizing function of λ. According to experiments
performed by P. T. Reiss (2009), GCV more likely finds a local, but not global, optimum of this
function as compared to REML. Better performance of REML was also confirmed in simulations
performed in this article and, consequently, the equivalence with LMM was chosen as a technique
for selection of regularization parameters in our proposal.

The linear mixed model equivalence with the penalized problem of Tikhonov type, with penalty
λbTQb, leads to the assumption that the prior distribution of b is of the form N (0, σ2

bQ
−1), for

some σ2
b > 0. This also shows a connection with the Bayes approach (see e.g. Maldonado (2009))

and raises the interpretation problem in the situation when Q is a singular matrix, which may be
the case in some applications. This concern needs to be addressed, since the reduction to the ridge
regression, which is the first step in λ selection procedure via REML, requires the invertibility of
Q. One possible solution is to use the Z-weighted generalized inverse of Q, (Elden, 1982; Hansen,
1998), which is defined based on both the penalty matrix Q and the design matrix Z. This solution
produces the assumed distribution for b which is not “purely prior”, since it depends on a specific
dataset. Methods introduced in this work provide an alternative approach of handling the non-
invertibility of the matrix Q. In our approach, we take an alternative point of view for the prior
distribution of b; we assume that the unknown true or optimal variance–covariance, Q, of b is
(potentially) non-singular and that a singular matrix Q, defined by the user, is “close” to the Q.
This reasoning prompts us to accept that there exists an entire set of matrices which carry some
amount of information about the true correlation structure of b (i.e. a set of informative matrices)
and by using any of them we should be able to obtain a more accurate estimation and prediction
than in the case when the knowledge about the signal structure is not available. In the next step,
we assume that by adding the identity matrix multiplied by relatively small constant to matrix Q
(“riPEER-c” approach) or by not penalizing the eigenvectors associated with the zero eigenvalues
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of the penalty matrix (“vrPEER” approach), the amount of information it carries will not change
significantly. Finally, since it is not obvious how large the multiplicative constant should be, our
final proposed method, riPEER, uses REML to estimate both penalty parameters simultaneously.

riPEER can be viewed as a special case of the extension of the general-form Tikhonov regular-
ization, known as the multi-parameter Tikhonov problem (Belge et al., 2002; Brezinski et al., 2003;
Lu and Pereverzev, 2011). Multi-parameter Tikhonov problem considers k matrices, Q1, . . . , Qk,

together with k parameters λ1, . . . , λk, and defines the penalty as
∑k
i=1 λib

TQib. The set of k
regularization parameters must be selected and a few ideas, such as a higher dimension L–curve
(Belge et al., 2002), the discrepancy principle (Lu and Pereverzev, 2011), and an extension of GCV
(Brezinski et al., 2003) were previously proposed. To the best of our knowledge, our work is the
first to use the equivalence of the multi–parameter Tikhonov problem with the linear mixed model
framework to estimate the regularization parameters.

To define the measure of similarity between the brain regions, we used the density of connections
calculated from the measurements obtained from the DTI scans. The similarity measure between
the regions i and j constitutes the (i, j)-entry of the symmetric adjacency matrix A, which is used
to construct the normalized Laplacian, described in detail in Section 2.2. We exploit this structure
as prior scientific knowledge in our proposed regularization methodology. A sample graph, its
corresponding adjacency matrix, and a heatmap of the normalized Laplacian are presented in
Figure 1.
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Figure 1: (a) Connectivity graph with five nodes and node similarity expressed as edge weights; (b) the
corresponding adjacency matrix A; and (c) the heatmap of the normalized Laplacian.

The remainder of our article is organized as follows. In Section 2, we formulate our statistical
model, propose the estimation procedure and discuss their main properties. We also describe the
penalty term construction employing graph theory concepts and regularization parameter selection.
Our new methods are described in Section 3 and simulations to study their validity are reported in
Section 4. Finally, in Section 5, we apply our methodology to study the association of the brain’s
cortical thickness and alcoholism phenotypes. The conclusions and a discussion are summarized in
Section 6.

2 Statistical Model and Penalization

Motivated by the brain imaging data applications, we consider a situation where the covariates
and penalized predictors are distinct. For example, information about the connectivity between the
cortical brain regions is used to penalize only the predictors corresponding to cortical measurements,
whereas other variables, such as demographic covariates and overall intercept, are included in the
regression model as unpenalized terms.
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2.1 Statistical model

Consider the general situation, where we have n observations of a random variable, stored in vector
y, and the design matrix, [Z X], is given, where Z and X are n × p and n ×m design matrices,
respectively. Here, p denotes the number of all penalized variables and m is a number of unpenalized
covariates. We assume that the unknown vectors b and β satisfy the multiple linear regression model,

y = [Z X]
[
b
β

]
+ ε = Zb+Xβ + ε, (2.1)

where ε ∼ N (0, σ2In) is the vector of random errors.
Here, X is the n by m design matrix containing unpenalized covariates or, equivalently, columns

corresponding to variables for which the connectivity information is not given. The standard pro-
cedure is to mean-center all columns in the design matrix to remove the intercept. In such case,
X can be an empty matrix (i.e. the situation with m = 0 is taken into consideration) and then
model (2.1) takes the form y = Zb+ ε. The matrix Z corresponds to the predictors for which the
connectivity information is available. Such information is given by a p by p symmetric matrix A
(also known as the connectivity matrix) which can be treated as a prior knowledge and employed
in the estimation, e.g. via a Laplacian matrix Q (see Section 2.2), which can then be incorporated
into the penalty term.

2.2 Defining Q as a normalized Laplacian

In this work, we use the normalized Laplacian matrix, see Chung (2005). Let A = [aij ], 1 ≤
i, j ≤ p be an adjacency matrix (symmetric matrix with non-negative entries and zeros on the
diagonal), which defines the strength of the connections between nodes. The diagonal entries of the
(unnormalized) Laplacian are di :=

∑
j 6=i aij , representing the sum of all weighted edges connected

to node i.
The normalized Laplacian is defined as the p by p matrix Q:

Q(i, j) :=


1− aii/di, if i = j and di 6= 0

−aij/
√
didj , if i and j are connected

0, otherwise

It is worth noting that a Laplacian is a symmetric matrix. The justification why a matrix con-
structed in such a way could be incorporated in the penalty term is explained by the following
property (see e.g. Li and Li (2008)). If we let Q to be the normalized Laplacian then

bTQb =
∑

i,j:aij 6=0

(
bi√
di
− bj√

dj

)2

aij .

The result above shows that defining penalty as λbTQb implies that vectors that differ too much
over linked nodes get more penalized. Scaling by

√
di allows a small number of nodes with large

di to have more extreme values. The proposition above also implies that for any adjacency matrix
A, Laplacian is a positive semi-definite matrix. To determine that Q has zero as the smallest
eigenvalue, it is enough to consider a p dimensional vector, b̃, defined as b̃i :=

√
di. Then b̃TQb̃ = 0.

2.3 Estimate and its properties

If Q is a symmetric and positive definite matrix (hence invertible), we can use the estimate obtained
as the solution to a convex optimization problem of the general-form Tikhonov regularization, i.e.,[

b̂Q

β̂Q

]
:= arg min

b,β

{∥∥y − Zb−Xβ∥∥2
2

+ λbTQb
}
. (2.2)
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Here λ > 0 is a tuning parameter which can be estimated using the equivalence with a corresponding
linear mixed model. This estimation procedure is implemented in Randolph et al. (2012). In our
case, there is clear distinction between the penalized – Z and unpenalized – X covariates. By

defining QE :=

[
Q 0
0 0

]
, the minimization procedure (2.2) is equivalent to[
b̂Q

β̂Q

]
:= arg min

β,b

{∥∥∥y − [Z X]
[
b
β

] ∥∥∥2
2

+ λ
[
b
β

]T
QE

[
b
β

]}
. (2.3)

The solution to the above problem can be analytically found and is given by[
b̂Q

β̂Q

]
=
(

[Z X]T[Z X] + λQE

)−1
[Z X]Ty. (2.4)

Randolph et al. (2012) describe how the generalized singular value decomposition (GSVD) (see
also Hansen (1998), Golub and Van Loan (2013), Bjorck (1996), Paige and Saunders (2006)) is a
useful tool for understanding the role played by the l2 penalization terms in a regularized regression
model. In particular, GSVD provides a tractable and interpretable series expansion of the estimate
in (2.4) in terms of the generalized eigenvalues and eigenvectors.

2.4 Regularization parameter selection

We consider two parameter selection procedures, cross-validation and REML. Simulations per-
formed in Section 4 show the advantage of the later over the former. Therefore, in our final
procedure, the equivalence with linear mixed model is used to obtain λ.

We briefly review here the basics of the LMM theory necessary to present our proposal (see e.g.
Demidenko (2004) and C. E. McCulloch (2008)). Here, we consider the multiple linear regression
model, y = Xβ + Zb+ ε, with uncorrelated random vector ε, i.e. we assume that E(εi, εj) = 0 for
i 6= j. To present the idea we begin with the case where Q has an inverse that matches (up to a
multiplicative constant) the variance-covariance matrix of random effects. In summary, we assume
the following:

A.1 β is the vector of fixed effects and b is vector of random effects,

A.2 E(b) = 0 and E(ε) = 0,

A.3 Cov(b) = σ2
bQ
−1 and Cov(ε) = σ2In, for some unknown σ2

b > 0 and σ2 > 0,

A.4 b and ε are uncorrelated.

As noted above, knowing Q corresponds to knowing the correlation matrix of b up to the
multiplicative constant, σ2

b , which can be interpreted as a measure of signal amplitude. By assuming
two-, three- and higher parameter families, one can generalize this to the case where knowledge
about the correlation is less rich. In the extreme case no additional conditions for Cov(b) are
assumed, other than that it is a symmetric, positive definite matrix, which results in (p2 + p)/2-
parameter family of matrices.

Under the model (2.1) with assumptions A.1–A.4, it can be shown that V := Cov(y) =
σ2
bZQ

−1ZT + σ2In. The best linear unbiased estimator (BLUE) of β and best linear unbiased
predictor (BLUP) of b are given by the following equations

BLUE(β) = (XTV −1X)−1XTV −1y, BLUP(b) = σ2
bQ
−1ZTV −1

(
y −X BLUE(β)

)
. (2.5)

Equivalently the expressions in (2.5) can also be obtained as the solution to an optimization
problem. Assume that b has multivariate normal distribution: y|b ∼ N (Xβ + Zb, σ2In) and
b ∼ N (0, σ2

bQ
−1). If σ2

b , σ2 are known, this yields the following log-likelihood function

l(b, β) = −1

2

(
σ−2‖y −Xβ − Zb‖22 + σ−2b bTQb

)
+ c1(Q, σ2

b , p) + c2(n, σ2),
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where functions c1 and c2 do not depend on either b or β. Looking for the maximum likelihood
estimates simply leads to the problem (2.2), with λ := σ2/σ2

b . It can be shown that the optimal
values of β and b are exactly given by BLUE and BLUP defined in (2.5). Our proposal provides
an objective and statistically rigorous way to choose the tuning parameter λ in (2.2) when Q is a
symmetric and positive definite matrix. Indeed, we can use REML to obtain the estimates of σ2

and σ2
b in the model characterized by A.1 – A.4 and define λ̂ as σ̂2/σ̂2

b .
The first step is the conversion of the optimization problem to the ordinary ridge regression.

Since Q is a symmetric, positive-definite matrix it can be decomposed as Q = LTL, where L is an
invertible matrix. Now

‖y −Xβ − Zb‖22 + λbTQb = ‖y −Xβ − ZL−1Lb‖22 + λ(Lb)TLb = ‖y −Xβ − Z̃b̃‖22 + λ‖b̃‖22,

for Z̃ := ZL−1 and b̃ := Lb, which allows us to assume that Q = I in A.3 without loss of
generality. This conversion procedure changes the general Tikhonov formulation to the ordinary
ridge regression. One of the clear advantages of the the ordinary ridge is that it is easily implemented
in a variety of existing software packages that support the LMM framework.

2.5 Statistical inference

We utilize a testing framework proposed in Ruppert et al. (2003) to test for the significance of
the penalized regression coefficients b and provide the (1− α) confidence intervals for the riPEER
estimate via

CIriPEER = b̂riPEER±zα×

√∑
(ỹ − ̂̃y)2

n− ptr
×
√
diag((Z̃T Z̃ + λQQ)−1Z̃T Z̃(Z̃T Z̃ + λQQ)−1), (2.6)

where zα is the value of the inverse of CDF of the standard normal distribution in 1− α/2 and ptr
is the trace of a “hat” matrix H given by:

HriPEER = Z̃(Z̃T Z̃ + λQQ)−1Z̃T , (2.7)

where ỹ, Z̃ denote a vector of response variable y and penalized predictors data matrix Z, respec-
tively (after regressing out the nonpenalized variables).

3 Regularization Methods

The standardization procedure described in Section 2 can be applied when Q is a symmetric positive
definite matrix. However, the normalized Laplacian is always a singular matrix. Thus, the methods
described cannot be readily applied.

Suppose that Q in (2.2) is non-invertible and has rank equal to r with r < p. Since matrix Q is
singular, we can not simply assume that b ∼ N (0, σ2

bQ
−1), as in A.3. However, it is reasonable to

assume the existence of an unknown matrix Q such that b ∼ N (0, σ2
bQ−1) which is not identical,

but, in some sense, close to Q. The intuition is that by making a “small modification” to Q,
targeted to remove the singularity, one may produce an invertible matrix which is still “close” to
Q and can use the information that it carries as described Section 2. In this section, we propose
three approaches to address the singularity of the regularization matrix Q.

3.1 Constant riPEER (riPEER-c)

The simple and natural idea of modifying Q is by defining Q̃ := Q+ λ2Ip for some fixed parameter
λ2. We refer to this method as Constant riPEER (riPEER-c), where specific steps are presented
below
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Algorithm 1 riPEER-c

input: matrices Z, X, positive semi-definite matrix Q, λ2 > 0

1: define Q̃ := Q+ λ2Ip;

2: decompose Q̃ as Q̃ = LTL;
3: find REML estimates σ̂2 and σ̂2

b , of σ2 and σ2
b , in LMM with X as matrix of fixed effects,

ZL−1 as matrix of random effects, b ∼ N (0, σ2
b Ip) and ε ∼ N (0, σ2In);

4: define λ := σ̂2/σ̂2
b and find estimates β̂crP and b̂crP by applying formula (2.4) with matrix Q̃.

The value of λ2 is fixed as a small number. In our work, we tested several values of λ2 to assess
the solutions’ stability. Based on the simulation results, we fix λ2 to be equal to 0.001.

3.2 riPEER

In our second approach, we propose to use two penalty parameters in the optimization problem
(3.1) – main penalty parameter λQ and a ridge adjustment parameter λ2. Solution to this problem
is found using the equivalent LMM formulation estimating both penalty parameters. Specifically,
the optimization problem can be written as,[

b̂RP

β̂RP

]
:= arg min

β,b

{
‖y −Xβ − Zb‖22 + λQb

T(Q+ λ2Ip)b
}

(3.1)

or equivalently as [
b̂RP

β̂RP

]
= arg min

β,b

{
‖y −Xβ − Zb‖22 + λQb

TQb+ λR‖b‖22
}
, (3.2)

where λR = λQλ2. The latter formulation, with an additional ridge penalty, justifies the name of
the method. Without loss of generality, in the first step we can reduce the problem by excluding
the X matrix. It can be shown that b̂RP = arg min

b

{
‖PcXy − PcXZb‖22 + λQb

TQb+ λR‖b‖22
}

β̂RP = (XTX)−1XT(y − Zb̂RP)
, (3.3)

where PcX := In − X(XTX)−1XT is the projection onto orthogonal complement to the subspace
spanned by columns of X. Denote yP := PcXy and ZP := PcXZ. For the ease of computation, we
perform an additional step; let USUT be the SVD of the matrix Q, with the orthogonal matrix U
and the diagonal matrix S with nonnegative numbers on the diagonal. After the variable change
via the transformation b← UTb, the final form of problem becomes

arg min
b

{
‖yP − ZPUb‖22 + bT(λQS + λRIp)b

}
. (3.4)

Now the LMM equivalent to (3.4) can be characterized as follows:

B.1 we consider model yP = Z̃b+ε, with Z̃ := ZPU and b being the vector of random effects,

B.2 ε ∼ N (0, σ2In),

B.3 b ∼ N
(
0, σ2D−1λ

)
, where Dλ := λQS + λRIp.

To the best of our knowledge, there is no existing R package that can be used to estimate
the parameters based on the equation (3.4) in a straightforward way. Thus, we have focused on
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deriving and optimizing the LMM log-likelihood function. Following Demidenko (2004), maximizing
the log-likelihood is equivalent to minimizing the expression

h(λ) = n ln
[
‖yP‖22 − yTPZ̃

(
Dλ + Z̃TZ̃

)−1
Z̃TyP

]
+ ln

∣∣Dλ + Z̃TZ̃
∣∣− ln

∣∣Dλ

∣∣.
Precisely, the maximum likelihood estimator (mle) for σ2, λQ and λR can be found as mle(λ) = arg min

λ�0
h(λ)

mle(σ2) = n−1yTP

(
Z̃D−1mle(λ)Z̃

T + I
)−1

yP

(3.5)

To find the solution to the above optimization problem we utilized sbplx function from the nloptr
R software package (Ypma, 2014), which is an R interface to NLopt (Johnson, 2016) – a free/open-
source library for nonlinear optimization. sbplx function implements Subplex algorithm (Rowan,
1990) to estimate the parameters of an objective function to be minimized.
riPEER algorithm can be summarized as

Algorithm 2 riPEER

input: matrices Z, X, positive semi-definite matrix Q
1: find SVD of Q, i.e. Q = USUT;
2: define projection matrix PcX as PcX := In −X(XTX)−1XT;

3: denote yP := PcXy, ZP := PcXZ, Z̃ := PcXZU ;
4: find estimates of λQ and λR by solving optimization problem in (3.5);

5: define b̂RP :=
(
ZT

PZP + λQQ+ λRIp
)−1

ZT
PyP , β̂RP := (XTX)−1XT(y − Z)b̂RP.

3.3 Variable Reduction PEER (vrPEER)

For the sake of considering an alternative approach that does not introduce an additional penalty
term to deal with the singularity of a matrix Q, i.e. rank(Q) < p, we reduce the number of penalized
predictors in the optimization problem by moving a number of them to the unpenalized matrix X.
This method is based on the property stating that for any vector b ∈ Rp, bTQb can be expressed as
cTdiag(s1, . . . , sr)c for nonzero singular values s1, . . . , sr of Q and some c from the r-dimensional
subspace spanned by the singular vectors corresponding to s1, . . . , sr.

In the next step, we proceed with the variable rearrangement. We start with the optimization
problem (2.2) with Q having rank r < p. Matrix Q has an eigendecomposition of the form

Q = U

[
Σ 0
0 0

]
UT, Σ := diag(s1, . . . , sr), si > 0. (3.6)

Using the notation b̃ := UTb and b̃[1:r] for the first r coefficients of b̃, we get the equivalent opti-
mization problem with the objective function∥∥y −Xβ − ZUb̃∥∥2

2
+ λb̃T[1:r]Σb̃[1:r].

Matrix ZU is separated column-wise into A which is a submatrix of ZU created by the last p− r
columns and Z which is a submatrix of ZU created by the first r columns. Let c := b̃[r+1:p] be

the regression coefficients corresponding to the columns in matrix A and d := b̃[1:r] the regression
coefficients corresponding to the new penalized variables in the matrix Z. Now, the optimization
criterion can be written as,

arg min
β,c,d

{∥∥y − [X A
] [β
c

]
− Zd

∥∥2
2

+ λdTΣd

}
. (3.7)
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Optimization problem (3.7) is in the ordinary PEER optimization form (2.2) with an invertible
penalty matrix Σ. Thus, an equivalent LMM can be easily derived. In summary, for a singular
matrix Q some directions, corresponding to the singular vectors with zero singular values in Rp,
are not penalized. After changing the basis vectors, we can move the corresponding variables to
the unpenalized part. All the steps are summarized in the Algorithm 2.

Algorithm 3 vrPEER

Input: matrices Z, X, positive semi-definite matrix Q with rank r < p;
1: Let U be orthogonal matrix from (3.6) and define matrix of nonzero singular values, Σ :=
diag(s1, . . . , sr);
2: Denote by A last p− r columns of ZU and by Z first r columns of ZU ;

3: Put X := [X A] and consider minimization problem with the objective ‖y−Xβ̃−Zd‖22+λdTΣd,

for β̃ ∈ Rm+p−r and d ∈ Rr;
4: Estimate σ2 and σ2

d in equivalent LMM, i.e. the model y = Xβ̃+Zd+ε, where d ∼ N (0, σ2
dΣ−1)

and ε ∼ N (0, σ2In), and define λ := σ̂2/σ̂2
d;

5: Find estimates β̂vrP and b̂vrP by applying formula (2.4).

In Section 4, we study the empirical performance of the proposed extensions to PEER. Namely,
we conduct an extensive simulation study using data-driven connectivity matrices to evaluate the
estimation performance of riPEER-c, vrPEER and riPEER. In addition, we compare the results
from our proposed methods with the ordinary ridge regression and ordinary least squares.

4 Simulation experiments

In this section, we study the empirical behavior of the extensions to the PEER-type estimators pro-
posed, namely riPEER-c, riPEER and vrPEER, alongside the ordinary ridge and PEER estimation
methods in a number of simulation studies.

In Section 4.1, we summarize the setup of our simulation studies. We concentrated on the
cases with both full and partial information provided by the connectivity matrices. In Section 4.2,
methods used for the parameter estimation are discussed. Finally, in Section 4.3, we summarize the
estimation discrepancies for the proposed and classical methods including the comparison between
two approaches to penalty parameter(s) choice: cross-validation technique and REML estimation
within the linear mixed models framework.

4.1 Simulation scenarios

We aim to evaluate the methods’ behavior assuming that connectivity information among the
variables is at least partially informative. In practice, we presume the existence of some a priori
knowledge about the structural or functional connectivity among the cortical brain regions (see
Section 5). Here, we investigate scenarios in which connectivity information accurately reflects the
structure of variables as well as when it does not, starting from a low fraction of connections being
permuted to a completely uninformative setting.

In each simulation scenario, we first generate a matrix of p correlated features, Z ∈ Rn×p, where
the rows are independently distributed as Np(0,Σ) with Σij = exp

{
−k(i− j)2

}
, i = 1, . . . , p; j =

1, . . . , p. We then generate a vector of true coefficients b ∼ N (0, σ2
bQ
−1), b ∈ Rp, reflecting the

underlying connectivity information. Here, Q denotes the normalized Laplacian of an adjacency
matrix A that represents the assumed connectivity between the variables; see Section 2.2. All
simulation scenarios are constructed by perturbing an established modularity matrix obtained by
Sporns (2013); see also (Cole et al., 2014; Sporns and Betzel, 2016) in which each node belongs to
one of five modules (blocks). This base adjacency matrix was produced in the FreeSurfer software
(Fischl, 2012) and is displayed in Figure 10 in the Appendix.

9

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/117945doi: bioRxiv preprint first posted online Mar. 18, 2017; 

http://dx.doi.org/10.1101/117945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our simulation are conducted under a wide range of scenarios involving various choices of
simulation settings:

1. number of predictors: p ∈ (100, 200)

2. number of observations: n ∈ (100, 200)

3. signal strength: σ2
b ∈ (0.1, 0.01)

4. strength of correlation between the variables in the Z matrix: k ∈ (0.01, 0.004)

5. information content in the adjacency matrix A: complete information or partial information

All of these settings effect the estimation accuracy of the coefficient vector, b ∈ Rp, representing
the association between the p variables in Z and outcome y in the model y = Zb + ε, where
ε ∼ N (0, σ2In). To evaluate the performance of various estimation procedures, we must define a
coefficient vector, b, whose structure reflects that of adjacency matrix A. This is done by generating
bσb
∼ N (0, σ2

bQ
−1) for various values of σ2

b , which may be viewed as signal strength for a fixed
value of error variance σ2 = 1.

In the simulations, we consider two scenarios regarding the information provided by Q: (1)
complete knowledge of connectivity and (2) misspecified connectivity. In the former, the nor-
malized Laplacian Q is constructed using the “true” adjacency matrix A, while in the latter, Q
is constructed from a perturbed adjacency matrix Aobs of the “true” A. To implement varying
amounts of “true” information in Aobs, we vary parameters, steps ∈ {0, 10, 100, 1000, 10000} and
prob ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, that effectively “rewire” the adjacency matrix A (see details in a
paragraph on page 11). We denote these perturbed matrices by Aobssteps and Aobsprob, respectively.

For each set of simulation scenarios, Zn,p, Aobssteps or Aobsprob and bσb
, we perform 100 experimental

runs and for each run we simulate the outcome via y = Zn,pbσb
+ ε, ε ∼ N (0, In). Finally, we

assess the performance of all considered methods by comparing relative mean squared error (MSE)

of the estimated coefficients b via MSEr = ‖b̂ − b‖22/‖b‖22, where ‖x‖2 denotes the l2-norm of a

vector x = (x1, ..., xp), given by ‖x‖2 =
√
x21 + ...+ x2p. Motivated by the applications to the brain

imaging data, we focus on the accuracy of b estimation.

Figure 2: 64× 64 dimensional modularity adjacency matrix is rescaled to 100× 100 dimensional adjacency
matrix (left panel). Corresponding normalized Laplacian matrix is shown in the right panel.
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Figure 3: Exemplary b values simulated from b ∼ N (0, σ2
bQ
−1) distribution for σ2

b = 0.01 (left panel) and
σ2
b = 0.1 (right panel), for Q being the Laplacian matrix of 100× 100 dimensional graph adjacency matrix

obtained by rescaling original modularity graph adjacency matrix. Colors of the background rectangular
shades correspond to the color scale of the Laplacian matrix modules in Figure 2 (right panel).

Construction of the graph adjacency matrix Aobs To express misspecified connectivity in-
formation in the simulation setting, we construct the normalized Laplacian matrices based on either
Aobs{steps} or Aobs{prob} which are permuted versions of the true connectivity matrix A. Entries of A
are permuted (“rewired”) using one of the following methods:

1. Aobs{steps} is generated via an iterative randomization procedure which preserves the original
graph’s density, degree distribution and degree sequence, as implemented by keeping degseq

function from igraph R package (Csardi and Nepusz, 2006). The rewiring algorithm chooses
two arbitrary edges in each step, (a, b) and (c, d), and substitutes them with (a, d) and (c, b),
if they not already exists in the graph. Function’s niter argument denotes the number of
steps (rewiring trials) performed.

2. Aobs{prob} is generated via a randomization procedure which preserves the original graph’s den-
sity, as implemented by each edge function from igraph R package. The function rewires
the endpoints of the edges with a constant probability uniformly randomly to a new vertex
in a graph. Function’s prob argument denotes a constant probability for a graph node to be
rewired.

Simulation parameters steps and prob are therefore reflecting the level of inaccuracy in Aobs
matrix obtained with the use of the first and second method, respectively, with higher parameter
values indicating higher inaccuracy of the connectivity information. Aobs examples are presented
in Figures 4 and 5.

The two rewiring methods have different properties. Rewiring while preserving the original
graph’s degree distribution yields Aobs{steps} matrix that still reflects the initial modules size propor-

tions even for extremely high steps parameter values (Figure 4, right panel), while rewiring with
a constant probability for a graph node to be rewired yields completely random distribution of
connections across a graph (Figure 5, right panel).

4.2 Parameter estimation

In the simulation study, we compare the following methods of fitting a linear regression model
y = Zb + ε: ordinary ridge using two approaches to penalty parameter choice — CV and REML,
PEER – CV, riPEER-c — REML, vrPEER — REML, and riPEER — CV and REML.

In the simulation study, we utilize mdpeer R package (Karas, 2016) for the parameter estimation
for all the methods, except for an ordinary ridge with λR regularization parameter chosen by cross-
validation, which uses the implementation from glmnet R package (Friedman et al., 2010). For
the latter, we performed 10-fold cross-validation (CV) where a loss function is a squared-error of
response variable’s predictions. We used the default setting from the glmnet::coef.glmnet which
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Figure 4: Aobs
{steps} matrices obtained from a graph rewiring while preserving the original graph’s degree

distribution, for p = 100 and steps = 0 (left panel), steps = 100 (central panel), steps = 10000 (right
panel).

Figure 5: Aobs
{prob} matrices obtained from a graph rewiring with a constant probability for a graph node to

be rewired, for p = 100 and prob = 0 (left panel), prob = 0.2 (central panel), prob = 1 (right panel).
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selects λR to be the largest value of λ such that the CV error is within 1 standard error of the
minimum CV. For the PEER method the regularization parameter λQ was chosen by 10-fold cross-
validated search over a grid: = {exp(li)}12i=1, for {li}12i=1 being a sequence of equally spaced values
between −4 and 9. The selected λQ value yields the minimum squared prediction error. riPEER
regularization parameters (λQ, λR) were chosen by 10-fold cross-validation searching over a fixed 2-
dimensional grid of (λQ, λR) parameter values: {exp(li)}12i=1, where {li}12i=1 is a sequence of equally
spaced values between −4 and 9. We selected a pair of values (λQ, λR) which yield the minimum
squared prediction errors averaged over the 10 folds.

4.3 Simulation results

We investigated the estimation performance of all methods in the cases with both full and partial
information provided by the connectivity matrices. For the simulation experiments with full infor-
mation, we considered methods which use both CV and REML to estimate the penalty parameter(s)
(4.3.1). For the simulation experiments with partial information provided, we narrowed down our
investigation to the methods which use REML estimation for the regularization parameter choice
and considered simulation scenarios in which entries of A from the true b simulation are permuted
with the use of two different methods (4.3.2 and 4.3.3).

4.3.1 Informative connectivity information input

Table 1 summarizes the relative mean squared error of estimation MSEr(b̂) = ‖b̂ − b‖22/‖b‖22
averaged over 100 simulation runs for each simulation scenario. Minimum MSEr values are
highlighted (bolded) for each row. It is important to note that since the true regression vector
bσb
∼ N (0, σ2

bQ
−1) was generated for each simulation scenario separately, the results are compara-

ble within rows, but not across them.
One can observe that methods that use REML outperform the corresponding methods using

CV for the selection of the tuning parameter(s). More precisely, MSEr(b̂) is lower by 17.9%
on average for REML than for CV in the ridge penalty methods group, by 12.7% in the PEER
penalty methods group and by 13.0% in the riPEER penalty methods group, respectively. A close
examination reveals the presence of simulation “outliers” causing larger MSEr(b̂) for PEER–CV
and riPEER–CV as opposed to riPEER-c/vrPEER–REML and riPEER–REML, respectively (see
Figures 12 and 13 in the Appendix A). This is consistent with the work of P. T. Reiss (2009), where
the authors noted that in their simulations cross-validation failed to find the global optimum of
corresponding optimization problem more often than REML.

In addition, we observe major advantages of the methods using PEER-type penalty term over
a method using ordinary ridge penalty term. In particular, vrPEER–REML yields lower values of
MSEr error than ridge–REML for each combination of the simulation parameters. It is on average
lower by 69.5%. Also, we note that riPEER-c and vrPEER methods yield almost identical results.

Finally, the proposed riPEER–REML method behaves as anticipated; it mirrors the results
of a method with a penalty term exhibiting better b estimation performance in particular sim-
ulation setting. Since the connectivity assumed in these simulation settings is fully informative,
riPEER–REML approximates the results of the graph-constrained regression methods riPEER-
c/vrPEER–REML rather than ridge–REML which does not utilize connectivity matrix in the esti-
mation process.

4.3.2 Partially informative connectivity matrix input: graph rewiring with the orig-
inal graph’s degree distribution preserved - Aobs{steps}

In the simulation experiments, we studied MSEr(b̂) = ‖b̂ − b‖22/‖b‖22 changes when the original
connectivity information graph is rewired and used for the regularized estimation of b. In this
experiment, we used a graph rewiring method that preserves the original graph’s degree distribution.
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Table 1: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 averaged over 100 simulation runs for each
combination of the simulation parameters and each method, in case of informative connectivity information
input. Minimum estimation MSEr values are highlighted (bolded) for each row.

n p k σ2
b ridge ridge PEER riPEER-c vrPEER riPEER riPEER

CV REML CV REML REML CV REML

100 100 0.004 0.01 0.341 0.133 0.015 0.015 0.015 0.023 0.015

100 100 0.004 0.1 0.220 0.096 0.017 0.017 0.017 0.019 0.017

100 100 0.01 0.01 0.309 0.170 0.065 0.030 0.030 0.032 0.030

100 100 0.01 0.1 0.136 0.067 0.012 0.011 0.011 0.013 0.011

100 200 0.004 0.01 0.157 0.123 0.031 0.030 0.031 0.033 0.031

100 200 0.004 0.1 0.238 0.128 0.034 0.031 0.031 0.037 0.031

100 200 0.01 0.01 0.197 0.164 0.091 0.083 0.083 0.087 0.083

100 200 0.01 0.1 0.326 0.169 0.114 0.100 0.100 0.107 0.100

200 100 0.004 0.01 0.078 0.128 0.092 0.042 0.042 0.056 0.042

200 100 0.004 0.1 0.093 0.087 0.012 0.012 0.012 0.014 0.012

200 100 0.01 0.01 0.077 0.130 0.049 0.038 0.039 0.044 0.039

200 100 0.01 0.1 0.129 0.166 0.072 0.068 0.068 0.076 0.068

200 200 0.004 0.01 0.252 0.213 0.104 0.102 0.102 0.108 0.102

200 200 0.004 0.1 0.129 0.077 0.023 0.019 0.019 0.025 0.019

200 200 0.01 0.01 0.117 0.101 0.030 0.029 0.029 0.031 0.029

200 200 0.01 0.1 0.166 0.123 0.063 0.058 0.058 0.065 0.058

Figure 6 summarizesMSEr averaged over 100 simulation runs for k = 0.01, σ2
b = 0.1, p ∈ {100, 200}

(left and right panels, respectively) and n ∈ {100, 200} (top and bottom panels, respectively),
steps ∈ {0, 10, 100, 1000, 10000} (marked by x-axis labels), for REML estimation methods: ridge,
riPEER-c, vrPEER, riPEER.

Figure 6 displays the summary of the relative estimation errors for all methods. When con-
nectivity information is exploited in estimation, riPEER-c, vrPEER and riPEER outperform or
behave no worse than the ridge estimation method in simulation scenarios with low and moderate
amount of original connectivity information graph rewiring (steps ∈ {0, 10, 100, 1000}). For the
extreme amounts of original connectivity information graph rewiring (steps = 10000), riPEER-c
and vrPEER start to perform slightly worse than ridge. riPEER exhibits property of adaptive-
ness towards the amount of true information contained in the penalty matrix; it yields results like
riPEER-c or vrPEER estimators in simulation scenarios with low and moderate amount of original
connectivity information graph rewiring and yields results similar to ridge for extreme amount of
original connectivity information graph rewiring. Therefore, riPEER performs no worse than any
other method considered, regardless of the amount of true information contained in the penalty
matrix. Notably, riPEER-c and vrPEER yield almost identical results for each combination of
simulation parameters considered in this experiment.

Similar trends of estimation methods performance are observed for other combinations of sim-
ulation parameter values – a complete set of MSEr values obtained is presented in Figures 14 and
15 (Appendix A) and summarized in Table 3 (Appendix A).

4.3.3 Partially informative connectivity matrix input: graph rewiring with a constant
probability for a graph node to be rewired Aobs{prob}

In this experiment with partially informative connectivity input we used a graph rewiring method
with a constant probability for a graph node to be rewired. Therefore, the initial modules′ size
proportions of a graph connectivity matrix are no longer apparent for high prob parameter values.

Figure 7 summarizes MSEr averaged over 100 simulation runs for k = 0.01, σ2
b = 0.01,

p ∈ {100, 200} (left and right panels, respectively) and n ∈ {100, 200} (top and bottom panels,
respectively), prob ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} (marked by x-axis labels), for REML estimation meth-
ods: ridge, riPEER-c, vrPEER, riPEER. Similarly to the previous experiment, we can observe that
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Figure 6: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 values for k = 0.01, σ2
b = 0.1, p ∈ {100, 200}

(left and right panels, respectively) and n ∈ {100, 200} (top and bottom panels, respectively), steps ∈
{0, 10, 100, 1000, 10000} (marked by x-axis labels), for REML estimation methods: ridge, riPEER-c, vr-
PEER, riPEER, in case of the uninformative connectivity information input (graph rewiring with the
original graph’s degree distribution preserved).

Figure 7: b estimation relative error MSEr = ‖b̂− b‖22/‖b‖22 values for k = 0.01, σ2
b = 0.01, p ∈ {100, 200}

(left-side and right-side panels, respectively) and n ∈ {100, 200} (upper-side and bottom-side panels, respec-
tively), prob ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} (marked by x-axis labels), for “REML” estimation methods: ridge,
riPEER-c, vrPEER, riPEER, in case of the uninformative connectivity information input (graph rewiring
with a constant probability for a graph node to be rewired).
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methods which utilize connectivity information as a priori knowledge in the estimation outperform
the ordinary ridge estimation method in simulation scenarios with low and moderate amount of
original connectivity information graph rewiring (prob ∈ {0, 0.2, 0.4}). Also, the adaptive behavior
of riPEER is apparent as it approximates results of either ridge or riPEER-c/vrPEER, depending
on which of these methods yields lower MSEr value in a particular simulation setting. Again,
riPEER-c and vrPEER yield almost identical results for each combination of the simulation pa-
rameters considered in this experiment.

Similar trends of estimation methods performance are observed for other simulation parameter
values – a complete set of MSEr values is vizualized in Figures 16 and 17 (Appendix A) and
summarized in Table 4 (Appendix A).

The numerical experiments conducted show that with an informative connectivity information
input, PEER-based regularization methods yield lower average MSEr values than the ordinary
ridge method. In addition, we show that the proposed riPEER method, which combines ordinary
ridge and PEER-based penalty, is adaptive to the level of information present in a connectivity ma-
trix. This property stems from the data-driven estimation of the regularization parameters for the
ordinary ridge and PEER penalty terms. More precisely, riPEER estimator’s performance is similar
to a PEER estimator when the connectivity matrix is informative, whereas for an uninformative
connectivity matrix riPEER behaves like ordinary ridge.

In addition, we observe that REML, compared to CV, provides estimates resulting in a smaller
MSEr for each simulation setting and within each estimation method studied. This is consistent
with the observations of (P. T. Reiss (2009)).

5 Imaging data application

Using the proposed methods, we model the associations between alcohol abuse phenotypes and
structural cortical brain imaging data. Specifically, we utilize cortical thickness measurements
obtained using the FreeSurfer software (Fischl, 2012) to predict alcoholism-related phenotypes while
incorporating the structural connectivity between the cortical regions obtained by Sporns (2013);
see also Cole et al. (2014); Sporns and Betzel (2016).

Our results for the cortical thickness association were obtained in a large sample of young, largely
nonsmoking drinkers. This male-only alcoholism risk sample is very different from the studies of
older alcoholic subjects recently reported in several articles (Momenan et al., 2012; Nakamura-
Palacios et al., 2014; Pennington et al., 2015). The number of reported morphometric differences
found tended to involve the frontal lobe, with the effects considerably weaker in men only and after
accounting for substance use. There is no consensus about the laterality of the cortical thinning
effects in alcoholics, albeit some of the findings are medial (anterior cingulate cortex, ACC), while
others could be explained by more prominent right hemisphere effects of lifetime alcohol exposure
(Momenan et al., 2012) not yet evident in younger population.

5.1 Data and preprocessing

Study sample. The sample consisted of 148 young (21-35 years) social-to-heavy drinking male
subjects from several alcoholism risk studies. Structural imaging data from 88 subjects were in-
cluded in the study relating externalizing personality traits and gray matter volume (Charpentier
et al., 2016), with a subset of these 88 subjects also reported in the studies of dopaminergic responses
to beer (Oberlin et al., 2013, 2015, n=49 and 28, respectively), and regional cerebral blood flow
(Weafer et al., 2015, n=44). Subjects’ demographic and a risk for alcoholism-related characteristics
are summarized in Table 2.

MRI data acquisition. Brain imaging was performed using the following Siemens 3T MRI
scanners/head coils: Trio-Tim/12-channel, Skyra/20-channel and Prisma/20&64-channel at the
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Table 2: Study sample subjects’ characteristics. aNumber of first or second degree relatives with Alcohol
Use Disorder by self-report. bAlcohol Use Disorders Identification Test. cDrinking data are from the
Timeline Followback Interview. d Drinking frequency data from past 35 days of a subject’s history.

Study variables Min Max Mean Median StdDev

Age 21.0 35.0 24.0 23.0 3.2

Education 11.0 20.0 15.2 15.0 1.5

AUD relativesa 0.0 7.0 1.2 1.0 1.5

AUDITb 3.0 28.0 10.9 10.0 4.9

Smoker 0.0 1.0 0.1 0.0 0.2

Drinks per weekc,d 0.4 62.0 16.3 14.9 10.6

Drinks per drinking dayc,d 1.3 23.9 5.9 5.5 3.4

Heavy drinking days per weekc,d 0.0 4.4 1.4 1.4 1.1

Years since first drinkc 2.0 24.0 7.7 7.0 4.1

Years since regular drinkingc 0.0 17.0 5.2 4.0 3.6

Years since first intoxicationc 2.0 24.0 6.9 6.0 3.9

Indiana University School of Medicine Center for Neuroimaging. For all configurations, whole-
brain high resolution anatomical MRI was collected using a 3D Magnetization Prepared Rapid
Acquisition Gradient Echo (MP-RAGE) with imaging parameters optimized according to the ADNI
(Alzheimer’s Disease Neuroimaging Initiative) protocol (Prisma/Skyra, 5.12 min, 1.05 × 1.05 × 1.2
mm3; Trio-TIM; 9.14 min, 1.0 × 1.0 × 1.2 mm3 voxels).

Cortical measurements. The FreeSurfer software package (version 5.3) was used to process the
acquired structural MRI data, including gray-white matter segmentation, reconstruction of cortical
surface models, labeling of regions on the cortical surface and analysis of group morphometry
differences. The resulting dataset has cortical measurements for 68 cortical regions with parcellation
based on Desikan-Killiany atlas (Desikan et al., 2006) was computed. The subset of 66 variables
describing average gray matter thickness (in millimeters) of gray matter brain regions did not
incorporate left and right insula due to their exclusion from the structural connectivity matrix. It
is important to note that the cortical measurement variables exhibit multicollinearity as evident in
the high values of pairwise Pearson correlation coefficient (Figure 18 in the Appendix A).

Structural connectivity information. Structural connectivity was estimated based on a model
proposed by Hagmann et al. (2008) using a diffusion map to construct 3D curves of the maximal
diffusion coherence. This model estimated a structure of five connectivity modules. Binary infor-
mation of a common assignment to one of the modules was identified for each pair of the 66 cortical
regions. The resulting 66× 66 matrix A was used to represent similarities between all brain region
pairs. This matrix, illustrated in Figure 10 in the Appendix A, played the role of a structural
connectivity adjacency matrix that was used to define Q, illustrated in Figure 11 in the Appendix
A.

5.2 Estimation methods

We employed ordinary ridge, riPEER-c, riPEER and vrPEER with REML estimation of the regu-
larization parameter(s) to quantify the association of imaging markers with the drinking frequency.
In addition, we fitted both simple and multiple linear regression models to compare the unpenal-
ized regression estimates to the estimates obtained from the regularized regression approach. We
used the derived cortical thickness measures from 66 brain regions as predictors of the outcome y =
Number of drinks per drinking day and connectivity matrix-derived Laplacian was used as a penalty
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matrix for riPEER-c, riPEER and vrPEER. For each of the four regularized regression estimation
methods, we included Age, Smoker and Years since the start of regular drinking as non-penalized
adjustment variables. Both outcome and predictors were standardized to mean zero and variance
equal to one.

5.3 Results

The regression coefficient estimates obtained from both simple and multiple linear regression are
presented as black solid lines in Figure 8 in the top and bottom panel, respectively. Statistically
significant coefficients (at a nominal level equal to 0.05) are marked with solid red vertical lines.

The regression coefficient estimates obtained from the ordinary ridge, riPEER-c, riPEER and
vrPEER are presented as black solid lines in Figure 9, top to bottom, respectively. The uncertainty
in the estimation of the regression model coefficients is expressed in the form of 95% confidence
intervals, indicated by a gray ribbon area around the black solid line. Statistically significant
variables are marked with solid red vertical lines.

Figure 8: b̂ coefficient estimates obtained from linear regression: simple (upper panel) and multiple (bottom
panel). Estimates’ values are denoted with a solid black line. Statistically significant (with a significance
level of 0.05) coefficients are denoted with solid red vertical lines.

Simple and multiple linear regression models without regularization both yielded negative as-
sociation between recent drinking and the right caudal ACC thickness (Figure 8). However, other
significant areas differed between simple and multiple regression models with one of the regions
(left medial orbital frontal cortex, OFC) exhibiting the positive association with recent drinking.
Incorporating the structural connectivity matrix information resulted in three negatively associated
regions - right caudal anterior ACC (R-caudACC), left lateral orbitofrontal cortex (L-latOFC), and
left precentral gyrus (L-PreCG) for ridge, riPEER and vrPEER estimators (Figure 9). In addition,
the cortical thickness of left pars orbitalis showed a trend-level negative association with recent
drinking (p-value = 0.06 for ridge and riPEER, p-value <= 0.07 for vrPEER). By excluding the
ridge penalty, the vrPEER method identified a positive association of recent drinking and the right
superior frontal gyrus (R-SFG) thickness.

With three regularization models (ridge, riPEER, vrPEER), we found a negative association
between cortical thickness of the right caudal ACC and recent drinking, the same region reported
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Figure 9: b̂ coefficient estimates obtained from ridge, riPEER-c, riPEER and vrPEER linear regression
estimation methods. Estimates’ values are denoted with a black solid line. 95% confidence intervals are
marked with a gray ribbon area. Statistically significant variables are denoted with red vertical solid lines.
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by Pennington et al. (2015). A trend-level (p-value = 0.06 for Ridge and riPEER; p-value = 0.07
for vrPEER) negative association was present in the left caudal ACC thickness. Our finding that
the left lateral OFC cortical thickness and recent drinking were negatively related was in agreement
with a trend-level cortical thinning of the left OFC in alcohol-only dependent subjects (Pennington
et al., 2015). We also observed a negative association of recent drinking and the left precentral
gyrus thickness, albeit this area was more posterior than the left middle frontal cortex finding in
alcoholics (Nakamura-Palacios et al., 2014), but was homologous to the right precentral gyrus area
found to show age effects in alcoholics (Momenan et al., 2012).

None of the brain regions showed positive associations of cortical thickness and recent drinking
across all regularization models. The female binge drinkers in Squeglia et al. (2012) exhibited an
increased cortical thickness in several frontal areas. The positive association of recent drinking and
the SFG cortical thickness in the vrPEER model could reflect a similar relationship in our slightly
older male sample. The left parahippocampal gyrus finding in ridge and riPEER models was in
unexpected direction although the gray matter volume of that area is known to be affected by the
smoking status.

For simplicity, the application of our models was restricted to cortical thickness. It is possible
that a more comprehensive picture of the brain morphometry deficits would emerge by also exam-
ining other measures, such as cortical surface and gray matter volume. Our regression approach is
optimized to model predictors across a wide range of risk for alcoholism rather than focusing on
well-defined groups, making direct comparisons more challenging. Finally, we excluded the insula
because its structural connectivity information was not available in this analysis.

Importantly, the riPEER estimate mirrors that obtained from ridge. Due to the adaptive
properties of riPEER, this result suggests that there is limited information relevant to alcohol
consumption in the modularity connectivity graph and its influence in the estimation process is
not substantial. From a different perspective, in the riPEER-c with a predefined ordinary ridge
regularization parameter, the estimation depends predominantly on the structure imposed by the
modularity connectivity graph. This structure can be seen in Figures 9 and 10.

6 Discussion

We have provided a statistically tractable and rigorous way of incorporating external information
into the regularized linear model estimation. Our starting point was a generalized ridge or Tikhonov
regularization termed PEER Randolph et al. (2012). Here, we concentrate on multi-modal brain
imaging data where we obtain structural cortical information from an sMRI scan and structural
connectivity information from a DTI scan. We have focused on incorporating the structural con-
nectivity information via the Laplacian-matrix-informed penalty in the Tikhonov regularization
framework.

A graph Laplacian matrix is singular and the mixed model equivalency framework requires the
invertibility of the penalty matrix. To account for this when using a graph Laplacian-derived penalty
term in the PEER framework, we introduced three approaches. Specifically, vrPEER reduces the
number of penalized variables by excluding those in the null space of Q, while riPEER-c adds a
small user-defined multiple of the identity matrix to Q. riPEER similarly adds a multiple of the
identity to Q, but the tuning parameter (i.e., the weight given to the this ridge term) is chosen
automatically. Consequently, only riPEER is fully adaptive to the amount of information in Q that
is relevant to the association between the predictors Z and outcome y.

Although vrPEER and riPEER-c are more computationally efficient, extensive simulations show
that riPEER not only performs better when Q contains relevant information, it also performs no
worse than ordinary ridge regression when Q is not informative.

Application of the proposed methods to study the associations between the alcohol abuse pheno-
types and highly correlated cortical thickness predictors using the structural connectivity informa-
tion resulted in new clinical findings. Specifically, using structural connectivity among 66 cortical
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regions to define Q the proposed methodology found predictive structural imaging markers for the
number of drinks per drinking day measure. Negative associations between cortical thickness and
Drinks per drinking day were most evident in left and right caudal ACC, left lateral OFC and left
precentral gyrus.

Our future work will incorporate additional brain connectivity information arising from other
measures of structural brain connectivity including the fractional anisotropy values and fiber length
as well as functional connectivity information. We will also combine more than one type of predictor,
i.e. use multiple anatomical measures of cortical regions simultaneously.
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A Appendix

Figure 10: Adjacency matrix of modularity graph connectivity information, derived from the connectivity of
the brain cortical regions (Sporns, 2013; Cole et al., 2014; Sporns and Betzel, 2016). Each variable belongs
to one of five connectivity modules.
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Figure 11: Laplacian matrix of modularity graph connectivity information, derived from the connectivity of
the brain cortical regions (Sporns, 2013; Cole et al., 2014; Sporns and Betzel, 2016). Each variable belongs
to one of five connectivity modules.
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Figure 12: Boxplots of b estimation relative error MSEr = ‖b̂− b‖22/‖b‖22 values for different combinations
of simulation setup parameters: n, p, k, σ2

b , in case of informative connectivity information input.
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Figure 13: Boxplots of b estimation relative error MSEr = ‖b̂− b‖22/‖b‖22 values for different combinations
of simulation setup parameters: n, p, k, σ2

b , in case of informative connectivity information input.
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Table 3: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 averaged out of 100 experiment runs for each
combination of simulation parameters: n, p, k, σ2

b , steps, in case of partially informative connectivity matrix
input, for a graph rewiring performed with the original graphs degree distribution preserved. Minimum
estimation MSEr values are highlighted (bolded) for each row.

n p k σ2
b rewire par. ridge riPEER-c vrPEER riPEER

steps REML REML REML REML

100 100 0.004 0.01 0 0.136 0.012 0.012 0.012

100 100 0.004 0.01 10 0.127 0.014 0.015 0.015

100 100 0.004 0.01 100 0.122 0.035 0.035 0.036

100 100 0.004 0.01 1000 0.127 0.128 0.132 0.121

100 100 0.004 0.01 10000 0.124 0.133 0.137 0.126

100 100 0.004 0.1 0 0.120 0.022 0.023 0.023

100 100 0.004 0.1 10 0.120 0.025 0.025 0.025

100 100 0.004 0.1 100 0.123 0.037 0.037 0.038

100 100 0.004 0.1 1000 0.115 0.109 0.111 0.106

100 100 0.004 0.1 10000 0.125 0.140 0.143 0.125

100 100 0.01 0.01 0 0.133 0.049 0.049 0.049

100 100 0.01 0.01 10 0.140 0.050 0.050 0.050

100 100 0.01 0.01 100 0.129 0.056 0.057 0.057

100 100 0.01 0.01 1000 0.138 0.112 0.114 0.113

100 100 0.01 0.01 10000 0.138 0.127 0.130 0.127

100 100 0.01 0.1 0 0.070 0.011 0.011 0.011

100 100 0.01 0.1 10 0.066 0.011 0.011 0.011

100 100 0.01 0.1 100 0.076 0.016 0.016 0.016

100 100 0.01 0.1 1000 0.065 0.031 0.031 0.031

100 100 0.01 0.1 10000 0.072 0.039 0.039 0.039

100 200 0.004 0.01 0 0.126 0.017 0.017 0.017

100 200 0.004 0.01 10 0.132 0.017 0.017 0.017

100 200 0.004 0.01 100 0.138 0.021 0.021 0.021

100 200 0.004 0.01 1000 0.124 0.061 0.061 0.062

100 200 0.004 0.01 10000 0.131 0.142 0.144 0.133

100 200 0.004 0.1 0 0.111 0.026 0.026 0.026

100 200 0.004 0.1 10 0.107 0.026 0.026 0.026

100 200 0.004 0.1 100 0.100 0.029 0.029 0.029

100 200 0.004 0.1 1000 0.102 0.060 0.060 0.060

100 200 0.004 0.1 10000 0.103 0.110 0.112 0.106

100 200 0.01 0.01 0 0.146 0.040 0.040 0.040

100 200 0.01 0.01 10 0.152 0.040 0.040 0.040

100 200 0.01 0.01 100 0.149 0.043 0.043 0.043

100 200 0.01 0.01 1000 0.147 0.074 0.075 0.075

100 200 0.01 0.01 10000 0.147 0.156 0.158 0.153

100 200 0.01 0.1 0 0.109 0.039 0.039 0.039

100 200 0.01 0.1 10 0.106 0.039 0.039 0.039

100 200 0.01 0.1 100 0.102 0.041 0.041 0.041

100 200 0.01 0.1 1000 0.107 0.070 0.071 0.071

100 200 0.01 0.1 10000 0.107 0.117 0.118 0.108

200 100 0.004 0.01 0 0.120 0.006 0.006 0.006

200 100 0.004 0.01 10 0.125 0.007 0.007 0.007

200 100 0.004 0.01 100 0.119 0.018 0.018 0.019

200 100 0.004 0.01 1000 0.122 0.093 0.095 0.095

200 100 0.004 0.01 10000 0.125 0.126 0.129 0.121

200 100 0.004 0.1 0 0.139 0.019 0.019 0.019

200 100 0.004 0.1 10 0.140 0.021 0.021 0.021
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200 100 0.004 0.1 100 0.138 0.034 0.035 0.035

200 100 0.004 0.1 1000 0.144 0.131 0.133 0.130

200 100 0.004 0.1 10000 0.142 0.141 0.143 0.137

200 100 0.01 0.01 0 0.146 0.031 0.031 0.031

200 100 0.01 0.01 10 0.142 0.033 0.033 0.033

200 100 0.01 0.01 100 0.149 0.065 0.065 0.066

200 100 0.01 0.01 1000 0.142 0.132 0.134 0.128

200 100 0.01 0.01 10000 0.143 0.169 0.172 0.144

200 100 0.01 0.1 0 0.125 0.023 0.023 0.023

200 100 0.01 0.1 10 0.123 0.027 0.027 0.027

200 100 0.01 0.1 100 0.124 0.041 0.041 0.041

200 100 0.01 0.1 1000 0.123 0.123 0.125 0.118

200 100 0.01 0.1 10000 0.124 0.144 0.146 0.124

200 200 0.004 0.01 0 0.135 0.056 0.056 0.056

200 200 0.004 0.01 10 0.135 0.055 0.055 0.055

200 200 0.004 0.01 100 0.145 0.064 0.064 0.064

200 200 0.004 0.01 1000 0.133 0.084 0.085 0.085

200 200 0.004 0.01 10000 0.137 0.142 0.144 0.137

200 200 0.004 0.1 0 0.078 0.026 0.026 0.026

200 200 0.004 0.1 10 0.076 0.026 0.026 0.026

200 200 0.004 0.1 100 0.076 0.027 0.027 0.027

200 200 0.004 0.1 1000 0.073 0.031 0.032 0.032

200 200 0.004 0.1 10000 0.075 0.039 0.039 0.039

200 200 0.01 0.01 0 0.132 0.050 0.050 0.050

200 200 0.01 0.01 10 0.124 0.050 0.050 0.050

200 200 0.01 0.01 100 0.130 0.055 0.055 0.055

200 200 0.01 0.01 1000 0.130 0.082 0.082 0.082

200 200 0.01 0.01 10000 0.122 0.126 0.127 0.122

200 200 0.01 0.1 0 0.064 0.011 0.011 0.011

200 200 0.01 0.1 10 0.065 0.011 0.011 0.011

200 200 0.01 0.1 100 0.063 0.015 0.015 0.015

200 200 0.01 0.1 1000 0.066 0.039 0.039 0.039

200 200 0.01 0.1 10000 0.068 0.075 0.076 0.068
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Figure 14: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 averaged out of 100 experiment runs for
different combination of simulation parameters: k, σ2

b , steps ∈ {0, 10, 100, 1000, 1000} (denoted by x-axis
labels), for p = 100 and 200 (left-side and right-side panels, respectively), n = 100 and 200 (upper-side
and bottom-side panels, respectively), in case of partially informative connectivity matrix input. A graph
rewiring performed with the original graphs degree distribution preserved was used. Minimum estimation
MSEr values are highlighted (bolded) for each row.
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Figure 15: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 averaged out of 100 experiment runs for
different combination of simulation parameters: k, σ2

b , steps ∈ {0, 10, 100, 1000, 1000} (denoted by x-axis
labels), for p = 100 and 200 (left-side and right-side panels, respectively), n = 100 and 200 (upper-side
and bottom-side panels, respectively), in case of partially informative connectivity matrix input. A graph
rewiring performed with the original graphs degree distribution preserved was used. Minimum estimation
MSEr values are highlighted (bolded) for each row.
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Table 4: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 averaged out of 100 experiment runs for each
combination of simulation parameters: n, p, k, σ2

b , prob, in case of partially informative connectivity matrix
input, for a graph rewiring performed with a constant probability for a graph node to be rewired. Minimum
estimation MSEr values are highlighted (bolded) for each row.

n p k σ2
b rewire par. ridge riPEER-c vrPEER riPEER

prob REML REML REML REML

100 100 0.004 0.01 0 0.167 0.019 0.019 0.019

100 100 0.004 0.01 0.2 0.170 0.087 0.089 0.090

100 100 0.004 0.01 0.4 0.170 0.146 0.151 0.151

100 100 0.004 0.01 0.6 0.169 0.163 0.167 0.169

100 100 0.004 0.01 0.8 0.165 0.205 0.210 0.165

100 100 0.004 0.01 1 0.172 0.196 0.201 0.173

100 100 0.004 0.1 0 0.095 0.021 0.021 0.021

100 100 0.004 0.1 0.2 0.091 0.053 0.054 0.054

100 100 0.004 0.1 0.4 0.098 0.082 0.084 0.082

100 100 0.004 0.1 0.6 0.095 0.083 0.086 0.083

100 100 0.004 0.1 0.8 0.091 0.104 0.106 0.101

100 100 0.004 0.1 1 0.096 0.105 0.108 0.102

100 100 0.01 0.01 0 0.120 0.006 0.006 0.006

100 100 0.01 0.01 0.2 0.120 0.057 0.058 0.060

100 100 0.01 0.01 0.4 0.118 0.101 0.103 0.101

100 100 0.01 0.01 0.6 0.126 0.134 0.137 0.122

100 100 0.01 0.01 0.8 0.123 0.158 0.162 0.124

100 100 0.01 0.01 1 0.121 0.147 0.150 0.123

100 100 0.01 0.1 0 0.070 0.011 0.011 0.011

100 100 0.01 0.1 0.2 0.063 0.028 0.028 0.028

100 100 0.01 0.1 0.4 0.067 0.035 0.035 0.035

100 100 0.01 0.1 0.6 0.071 0.031 0.031 0.031

100 100 0.01 0.1 0.8 0.061 0.037 0.038 0.038

100 100 0.01 0.1 1 0.072 0.038 0.038 0.038

100 200 0.004 0.01 0 0.117 0.023 0.023 0.023

100 200 0.004 0.01 0.2 0.115 0.061 0.062 0.062

100 200 0.004 0.01 0.4 0.110 0.096 0.098 0.097

100 200 0.004 0.01 0.6 0.122 0.106 0.108 0.107

100 200 0.004 0.01 0.8 0.120 0.122 0.124 0.120

100 200 0.004 0.01 1 0.117 0.122 0.124 0.120

100 200 0.004 0.1 0 0.086 0.018 0.018 0.018

100 200 0.004 0.1 0.2 0.090 0.048 0.049 0.049

100 200 0.004 0.1 0.4 0.090 0.079 0.080 0.079

100 200 0.004 0.1 0.6 0.091 0.091 0.092 0.089

100 200 0.004 0.1 0.8 0.090 0.092 0.093 0.090

100 200 0.004 0.1 1 0.089 0.093 0.094 0.091

100 200 0.01 0.01 0 0.139 0.037 0.037 0.037

100 200 0.01 0.01 0.2 0.140 0.090 0.091 0.091

100 200 0.01 0.01 0.4 0.139 0.119 0.121 0.121

100 200 0.01 0.01 0.6 0.144 0.147 0.149 0.145

100 200 0.01 0.01 0.8 0.138 0.142 0.144 0.138

100 200 0.01 0.01 1 0.137 0.145 0.147 0.139

100 200 0.01 0.1 0 0.098 0.033 0.033 0.033

100 200 0.01 0.1 0.2 0.103 0.066 0.066 0.067

100 200 0.01 0.1 0.4 0.106 0.088 0.089 0.089

100 200 0.01 0.1 0.6 0.104 0.100 0.102 0.101

100 200 0.01 0.1 0.8 0.104 0.103 0.104 0.103
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100 200 0.01 0.1 1 0.106 0.113 0.115 0.112

200 100 0.004 0.01 0 0.087 0.017 0.017 0.017

200 100 0.004 0.01 0.2 0.099 0.045 0.046 0.046

200 100 0.004 0.01 0.4 0.093 0.060 0.061 0.060

200 100 0.004 0.01 0.6 0.094 0.066 0.067 0.066

200 100 0.004 0.01 0.8 0.094 0.062 0.063 0.063

200 100 0.004 0.01 1 0.100 0.056 0.058 0.057

200 100 0.004 0.1 0 0.080 0.009 0.009 0.009

200 100 0.004 0.1 0.2 0.083 0.043 0.043 0.043

200 100 0.004 0.1 0.4 0.085 0.059 0.061 0.060

200 100 0.004 0.1 0.6 0.078 0.073 0.074 0.072

200 100 0.004 0.1 0.8 0.081 0.088 0.089 0.086

200 100 0.004 0.1 1 0.084 0.091 0.093 0.089

200 100 0.01 0.01 0 0.183 0.038 0.038 0.038

200 100 0.01 0.01 0.2 0.180 0.100 0.101 0.102

200 100 0.01 0.01 0.4 0.181 0.179 0.182 0.175

200 100 0.01 0.01 0.6 0.179 0.191 0.195 0.178

200 100 0.01 0.01 0.8 0.177 0.195 0.198 0.178

200 100 0.01 0.01 1 0.180 0.204 0.207 0.181

200 100 0.01 0.1 0 0.115 0.033 0.033 0.033

200 100 0.01 0.1 0.2 0.126 0.092 0.094 0.094

200 100 0.01 0.1 0.4 0.118 0.100 0.102 0.100

200 100 0.01 0.1 0.6 0.116 0.141 0.143 0.127

200 100 0.01 0.1 0.8 0.117 0.153 0.155 0.136

200 100 0.01 0.1 1 0.128 0.140 0.143 0.129

200 200 0.004 0.01 0 0.162 0.070 0.070 0.070

200 200 0.004 0.01 0.2 0.172 0.122 0.123 0.123

200 200 0.004 0.01 0.4 0.162 0.144 0.145 0.144

200 200 0.004 0.01 0.6 0.158 0.158 0.160 0.157

200 200 0.004 0.01 0.8 0.163 0.164 0.166 0.163

200 200 0.004 0.01 1 0.169 0.170 0.172 0.169

200 200 0.004 0.1 0 0.081 0.032 0.032 0.032

200 200 0.004 0.1 0.2 0.086 0.038 0.038 0.038

200 200 0.004 0.1 0.4 0.081 0.040 0.040 0.040

200 200 0.004 0.1 0.6 0.084 0.041 0.041 0.041

200 200 0.004 0.1 0.8 0.079 0.041 0.041 0.041

200 200 0.004 0.1 1 0.081 0.042 0.043 0.043

200 200 0.01 0.01 0 0.113 0.040 0.040 0.040

200 200 0.01 0.01 0.2 0.114 0.067 0.068 0.068

200 200 0.01 0.01 0.4 0.112 0.079 0.079 0.080

200 200 0.01 0.01 0.6 0.116 0.093 0.094 0.094

200 200 0.01 0.01 0.8 0.115 0.099 0.100 0.099

200 200 0.01 0.01 1 0.116 0.092 0.093 0.093

200 200 0.01 0.1 0 0.142 0.043 0.043 0.043

200 200 0.01 0.1 0.2 0.142 0.092 0.092 0.093

200 200 0.01 0.1 0.4 0.138 0.120 0.121 0.120

200 200 0.01 0.1 0.6 0.141 0.142 0.143 0.141

200 200 0.01 0.1 0.8 0.142 0.144 0.145 0.143

200 200 0.01 0.1 1 0.140 0.150 0.151 0.147
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Figure 16: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 averaged out of 100 experiment runs for
different combination of simulation parameters: k, σ2

b , prob ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} (denoted by x-axis
labels), for p = 100 and 200 (left-side and right-side panels, respectively), n = 100 and 200 (upper-side
and bottom-side panels, respectively), in case of partially informative connectivity matrix input. A graph
rewiring with a constant probability for a graph node to be rewired was used. Minimum estimation MSEr
values are highlighted (bolded) for each row.
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Figure 17: b estimation relative error MSEr = ‖b̂ − b‖22/‖b‖22 averaged out of 100 experiment runs for
different combination of simulation parameters: k, σ2

b , prob ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} (denoted by x-axis
labels), for p = 100 and 200 (left-side and right-side panels, respectively), n = 100 and 200 (upper-side
and bottom-side panels, respectively), in case of partially informative connectivity matrix input. A graph
rewiring with a constant probability for a graph node to be rewired was used. Minimum estimation MSEr
values are highlighted (bolded) for each row.
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Figure 18: Pairwise Pearson correlation coefficient for cortical average thickness measurements of 66 brain
regions of 148 study subjects.
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