Crystal and molecular structure of 4 (4' N, N-dimethylamino) benzylidene-2-phenyloxazolin-5-one

Sanjib Karmakar ${ }^{1 *}$ and A N Talukdar ${ }^{2}$
${ }^{1}$ University Sctence Instrumentation (entre (USIC).
${ }^{2}$ Department of Physics. Gauhat University, Guwahath-781 014, Indh
E-mail sanjibkab@rediffmal com

Received 10 September 2003, ace epted 20 Julv 2004

Abstract

Tbatract The crystal structure of the utle compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$, has been determened by X -tay diffractoon The hendidene ung A . the matolin-5-one ung system B and the attached phenyl ring (C of the title compound (II) are almost planar having interplanat angles between A and B and that between B and C are 4.10° and $303{ }^{\circ}$ respectively The N.N-dimethyl group is neatly coplanat with the bensyldene rang plane These is no memolecular hydrogen bond and the molecule is stabilised by the normal van dei Waals interaction in the crystalline assembly

Ke!words ('rystal structure, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{~N}, \mathrm{~N}$-dimethyl. van der Waals' interaction
PACS Nos. $\quad 61.10 \mathrm{~N} \angle, 6166 . \mathrm{Hq}$

1. Introduction

()xazoline compounds which form acyl-enzyme complexes with papan, are of medicinal importance in biology. Although the tirst alkyloxazoline was reported by Gabriel [1], the crystal structures of this class of compounds are limited because few

I.4 (4.2-dinitro)benzylidene-2-phenyloxazolin-5-one

II. 4 (4/ N,N-dimethylamino) benzylidene-2-phenyloxazoline-5-one

[^0]of the known oxazoline are solid at room temperature The crystal structure of 4-(4-2-dinitro) benzylidene-2-phenyloxazolin-5-one (I) has been reported in literature $|2|$. Crystallographic study of the analogous 4-(4-N,N- dimethylamino) benzylidene-2-phenyloxazoline-5-one (II) has been reported in this paper.

2. Experimental details

0.05 mole of hipparic acid was dissolved in 100 ml . of dimethylformaide saturated with sulfurtrioxide. To this solution 0.05 mole of ($4 \mathrm{~N}, \mathrm{~N}$-dimethyl) benzyldehyde was added at room temperature and stirred in a magnetic stirrer for 30 minutes. The red precipitate obtained was recovered and recrystallised from 95\% of ethanol. Preliminary X-ray study revealed monoclinic crystal system. The systematic absences established the space group as $P 2_{1} / c$. The unit cell parameters were refined by least squares method on the basis of 25 independent high angle reflections. The data were corrected for Lorentz and polarisation effects, but no absorption correction was made.

3. Structure solution and refinement

The structure was solved by direct methods using the program SHELXS 97 [3] and refined on F^{2} using the program SHELXL97 [4] Full matrix least-squares refinement with anisotropic temperature factors to non-hydrogen atoms led to the R value

Table 1．Crystal data for the title compound

Chemical formula	$\left({ }_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$
Molecular weight	29233
C＇iystal system	monoclinic
Space group	P $21 / 1$
Lattice parameters	$a=12177(4) \AA$
	$b=3900(1) \AA$
	$r=30944(8) \dot{A}$
	$b=101.170(10)^{\circ}$
Volume	$1460.1(7) A^{3}$
7	4
Measuted densty，Dm	$1320 \mathrm{Mg} \mathrm{m}{ }^{3}$
Calculated density ${ }^{\text {P }}$	$1324 \mathrm{Mg} \mathrm{m}^{-3}$
Temperature	293 K
Crystal sicte	$045 \times 018 \times 014 \mathrm{~mm}^{3}$
Crystal colour	Pink
Radiation	CuKı
Wavelength	$15418 \AA$
Absorption coeffictent（ mu）	$070 \mathrm{~mm}{ }^{1}$
θ（ Theta）max．	68°
Index ranges	$0<h \leq 14,0 \leq h<4,36 \leq 1 \leq 36$
No of reflections measured	2.325
No．of unique reflections	2289
No．of observed reflectuons	$1996 \quad[1>20(1)]$
R_{mt}	0078
F（000）	616
Goodness of fit	11.34
Final R	00787
$\boldsymbol{R}_{\mathbf{k}}{ }^{\text {，}}$	0 2073

of 0.0882 ．The final R value was 0.0787 with the inclusion of the hydrogen atoms from the difference Fourier maps with isotropic thermal parameters．The peak heights in the final difference Fourier map were in the range of 0.28 to $-0.33 \mathrm{e}^{-3}$ ．The atomic scattering factors used were taken from the International Table for X－ray Crystallography Vol．IV［5］．The molecular geometry was calculated using the program SHELXL 97 ［4］．The crystal data and the fractional coordinates and equivalent isotropic thermal parameters for all non－hydrogen atoms are shown in Table 1 and Table 2 respectively．

4．Result and discussion

The ORTEP［6］view of the molecule with atom numbering scheme and the packing of the molecule are shown in Figure I and Figure 2 respectively．The molecule consists of an essentially planner oxazolin－5－one moiety linked to phenyl and benzylidene

Table 2．Fractional atomic coordinates for non hydiogen atom，mi equivalent isotropic displacement parameteiss（ \dot{A}^{2} ）

$$
\left(u_{c / i}=(1 / 3) \sum_{1} \sum_{j} u_{i i} a^{*} a_{i}^{*} a_{1} a_{i}\right)
$$

	x	y	z	lis
01	$02152(2)$	$07461(7)$	0）12868（8）	（1） 0.5591 ；
02	0）2052（2）	$05231(9)$	006047 （9）	（1）072う，
C 3	$07799(3)$	$11018(9)$	$0.07764(8)$	0） $0.4511 \times$
N4	0 3902（2）	0．9565（8）	$014220(9)$	004820
C5	$05540(3)$	（） $9142(8)$	$007425(7)$	004160 ，
N6	$0.8890(2)$	$11973(9)$	$0.07951(6)$	0）0576，19：
C7	$0.6102(3)$	$0.8390(5)$	0）04014（7）	0） 0180% ，
C8	07241 （3）	1．1841（9）	0）11209（9）	0 （1）460）10．
C9	$07192(3)$	$09369(8)$	$0.04093(8)$	0114875.
（1）	$04409(3)$	0．7959（9）	$007120(9)$	0）のばいい
（11	$02767(3)$	10075 （9）	$019961(8)$	（） $04 \times 2 \cdots 1 \%$
C．12	$061+2(3)$	$10846(9)$	0） $11036(9)$	（1）45
（113	0）3715（3）	0） $82033(9)$	$010010(7)$	0） $0+6$＋\％
Cl4	（）2592（3）	0） $6605(8)$	$009119(9)$	（1）1530：
C． 15	$02999(3)$	（） 9090 （8）	$0.15709(8)$	（1） 04700
C16	$0.3594(3)$	$11631(9)$	$0230009(9)$	0） $05 \times \mathrm{ms}$－
C17	$0.3406(4)$	$12517(8)$	027074（9）	0） 01076014
C18	0．1543（4）	$10355(9)$	025182（8）	01160% \％
C19	$01737(3)$	0） 9426 （8）	0）21104（9）	O） 0 （1004
C20	0）9528（4）	$13575(9)$	0）1182（2）	0000651
C21	0．2377（4）	11862（8）	028157（7）	（0）007．4．
C22	09452（4）	$11234(7)$	$00437(2)$	0） $007710!$

rings via $\mathrm{C}-\mathrm{C}$ and CH groups．The torsion angles（Table 3）an
that the molecule is almost planar；the maximum deviatom of in atom（C3）is $0.026(4) \AA$ ．The planarity of the molecule is presumed

Figure 1．ORTEP diagram of the molecule with atom numbering scheme the H－atoms are shown by circles．

Table 3. Selected bond distances (\AA), angles $\left(^{\circ}\right.$) and the torston angles $\left({ }^{\circ}\right)$ and there exd's in parenthesis

$\mathrm{N} 4-\mathrm{Cl} 3=1.389(4)$	C22-N6- ${ }^{(20)}=1179(4)$	$(22-N 6-(3)-(88:-1779(4)$
$\mathrm{N} 4-\mathrm{Cl} 5=1.284(4)$	$\mathrm{C} 22-\mathrm{NG}-\mathrm{C} 3=120.8(3)$	C20-N6-(3)-(\%) ${ }^{(177.8(3)}$
N6-C3 $=1372(4)$	$\mathrm{C} 20-\mathrm{N} 6-\mathrm{C} 3=121.2(3)$	C13-C10-C5-C7 . 170 (015)
C14-O2 $=1196(3)$	$\mathrm{Ol}-\mathrm{C15}-\mathrm{Cl1}=116.8(3)$	CS-C10-C13-C14 =-1777(4)
N6-C20 $=1442(5)$	$\mathrm{N} 4-\mathrm{Cl} 5-\mathrm{Cl1}=128.0(3)$	(16-(11-(15-01 $=17 \times 0(3)$
No - $\mathrm{C} 22=1441(6)$	$\mathrm{N} 4-\mathrm{Cl} 5 \cdot \mathrm{Ol}=115.2(2)$	(19- $\mathrm{Cl} 11-\mathrm{Cl} 5-\mathrm{N} 4-1793(4)$

whe due to conjugation effect. The dihedral angle between the mazulin-5-one moiety ($\mathrm{N} 4, \mathrm{Cl} 3, \mathrm{Cl4}, \mathrm{O1}, \mathrm{Cl}, \mathrm{O} 2$) and the attached henyl ring ($\mathrm{C} 11, \mathrm{C} 16, \mathrm{C} 17, \mathrm{C} 21, \mathrm{C} 18, \mathrm{C} 19)$ is $3.0(2)^{\circ}$, while that wween the oxazolin-5-one and the benzylidene (5,C7,C9,C3,C8,C12) parts is $4.1(2)^{\circ}$. The bond lengths and bond ngles (Table 3) of the title compound are comparable to those hererved in related oxazolin-5-one compounds [7-10]. The crystal tuiture is stabilised by van der Waals' contacts.

igure 2. Packing of the molecule viewed along the b-axis, the H-atoms ere omitted for clarity

Acknowledgment

We thank All India Institute of Medical Sonences (AIIMS), New Delhi-100029, for collecting the intensity data for the sample and Dr. P. J. Das , Department of ('hemistry, (Gauhatu University, for supplying the crystal.

References

[1] Gabrad Be' 222220 (1889)
[2] A W Hanson Acta Crust 33.3594 (1977)
131 G M Sheldnck SMELXS 97 Progiam for the Soluthon of Civital Strue tures (Unversity of Gottingen, Germany) (1986)

14] (; M Sheldrick SMELXI_-97 Progeram for thr Refincement of (rvatal Structures (Unversity of (iottingen, Geimany) (1097)
[5] Internatuonal Tables for X-rav C'ivallograph (Bumugham Kynoch Ptess) IV (1974)
[6] (' K Johnson ORTEP II. Repott ORNI, 5138 (O.k Ridye National Laboratory. Tennessec, USA) (1976)
17] A C'Wills, A L J Beckwith and M J Tozer Acter Cissc C472276 (1991)

181 I) Seeback, M Boes, W is Naet and W is Schwerer J Am ('hem. Soc 1055390 (1983)
[9] S Karady, J S Amato and I M Weinstoch Tetrahedrim l.ett 25 4337 (1984)
[10] T A Weber, T Mact/ke and D) Scebach Holl (hum Arlı 691305 (1986)

[^0]: Corresponding Author

