Structure of 1-cyano, 1-carbethoxy-2-(3' methoxy-4'-hydroxy) phenyl ethylene

V N Narasimha Murthy, M K Kokila and Puttaraja
Department of Physics. Jnanabharathı Campus. Bangalore Univessity, Bangalore-560 056, Katmatah.t. Indha
N C. Shıvaprakash*
Departinent of Instrumentation, badian Invtitute of Sctence Bangalore 560 012. Kamataka, Inda
Gectha M Kulkarni and M V Kulharns
Department of Chemestry, Kathataka Unevestity, Dharwad 580 (0)3, Karnataka, India
E-mail shuv $\left({ }^{(}\right)$ssu.iisc ernet in

Reccived 2 September 2003, accepted 28 Februan 200.4

Abstract

 "thdrawing group at one end and an electron donating group at the other, with an extended conjugation in between The ciystal structure has been - phats: method to a final $R=0046$ for 1993 observed teflections. The molecule on the whole is almost planat, the methoxy group makes a dihedral mek of 07° with planan phenyl ming The carbethoxy motety forms an extended planar ggag chan with the neighbonng atoms The molecules are heth by strong O-H. O, (-H... O) and (-H N inter- and intia molecular hydrogen bonds

hewords Phenyl ethylene, X-ray erystallogiaphy

PICS No. 61 $10-\mathrm{i}$

Non-centrosymmetric aromatic compounds like 4-nitro-2-methyl amline have been found useful to study their nonlinear optical [NLO| studies[1], 4-arylidene pyridenes with hydroxyl groups have also been reported as possible nonlinear optical materials. Duing the present investigation, the compound as a push-pull mulecule with electron donating - OH and $-\mathrm{OCH}_{3}$ groups of the phenyl ring and a two armed conjugated side chain possessing (yano(CN) and ester groups as electron withdrawing groups conjugated with arylidene moiety expected to exhibit NLO propertes of Secondary Harmonic Generators (SHG) activity. In order to ascertain the stereochemical relationship of cyano and carbethoxy groups attached to Cl with the aromatic moiety if C_{2} and to discuss the role of $\mathrm{O}-\mathrm{H}$. .O interaction in stabilizing the packing mode, the crystal structure of the title compound has been studied.

[^0]The title compound was obtained by the reaction of vanillin with ethyl eyanacetate using piperidene as catalyst. Equimolar quantities of the reactants were allowed to stand at ice bath temperature for three hours in presence of catalytic quantites of piperidene. The reaction mixture was worked up according to the literature method|2] and crystallized by slow evaporation technique using ethanol as solvent.

Intensity data were measured on Enraf-Nonius CAD4 diffractometer|3| with graphite-monochromatısed, MoK ${ }_{\text {c }}$ radiation, $(\lambda=0.7107 \AA)$. The data was corrected for Lorentz and polarization factor 43 . The crystal data of the compound is given in Table 1. The structure was solved by direct method and refined by full-matrix least-squares method using SHELXI--97|5] program. Non-H atoms were refined with anisotropic thermal parameters. All hydrogen atoms have been geometrically fixed and refined for isotropic thermal parameters.

Table 1．Crystal data for the utle compound

Crystal morphology	Palc yellow，needle like
（ hemical toimula	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~N}$
Molecular welght	247.24
Ciystal system	P21／n
Space group	monoclinic
Cell constants	$a=10646(3) \AA$ ，
	$\begin{aligned} & l=9351(4) \AA \\ & r=12647(5) \dot{A} \end{aligned}$
	$\beta=9713(3)^{\circ}$
Volume	$1249.2(8) \AA^{3}$
Number of formula unt Z	4
Density（calculated）D ，	$1315 \mathrm{gm} / \mathrm{cc}$
Density（measured）$l_{\text {m }}$	$1297 \mathrm{gm} / \mathrm{cc}$
Absorption coefficiem $\mu\left(\mathrm{MoK}_{\text {u }}\right)$	$0098 \mathrm{~mm}^{-1}$
Unique data measured	2447
Observed data with $F 0>4 \sigma(F)$	1093
$F(000)$	52000
R	0046
Rw	（） 108

The final positional and equivalent isotropic thermal parameters of non－hydrogen atoms are listed in Table 2．The anisotropic temperature factor for non－H atoms are presented in Table 3．The bond lengths，bond angles and torsion angles are given in Table 4．The chemical diagram of the molecule is as

Table 2．The final positional and equivalent isotiopic themas parameters $\left(\AA^{2}\right)$ of non－hydrogen atoms with Estimated Standard behathe （e s．d＇s）in parentheses

Atom	r	y	z	$\overline{1,14,}$
01	－02567（3）	－0） $5462(3)$	$1.0647(2)$	1） 1774
02	－00824（2）	－0）4130（3）	$12009(2)$	$0074{ }^{-1}$
03	$0.1779(2)$	0．0477（3）	0）7753（2）	（1） $10^{\circ} \mathrm{M}$
04	0．3157（2）	$00988(3)$	0） $9198(2)$	$010 \cdot 6$
N 1	0．2434（3）	－0．0658（4）	$11386(3)$	（0） 16110
Cl	0 154．5（3）	－0．0640（3）	$09401(2)$	（） 00.7
C．2	0 0546（3）	－0．1432（4）	0．8090（2）	（） 06.18
（ 3	$02055(3)$	－0）0046（4）	$10500(3)$	00っく，
（ 4	$02156(3)$	$00327(3)$	$08682(2)$	0 ） 19.12.
C 5	0 03807（4）	$0.2010(5)$	（） $85 \times 2(3)$	（1） 17 （\％）
C6	$04796(4)$	02731 （6）	$09319(4)$	（1） \％）$^{\text {（1）}}$
（7）	$00100(4)$	－0 3452（6）	$12751(3)$	1108
（11）	－00234（3）	－024．57（3）	$0.9468(2)$	（） 100×4
（2＇	－0．0097（3）	－0．2776（4）	$10562(2)$	110% \％
（ 3 ＇	－00872（3）	－0）3764（3）	$10061(2)$	
C4＇	－0）1804（3）	－0） 4481 （3）	$10277(3)$	（） 16.
（＇5）	0 1937（3）	． 04173 （4）	$09201(3)$	11179
（＇）＇	－01105（3）	－0 3177（4）	（） 87090 （3）	（） 10×1

shown in Figure 1．An ORTEP［0］plot of the molecule with ． 3 ． probability thermal ellipsods，viewed down a－avis 心howi in Figure 2.

Table 3．Anisotropic temperature factor $\left(\AA^{2}\right)$ for non－hydiogen atoms with es d＇s in parentheses

| Atom | $U / 11$ | $U / 22$ | $U / 33$ | $U / 23$ | $U 13$ | $U 12$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | $00840(2)$ | $0.0862(2)$ | $00703(2)$ | $-00068(1)$ | $00183(1)$ | $-00186(1)$ |
| 02 | $00810(2)$ | $00852(2)$ | $00579(1)$ | $00069(1)$ | $00087(1)$ | $-00130(1)$ |
| 03 | $0.0794(1)$ | $00866(2)$ | $0.0585(1)$ | $00060(1)$ | $0.0195(1)$ | $00001(1)$ |
| 04 | $00720(1)$ | $00804(2)$ | $00677(1)$ | $00080(1)$ | $0.0148(1)$ | $-0.0066(1)$ |
| N 1 | $00980(2)$ | $01250(3)$ | $0.0717(2)$ | $0.0205(2)$ | $-0.0161(2)$ | $-0.0290(2)$ |
| C1 | $0.0616(2)$ | $0.0675(2)$ | $0.0599(2)$ | $00014(1)$ | $0.0149(1)$ | $0.0093(1)$ |
| C2 | $00665(2)$ | $00711(2)$ | $00525(2)$ | $-00006(1)$ | $0.0138(1)$ | $0.0094(2)$ |
| C3 | $00643(2)$ | $0.0810(2)$ | $00720(2)$ | $00112(2)$ | $0.0059(2)$ | $-0.0075(2)$ |
| C4 | $00649(2)$ | $0.0685(2)$ | $0.0618(2)$ | $0.0009(1)$ | $0.0185(1)$ | $0.0064(1)$ |
| C5 | $0.0770(2)$ | $0.0820(2)$ | $00750(2)$ | $0.0000(2)$ | $0.0238(2)$ | $-0.0052(2)$ |
| C6 | $0.0780(3)$ | $0.1000(3)$ | $0.0970(3)$ | $00050(3)$ | $00170(2)$ | $-0.0120(2)$ |
| C7 | $00900(3)$ | $0.0960(3)$ | $00601(2)$ | $0.0097(2)$ | $-0.0001(2)$ | $-00050(2)$ |
| C1＇ | $0.0618(2)$ | $00654(2)$ | $0.0568(2)$ | $-0.0001(1)$ | $0.0120(1)$ | $0.0057(1)$ |
| C2＇ | $0.0630(2)$ | $0.0655(2)$ | $00587(2)$ | $-00043(1)$ | $0.0053(1)$ | $-0.0002(1)$ |
| C3＇ | $00610(2)$ | $00652(2)$ | $00575(2)$ | $-0.0005(1)$ | $0.0125(1)$ | $0.0084(1)$ |
| C4＇ | $0.0629(2)$ | $0.0658(2)$ | $0.0675(2)$ | $-0.0073(1)$ | $0.0156(1)$ | $-0.0009(1)$ |
| C5＇ | $0.0686(2)$ | $0.0840(2)$ | $0.0619(2)$ | $-0.0117(2)$ | $0.0085(2)$ | $-0.0053(2)$ |
| C6＇ | $0.0713(2)$ | $0.0810(2)$ | $0.0526(2)$ | $-0.0045(1)$ | $0.0093(1)$ | $0.0017(2)$ |

lable 4. Bond length (\AA), bond angle $\left({ }^{\circ}\right)$ and torsion angle $\left({ }^{\circ}\right)$ for nonhudtogen atoms with e s.d?s in parentheses

Bond lengths		
111 (4'13474)	O2-C'3' 1 363(4)	02-C7 1422(5)
1) 0 (4) $1202(4)$	O4-C4 1.330(4)	O4-C5 1 461(4)
V1 ${ }^{3} 11.36(4)$	C1-(22 1.346(5)	Cl-C3 $14.35(5)$
$11(41489(4)$	C2.C1' $1448(4)$	C5.C6 1479(6)
○-61394(4)	C ${ }^{\prime}$ '-C2' $1.406(4)$	C2'- '3' $1376(4)$
() (+ 1 + $) 3(4)$	('4'-C5' $1381(4)$	C5-C6) ${ }^{\text {c }}$ 380(5)

Bond angles

(3'-()2.(7	118.0(3)	C4.04.C5	$1165(3)$
(2-C1-C3	1240 (3)	C2-Cl-C4	$1189(3)$
「3-Cl-c94	$1171(3)$	C $1-\mathrm{C} 2-\mathrm{Cl}^{\prime}$	1320 (3)
Ni-('3-C'1	$1786(4)$	O3-C4-04	1251 (3)
$02 \mathrm{C4Cl}$	1233 (3)	O4-C4-C1	1115 (3)
04 C5-8\%	10×0 (3)	C6'-Cl'-C2'	$1183(3)$
(\%-1) ('2	1179 (3)	C2' C1'-C2	1238 (3)
- $\because \times(1)$	120.7(3)	O2-C3'-C2'	$1250(3)$
	1147 (3)	C2'-C3'-C4'	$1203(3)$
)1-Ct' (5)	$1194(3)$	O1-(4^{\prime}-(${ }^{\prime}$	$1215(3)$
('5'-(4' (3 '	$1191(3)$	C6-('5'C4'	$1207(3)$
	120913)		

lorsion angles

('7-02 ('3' $\mathrm{C}^{\text {2 }}$	$-0.4(5)$
リ'12 (1'C2'	3.4(5)
(3)1-('2 ('1)	$-15(6)$
	174.1(3)
	2.5(5)
('5)4-(14-0)3	24(5)

|Figure 1. Chemical diagram of the molecule.
The phenyl ring is planar with Ol and C 2 atoms lying in the least square planes while O 2 and C 7 lying below the plane by $0^{00} 016(3)^{\circ}$ and $0.015(5)^{\circ}$ respectively. The bond lengths and bond angles in the phenyl ring are normal. The methoxy group at $\mathrm{C} 3^{\prime}$ "s coplanar with the phenyl ring. The torsion angle C7-O2-C3'C^{\prime} is $-0.4(5)^{\circ}$. The angle $\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{O} 2$ is larger than the angle $\mathrm{C} 4^{\prime}-$ $\mathrm{C}^{\prime}-\mathrm{O} 2$ by about 10°. This might be due to cis orientation of the

O2-C7 bond and C2'-C3' bond about C 3 '-O2 bond which causes repulsion between the atoms $C^{\prime} 2^{\prime}$ and $C \cdot 7|7|$.

Hgure 2. (ORTEP plot of the molecule with 30\% probability ellipsods viewed down a-axis

The two armed conjugated side chan posses a linear $\mathrm{C}-\mathrm{C}=$ $\mathrm{NiCl}-\mathrm{C} 3=\mathrm{N} 1=178.6(4)^{\prime \prime} \mid$ chain and agy zag ester groups. The bonds $\mathrm{C} 4-\mathrm{O} 3=1.202(4) \AA$ and $(3-\mathrm{NI}=1.136(5) \AA$ show distinct double and triple bond character respectively. The conformation of $\mathrm{CH}(\mathrm{CN}) \mathrm{COOC}_{2} \mathrm{H}_{5}$ can be described by the torsion angles Cl -C2-C1'-C2' is 3.4(5) and C3-C1-C2-C1'is 1.5(6). The torsion angle C4-O4-C5-C $6=174.1$ (3) indıcates anti-peri planar relation between the carbonyl carbon and the methyl group. The mean planes of the ethyl carbonate group makes dihedral angle of $6.30(1)^{\circ}$ with the mean plane of phenyl ring. The torsion angle $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 3$ is $2.5(5)^{\circ}$. The $\mathrm{C}=\mathrm{O}$ bond is $s v n$ to the ester group about the C O, the torston angle $\mathrm{C} 5-\mathrm{O} 4-\left(4-\mathrm{O} 3\right.$ is $2.4(5)^{\circ}$.

The molecular packing of the molecule along b-axis is shown in Figure 3. The molecules are stabilized by intra- and intermolecular hydrogen bondings. The oxygen atom ()3 of the ester group makes a strong intra-molecular contacts while the hydrogen atom of the OH group at C4' gives a strong inter- and intra- molecular hydrogen bondings. The hydrogen bondings are listed in Table 5.

Figure 3. Packing diagram of the molecule viewed along b-axis

Table 5. Hydrogen bondings (\AA, ${ }^{\circ}$)

D-H. A		D-H	H. A	D	D)-H A
O1-H1	.. ()2' ${ }^{1}$	0) $751(47)$	$2230(44)$	$2678(04)$	$11921(43)$
C2-H2	O)3	() $977(32)$	$2404(32)$	2.804(04)	$10389(22)$
C2'H2'	N1 ${ }^{1}$	$0.885(28)$	$2.598(29)$	$3402(05)$	$15139(25)$
(1)-HI'	.. O3 ${ }^{\prime \prime}$	0) 751 (47)	$2179(50)$	$2835(04)$	$14638(47)$
C5.H5B	(2)"	() $975(43)$	$2563(42)$	$3399(05)$	$14383(32)$

Equivalent positions
(1) r, v, z
(ii) $x-1 / 2,-y-1 / 2+z+1 / 2$
(iii) $1+1 / 2,-y-1 / 2+z-1 / 2$

References

[1] D) Pugh and J N Sherwond Chem Brit 24544 (1088)
[2] J Zabicky J. Chem Sor: Part I 683 (1961)
[3] Enraf-Nonius CAD4 PC version 12 Entaf well Netherlands) (1993)

14] ('K Fair Molen Enraf Noniu) (Delft Netherlands) (1ツ\%):
[5] (i M Sheldrick SHEIXL-97 Program for Solutum and Retwet of Crystal Structure (University of Gollingen (itmon (1997)

16] C K Johnson ORTEP ORNI. 3794 (Oah Ridge Nati Laboratory, Tennesse) (1965)

17] M K Kokila, Puttaraja. M V Kulkarnt and Sarala Thanup: Cryyt. C51 330 (1995)

[^0]: Corresponding Author

