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Ahstract

In this study, the diffraction model 15 employed to study the clister stripping nuclear reaction on the basis of the Regge-pole method

A formula for the angular distribution is denived The angular distnibution spectrai for the cluster stnpping nuclear reactions “Ca(*He.p)*Sc, *Ca (Lp)**a
and Uhe(tp)e at various energies have been well reproduced with projectile energies varymg between 10 MeV and 15 McV The predicted theoretical
stlls for the cluster stripping reactions *°Ca (*He,p)*Sc¢ with 10 MeV, 12 MeV and 15 MeV incident ‘He, “Ca (.p)2Ca with 10 1 MeV incident triton,
md Feap)*Fe with 12 MeV ncident tiiton were compared with the expenimental data and good agreement was observed  Also a companson between
e diftraction model prediction of the angular distribution values for the clustet stnpping reaction *Ca(*He,p)*Sc at energy 12 MeV of *He and that
ot the distorted-wave Born approximation (DWBA) is implemented and a satisfactory agreement between the two methods has been attammed

hevwords
PACS Nos. 24 10 Ht, 24.10 Eq
Introduction

Nuclear reactions model have played a vital role inrevealing the
vructure of nuchides and have contributed to a deeper
mderstanding of nuclear forces [1-14]. Detailed theories of
wcleat ieactions are patterned after the two principal models of
welear structure, namely: the liquid-drop model for the
‘ompound -nucleus reaction and the shell-model for the direct
tuction [13). Theoretical considerations of nuclear reactions
‘ere imed mostly on explaining the cross sections-dependence
nenergies and angles in terms of certain nuclear paramecters
uch as nuclear radius and diffuseness.

The optical model was developed to cope with the
“mplexitics of nuclear reaction processes and to give a broad
mderstunding of nuclear reactions encountered at bombarding
'f‘ffé’les above 10 MeV, including compound elastic scattering

I The complex term of the optical potential is introduced to
dhe ntey account all possible reactions that fall in the absorption
t&ction categories and cause the removal of particles from the
“mbardment beam. This model has been particularly successful
L e’(Plainmg the total and the elastic cross sections of high

‘Ortesponding Author

Cluster strippmg nuclear reactions, diffraction model, Regge pole, angular distuibution, DWBA model

energy nuclear reactions [3]. Besides, it predicts the broad
resonances In cross sections as a function of energy.

‘The so-called plane-wave Born approximation (PWBA) was
introduced to interpret the angular distribution of the cross
section on a semi-quantitative basis. In the usual formulation of
the PWBA calculations, the waves in the initial and final channcls
are generally generated by means of nuclear potential (optical
potential) parameterization for elastic scattering. The deuteron
stripping reactions, where the nuclcon is supposed to be stripped
off the incident deuteron by the nucleus at the nuclear radius,
have been successfully studied in terms of this model [ 15,16].
However, the PWBA model calculation is usually sufficiently
accurate to give the location of the first and perhaps the second
maxima, it did not give a very accurate fit to the angular
distribution and it was failed completely in predicting absolute
cross-sections [17]. This is because the PWBA model ignores
the effects of Coulomb potentials which, when a particle
approaches close enough to have a reaction, leads to scattering
and perhaps absorption of the particle [ 3]. This coinplication is
taken nto account in the distorted-wave Born approximation
(DWBA), by treating the incident and emitted particles as
particles moving under the influence of the nuclear potentials
[17-19].

©2004 IACS


https://core.ac.uk/display/159340679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

608

The first phenomenological model suggested for the
interpretation of the experimental results concerning the angular
distribution of the direct nuclear reactions was the diffraction
model [15]. According to this model, the nucleus is viewed as a
‘black sphere’ that absorbs certain incident partial waves. The
calculation of the reflection coefficient requires parametrization
of specific functions (1n the form of Regge-type descriptions)
for the continuation in the complex ¢-plane [ 15,106]. A convenient
parameterization is the Woods-Saxon type where the nuclear
absorption can be expressed in terms of the reflection coefficient
1., whose parameterization is based on some nuclear parameters,
namely: the nuclear radius and the diffuseness. In this case, the
Regge-pole method can be employed to evaluate the partial-
wave summation in the transition amplitude assuming a finite
range for the reaction interaction response | 16].

In this study, we advocate the diftraction model for describing
the most common observed features of the angular distributions
of the cluster stripping nuclear reactions. The choice of this
model is motivated by several considerations. Firstly, the range
of the diffraction phenomenon is wider than the nuclear radius.
Thus, measurement of diffraction pattern as scattering
distributions is of great importance in obtaining information
about nuclear sizes and shapes. Secondly, the diffraction model
takes care of essentially 'model-independent’ aspects of nuclear
scattering and reaction process [15]. Thirdly, theoretical
considerations of nuclear reactions can be achieved using fewer
nuclear parameters such as nuclear radius and diffuscness.
Fourthly, calculation of the scattering matrix elements is based
on the phase shift parameterization of the reflection coefficient
n,, [20-22). This model will be employed for studying the
T(ct,b)R cluster stripping nuclear reactions. The cornerstone
based on obtaining a general formula for determining angular
distributions starting from the transition matrix. The angular
distributions of “*Ca (*He, p) “Sc, “Ca (t, p) “Ca and **Fe (t, p)
%Fe cluster stripping nuclear reactions at various energies of
incident particles (helium-3 and triton) will be examined. A
comparison between the predicted values of the angular
distribution obtained on the basis of the DWBA model and the
present results of the angular distribution for the cluster stripping
nuclear reaction “Ca (*He, p) “*Sc at 12 MeV energy of *He is
included.

This paper is organized as follows: in Section 2, we derive
the angular distribution formula. In Section 3, we present and
discuss the results together with a comparison with the
experimental data for the reaction “Ca (*He, p) *Sc with projectile
energies 10 MeV, 12 MeV and 15 MeV for incident *He; “°Ca(t, p)
“Caat 10.1 MeV of incident triton; and **Fe (1,p) *Fe at 12 MeV
of incident triton. In section 4, we present our conclusion. Finally
in the appendix, we give a derivation of the angular distribution
as calculated with the diffraction model with the stress on some
mathematical details. Extension of this work to include other
types of nuclear reactions is possible.
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2. Theoretical considerations

There are several types of stripping nuclear reaction, that hyy,
been introduced for studying the structure of single-nycy,
and multi-nucleon states. Among one-nucleon SUIppyg,
reactions are (d, p), (d, n), (t,d), CHe,d), (a, "He), (o 1), ("¢ o
etc. Many studies have been performed with IW()-nucl.c;,.
stripping reactions like (t, p), (t, n), CHe, p). (°Li, «r), (). ,JT\'
etc.. three-nucleon stripping reaction like (o, p), four-nug e,
stnpping reactions like (°Li, d) and (Li, t), five-nuclcon strippin,
like ('Li, d), etc [9-14]. A different type of reaction, why}, Iy
been explained through the direct nuclear reaction proges, |,
the deuteron cluster stripping nuclear reaction. In thy, Bpe o
reactions, an incident deuteron (*H) is stripped oft one i
component nucleons, which remain in the target nucle. 4,
the remaining nucleon escapes | 12].

One common feature of all direct reactions is the relationyin
between the angular momentum transferred in the reacton 4,
the angular distribution of the emitted particles. Since the.
angular distributions are resulted from the superpositio, .,
waves emanating from the nucleus, interference effects leadim
to adiffraction-like pattern are expected [ 14]. Measurement.,..
the differential cross section provide us with valuah
information on the angular distribution of the reaction produc.
Frequently, a beam of incident particles may produce sever
types of reaction processes with a given target nucleus
measuring the rate of each process separately, we can defin
the partial cross section for each reaction process and the sun
of all partial cross sections is equal to the total cross sectin
In principle, the angular distribution can be put on.
semi-quantitative basis by making use of the diffraction mode
[15].

We begin the diffraction model development of the cluski
stripping nuclear reaction angular distributions by considern;
the general case problem. Let us consider the problem ¢
deriving a formula for the difterential cross section (or the anguky
distribution) as a function of incident particle's energy whe
bombarding a target nucleus 7 by an incident particle o 11
nuclear reaction symbolized by the following reaction equatit

a+T—-> R+b or T(a,b)R.

In the above equation, we denote the lighter pr()_]eclll(.’.\ and
fragments with ¢ and b, and the target and final nucleus with
and R, respectively. The incident nucleus ¢¢ will be assumed
form a bound state of b and c clusters, while R is assumed
form a bound state of the two clusters 7 and c. Symb<>|iC“"-"
this relation can be described as:

T+(c+b)—>(T+c)+b,

N
O

where a cluster c is transferred to T and the parentheses anol:i
a bound state. The initial and final states of such reaction "“;
schematically shown in Figure | (a).

. Jeus T
As the incident nucleus approaches the target nuclet®

. . ¢
the target nucleus as seen by the incoming nucleus Jooks K
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on with a certain nuclear potential. The interaction of a beam
N of particles with the quantum potential well can be handled
J\”) by means of the scattering theory [22]. The entrance and
e .

ORI X
OAS = ®

(a)

.
AN N r,//
e
AN
x
Jrd
(b)

! Figure 1. () Mustration of the cluster stnpping nuclear reaction 7'(w. b)R
miVector dhagram for the transfer process (¢) A schematic diagram of a

Capothets al nucleus with radius R and surface thickness AR =d; A¢ 1s a

Dcsure o the number of partial waves over which the transition from
am to complete absorption occurs and 1t can be related to the nuclear
weigee d ffuseness (d)

the exit channels can be described well 1n terms of potentials
by V7 and V), | respectively. The total Hamiltonians in the
mual and final channels are given by :

H = H'+V,, +V,p | 3)
Hy=Hj+ Ve + Vir . )
fuhere
Hi=Keg + Ky +V, ®
Jand
 =Kgp+ Kop + V7. (6)

Here, K , (V) is the relative kinetic energy (interaction
JPotential) between the particles 7 and j.

For the cluster stripping nuclear reaction 7(cx. b)R in which
“cluster ¢ is transferred from o to T, the exact transition
“Mplitude of the system when going from an initial state (o +7)
:l\:jwe’" energy E, .. to a final state (b + R) is governed by the

Quantum mechamcal matrix element [22]

Ty =<¢;|",|WT)=IWT*VI¢de’ @
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where T, is the matrix element between iitial and final states,
v, dcnoles a true stationary state of the complete Hamiltonian
H describing an incident wave on the target nucleus T plus an
outgoing scattered wave. ¢ ¢ 1s the cigenstate of the Hamiltonian
of the non-interacting states in the final channel r.e. H',. The
interaction potential in the exit channel V, canbe wrmcn as:

V/ = Vbl + VI)I . ®

Thus, the time-independent Schrodinger wave equation can
be written as

, -h~ > .
HJCD —E [e2] :[—7;\« (r )+V/(p):] =1:/d’, O

-

If the relative kinetic energy in the tinal channel 1s supposed
td be much greater than the interaction potenual r.¢
a-
-—2-;—V (ry)>> V. (p), which is the condition for the Born
approximation, the wave function of the final channel @, can
be written as :

D, =0(5) @) ™. )

Suppose that the cluster ¢ position is closer to particle b
than to the core of the cluster R, then the cluster will be
considered within the cxternal region of the core of 7. By
considering only the asymptotic behaviour of the outgoing
spherical wave, which is given by a spherical Hankel function
of the first kind h“’(kr) [23, 24, the wave function | can be
mtroduced as:

v =008 *" anl’tr)AY}:,,A((,)
)""'A

X Va1 ) 50 (ki) an

where @, 1s the internal wave function of the particle ¢ ;

m, my
-p- and ——=~—|p-r are the

IN +”l7
relative position vectors in the initial and final channels. The
vectors P and r are displayed in Figure I(b). m ,m, and i, are
the masses of the transferred cluster, the outgoing particle and
the target nucleus, respectively. & represents the internal

coordinates that are independent of r,and p and ¥, (0, ¢) are
the spherical harmonic functions. k and k | are the relative wave
vectors in the initial and final channels, respectively. The
reflection coefficients parameters 1, , are expressed in terms of
the convenient Wood-Saxon form as:

0—14,)
n, =41+exp (¢=o) (12)
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where ¢, is the cut-off angular momentum and A is the
diffuseness parameter. The form of reflection parameter as
introduced in eq. (12) implies that the transition of n, from zero
to unity is expected to take place gradually and is extended over
a wide range of ¢ values of the transition width A. This is
illustrated in Figure 1(c) in the vicinity of ¢, inorder to take into
account the nuclear surface thickness.

Let us now expand the wave functions of the nuclei @ and
R in terms of the different states of b and T, respectively, times
the wave function of the cluster ¢. The results are

S muo LM
¢a=z{J ; }S{a.c,b}[(s,u,‘LM/J,M,)

X ("«'M¢ ’ sb#hlsuu(x)] (pb(g) ?, (é) RI.M(") ’ (13)
S, u. ™
Or = E{J . }S{R,T,r} [(S‘,u, ,emfJ,m,)
X (jrm(" ST“T"S‘K#R)] D, (‘g) (P7(§) Rfm (p) . (14)

Here, S and u are the spin and its projection, respectively;
while LM and /m are the relative angular momentum and its
projection in the incident and final channels. Both J M and; m
represent the total angular momentum of the cluster ¢ in the
projectile and the residual nuclides. The symbol R is used to
represent the relative wave function and the bracket denotes
the relevant Clebsch-Gordan coefficients. Now, using egs. (8),
(10), (11), (13), and (14), the transition amplitude in eq. (7)
becomes

S He tm LMY
Tﬁ_Z{J m, J M IS{R.7,C}S{G.(‘I7}

X(Sl M, ‘,I'"Ijx ’n(') (.Ir m., ST.“’I’ISR#R) (S( M, ‘LMI‘Ir M: )

« «

ik,r/

x ("('Mc *Sbublsuua )<(P, (é) (pT(é) er (P)‘Pb(é)‘?

tk r

Vr|¢b(§)‘/’. Ry (P)pr(§)e " +

21 240, s, () Vi, (2) B (k7)) as)

The vector diagrams of k , k, and kf are displayed in Figure 2
(a); while the complex plane for calculating the residues is shown
in Figure 2 (b) (see Appendix). By making use of the normalization
condition

(0. ©9r G0, G, 0, G0 ©)=1.  (6)

Therefore, the transition amplitude can be rewritten as :

T, =C[h+1,]. an
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where
S, wu,, LM, tm
= 2: *
¢ {.I M., j m.}s (R.T.c} Stac.b)

¢ ¢ ¢ «
X(S('#l" tm j('”'(‘) (j( me., ST#T SR ”R) (S('#; JAM ./‘ M,
X (J('Mr osbﬂlr Sa#a)'

I, = R,,,,(p)eik"" ViR (r)e"‘"" (e

and

Iy =2me™ " Ry () Vy Ripy(r) 20mr,
Am, i

x(i,) YMA(ﬁ)"fll) (kr,). (2

Re .

C'J
.:...F’oles at
- Ao +in
< C,

(b)

Figure 2. (a) Schematic representation of the quantization axi ki
The contour integration in the v-complex plane together with the Rege
poles positions of 1), as given by cquation (A 49)

Since V,, corresponds to a bound state in the cniran
channel, one may expect that the contribution of V,, 1o be mu
greater than that of V,, and hence the latter term in ¢q. (8) canb
neglected with respect to the former [25]. Using eq (17). th
angular distribution can be introduced as:

do

dQOC 7‘;;’“"""%’

where I, and /, are given by the following expressions (&
Appendix for derivation):

I = (4m) NoVy X )N Y (D)

tm (@2 +r?)"(a*+ )
and
I, =167*4Y (1) NyV, N, %%%2 Jrol4] Rr)

&m
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% jro(kRo1) Jeo (k /Ry, )y

. 217
2 ot At)?
xw——z—sin [(/10 +_l_)19_£+_5_@] e ™0, @3)

(240 )%,/sin v 2

The required angular distribution is generally proportional

1o differential cross section of cluster stripping reactions. Thus

:l’|+’2|2

. (o)
angular distribution o< ) o< (24)

The above equation is the one to be used in the present

study.

3, Results and discussion

Theoretically, the contribution of the stripping cluster nuclear
reactions to the various cross sections spectra (or angular
dntributions) is presented by the functional form of eq. (24). In
ihe calculations, only the case when the transferred cluster 1s in
4 ielative s-state is considered. A careful choice of integration
vriables and nuclear reaction parameters facilitates the
theoretical calculatons Two open parameters are involved in
the caleulations, namely, the nuclear radius R and surface
diftuseness parameter A. The corresponding angular
distribution results for the cluster stripping reactions “Ca
CHe. p) ¥Sc, “Ca(t, p) *Ca, and *Fe(t, p) *Fe at different
energies of incident particles and for different nuclear radii and
diftuseness parameters arc included. Accordingly, for each
cluster stripping nuclear reaction, families of curves can be
obtained by varying either the nuclear radius parameter or the
diftuseness parameter. The obtained results are displayed as a
function of the center-of-mass scattering angle ranges between
0"« 0, , <160°. Plots of this type are useful for the
comparison purposes of the experimental values with the
calculated theoretical values, in order to test the success of the
model.

The predicted theoretical results of angular distribution
functions according to eq. (24) of the ground-state protons for
the cluster stripping nuclear reaction “Ca(*He,p) “Sc with
Projectile energies 10 MeV, 12 MeV and 15 MeV of incident *He;
“Ca(t, p) “Ca at 10.1 MeV of incident t; and “Fe(t, p) *Fe at 12
MeV of incident t for certain selective best-fit parameters
'ogether with the experimental data are displayed in Figures 3-6.
The calculated values of the angular distributions of the ground-
‘late proton for the cluster stripping nuclear reaction
Ca 'He,p)*’Sc are exhibited in Figures, 3-5. In Figurc 3(a),
shown the predicted diffraction model results of the angular
?lbtnbution for this reaction at energy of 10 MeV for incident
He and diffuseness parameter of 0.40 but using different radius
Parameters of 6.28, 7.18 and 8.08 fm together with experimental
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data taken from Ref. [26]. Shown in Figure 3(b) the predicted
results for the reaction with the same energy for incident *He
but using different radius parameter of 6.28 fm and different
diffuseness parameters of 0.30, 0.40 and 0.50 together with the
experimental data taken from Ref. [26]. Figure 3(c) displays the
predicted results obtained by using the best-fit parameters R =
6.28 fm and A = 0.4 together with the experimental data taken
from Ref. |26] for the same reaction.

10'
*Ca(‘He, p)* Sc (a)
A=04, Q=4905Mev
= 1000 E (°He) = 10 MeV
-]
E
gy
2
(=3
© 102
10~
0 120 150 180
10°
“°Ca(*He, p)**Sc
R=628, Q=4905Mev (b)
E (*He) = 10 MeV
}';g\ 10 \
10 — .03
- A=04
“"A=05
Fxpenm
107,
30 60 90 120 150 180
1
e “Ca(*He, p)*Sc ©
' R=628 A=04
E (*He) = 10 MeV
Q = 4 905 MeV
£ 10"
[ B
G i
~N
[ " R=628
100 LesEXREOT,
30 60 90 120 150 180
0, . (degrees)

Figure 3. The results of angular distnibutions using the diffractuion model
together with the experimental data taken from Ref [26] as a function of
the scattering angle 0,,, of the ground-state protons for various cluster
stripping processes i the reaction “°Ca (*He,p)Sc at £, - 10 and (a) R
=628. 718 and 808 fm and A = 040 (b) A = 030, 040 and 050 and
R =628 fm (c) best-fit parameters are R = 6 28 fm and A = 040

Shown in Figure 4 the angular distribution of the ground-
state protons for the same reaction “Ca (*He,p)**Sc, with 12
MeV incident *He for different radius parameters and different
diffuseness parameter together with the experimental data taken
from Ref. [26] and the best-fit parameters (R = 6.80 fm and
A =0.4) curves. In Figure 4(a), values of the angular distribution
are obtained by making use of the radius parameter values of
6.80, 6.56, 5.20, and 4.91 fm together with the diffuseness
parameter value of 0.40. In obtaining the results of the
distribution function exhibited in Figure 4(b), we have taken the
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radius parameter value to be 6.80 fm and the diffuseness
parameter values are taken to be 0.35, 0.40, 0.45 and 0.50. In
Figure 4(c) the results for best-fit parameters are plotted together
with the expeimental data. Similarly, in Figure S we have displayed
the results of this reaction with 15 MeV incident *He but with
different parameters together with the experimental data taken
from Ref. [26]. In Figure 5(a), we have plotted the angular
distributions obtained using a diffuseness parameter of 0.40
and radius parameters of 4.41 and 5.15 fm together with the
experimental data. Figure 5(b) displays the angular distributions
for radius parameter of 4.41 fm and diffuseness parameters of
0.30, 0.40 and 0.50 together with the experimental data. Last,
shown in Figure 5(c) are the angular distribution results attained
by using the best-fit parameters R=4.41 fm and A =0.3 together
with the experimental data.

“Ca(®He, p)**Sc (a)
A=04 Q=4905MeV
E (*He) = 10 MeV

a1 W
g - .
8
e 102
107 0 30 60 90 120 150 180
100 F “Ca(*He, p)*?Sc ®)
A=868 Q=4905MeV
% E (*He) = 10 MeV
g 10f
g o
8 107 p EErey <7
L 30 60 90 120 150 180
“°Ca(*He, p)*?Sc
L3 R=68 a=04  (©
E (*He) = 12 MeV
/\ Q= 4.905 MeV
10“ F ' —1

102

3 —— R=628
' Expenm
10.@ . e A i A
30 60 90 120 150 180

0, . (degrees)

Figure 4. The results of angular distributions using the diffraction model
together with the experimental data taken from Ref. [26] as a function of
the scattering angle 0,,, of the ground-state protons for various cluster
stripping processes in the reaction “°Ca (PHe, p)*Sc at E, =12 and
(a) R = 6.80, 6.56, 5.20 and 4.91 fm and A = 040 (b) A = 0.35, 040,
0.45 and 0.50 and R = 6.80 fm. (c) best-fit parameters are R = 6.80 fm
and A = 040.

It can be seen from the Figures 3, 4 and S that the diffraction
model approach can predict well the general behaviour of the
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angular distribution. Furthermore, the calculateq anguly
distribution values using the best-fit parameters are Simulgr
that of the experimental data. In particular, at smal] angley,
reveals that both experimental and theoretical values of 4,

uly
w —
“Ca(*He, p)**Sc (a)
w0 b A=03 Q=4 905MeV
=N E (*He) = 15 MeV
107 ¥
10°
104 R N . N N
0 30 60 90 120 150 1o
10
9Ca(’He, p)*Sc (b)
A=44 Q=4905MeV
E (*He) = 10 MeV
10+
I
[*}
°©
i) 10°
10 30 60 ) 120 150
107
“Ca(*He, p)*Sc
R=441, A=03
E (*He) = 15 MeV
Q =4 905 MeV

10

mb/sr)
.

107 ' \

10+
30 60 90 120 150

0, ,, (degrees)

Figure 5. The results of angular distributions using the diffraction mod
together with the experimental data taken from Ref. [26) as a function ¢
the scattering angle 6,,, of the ground-state protons for vanous clusk
stripping processes 1n the reaction *“Ca CHe.p)*Sc at £, =15 Mev o
(@R=441and 515 fmand A =030 (b) 4 = 030, 040 and 050 4
R =441 fm. (c) best-fit parameters are R = 441 fmand A =030

distributions are too large. After that the angular distributio
values continue to decrease in the center-of mass angle rang
0° <0, , <160". Anoscillation of maximum and minimum
a persistence of the prominent feature of these curves has bee
observed. The diffraction-like behaviour starts to show up:
large angles beyond 30°. The observed diffraction pattein!
the differential cross section plots may be attributed t© th
interference from opposite sides of the nucleus [4]. T
diffraction model interpretation of the observed general el
of the angular distribution is as follows: Interference betwee!
the diffracted waves resulted in the appearance of the maximu
and minimum of the distribution functions. The correspondin
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resonating partial wave is large in the surrounding of potential
gipregion, consequently the qverlappmg probability of nuclides
and their surface regions also increased. Therefore, an increased
_psorption at resonance energy. leads to the dip-peak structure
of the reflection coefficient [26-28] indicating the presence of
the Regge-pole in 'n;‘l [29]. Thus, a decrease in the distribution
jnctions will be produced [14]. This approach might be
inapplicable at high energies (> 100 MeV) where larger angular
momenta are involved and the dips in the effective potential
\anish [30]. One may notice in Figures, 3,4 and 5 that the general
drop-off trend of the angular distribution functions is dependent
on the radus parameter. With a larger radius parameter, the
angular distribution of diffraction patterns, the maximum as well
1 the mimimum peaks, are shifted toward the small angles, while
therr shapes remain similar. These observed regular features are
amilar for all predicted angular distribution values using the
diffractton model.

Simular angular distribution results were obtained for both
aCai1,p) Ca and *Fe(t,p)*Fe nuclear stripping reactions with
10 1 MeV and 12 MeV incident triton, respectively. The angular

10
[ \ (a
“°Caft, p)“?Sc
P=714 E =101 MeV
107 F Q=1136MeV A=714
b
5
Z o104k
g
© 3
]
| Bp
—— Soid
10 Iy L 1 1
0 30 60 90 120 150 180
10
(b)
SFe(t, p) *Fe
o b R=726 E =12MeV
z 3 Q=1201MeV,A=04
& 3
g i
g L
5 107
I Bp
e Sl | . '
10’“ I - A A A PR § A
0 30 60 90 120 150 180

8, (degrees)

‘jlgure 6. The angular distribution for the ground-state reactions for
Yanous cluster stripping processes in the reaction, (a) *°Ca (1, p)**Ca, at
4:}‘ 101 MeV, using the best-fit parameters of R = 7.14 fm and A = 04
"* Cxpermental points are taken from Ref. (31]. (b) *Fc (1, p)**Fe at
7> 12 MeV. using the best-ft parameters of R = 7.26 fm and 4 = 0.4
€Xperimental points are taken from Ref. [27).
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distribution predicted results using the selected best-fit
parameters for both reactions together with the experimental
data taken from Ref. [ 26,30] were exhibited in Figure 6. The general
remarks made for reaction “Ca(*He,p)*Sc still remain valid for
the other reactions, that is, the angular distribution results follow
the general trend of the experimental data.

After testing the validity of the diffraction model against the
experimental data for the cluster stripping reactions “Ca
(*He,p)*:Sc, “Ca (1, p)¥Ca and “*Fe(t,p)*Fe. a comparison
between the present results of the angular distributions to those
obtained in the DWBA calculations for the cluster stripping
reaction “Ca (*He, p) *Sc has been made. For this purpose, the
angular distributions for the reaction “Ca (*le,p)*Sc, with 12
MeV incident *He and of best-fit parameters R = 4.91 fm and
4 =0.40, as predicted by the diffraction model approach and
that calculated by the DWBA approach taken from Ref. [25] are
plotted in Figure 7. The dashed curve in Figure 7 corresponds
to the predicted diffraction model results using the best-fit
parameters R=7 26 fm and A = 0.4 and the solid curve represents
the DWBA predicted results. It is clear from the figure that a
satisfactory agreement between the predicted results of the two
approaches has been attained.

Y “Ca(*He, p)*:Sc

1 KE (*He) = 12 Mev
[ : Q-=4905
- .
3 01f
E I
8
=]
3 s
[ ]
e Expenmental .
= DWBA
001F --- Presentwork
[ i 1 1 1 1
30 60 90 120 150 180

0,,, (degrees)

Figure 7. Comparison between the angular distributions of the reaction
0Cy  (3He.p)¥Sc, at £, =12 MeV, as predicted i the present work
(dashed hine) with DWBA calculations {26] (solid hine)

4. Conclusion

The diffraction model has been employed successfully to obtain
an expression of the angular distributions of the cluster stripping
nuclear reaction T(cx, b)R. The experimental data of the angular
distributions spectra for the reactions “Ca(*He,p)*Sc, “Ca
(t,p)*Ca and “Fe(t,p)*Fe at various encrgies have been well
reproduced at an incident particle's energies varying between
10MeV and 15 MeV. The predicted theoretical results were found
to be in agreement with the experimental data. A comparison
between the diffraction model predicted values of the angular
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distribution for the reaction®Ca (*He,p)*2Sc with 12 McV incident
*He and the calculated values using DWBA reveals a
satisfactory agreement between the two methods.

In conclusion, the low energy (0.1-50 MeV) cluster stripping
nuclear reactions can be adequately explained in terms of the
diffraction model. Besides, the diffraction model approach is
capable of reproducing the main features of nuclear reactions
differential cross sections properly. Extension of this work to
include contributions other than s-state is recommended to test
the validity of the diffraction model for attaining the general
features of high energy (> 100 MeV) nuclear reactions.
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my,+tm, |

i| &, —- -k, |p 1| k
- Pl e el

X Ry (r)dr dp . (Al

By introducing the following coordinates :

m
=k;- T k,, (A
e=k m.+mp
q=k;-- e -k; . (A3
mb+m‘.

eq. (A.]) can be rewritten as:

I = [u7(0) €Y, (B) dp [ €97V, (ru, (1Y g (F)dr (M)I
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Ineq. (A4), we have expressed R,,,(p) and R,,,(r) interms
i spherical harmonics using

R () = 41 (P) You (P).

R/M(r) = Ul.(r)', YLM(;) .

gince the nuclear states are eigenstates of angular
qomentum, it is useful to expand the plane wave in spherical
armonics using the following expansions (22] :

( ) vm, (;)‘

(A.S)

(A.6)

=4 Zr Jy(kr) Y,

vm,

b ()= (Vo (7).

g (A.4) can be rewritten as:

(42, B0 @Y ™ ¥, (O)Y (8)

vm, v m

(A7)

p)ag, [ v,

J‘)\m y(m (;)YLM(;) d.Q,

X[V, (Qp) P3P iy (ar)Vy, (ryuy (v,
U L XD O MY (Q)im(@)x T (A8

tm LM

here

= (0 (@) p2dp [ jilan) Vi, (N UL (A9)

wl/ (v) 1s the spherical Bessel function which is related with
e ordinary Bessel function by the relation |23]:

Jn(X) =

,—é;x.]n+é(x). (A'IO)

Taking u,(p) 1o be the Morinigo wave functions whose
neral form can be written as [31]:

u(p)=N,e?p"!, (A.11)

here N, = J.(?l)_f.

is the normalization constant of the

r2¢-1)
ave function,
2 ’2“'T€rT m.my . .
T35 Mg =———, €. is the binding energy
h m,_+my

the system, (c+T)= R and | is the gamma function.

‘erefore, for the first integral of eq. (A.9), we may obtain an
Pression of the form:

¢+t

Jui oY (@, p?do = N (20)' (_y—:&—)m (A12)
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The integral in eq. (A.12) have been evaluated using the
following standard integral [32, 33]:

(20)" r( V4
Ie ®J.(Qp) p¥dp =- .
1 (A 13)
(0% +7°) 2 Vm
In evaluating the second integral of eq. (A.9), we have
assumed that the projectile 1s 1n a relative S-state, where L =M
= 0 and the nuclear potential of Hulthen type. A pure central
potential of Hiilthen form yields an analytic solution of the $-
state of Schrodinger wave equation [34]. If the Hillthen forms
were chosen |35] for both the wave function u,(r) and the
potential V, , one may write

J_‘w — '—,’,
uy(r)= NO[S———L———-) R
’

e'ﬂ'
V()= Vo =~ |-

(A.14)

(A.15)

- [a B+ B)]

-a 2n

where N, = --- is the normalization constant

of the wave function, B=70(25], (x:‘l—z—u—;—"’;‘—"—.
-h*

Yo = '_“(ﬂl

m,, +m, 2u,,

mym,

~a? ) and €, binding energy

h =

of the system (b + ) = «, then the second integral of eq. (A.9)
is given by

1
i) Y (N U () rdr = NoVy —5——, 16
!; (IZ _‘_ﬂ..) (A.16)

where egs. (A.10) and (A.12) have been used. Using egs. (A.8),
(A.12) and (A.16) we get:

2Q)'I(¢+))
yz)"”(qz +Bz)
(A.17)

I = (4”)% NoVo E(i)’ Nry;m(é) e
i (@ +

The second part of the transition amplitude, i.e. ], can be
evaluated as follows:

We shall first expand the spherical harmonics and the
spherical Hankel function appearing in /, to obtain r and 0 in
separate function as [36] :

1
Az ) _yptehh)

am, (0 (ki) = J‘GE

m;
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(A A3

we deduce that me = 0; further,
2 )(llml'./lml '12'"/1,)
Y. (lE’):y‘ 0,0)=6
M| _m. . sm \"S gm, S
Xh"l I m, +m, k r I ,/\ k p)Y). ang (p)yll,ln I’) (A.18)
where [x] =

(A 2-3
implies that m_. = 0. Therefore, /, becomes
2x + 1. Next, egs. (A.5) and (A.0) together can be
used with eq. (A.18) to put I, in the following form

A A A e loa .
1 =2n(4n)%2{ 14266 }(_)2( ARA s ,
A A A Yoasa,-a,
1 =2nJ4n2{ : - }(—)3( )

”ll' mA' "l}n
5 6) |
mymy my M2 am, {1

(W%WDA&M&MWQMA

Voo, ()4 2] DR (210, A0 0

x(/llmll.ﬁm}.

lzm,l:)

AZ”I).: ) J- y;:) (;)) YI:n (i)) Y,lynA (f) d -Q,
x( K1 Pk "1y (p) m,(P)IVm U (r) Yy (7)

),»:"'0(;) yLﬁff(;’)y/\,mA| (;) d Q"t'.! . (AL
x M k| jo. (k,p)Y (p) vt (7). (A19 where 7. is given by
m,+m A, Aamy Aymy, (A.19)
b
h v I ) I"‘. k
where T, —-<_}g( ) b (PYup (r) by L’" "
ny
k' = Tk, . 2 (s .
om, vm, ! (A20) <.I,- (k/l’)ur(P) Ja, (k,p)>.
Using the following relations Now, we shall use the following relations for the spher
harmonics [36]:
P =an 36 g (k 10) Yon, ("/f’) Yon,» 136l
gm,

we may set:

: [4 ][]
&5 = an Z(..,)': Jor (/"_; ,.) yg,mg' (A}f)) Ygtmc'("')' (A21) j)’, ,,,l(r))’, - (I)Y (I)d!) (
gmy

]
(i J, (1,0.7,00:01

I'"l mz }lm

A Aw ! —|2),+ 1=As 4
2”(4”)/2 S QL L(2A444,-4, 45¢")

e my+my =m |l =[S0, S|E =1 (AT
(=)~ i
n, m m m. m_. * y
PR TR [Yole) Y. (0)Yim ()= (D)"Y (D) Yy, (P)YalPh
N ! | : :
X 3 Yo, (£, )Yom, (K7 ) Vo, (£, )02 [A2D3 (A 20)

|-

o ([A[A:]
(M"’).,*"’”AIM’”AJ(&( )u:(P)J;, (k; P)) =) ( 4[] J
<_,g( )V,,,(r)u,_(r)h“)[ P )>J gn, Yfm p and

X Y,ll,,, d.Q J om.

(¢0. 2,0/0) (¢~ m. Aam|g0) (A2

j%mmmmﬂmq
yIM(r)yAm( dg “(A22)

By taking k, as an axis of quantization as shown in Figure
2(a), and knowing that [36]

=" [V DYy, o, PV (PR,

1
* (r * - [‘5'] =(-)M .[._L.'M : L0, A, 0|c’O)(LM. A, ~M :’())(,\3‘”
Vom (k) = ¥ (0. @) =8 |22 (A23) O | Gaeq ) (Lo-AOls"0) (L. 21-Mie
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neg. (A25)to get:

A
AA A 66 }( )My

mym M

(2,1 A=A 4c—¢’

[::anz{ )
o (£ PIA AL (310, 204.,0)
i g A gm) (L0, 4,0 0) (L, A, ~ Mg 0)
x (10, A,0[50)(¢ = m. Aamlg0)xT,. (A.30)

The summation over ¢’ may be evaluated by making use of

he asymptotic form of the Clebsch-Gordan coefficients [36]
wth two large values of the angular momentum and one small

alue, one may write
-1 ”12
¢, )

(A.31)

4 -Z
l'(lz—z;mz""llleznl')) ( )l ”mz[COG

Jhere Z1s very small value of angular momentum and D 1s the
yation matrix. Then one may write for the sum over ¢’ in (A.30)
1e following expression:

X )2 ‘*)(Lo.,110|g'0)(LM.,1,—M|g'0)
= ¥ (=) #*(L0,¢" - Z;0]¢’0) (LM, ¢’ - Z:-M [5°0)
- n - n
_2(,) 2k 7 pl, (2)(_)1, Zpl (_2_
w-Z L [T L (T
= D&, | = | D, | =
;(') 0Z (2) MZ (2 (A.32)
sing the relation |36)
Dk (B) = (=) ™ Dy (B)
Diyx (@, B, y) = e ™MDy (B) e, (A33)

cgetforeq. (A.32)

o {5)orron(s)- B e S

(A.34)
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Now by making use of the relations 136}
z mm’ a" /3 ) m'm” ((Z Bl YI) D'lu'm"(al B.‘ y.\)‘

cos By = cos B cos B, —sin B, sin B, cos 8, ,

sin, _sinB,
snd,  sing,
8, =0~ + M8, =y, -y, - Sy =a, +y,. (A35)
eq. (A.34) can be rewritten as:
Inn (&
21),,,,[ ())1)70(2.2,0]=DM0| 22 2
|47 v’ (n n’
”,] AT (A.36)
where the following relation have been used
m()(a ﬁ Y) J[(, Ylm(ﬁ (Z) (A37)

In doing the summation, we have assumed ¢” — 4, = Z and
[¢”]=[A,] for small Z. Now, consider the summation over g :

Assume that ¢~ A, = Z and [g] = [Az] for small Z; we then
get:

Ve
2(_,2(5 "-)(po,1120|g0)(('—m./1:"'|€0) (A.38)

)l’Og 20|50) (¢ -m.g-Z:m|50)

=2 )
. - o (T - b/
=§(l)7(l)’ [D(;z(—z')(“)’ ZD*'”IZ(E

(3o (5)

By using egs. (A.33), (A.35) and (A.37), we get

(A39)

ZD’

‘"'ZL 2 ) D“’Lz

(A.40)

2(1)7(1) D-m/(z)DZOL J Ze

- [fm(55)

Substituting egs. (A.37) and (A.40) into eq. (A.30), we get:

I, =2m(4m)° Z{ h Az}( =" [A][A:][A)2
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. r * n nn
X1 Y, (K, y‘“(?"z') Y,,,,(?,—z—)(/l,o,/l 0[2,0)
(A, M, Amy|Aym)x T, . (A4l)

Adopting the same method for calculating the sum over A,
and A, , we get

> (4,0, 20|A,0) (A, M, Am|A,m)

A

2,0)(Amy, Ay = m|A, - M) (A42)

(4]

= 2(_)""“[_’1_21(10,/120
AI

= 2(“)’"““' M(XO,A, - Z0jA,0)(Amy. A, - Zi~mA, - M)
A

[4]

2 A n
= (")"M '[‘—3'1 Z D,ﬁ z("”v 0, 0) D;(,(ﬂ. re 0)- (A43)
s ™ 2
By using eq. (A.35). eq. (A.43) becomes

Bl (07 o

[4] ™2

_opm 2] [Am (zr_ _

"() ['ll] [A]YA’"/\ 2‘ G’OJ’ (A44)
where

0 =cos '| —A-:l- [ (A45)

By using eq. (A.44), one can write eq. (A.41) in the following
form:

A ¢ L 2Mam E
I =(8”2)Z{m M }H'M QULRNAT

(A46)

where (= cos® and g is the angle between k and the vector
of polar angles (7/2 - 0) and 0°. In writing eq. (A.46), we have
used addition theorem for spherical harmonics [23]:

14 S e
%;] P (cos 8) = Z Yo (97, ®°) Y, (8", 9”),

cos 8 = cos ¥’ cos B” +sin ¥’ sin 8" cos(p” - ') . (A47)

A practical method to carry out the summation over 4 in eq.
(A.46), based on the use of the Watson-Sommerfeld

i, Mohammad M Abu-Samreh and Nahida L Qumri

transformation [24], permits us to transform the summ, oo
A into a contour integration in the corresponding complex plyy,
According to this approach, the sum over A ineq. (. 161,
transformed into an integral form as [37):

[ 4T

. sin (A 1) M Fa(h) a A
1

AP =L
g( V[AT'm, Py = 2

Here A represents a complex angular momentum The pat
of integration C1 is shown in Figure 2 (b). In the Regoe po
representation, eq. (A.48) reduces to a sum over Regge-pole.
the following manner

n]3 R/l,, P}.“ (-1
sin (A,7)

A
Z(")}'[/I]BH,\ P(wy=n z[ (A
A n

Here, A, is the position of the nth pole and R, s the regy
of the scattering coefficient 7 atthe pole n. By mtroducing 1t
Wood-Saxon form for 1 ;

_.‘L) (A5

the nth pole position is determined using

A,=Ay+inmA, (n=x1,x3,£5,..). (A5

The residues of 1, arc all equal to A . In order to simphty ¢
(A.49), the fullowing approximation is being used [ 37|

PGCp) W2 ’g[(”"A’;']”'%]'!""A"" (A5

sinGAm JmAsin 8

e

where —-——I”'/l =+1.

|1

Thus, eq. (A.49) becomes

S @A+ N, P (wy =AY (24, +1)’

i6l{ A(,+l 0-Z —|nma|
N NG
nA, sin®

(AN

If we consider only the poles corresponding to 7 = *
where n is the integer appearing in eq. (A.51), then the ngh
hand side of eq. (A.53) can be rewritten as:

:[( la*i)l’"g f-mav

-

3 2 .
nA (2/1,+1)1‘[ ins e
A, s
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_ ),0+_l_ 5-Z 240
+(:)(2}--1+1)3J'M_| sin © [( 2) 4] " . (AS4)

Ay > 1 .and A, >> A, the following approximation can be

used

inn

[4,]=24 +1=24 =—(4): +2m2A%) e o

24, - (ASS)

Substituting €qs. (A.54) and (A.55) into €q. (A.40) we get:

}( l).,M+m Y(,,,{

[,=32m" AE{

N|:\
Nl-‘-!
-
;<
K
—
Nla
Ml:)

5

] 2 -
Ayt2nta ]'l
Mo T 4

- sin[(/lo += ;)19—-?—+-5—Mf—]e M0 % T,
(24a)2Jsin B

(A.56)

If the projectile is in a relative S-state, then L= M =0; which
pives @ value of 7/2 for the angle ¢ (the scattering angle)
hetween k and k and the radial integral 7,,eq.(A.25),canbe
avaluated at the points defined by

C=Ay=ly=kR and ¢' =24, =¥, =kR. (A.5T)

where (,, 1s the grazing angular momentum, and R is the
mteraction radius.

This approximation 1s quite accurate for strongly absorbed
particles at medium and high energies if |g A, | and |g -4
aie not too large. The main basts for its validity is the fact thatin
drong absorption situations, the DWBA radial integrals arc
wharply localized in the angular-momentum space 1n the vicimty
of the cut-off angular momentum £, [38-40].

Now, the total bound state Morinigo wave functions are
detined by 132,35]

u—ﬁ”

Or(r) =AY, (2)r' (A.58)

Using the Morinigo form given in the above equation for
the wave function u,(p). then the first integral of T, can be
written as:

J s (kP (P, (kp)p*dp
Nejn(k) RI‘T)j‘,O(k‘R‘T)je—ypp'—lp?’dp

F(€+ 2)

N’ho(k R«T)jl’O(klR:T) (A.59)
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where R | is the interaction parameter given by [38]:
! l
R, = I'O[A(A + A7A] (A.60)

Here, A 15 the mass number.

In obtaining eq (A.59), we have considered the oscillatory
functions outside the integral at p = R; [12]. Following
the same procedures, considering the Hulthen form for V, (r) as
ineq. (A.15) and taking the form of the wave function u, (r) to

be:

uy(r)=e Y'(l—e"/"). 1n the interior region,

(A6l)
=¥, in the asymptotic region,
the second integral of 7, can be written as:
Jj‘;,(k,r) ' (P (r)h o tm k,r \r=dr
NoVy .
= J¢ kR, )h kR ’
e Jrolky Ry .+ m, FR \ (A62)

where 7 is the radius of the projectile particle and a is the nuclear
potential range. Using egs. (A.59) and (A.62), the second
integral of 7, can be written as:

I'(¢+2) .

7. = NyWN, W (‘ R(T)/IO (kR.)

x J/()(/\ R, )lro | kRy,

m, +m,, (A63)

Substituting eq. (A.63) into (A.56), we obtain:

) . I'e+2) . .,
I, =164 Y, (1) NOVON,WJ,O(/(,R‘T)

fm

. A (1
xJeo (krR(T)JI() ("/Rm )hl())l ot m, k, Ry,

)

423 421 A
,(____9__.——-—-—-—5inH/10 += 1)19~£+§—— o~ m47

¢ A64
(2&0)% Jsin® 2 4 24 (AOD

Using the expressions of /| and /, that are given by egs.
(A.17) and (A.64), the angular dlstrlbutnon can be put into its
final form of eq. (24).



