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\bstracl In this study, the diffraction model is employed to study the cliisler stripping nuclear reaction on the basis of the Regge-pole method 
\ tnrmiila foi the angular distribution is derived The angular distribution spectrâ  for the clusiei slopping nuclear reactions ‘̂̂ ('a(’Hc.p)*‘Sc, *'\'a (l,ppH‘a 
jiui n ua,p)̂ '’l c at various energies have been well repioduced with projeeiile enrrgies varying between 10 MeV and 15 MeV The predicted theoretical 
-c.ulis toi the duster stripping reactions °̂Ca (’He,p)‘'-Sc with 10 MeV, 12 MeV ftnd 15 MeV incident ’He, (t,p)‘'(^a with U) 1 MeV incident inion. 
im! 're(i,p)’'tV with 12 MeV incident Uiion were compared with the expcnmental data and good ugicement was observed Also a eompanson Ix-lwccn 
th, vlitlraLiion model prediction of the angular distribution values for the clustet stripping reaction “̂('a(T4e,p)'*^Sc at energy 12 MeV of ’He and that 

ihc liistoiicd-wavc Born approximation (DWBA) is iinplcmcnled and a satisfactoiy agreement between the two methods has been attained
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introduction

NiiJcai fcaciions model have played a vital role in revealing the 
ifLiciLiic of niicltdes and have contributed to a deeper 
mdcr.standmg of nuclear forces (1-14]. Detailed theories of 
luJcar icactions are patterned after the two principal models oi 
nuclear structure, namely: the liquid-drop model for the 
lunpoLind nucleus reaction and the shell-model for the direct 
caaion [13]. I'heoretical considerations of nuclear reactions 
H'lc aimed mostly on explaining the cross scctions-dependencc 

'̂nergies and angles in terms of certain nuclear parameters 
as nuclear radius and diffuseness.

optical model was developed to cope with the 
^ îplcxiiics of nuclear reaction processes and to give a broad 

^̂ d̂erstanding of nuclear reactions encountered at bombarding 
above 10 MeV, including compound elastic scattering 

The complex term of the optical potential is introduced to 
ihto account all possible reactions that fall in the absorption 

categories and cause the removal of particles from the 
‘̂ •̂iibardnient beam. This model has been particularly successful 
 ̂ ’̂̂ plaintng the total and the elastic cross sections of high

’̂ '̂rrc.sponding Author

ake

energy nuclear reactions (3j. Besides, it predicts the broad 
rc.sonances in cross sections as a function of energy.

The so-callcd plane-wave Born approximation (BWBA) was 
introduced to interpret the angular distribution of the cross 
section on a scrni-quantitativc basts. In the usual formulatum of 
the PWB A calculations, the waves in the initial and final channels 
are generally generated by means of nuclear potential (optical 
potential) parameterization for elastic scattering. The deuteron 
stripping reactions, where the nucleon is supposed to he .stripped 
off the incident deuteron by the nucleus at the nuclear radius, 
have been successfully studied m terms of this model (15,16]. 
However, the PWBA model calculation is usually sufficiently 
accurate to give the location of the iirst and perhaps the second 
maxima, it did not give a very accurate fit to the angular 
distribution and it was failed completely in predicting absolute 
cross-sections ( 17|. This is because the PWBA model ignores 
the effects of Coulomb potentials which, when a particle 
approaches close enough to have a reaction, leads to scattering 
and perhaps absorption of the particle (3). This complication is 
taken into account in the distorted-wave Born approximation 
(DWBA), by treating the incident and emitted particles as 
particles moving under the influence of the nuclear potentials 
117-19).
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The first phenom enological model suggested for the 
interpretation of the experimental results concerning the angular 
distribution of the direct nuclear reactions was the diffraction 
model 115]. According to this model, the nucleus is viewed as a 
’black sphere' that absorbs certain incident partial waves. The 
calculation of the reflection coefficient requires parametrization 
of specific functions (in the form of Regge-type descriptions) 
for the continuation in the complex -plane [ 15,16 1. A convenient 
parameterization is the Woods-Saxon type where the nuclear 
absorption can be expressed in terms of the reflection coefficient 
T} ,̂ whose parameterization is based on some nuclear parameters, 
namely: the nuclear radius and the diffiiseness. In this case, the 
Regge-pole method can be employed to evaluate the partial- 
wave summation in the transition amplitude assuming a finite 
range for the reaction interaction response [ 16|.

In this study, we advocate the diffraction model for describing 
the most common observed features of the angular distributions 
of the cluster stripping nuclear reactions. The choice of this 
model is motivated by several considerations. Firstly, the range 
of the diffraction phenomenon is wider than the nuclear radius. 
Thus, m easurem ent o f d iffraction pattern as scattering 
distributions is of great importance in obtaining information 
about nuclear sizes and shapes. Secondly, the diffraction model 
takes care of essentially 'model-independent' aspects of nuclear 
scattering and reaction process [151. Thirdly, theoretical 
considerations of nuclear reactions can be achieved using fewer 
nuclear parameters such as nuclear radius and diffuseness. 
Fourthly, calculation of the scattering matrix elements is based 
on the phase shift parameterization of the reflection coefficient 
rj^, [20-22]. This model will be employed for studying the 
T(aJ))R  cluster stripping nuclear reactions. The cornerstone 
based on obtaining a general formula for determining angular 
distributions starting from the transition matrix. The angular 
distributions o f ’*®Ca (Tie, p) **̂ Sc, ^®Ca (t, p) ^^Ca and '̂ '̂ Fe (t, p) 
‘̂ ^Fe cluster stripping nuclear reactions at various energies of 
incident particles (helium-3 and triton) will be examined. A 
com parison between the predicted values of the angular 
distribution obtained on the basis of the DWB A model and the 
present results of the angular distribution for the cluster stripping 
nuclear reaction ’‘̂ Ca (^He, p) "*̂ Sc at 12 MeV energy of 'He is 
included.

This paper is organized as follows: in Section 2, we derive 
the angular distribution formula. In Section 3, we present and 
discuss the results together with a com parison with the 
experimental data for the reaction ^ a  (^He, p) ’'^Sc with projectile 
energies 10 MeV, 12 MeV and 15 MeV for incident ̂ He; ̂ a ( t ,  p) 

at 10.1 MeV of incident triton; and '̂‘Fe (t,p) ‘'T e  at 12 MeV 
of incident triton. In section 4, we present our conclusion. Finally 
in the appendix, we give a derivation of the angular distribution 
as calculated with the diffraction model with the stress on some 
mathematical details. Extension of this work to include other 
types of nuclear reactions is possible.

2. Theoretical considerations

There are several types of stripping nuclear reactions that ĥ v 
been introduced for studying the structure of single nude( 
and m ulti-nucleon states. Among one-nucleon stnppj.
reactions are (d, p), (d, n), (t, d), (^He, d), (a , ^He), ( a , tj,
etc. Many studies have been performed with iwo^nuck,, 
stripping reactions like (t, p), (t, n), (^He, p), (̂ »Li, a ), (''(), 4̂  
etc,, three-nucleon stripping reaction like (oc,p), roui-nud '̂ „ 
stripping reactions like (‘’Li, d) and Ĉ Li, t), five-nucicon strippm, 
like (’Li, d), etc [9-14]. A different type of reaction, whiUi ha 
been explained through the direct nuclear reaction proccsy'^, 
the deutcron cluster stripping nuclear reaction. Jn this tvpc 
reactions, an incident deuteron (’H) is stripped oft one n|  ̂
component nucleons, which remain in the target nucleus .n. 
the remaining nucleon escapes [12].

One common feature of all direct reactions is the relatKir̂ ku 
between (he angular momentum transferred in the rcacnon af.. 
the angular distribution of the emitted particles. Smec i}u 
angular distributions are resulted from the superpositior, , 
waves emanating from the nucleus, interference effects Icadin 
to a diffraction-like pattern are expected [ 14]. Measiircmcm 
the d ifferential cross section provide us with vatuah!. 
information on the angular distribution of the reaction pruluL!̂  
Frequently, a beam of incident particles may produce 
types of reaction processes with a given target nucleus 
measuring the rate of each process separately, we can dd!'.t 
the partial cross section for each reaction process and the sun 

of all partial cross sections is equal to the total cions nccIi u 
In princip le , the angular d istribu tion  can be put on 
scmi-quantitative basis by making use of the diffraction niodu 
115].

We begin the diffraction model development of the cliNo 
stripping nuclear reaction angular distributions by considermi 
the general case problem. Let us consider the problenul 
deriving a formula for the differential cross section (or the anuiilaf 
distribution) as a function of incident particle's energy 
bombarding a target nucleus 7’ by an incident particle a in a 
nuclear reaction symbolized by the following reaction equation

a  + + 6 or T {a,b)R .

In the above equation, we denote the lighter projectiles anil 
fragments with a  and 6, and the target and final nucleus wiili I 
and /?, respectively. The incident nucleus a  will be assumed n) 
form a bound state of b and c clusters, while R is assumed k 
form a bound state of the two clusters T and c. Symbolical!} 
this relation can be described as:

where a cluster c is transferred to T and the parentbese.s denoio 
a bound state. The initial and final states of such reaction 
schematically shown in Figure I (a).

j
As the incident nucleus approaches the target nucicu!' ' 

the target nucleus as seen by the incoming nucleus
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« iih a certain nuclear potential. The interaction of a beam
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with the quantum potential well can be handled 

ly by m e a n s  of the scattering theory [22]. The entrance and

(a)

' 4 ‘-\
\ r,

(b)

where T̂ . is the matrix element between initial and final states, 
¥ t denotes a true stationary state of the complete Hamiltonian 
/y describing an incident wave on the target nucleus T plus an 
outgoing scattered wave. 0   ̂ is the eigenstate of the Hamiltonian 
of the non-interacting states in the final channel /.c. The 
interaction potential m the exit channel V can be written as:

'"hi ■ (8)

Thus, the iime-independcnt SchrOdinger wave equation can 
be written as

= £ , 0 , , i : ,0 , (9)

If the relative kinetic energy in the final channel is supposed 
to be much greater than the in teraction  potential /.c

- r— V “(/* ^ )»  which is the condition for the Born

approximation, the wave function of the final channel 0  / can 
be written as :

( 10)

! ligiirt 1. (a) Illustration ot the duster snipping nudeai reaction T { a J ) ) R  
t)i iliagram lor the transfei process (c) A schematic diagram of a 

’ i .poihoii' al niideus with radius R  and surface thickness A R  ~  d \ A f is a 
' iiiuiMia >1 the number of pailial waves over which the transition from 
/an (II ( irnplcte absoiption occurs and it can be related to the nuclear 
suri.kT d ffuseness (d)

Suppose that the cluster c position is closer to particle b 
than to the core of the cluster /?, then the cluster will be 
considered within the external region of the core of T. By 
considering only the asymptotic behaviour of the outgoing 
spherical wave, which is given by a spherical Hankel function 
of the first kind fij^\kr) (23 ,24|, the wave function i//̂  ̂ can be 
introduced as:

[ !hc exit channels can be described well in terms of potentials 
and , respectively. The total Hamiltonians in the 

iniiial and final channels are given by :

/ / , - - / / ; + v„ + v,,.. 0)

ll, = H) + V,,. + V„r . (4)

i here

(5)

[and

f// -  fkyj/, -f K f  p -f V'̂ 7’. (6)

Here, (V ) is the relative kinetic energy (interaction 
jP̂ Hemial) between the panicles i and /

Toi the cluster stripping nuclear reaction T (a, b)R in which 
Cluster c is transferred from a  to T, the exact transition 
'̂̂ iplitude of the system when going from an initial state ( a +7) 

 ̂ energy ^ to a final state {b + R) is governed by the 
quantum mechanical matrix element (221

’}' = )  = j y / ^ V f ^ f d v , (7)

cp;(^)cp,A^)

XY:?JUx ( 11)

where (p, is the internal wave function of the particle i ;

m i.
P - and \ p - r  are the

///, +A;/y’
relative position vectors in the initial and final channels. The 
vectors p  and r  are displayed in Figure 1(b). m and arc 
the masses of the transferred cluster, the outgoing particle and 
the target nucleus, respectively. ^ represents the internal 
coordinates that are independent of r, and p  and </>) are
the spherical harmonic functions, and are the relative wave 
vectors in the initial and final channels, respectively. The 
reflection coefficients parameters r]^ , are expressed in terms of 
the convenient Wood-Saxon form as:

^  1 + exp ( 12)
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where is the cut-off angular momentum and A is the where 
diffuseness parameter. The form of reflection parameter as 
introduced in eq. (12) implies that the transition of 7]̂  from zero 
to unity is expected to take place gradually and is extended over 
a wide range of i  values of the transition width A . This is 
illustrated in Figure 1(c) in the vicinity of in order to lake into
account the nuclear surface thickness.

Let us now expand the wave functions of the nuclei a  and 
R in terms of the different states of h and T, respectively, times 
the wave function of the cluster r. The results are

^  [5, fi. LM] r, -
^  ka,c,A .} [{S. H, , LMIJ, M ,)

X ( y ,A / , , ) ]  (p, (4 ) 03)

J

X Sr^iT\i!K^^H)] <P, ( | )  /?/■«,(P) • (14)

Here, S and H are the spin and its projection, respectively; 
while LM and /m arc the relative angular momentum and its 
projection in the incident and final channels. Both J M̂  andy m 
represent the total angular momentum of the cluster c in the 
projectile and the residual nuclides. The symbol R is used to 
represent the relative wave function and the bracket denotes 
the relevant Clebsch-Gordan coefficients. Now, using eqs. (8),
(10), (11), (13), and (14), the transition amplitude in eq. (7) 
becomes

fm, LM]
7’/ ;=  S i ,  / 4.[y, m, , y, M, I

fm\j, m,.) {j, m,., SrH «) (5, / i , , LM\J, M ,) 

.S/,Pb|5„Pa)(<P, (^) <Pr(0

Vrl<Pb(̂ )<P,

(15)

^  fs, / if ,  LM, (nt
C - Z i ,  „  , „  fS * l* .7 -.c |S |o ,.c i,|A/,., j,.

x{S,n,,(.m j ,m ,){ j,m ,,S rP T  Sr P r){S,h , ,LM 

x(y ,,A ff.5 ,,/i*5„/i„).

( p ) /> " 'V y /? ^ ( r ) e * '- ^ '

and

(K

L  = 27Tc'*' /?,„,(p) Vj  R ^ { r )  C ,

(V ,)- o

^ .........
(a)

Figure 2. (a) Schematic represenlation of the quanlizalmn axis 
The contour integration in the v-complex plane together with the Kttp 

poles positions of 7]y as given by equation (A 49)

Since corresponds to a bound state in the cniranc 
channel, one may expect that the contribution of to be mû l 
greater than that of , and hence the latter term in eq. (H) can b 
neglected with respect to the former [25]. Using eq (17), fh 
angular distribution can be introduced as:

d a oc 7}? OC/, + /2  ,

The vector diagrams of k^, and k'f-Me displayed in Figure 2 
(a); while the complex plane for calculating the residues is shown 
in Figure 2(b) (see Appendix). By making useof the normalization for derivation):
condition

d a  '7'

where /, and are given by the following expressions (^'

(«P, (^)«Pr (5)<P6 (.^<Pb (^)<Pr (^)) = 1 • (16)

Therefore, the transition amplitude can be rewritten as : 

T y j - C p i + Z j .  (17)

{Q^+ y )fm

and

l 2 ^ l6 n ^ A ^ i - i r N o V o N ,
im

r c e + 2 ) . \
c,i~f7T 
P Y
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(2A„)^>/sin^
■Sin 2j  4

StiA
2A 0  .

->uie
• (23)

The required angular distribution is generally proportional 
10 differential cross section of cluster stripping reactions. Thus

angular distribution ^  (24)

The above equation is the one to be used in the present
study.

3. Results and discussion

Theoretically, the contribution of the stripping cluster nuclear 
reactions to the various cross sections spectra (or angular 
distributions) is presented by the functional form of eq. (24). In 
(he calculations, only the case when the transferred cluster is in 
a (dative v-stale is considered. A careful choice of integration 
\anables and nuclear reaction param eters facilitates the 
ihi'orelical calculations Two open parameters are involved in 
the calculations, namely, the nuclear radius R and surface 
JiHuscncss param eter A - The correspond ing  angular 
distribution results for the cluster stripping reactions 
' lie, p) '*”Ca(t, p) and '̂*Fc(t, p) at different 
energies of incident particles and for different nuclear radii and 
diltuseness parameters arc included. Accordingly, for each 
cluster stripping nuclear reaction, families of curves can be 
obtained by varying either the nuclear radius parameter or the 
diflusencss parameter. The obtained results arc displayed as a 
function of the center-of-masSs scattering angle ranges between 

<160^^ P lots o f this type are useful for the 
comparison purposes of the experimental values with the 
calculated theoretical values, in order to test the success of the 
rnixlel.

The predicted theoretical results of angular distribution 
functions according to eq. (24) of the ground-state protons for 
ĥc cluster stripping nuclear reaction ^^Ca(^He,p) with 

projectile energies 10 MeV, 12 MeV and 15 MeV of incident 'He;
p) at 10.1 MeV of incident t; and ^''Fe(t, p) 'T e  at 12 

MeV of incident t for certain selective best-fit parameters 
together with the experimental data are displayed in Figures 3-6. 
The calculated values of the angular distributions of the ground- 

proton for the c lu ste r stripp ing  nuclear reaction 
u( ̂ He,p)^^Sc are exhibited in Figures, 3-5. In Figure 3(a), 

the predicted diffraction model results of the angular 
^• t̂nbution for this reaction at energy of 10 MeV for incident 
He and diffuseness parameter of 0.40 but using different radius 
PJirameters of 6.28,7.18 and 8.08 fm together with experimental

data taken from Ref. |26). Shown in Figure 3(b) the predicted 
results for the retiction with the same energy for incident 
but using different radius parameter of 6.28 fm and different 
diffuseness parameters of 0.30,0.40 and 0.50 together with the 
experimental data taken from Ref. [26]. Figure 3(c) displays the 
predicted results obtained by using the best-fit parameters R = 
6.28 fm and = 0.4 together with the experimental data taken 
from Ret. 126) for the same reaction.

10-=’

* ’ A = 0 5  
Fxpenm

30 60 90 120 150 180

(C)

10-2
r  -  R = 6 2 8 ]

30 60 90 120
 ̂ (degrees)

X

150 180

Figure 3. ITic results of angular distributions using the diffraction model 
together with the experimental data taken from Ret (26| as a function of 
the .scattering angle 0,,„  of the giound-statc proton.s for various cluster 
stripping processes in the reaction ('Hc.p)^^Sc at “ 10 and (a) R 
= 6  28. 7 18 and 8  08 fm and = 0 40 (b) = 0 30, 0 40 and 0 50 and
R = 6  28 fm (c) best-fit parameters are R = 6  28 fm and A  = 0.40

Shown in Figure 4 the angular distribution of the ground- 
state protons for the same reaction ^Ca (’He,p)'*^Sc, with 12 
MeV incident ^He for different radius parameters and different 
diffuseness parameter together with the experimental data taken 
from Ref. [26] and the best-fit parameters (R = 6.80 fm and 
A =0.4) curves. In Figure 4(a), values of the angular distribution 
are obtained by making use of the radius parameter values of 
6.80, 6.56, 5.20, and 4.91 fm together with the diffusencss 
parameter value of 0.40. In obtaining the results of the 
distribution function exhibited in Figure 4(b), we have taken the



612

angular distribution. Furtherm ore, the calculated angul 
distribution values using the besFfit parameters are similar
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radius parameter value to be 6.80 fm and the diffuseness 
parameter values are taken to be 0.35, 0.40, 0.45 and 0.50. In 
Figure 4(c) the results for best-fit parameters are plotted together 
with the expeimental data. Similarly, in Figure 5 we have displayed 
the results of this reaction with 15 MeV incident ^He but with 
different parameters together with the experimental data taken 
from Ref. [26]. In Figure 5(a), we have plotted the angular 
distributions obtained using a diffuseness parameter of 0.40 
and radius parameters of 4.41 and 5.15 fm together with the 
experimental data. Figure 5(b) displays the angular distributions 
for radius parameter of 4.41 fm and diffuseness parameters of
0.30, 0.40 and 0.50 together with the experimental data. Last, 
shown in Figure 5(c) are the angular distribution results attained 
by using the best-fit parameters R = 4.41 fm and A = 0.3 together 
with the experimental data.

180

0^^ (degrees)

Figure 4. The results of angular distribution.^ u.sing the diffraction model 
together with the experimental data taken from Ref. [26] as a function of 
the scattering angle 0, „, of the ground-state protons for various cluster 
stripping processes in the reaction (^Hc. p)^^Sc at = 12 and 
(a) R 5= 6.80, 6.56, 5.20 and 4.91 fm and A  = 0.40 (b) A  = 0.35, 0 40, 
0.45 and 0.50 and R = 6.80 fm. (c) best-fit parameters are R = 6.80 fm 
and A  = 0.40.

It can be seen from the Figures 3 ,4  and 5 that the diffraction 
model approach can predict well the general behaviour of the

that of the experimental data. In particular, at small angles 
reveals that both experimental and thet)retical values of anuuij,

E ( " H e ) *  lO M e V
10-'

a~v --- A ̂ 0.35
1 CH Ai.040 

A=-.0 45
' Experim

1 0 ^ 30 60 90 120 150

10-’

tr 10-2

R=:441, A = 03 
E P H e)  = 1 5 M e V  
Q = 4 905 MeV

2s
E

10-"

10-̂
L

30 60 90 120
0,^ (degrees)

150

Figure 5. The results of angular dislnbulions using the difliiu tion nu u. 
together with the experimental data taken from Ref. f261 as a Imunnn i 
the scattering angle 0 , of the ground-slate protons for various cliMi 
stripping processes in the reaction (^He,p)^^Sc at si

(a) R = 441 and 5 15 fm and A  = 0.30 (b) A  ^ 0  30, 0 40 and 0 .u:
R = 4 41 fm. (c) best-fit parameters are R = 4 41 fm and ^ = 0

distributions are too large. After that the angular dismhutu> 
values continue to decrease in the center-of mass angle rang

0° <160‘̂  An oscillation of maximum and mlnl̂ mnû
a persistence of the prominent feature of these curves has hec 
observed. The diffraction-like behaviour starts to show up: 
large angles beyond 30°. The observed diffraction patiem i 
the differential cross section plots may be attributed to di 
interference from opposite sides of the nucleus [41 
diffraction model interpretation of the observed general ticn* 
of the angular distribution is as follows: Interference bctweei 
the diffracted waves resulted in the appearance of the maxunun 
and minimum of the distribution functions. The correspondini
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-sonaiing partial wave is large in the surrounding of potential 
j,p region, consequently the overlapping probability of nuclides 
nd their surface regions also increased. Therefore, an increased 

j[^si)rntion at resonance energy, leads to the dip-peak structure 
I j leflection coefficient [26 -28 ] indicating the presence of

the Kcgge-pole in |?7;̂ | [29]. Thus, a decrease in the distribution 
li,notions will be produced [14]. This approach might be 
inapplicable at high energies (> 100 MeV) where larger angular 
momenta arc involved and the dips in the effective potential 
\anish 130). One may notice in Figures, 3 ,4 and 5 that the general 
drop off trend of the angular distribution functions is dependent 
on the radius parameter. With a larger radius parameter, the 
anmilar distribution of diffraction patterns, the maximum as well 
dsihc minimum peaks, are shifted toward the small angles, while 
iheii shapes remain similar. These observed regular features are 
similai for all predicted angular distribution values using the 
diffraction model.

Similar angular distribution results were obtained for both 
‘̂('an,p)‘‘“Ca and ’"*Fe(t,p)^*Fe nuclear stripping reactions with 
lU 1 MeV and 12 MeV incident triton, respectively. The angular

6 . The angular distribution for the ground-state reactions for 
j‘*n{)us cluster .stripping processes in the reaction, (a) (t , pl'̂ Ĉ’a. at 
/ “ 10 I MeV, using the best-fit parameters of /? = 7.14 fm and A  ^  0 4  

^^penmcntal points are taken from Ref. [3lj. (b) (t, p)^^Fe at
; - 12 MeV, using the best-fit parameters of R = 7.26 fm and A  = 0.4. 

^^pcrimental points are taken from Ref. [27].

distribution predicted results using the selected best-fit 
parameters for both reactions together with the experimental 
data taken from Ref. 126,30] were exhibited in Figure 6. The general 
remarks made for reaction ‘*̂‘Ca(4de,p)'‘‘Sc still remain valid for 
the other reaclums, that is, the angular distribution results follow 
the general trend of the experimental data.

After testing the validity of the diffraction model against the 
experimental data for the cluster stripping reactions 
(Tle,p)^^Sc, (t, p)*̂ ‘Ca and ‘̂*Fe(t,p)'^‘’Fe, a comparison 
between the present results of the angular distributions to tho.se 
obtained in the DWBA calculations for the cluster stripping 
reaction ( 'lie, p) ‘‘̂ Sc has been made. Ft)r this purpose, the 
ingular distributions for the reaction ‘‘'Ca ('Hc,p)^‘Sc, with 12 
MeV incident ^He and of bcst-fit parameters R = 4.91 fm and 
i  = 0.40, as predicted by the diffraction model approach and 
ttiat calculated by the DWBA approach taken from Ref. |25) are 
plotted in Figure 7. The dashed curve in Figure 7 corresponds 
p  the predicted diffraction model results using the best-fit 
parameters R =7 26 fm and A = 0.4 and the solid curve represents 
the DWBA predicted results. It is clear from the figure that a 
satisfactory agreement between the predicted results of the two 
approaches has been attained.

(degrees)

Figure 7. C ompanson between the angular distributions of the reaction 
(3He,p)'*^Se, at --I2 MeV, as predicted in the present work 

(dashed line) with DWBA calculations |20] (solid line)

4. Conclusion

The diffraction model has been employed succe.ssfully to obtain 
an expres.sion of the angular distributions of the cluster stripping 
nuclear reaction T(a, b )R-The experimental data of the angular 
distributions spectra for the reactions ‘̂ CaCHe,p/-'Sc, ®̂Ca 
(t,p)'*^Ca and ' ‘'Fe(t,p)'*Fe at various energies have been well 
reproduced at an incident particle's energies varying between 
lOMeV and 15 MeV. The predicted theoretical re.su)ts were found 
to be in agreement with the experimental data. A comparison 
between the diffraction model predicted values of the angular
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distribution for the reac tion^a  (^He,p)^^Sc with 12 McV incident 
^He and the calculated  values using DW BA reveals a 
satisfactory agreement between the two methods.

In conclusion, the low energy (0.1-50 MeV) cluster stripping 
nuclear reactions can be adequately explained in terms of the 
diffraction model. Besides, the diffraction model approach is 
capable of reproducing the main features of nuclear reactions 
difl'erential cross sections properly. Extension of this work to 
include contributions other than s-slate is recommended to test 
the validity of the diffraction model for attaining the general 
features of high energy (>100 MeV) nuclear reactions.
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Appendix: Derivation of the angular distribution for cluster 
stripping nuclear reactioas

In tills appendix, wc sliall give a complete derivation of t)ie 
angular distribution by evaluating botli /, and terms. Let us 
first consider the first term in t)ie transition amplitude expressed 
in eq. (19), i.e., /,. Substituting the given values of r^and , wc 
obtain

-<* f  —  
x e  3"*

/ k,
m,, + ni ' I

^R iM (r)d rd p .

By introducing the following coordinates :

Q = k,

q =k f -

m̂ i'
nif. +nif

nih

* / ’

■

(.M

(A.2

(A 3) I
wife +m,

eq. (A. 1) can be rewritten as;

/, = \u ,{ p ) e ‘̂ PY;„{p)dp\e^'V,,0)UL{r)YLM {r¥^-
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In eq. (A-4). we have expressed Rf„ (p ) and / ? ^  (r) in terms 
spherical harmonics using

The integral in eq. (A. 12) have been evaluated using the 
following standard integral (32,331:

(A.5)

(A.6) p '’d p ^ -
( 2 0 ‘' r ( v  + -;;

Since the nuclear s ta tes are e igensta tes o f angular 
nomentum, it is useful to expand the plane wave in spherical 
liirmonics using the following expansions (22J:

(A 13)

e*  ̂ = 47T '^ i ''jy {k r )  (^) ( f ) ,
vm ^^

Yy„,ir) = ( - r v 'Y : , . ^ ^ i ? ) .

q ( a.4) can be rewritten as:

- m - Y y  S ( / ) ‘' C „ ( G ) n V . ( ^ / )

 ̂J >;™„ {p )Y L {p )dQ p \K; (r)K^(r) dO,

« *ip)jv(Q,>) P^dpj jy-(qr)V^, (r)M^(r)r^c/r.

In evaluating the second integral of eq. (A.9), we have 
assumed that the projectile is in a relative S-state, where L = M 
-  0 and the nuclear potential of Hulthen type. A pure central 
potential ol Hulthen form yields an analytic solution of the S- 
statte of Schrodingcr wave equation 134). If the HUlthen forms 

(A.7) wwe chosen [35] for both the wave function «,j(r) and the 
potential , one may write

Uo(r)-^N^
- nr -Pr ^' - e  '

e ~ '" -e  ^  I’

(A. 14)

(A. 15)

-(4 ;r)“5 ] 2 ^ ( / ) '( / ) ' ( - ) '" C ( e ) r t* j ^ ( r / ) x T , .  (a .8) normalization constant
I kj P (Xfm LM

here o f the wave function , p  = la \25 \, g  -  ,
'  h~

P.b = K, = -: :~ { P '  - a “),and e,,, binding energy
nii^+m, 2p,i,

Id /,,(V) IS the spherical Bessel function which is related with (/, + r ) r= a , then the second integral of eq. (A .9 )

j » '{p)jr iQp) P^dp J  jtlejr) Vi„ (r) UiM)r~dr (A.9)

/,)«) IS the spherical Bessel function which i 
f ordinary Bessel function by the relation |23J:

{(X). 
\ l x  n+- (A.IO)

is given by

00
I h M r )  V,„ (r) Ui (r) r~dr =

Taking u^(p) tv̂  be the M onnigo wave functions whose 
ncral form can be written as 131]:

• (A. 16)

here A),

« f(p )= A ',e '> 'V " ‘.

I
’( 2 y r - '  
r ( 2 f - i )

m,.mj-

(A.11)

is the normalization constant of the

where eqs. (A. 10) and (A. 12) have been used. Using eqs. (A.8), 
(A. 12) and (A. 16) we get:

/, -  (4 ^ )^  A /„K ,i;(,y  « , K ; . ( e ) - 1 > — .
( G * + r )  { r + P ')

ave function,

~ I^PrT^rT
~2— • Mct = ------------’ ^rT is the binding energy
h m,. + mj-

•he system. (c + T’) ^ / ? ,  and p  is the gamma function, 
'̂ relore, for the first integral o f eq. (A.9), we may obtain an 
Pfession of the form:

J “‘ (/> )/r(ep)P ^ ‘̂ P = A'r(2G)
r r ( f + l )

^fl * (A. 12)

/m

(A.J7)

The second part of the transition amplitude, Le. 1̂  can be 
evaluated as follows:

We shall first expand the spherical harmonics and the 
spherical Hankel function appearing in to obtain r and p  in 
separate function as [36] :

— — At A-y 1 -(A+A, -A,)



we deduce that = 0 ; further.

I ./A, ( -̂A>)^A,«.„ (p ) ^A,m„ (^) (A.18)
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X/l
m, +WJ,.

where [xj = 2a + 1. Next, eqs. (A.5) and (A.6) together can be 
used with eq. (A. 18) to put I, in the following form

implies that = 0 . Therefore, becomes

iA2j

A A, A.
= 2 n ^ ^ \  ■ - ) ( - )

^ 1 " ' a " ' a , » 'a J

/ ,  -
{2A+A.-A,)

(**i )

A A, Aj g

"'A ' "»A, " 'A ,

x C . ( ^ ' , ) ( [ A , ] [ A 3 ] [ A ] [ g ] [ g ' ] ) I ( A ,0 .  AOjA.O) 

x (a , wia_ , A /«^|A ,m ^_) J C , ( p ) ( p )d 

\Y ;.^{r)Ya,{r)Y , i r ) d Q ,T . .

X ([A] [a 1 ] [At] )2 (A, 0, A0|A2O) (a I | A tW'a .)

X '■«,(/,) f„ ,,(p) [V,, I U i  (/■)

7a_, (P) ('•) • (A.19)

where t j  r)Vh, ir)ut(r) /t̂ '

(A.20)

lA.

X h (I) m ^

m, + mh y

k ' ^ - A  -_k

Using the following relations

e'^rP .  4;r (r^p ) (a- ;p ) K,„,̂  .

( j . { k ' , p ) i t , { p ) J ^ X k , p ) ) .

Now, we shall use the following relations foi (he spho"., 
haiTnonics[36]:

1

x ( ^ | W ) | ,  f  2 n i ^ \  I I I I ) ,

? m , .

we may s e t ;

12 = 2 « -(4 A r)^ ^
A A, At g g ' j^^_^i(2A+A,-A,*?-?')

"'A  ” »A, » 'a , " V  " V '

X Ha >aL , (k; ) ) ( W [ ^ . ] [ ^ 2 ] ) 2 ( A ,0 ,  AOIAt O)

X (A ,/« ;i  ̂ , A/n;l|A2W;^^) { j ^ ( k ' , p ) u , { p )  (A ,p ))

X C ( p )

X (p) i2 ,1 y ,,„ , . (r) ( r ) ./ ^2, .(A.22)

By taking as an axis of quantization as shown in Figure 
2(a), and knowing that [36)

m, + nu = «t, |f | -  f I < 2̂ -  l̂ ’i ~ ^i\ ’

/  W  K. (p) < -)"  K - .  <p)

= ( - r ( ^ ^ J ^ ) ’ ( f0 .A ,0 |s O )( f -m .A im |f0 )  !■'?

and

jy^'oCr)yu,Cr)Y,^^^Cr)dQ,

= i-r^ 'jyiM C r)y ,^ .-n ,,C r)y;rr)d£2 ,

(A.23) = ( - )
M

4;r[g ']

^2
(LO. A ,0|g'0)(LA/, A, -Af| c'O) (Aa:"i



,„cq.(A.25)toget:

- 2;rV4^X

Now by making use of the relations 136]
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A A i A 2 ?  ?   ̂  ̂ S ^ tom'(Q^2 /̂ 2 7 3 ) An'm"(<^l ^1 / l ) '  fii ^ . l) '

cos/3, -  cos/3| cos02 -! iin 0 | sin02 c'os^j •

^ 0 ,  _ s in 0 , 
sin 5, sin 5^

5, = « ,  - « . i  + 7T,5 ,  ==y, “ 7 , - ; r  0 ,  = a ,  +72 • (A.35) 

(A.30) eq. (A.34) can be rewritten as:

m M

(j,lA ar[A ,f[A ][Z ,][f])5 (A ,0 .A 0 |A ,0 )

h n M im )  [LO , A ,0 |$ '0 ) (L A / ,  A , -  % ' 0 )

x(fO.A20l$0)(f -m . A2/n|gO)xT2.

The summation over g' may be evaluated by making use of 
he asymptotic form of the Clebsch-Gordan coefficients [36] 
4iih two large values o f the angular momentum and one small 
alue, one may write

,, f, -Z;wi2 -Wl,|f2"«2) = C0S"‘ J ,

(A.31)

ĥerc Z is very small value of angular momentum and D is the 
}tation matrix. Then one may write for the sum over q' in (A.30) 
1C following expression:

'(A ■')
Ti )- ' '  (L 0 ,A ,0 |5 '0 )(L M ,A ,

-  X < -) g ' -  Z;0 |g '0) [LM, g' -  Z -M \g'0)

(A.32)

sing the relation [36]

D U (cc,p,Y) = e-^^‘̂ D {,^(P )e-‘̂  ̂

e get for eq. (A.32)

I 37T Z ✓  V ^  V

= (A.34)

l4n

i W

f ^ 1
1

M;r

1 2
,0 2

V* (' K ^ 1
“ .1

where the following relation have been used 

A*o(a. P -y )^  Km(P^oc).

2 ' 2 '  2

(A.36)

(A.37)

In doing the summation, we have assumed q " - ^ i  = 2  and 

~ [Aj] for small Z  Now, consider the summation over g :

Assume that g - A j  = Z and [g] = [A2] for small Z; we then 
get:

 ̂ (  -A *  1
X ( - ) -  ■’V o .A 2 0 l? 0 )( f -m ,A 2 m lg O ) (a .38)

A )

= '  [ f 0 , g - z , 0 \ g 0 ) { ( - m , g - z - , m \ g 0 )

(A.33) By using eqs. (A.33), (A.35) and (A.37), we get

i j  J -  o U [ f  j  O i , [ f

= IA.40)

Substituting eqs. (A.37) and (A.40) into eq. (A.30>, we get;
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> - ^ 1 .  j j  ■ f  ' l  “ )
transformation [24], perm/ts us to transform f/>e summation f,
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(A|M, 2jh^\X 2m)xT2 (A.41)

A into a contour integration in the corresponding complex p| 
According to this approach, the sum over A in eq. (/\ 4̂ ) ' 
transformed into an integral form as [37]:

Adopting the same method for calculating the sum over A. p  -  1 f W '  . . .  . . .
and A2 , we get 2t sin (A n) ‘ 'W

^ ( A j  0, A 0 IA2O) (A, A/, Am^\X2tn) Here A represents a complex angular momentum Thepit
of integration Cl is shown in Figure 2 (b). In the Rcgg  ̂p,,| 
representation, eq. (A.48) reduces to a sum over Regge-pnjtv 
the following manner

A.

A, L"^lJ

=  X ( - r * " ' | y ( A 0 , A ,  -Z 0 lA ,0 ) (A / tu ,A ,  - Z ; -m |A ,  - M )
>1,

> ( - ) '“  I <  A - ”. 0 . 0) D ^ o p . f . 0 ] .  (A .« |

By using eq. (A.35), eq. (A.43) becomes

”  [ ^ 1]  v [ A ] ^ " " n 2’ ’ J ’ (A.44)

where

0 =*- cos M
(A.45)

M
4n

P, (cos i9) = 2  K,;(t9', <P') Y„„(l9^ tp").

cos J? = cos i9'cos j?" + sin 6 '  sin 6"cos(<p" - tp'). (A.47)

A practical method to carry out the summation over A  in eq. 
(A .46), based on the use o f the  W atson-Som m erfeld

A n ( ^ n ^ l

Here, Â , is the position of the nth pole and is the n suin
of the scattering coefficient ?7;i at the pole n. By introducing ih 
Wood-Saxon form for r]̂

l + c ^ ^

the nth pole position is determined using

A„ = A(, +//7 nA, (n = ± 1 ,± 3 ,± 5 ....... ). ( \S!

The residues of 77̂  arc all equal to A . In ordei to .simplih tj  I I V  I v r v i u u v A  V../1 • I ^  a i  V  a i  I v i . | u u i  i v i  i ». v jv - i  u  > ,-> in j

(A.49), the following approximation is being used (37|

Px(-[i) .. . V2____
------------------- “ “ /g -^ .rr;-r7̂
sin(A7T) JjiA sinO

(A V

By using eq. (A.44), one can write eq. (A.41) in the following 
form:

x lV -. I X ' ! -  (A.46)

where /< = cost? and 0  the angle between and the vector 
of polar angles in /2  -  6) and 0 .̂ In writing eq. (A.46), we have 
used addition theorem for spherical harmonics [23]:

where = ± 1.
M

Thus, eq. (A.49) becomes

X ( - ) ^ 2 A  + 1)-'p ^P^(M) = 7t a 5^(2A„ + I)’

Y nA„ sin 6
{~ig)e

-\nnd\l>
(A.v

If we consider only the poles corresponding to // -  - 
where n is the integer appearing in eq. (A.51), then the ngh' 
hand side of eq. (A.53) can be rewritten as:

nd ( 2 X ,+ l ) \ l  .\  «A , sm 1?



+(/)(2A.i • . f  [-' \ ; eA_, sini9

where /f  ̂ is the iriteraction parameter given by [38):

On the diffraction model approach to cluster stripping nuclear reactions 619

(A.54)
I " A '/u A r^ (A.60)

A() > 1, and Ao »  A . the following approximation can be ^

liscd In obtaining eq (A.59), we have considered the OvScillali)ry 
 ̂  ̂ ^  functions outside the integral at p 7 112). b'ollowing

n  J  := 2A| + I ^  2Aj ~ 2A ^ ^  • (A.55) same procedures, considering the Hulthen form tor as
 ̂ in eq. (A. 15) and taking the form of the wave function (r) to

Substituting eqs. (A.54) and (A.55) into eq. (A.46) we get;

û {̂r) = e ’' ' ^ ( l . in the interior region,
(A.61)

in the asymptotic region.-yr-  e ,

4A-; + 2rt*A“]"- .J_Cl

J i j a in d
sin

12a

Afl + - V - 7 -2 )  4

57iA
2A 0  .

the second integral of r , can be written as:

fi
I m, +m,,

(A.62)

(A..56)

If the projectile is in a relative 5-state, then L=M = 0\ which 
gives a value of n j l  for the angle ^  (the ,scatiering angle) 
helween it_ and and the radial integral T , , eq. (A.25), can be
c\.iluated at the points defined by

vvhere y is the radius of the projectile particle and a is the nuclear
? ^ Ai = ('() kR, and 5 -  A| -  f(> = • ■ potential range. Using eqs. (A.59) and (A.62), the second

v^here ( „  is the grazing angular momentum, and R is the integral of t , can be written as:

interaction radius.

This approximation is quite accurate for strongly absorbed

particles at medium and high energies if js “  ^2! 1̂  "  ^il
aK‘ not loo large. The main basis tor its validity is the tact that in 
'strong absorption situations, the DWBA radial integrals arc 
ĥarpl) localized in the angular-momentum space m the vicinity 

ol the cut-off angular momentum fo 138-40].

Now, the total bound state Morinigo wave functions are
detined by [32,35]

r  1 ^   ̂ r  7—- J(o T )jfo i^i r )
i r y

ftl
“ ^htm. +W/.

Substituting eq. (A.63) into (A.56), we obtain: 

/ ,  ~\bn~A  5 ^ (-l) '"  A o V o A f-4 -7 ^

(A.63)

Ini
(A.58)

Using the Morinigo form given in the above equation for 
the wave function Uf{p), then the first integral of can be
tvniien as:

\  k(^'jpyt^p'>hX^>p)p^^p

^Jn)

<A.64)

2)
T)j(0 (̂ 1 r )  3’7T2 ’ (A.59)

Using the expressions of /, and that are given by eqs. 
(A. 17) and (A.64), the angular distribution can be put into its

final form of eq. (24).


