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Abstract ; An effective pair potential for the semiclassical molecular fluid mixture is expressed in the effective Lennard-Jones (12-6) potential 
form, which includes the influence of the angle-dependent potential and quantum effects through the expressions of the effective diameter dab 
well depth . We employ the theory to estimate the thermodynamic properties of equimolar binary mixtures at zero pressures. Agreement with 
experiment for the excess properties such as excess Gibb's function, excess enthalpy and excess molar volume for Ar, O2 Ar, Ne, D2 + 
Ne and H2 + Da are found to be good.
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1. Introduction
Aim of the present paper is to estimate the thermodynamic 
properties of molecular fluid mixture in the semiclassical 
limit. One of the theoretical method for calculating the 
thermodynamic properties of classical molecular fluid is 
the ‘preaveraged’ potential method [1,2]. Using this 
method, Karki et al [3] have derived an effective Lennard- 
Jones (EU) ( 1 2- 6 ) potential for classical molecular fluid. 
This was extended to include the quantum effects [4,5]. 
This method can be extended to study the thermodynamic 
properties of molecular fluid mixtures in the semiclassical 
limit.

In the ptesent work, we obtain an effective pair 
potential to evaluate the equilibrium properties of molecular 
fluid mixtures in the semiclassical limit. We assume that 
the total interaction potential is pair-wise additive, Le,

ajb i< j
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( 1)

where UgbiX,, Xj) is the pair interaction potential between 
molecule t of species a and molecule j  of species b, and 
the vector X, s  {r„ os) represents both the position of the 
centre of mass and orientation of die molecule i of 
species a. The pair interaction potential is usually assumed 
to be expressed as

UatiX,, Xj) = U^^(r, rj) + «^(X , X;), (2)

where is the spherically symmetric potential and 
u ^ is  the angle-dependent part of pair potential.

In Section 2, we describe the basic dieory for a 
molecular fluid mixture in the semiclassical limit. Section 
3  is devoted to derive effective pair potential of the 
semiclassical fluid mixture, which is further expressed in 
a Lennard-Joncs (U ) (12-^) potential form. Section 4 is 
concerned with the effective pair potential for the 
semiclassical binary mixture. The diermodynamic prc^ieities 
of binary mixture is discussed in Section S. The results 
and discussion are given in Section 6 . The summary is 
given in Section 7.
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2. Theoretical basis

We consider a molecular fluid mixture of rigid linear 
nnolecules, which are permanently in their ground electronic 
and ground vibrational states. In quantum statistical 
mechanics, the canonical partition function for a fluid 
mixture containing s components is defined as [6 ]

l 2 / v = Z / . / n k ! A r * 9 / * ) -

where

,«/
(5)

where 

dKi =

and Wh is the Slater sum.

In the semiclassical limit, where the quantum effects 
are small, q„ for linear molecule is given by [7]

9 .  »  0 ? hVla) [1+ (1/6 ) (fi hV/.)], (6 )

where the first term is the classical value for the single- 
iiK ^u le  rotadcmal partition fimction. The Slater sum of 
the fluid mixtiire in die semiclassical limit can be expanded 
in poweis of as [8 ]

c ^ [ v 2 < p -( l /2 )^ (v 2 < p f]  +0(h*]
0 )

(3)

(4a)

Substituting eq. (7) in eq. (5) and integrating by pans, we 
get

Zf,  = J . . . J e x p [ - ^ ]  1-

1=/ (8)

Qa = +1)' c x p ( -^ J „ (^  +l)h^ /2 /„ ) , (4b)
Ja

(nta is mass and Ig is the moment of inertia of a molecule 
of species a and = (*T)"')- Here, A„ is the thermal 
wave length and qg is the single-molecule rotational 
partition function of species a. Ng is the number of 
molecules of species a such that the total number of 
molecules is N = 1jNa .

a
In eq. (3), 2s  is the configurational integral which is 

defined in this case as

Assuming the total interaction potential to be pair-wise 
additive and extending our method for one-component 
system [5], we can express the configurational integral in 
the form

ajb i<j (^1

where is the orientation-independent effective
‘preaverged’ pair potential of the semiclassical molecular 
fluid mixture (acting between molecule i of species « and 
molecules j  of species b). This is written as

n c r )  = ' i 'g b ( r ) K W r  ( r ) U  + 5 ;^ k r ( '- )L  • (10)

where l/^ r )  is the ‘preaveraged’ pair potential for classical 
molecular fluid, and ^Jlir)]gb and ^!oi^r)\ab are the 
first order quantum corrections arising from the 
translational and rotational contribution, respectively. They 
are expressed as

(0̂0)2

- f i<  «^(«u,a)2 )V?M^(ra»,<0 2 ) ^ 6>,0)2

(11)

X i , ..., X ^)= exp(-^< p) l - ^ ^ ^ ^ / 3 ^ / / 2 m , )  P^J«(r)]^ ={/9/48>r*){c^ «J*(rO),a»2 ):* 6) |0>2

In eq. (10). we use die followiag quantum parameters

(12)
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(13 )

Here, mab = 2mjnbKm„ + m*) and U  = llJtlila  + h)-

3. Effective pair potential for sem iclassical mote-cular 
fluid mixture

For a molecular fluid mixture of nearly s;|ierica] 
molecules, the pair potential is given by eq. (2 )i whereI

is the central potential and u“i, is the angle-dejfendent 
part of pair potential. For central potential, we spnsidcr 
the Lennard-Jones (U ) (12-6) potential f.

'li?(<T«t,/'-)"’ + A^(<T«/,/r) 

A % ,(a ^!r f - i l l ,  + A l n a ^ / r f

v l8 20 / v20

u M  = A e ^ [ i a ^ /  r )*2 -  (<t^  !r)% (1 4 )

where eab and are, respectively, the w ell-d^h  and 
molecular diameter of species a and b. For angle 
dependent interaction, we take [7,8]

a _  „ p e rm 4 ...in + „  shape^  t̂ ab ^  ̂ ab ^  ̂ ab ’ (15)

where u ^ ^  is the

(16)

where the coefficient and A”/, correspond to the U  
(1 2 - 6 ) potential and the angle-dependent potentials, 
respectively. The coefficients are expressed as

ll= i5 /S s tX b )A 2 >

L l= ilU 4 n ^T :,)A 2 ,

(1 7 )

interaction between permanent 
multipole moment of molecules of species a and b, 
is the interaction of the induced multipole moment in one 
molecule with the permanent moment in the other 
molecule, is the interaction between anisotropic
dispersion forces of molecules and u ^ ^  is the anisotropy 
of the short-range overlap forces of molecules. For 
numerical calculation, these interaction potentials are 
expressed in the explicit angle-dependent form [7,8]. There 
fia and Qa are, respectively, the dipole and quadrupole 
moments, <% is the average polarizability, Ka is the 
anisotropy in the polarizability of the molecule of species 
a. Dab is the dimensionless shape parameter for molecules 
of species a and b.

One can evaluate eq. (10) by employing the method 
discussed previously for one-component system [5] and 
evaluating the angle-integrals, we can obtain expressions 
for Yatfr), p P j( r )U  and P F ^ (r)U - Finally eq. (10) can 
be written in the form

^ a (r )  = 4 e ^  / '• ) " +  A^itfab / r)'" +

A^ia„b /»•)*’ + f c  + A^)(trabf r)'* +

and the coefficients i4^  are given in Appendix A, where 
= kT/eab (7’ being the absolute temperature).

The effective pair potential *F„^(r) for such a model 
can be expressed in the LJ (12-6) form by simply

replacing sab (Tab-^f^lbC^l Ku,<Kb) ^a b -^ lb  
(T 'l  âb> S*ab) i" (i4), where T^= kTl€ab  is the 
reduced temperature, and Ah, and Sh, are the quantum 
parameters, which are introduced to measure the deviation 
from the classical behaviour. In order to obtain expressions 
for ah, and eh,, we approximate r / ( T ^ « l i n L ^ ,  as 
the quantum effects are largely determined from the hard 
core [9] and further approximate r/Oab “
»2'^* in Ah, [10]. Then eq. (16) can be written as

n ( ' - )  = 4 e ^  [Xab«yablrf'''-yab«yablrf] . (18)

where using the values of the coefficients tf^, and Ah, 
we obtain expression for Xab and Yab in compact form

âh ~(‘ab'^(^ab(^ab'^^ab^^ab '

“  1 fabl'^ab '

(19)

(2 0 )

The expressions of a«b...... . fa, are reported in Appendix
B. In classical limit, A h,-dh , = 0 in the expression of
Oab, fab'

Eql (18) can be used to determine ah, and eh,- oh, 
the value of r at which *F^(r) is zero i.e.IS

'i'h,(ah,)=0 ' Then. ^  position of the minimum of 
!F^(r) shifts from 2 '^oi* to where the effective
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pair potential is - e ^ .  Eq. (18) can then be expressed in 
the U  (12-^) :

where

<Jab=olbla^ = FlH^,

^ab-^ab ^^ab~ ^ab^^^'

(2 2 a)

(2 2 b)

with
= X J Y ^ ,  (23)

Xtt, = X ^  - a ^ ( lO F ^  -2 2 )( l- (2 F ^ )- ‘'^). (24)

and

(25)

When the quantum effect is small, Ogi, is small and Xl^ 
is approxinuted as

Y^  ab ^ab
giving

^ a b - X ^ /F ^ ,  (26)

as given for one conqx>nent fluid [S].

Thus, the effective pair potential is expressed as the 
‘modifled’ Lf (12-6) form by simply replacing

d*itK tr îi(7nfc, ^ftii) •

e a t - » e ^ ( C / C .5 ; : 6 ) -

The advantage of this approach is that once the effects of 
angle-dependent potential and/or quantum effects are 
incorporated in and € ^ .  the system can be treated 
as the classical LJ (12-6) fluid mixture.

4. Tberm odynam k properties of semlclasrical fluid 
mixture

In this section, we apply our theory to calculate the 
diennodynamic properties of semiclassical molecular binary 
mixtures like H2 + Dj, H2 + Ne, D2 + Ne, N2 + Ar, 
O2 Ar and N2 h- O2. In our aiq>roach, we consider the 
reduced density and reduced tenq>erature for the LJ (12-
6 ) fluid to be given by

and replace and c .  respectively, by 

Pab P^ab Pab^ab *

Then the free energy and pressure of the semiclassical 
molecular fluid mixture can be given by

A (P^. C  0  = Au (p L . t^ )

~'Za^a(d*Ji/2A n h : ,) ,  (27)

P iP a b ' "̂ ab̂  ^ab' ^ a b ^ ~ P u ^ P ^ ’ ^afc) ’ (28)

where Au  and Pu  are, respectively, the free energy and 
pressure of the classical U  ( 1 2- 6 ) fluid mixture at the 
reduced density and reduced temperature tJ,. Here 
Xa = Na/N is the concentration of species a.

Eqs. (27) and (28) are the general expressions for a 

molecular fluid mixture.

5. Binary m ixtures

We apply this theory to binary mixtures such as (i) N2 + 
Ar, O2 + Ar and N2 + O2 and (ii) H2 + Ne, D2 + Ne and 
H2 + D2. In the flrst case, the quantum effects are small 
but negligible. In the second case, the quantum effects 
are appreciable and play an important role in estimating 
the thermodynamic properties of the systems. The force 
and quantum parameters for these systems are those used 
previously [8 , 1 1].

The unlike force parameters f  12 and Du of the 
species 1 and 2  are given by the following combination 
rules

O12 -  (Oil + <^2)/2,

f |2 = ^12(^ l l^ 22t)* .̂

Di2 = (Du + Dzi)l2,

(29a)

(29b)

(29c)

where 4 i2 is an adjustable parameter, which is less than 
unity. We have used the value of in  obtained from the 
measurement of second virial coefficioit [12]. The 
quantum parameters and S it of molecules of unlike 
species are obtained by the following combination rule 
[8 ]

®22 +o | 2A^ ] / 2  , (30a)

(30b)
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We adopt the van der Waals one (vdWl) fluid theory of 
mixture [13] to calculate the thermodynamic properties of 
the effective LJ (12-6) fluid mixture. This theory 
approximates the properties of a mixture by those of a 
fictitious pure fluid with the interaction parameters

a,b

a,b

(31)

(32)

where or^ and ejj, are the force parameters |hf the 
effective U  (1 2 - 6 ) potential of binary mixture of |pecies 
a and b. 1

In d»e vdWl fluid theory of mixture, the free inei^y, 
enthalpy and pressure of the effective LI fluid mixture 
are given by

~ ^x '^  + second order term. (33)

H u  = f f ,  + second order term. (34)

The calculated Cl and SCI values of Gibb’s function, 
enthalpy and molar volume are reported in Table I for

Dftblc 1. Gibb's free energy, enthalpy and molar volume of the binary mixture 
at P = 0 and jti = JC2 =: 0.5

Mixture n to C/O-rnol-') ///(J-mol-*) V7(cm -̂nior

Nj+Ar 83.82 a -3171.76 -5291.10 31.81

SCI -3123.55 -5220.25 32.14

Stngh>Sinha |8] -3106.44 -5180.51 32.50

MD H51 -5455.00 31.99

O2+ Ar 83.82 Cl -3702.76 -6055.62 27.57

SCI -3652.40 -5983.64 28.82

Singh-Sinha [8J -3590.63 -5903.23 28.21

MDfl5J -6304.00 27.61

N2"f O2 83.82 Cl -3265.16 -5427,43 31.26

SCI -3204.19 -5338.53 31.65

Singh-Sinha [8] -3178.(H) -5298.98 32.16

Pu=Px + second order term, (35)

where A„ and Px are the values of the free energy, 
enthalpy and pressure for the pure fluid containing N 
molecules in volume V and temperature T, whose molecules 
interact via the effective LI (12-6) potential with the 
parameteis orj and

In this work, we are interested to calculate the 
thermodynamic {nt^rties at zero pressure, for which 
simple expressions are available. We calculate Ax, H, and 
K, at zero pressure using the relations given by Grundke 
et al [14],

6. Results and discussion

We enqtloy the thetny developed in the previous sections 
to calculate the thermodynamic properties of binary 
mixtures such as N2 + Ar, O2 + Ar and N2 + O2 at zero 
pressure (Le. P  «  0), where the quantum effects are small 
hut not negligible. We first calculate the effective 
parameters tr^ and which include the quantum effects 
as well as the effect o f the angle-dependent part of 
potential. We use these parameters to calculate the 
^mnaodynamic prcqMsities o f the effective U  (12-6) 
mixture at zero pressure both in classical (Cl) and 

aamiclassical (SG ) limits.

Nj + Ar, O2 + Ar and Nz + O2 at T = 83.82 K for P = 
0 and X] = X2 = 0.5. Singh and Sinha [8 ] have studied 
the properties of these mixtures by treating them 
semiclassically and using the perturbation theory. These 
values are also shown in the table. The molecular dynamic 
(MD) values of Nz + Ar and Oz + Ar, obtained by Gupta 
and Coon [15] are demonstrated in the table for 
comparison. The agreement is found to be good. Further 
comparing the classical and semiclassical values, we find 
that the quantum effects increase the thermodynamic 
properties.

In Table 2, we have reported the excess Gibb’s function 
G^, excess enthalpy and excess molar volume V® at 
zero pressure for Nz + Ar and Oz + Ar at T = 83.82 K 
and X| = xz = 0.5 along with the experimental [8,16] 
values. The results obtained by Singh and Sinha [8 ] are

Thble 2. Excess theimodynamic properties of binary mixtuies at » 0 and 

X| = xz = 0.5.

System T(K) V*(cm̂ -nKrf-**)

Nj+Ar 83.82 Present woik 35.80 41.30 -0.20

Singh-Sinha [8] 32.79 37.97 -0 .26

Expt [8,16] 34.00 51.00 -0.18

O2 +At 83.82 Present work 32.04 45.42 0.11

Stngh*Sinha [8] 52.60 75.74 0.10

Expt [8,16] 37aOO 60.00 0.14
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also shown in die table. We find that the agreement with 
the experimental results is good.

We next apply the theory to calculate the 
thermodynamic prc^ierties of the binary mixtures such as 
H2 + Nc and Da + Ne at zero pressure (i.e. P = 0), where 
the quantum effects are appreciable. The quantum effects 
for and Da are laige. For better results, the parameters 

and e ’’’ for Ha, Da and Da + Ne are calculated without 
the shape parameter D and those for Ha + Ne with 
parameter D. We calculate the excess Gibb’s function 
and excess enthalpy for Ha + Ne at r  = 30 °K and 
for Da + Ne at 27°K at P  = 0 and X, = Xj = 0.5. We 
calculate these propoties with and without shape parameter
D. These results are reported in Table 3, where the 
experimental results [17] are also shown for comparison. 
The agreement with the experimental values is good.

I k M t  3 . Excess therm odynam ic properties o f  binary m ixtures at P  = 0  and

xi»j[ii=0.5.

Table 5. Excess m olar volum e V^(cm%iol*') o f  binary m ixtute H] - D, for 
/> = 0 .

System TfK) C«(J-inoI-') H*(J-mol-')

Hr-i-Ne

D i-eN e

30.0 Present work

Expt. (171

27.0 Present work

E x p t [17]

121.33

121

101.65

104

205.32

208

159.74

165

Next, we apply the theory for the binary mixture Ha 
-b Da where the quantum effects are laige. In order to test 
the thecwy, we calculate the imiperties whose experimental 
results are available for conqiarison. We have calculated 
the thermodynamic properties of Ha and Da [5] for a 
range of temperatures where the agreement is good. Here, 
we calculate the molar volume V of Ha and Da at 7  =
20.4 K for P  a  0, with and without the shape parameter 
D. These results are conqiared with the experimental data
[18] in Table 4. The results with D are better. We

Tsblc 4. M(dw vdume Vfcmhnoh*) of H2 and for P « 0.

Theory

Syttem nK) W ithout D With£> Expt [18]

H, 20.4 22.56 25.10 28.40

D> 20v4 19.51 20.36 23.63

calculate the excess molar vdume for Ha 4- Da mixture 

at r  s  20.4 K for P  s  0  for xi s  xic s  0.264, 0.434 and
0.698 with mid widiout D. They are conqiaied with 
expoimental diua [18] in Table 5. The agreement is 
relatively good where D  is taken into account

System m )

Theory 

W ithout D W ith D Expt (18)

H2 + D 2 20.4 0.264 -0.022 0 .02 ! -0.109

0.434 -0 .0 0 2 -0 .0 6 4 -0.147

0.698 0 .029 -0 .091 -0.109

7. Summary

We have extended the theory developed previously [4,5,19J 
for one-component molecular fluid in the semiclassical 
limit, to the molecular fluid mixtures. We have obtained 
the effective pair potential in the LJ (12-6) potential 
form by simply replacing S ^ )  and

where is the reduced 

temperature, and / i ^  and 5 *̂, are the quantum 
parameters. Thus, the quantum effects and effects of 
angle-dependent interactions are incorporated through the 
expressions of the effective diameter a]^ and well depth 

. In this process the problem is simplified and the 
semiclassical molecular fluid mixtures becomes equivalent 
to the classical U  ( 1 2 -6 ) fluid mixture.

In this development, we have considered the first 
order quantum corrections to define the effective LJ (12-
6 ) potential. So the effective LJ (12-6) potential, thus 
defined, is suitable in general, when the quantum effects 
are small. However, the theory provides good results for 
the binary mixture like Ha + Ne, Da + Ne and Ha + Da, 
where the quantum effects are large. This is probably due 
to the facts that the influence of quantum effects and 
angle-dependent interactions are opposite in nature [5,19]. 
So with the proper selection of the angle-dependent 
interactions, one can employ this theory for the systems 
of appreciable quantum effects at low temperature.

One can improve the theory by ctmsidering die higher 
order quantum coirection terms to define the effective 
pair potential. The second order correction term of 0(Â ) 
is of oi^xisite sign [20]. When this is taken into account 
to define the effective pair potential, its effect is q^qxisite 
in nature in comparison to the first order term i.e. it 
decreases the effective diameter and increases the well- 
depth. Hence one can improve the results by considering 
the second mder term in defining the effective pair 
potential. However no such atterrqit has been made in this 
paper. This method can be employed to Ha + (fe mixture 
at high tenqieratuie, where the quantum effects are small. 
However this method is not suitidile for diis system at



A\b = b / 8 )((«flCfc +««.<2 « al^)

+ ( l / 8 r 4 f e e , '  + n lQ l) le l  CT̂ ,)]

Semiclassical theory fo r  thermodynamics o f molecular flu id  mixtures

low temperature, where the quantum effects are large. He 
oiolecules interact via the central potential only. When 
ilie quantum effects are lai^e, the first order quantum 
correction term alone is not sufficient at low temperature 
3nd a fitll quantum treatment becomes necessary [2 1 ].

(A.2)
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Appendlx-A

In this A[^)endix, expressions for the coefficients 
appearing in the right hand side of eq. ( 1 0 ) are given as

»  - ( l / 9 6 0 i r erl)8 2 . (A.1)

+ (ln92Q^tX,^)(i^t^Qi■^niQ^)/el, c r l ) s l .

(A.3)

AiS = anO T ^X Q ^Q i / e l ,  a ^ )

H y^^T l)[7 /2 )i^a „ Q i <rl)

H l /2Tl)(inlQ ^ + n lQ l) /e l  ff^)]

+ {5 y^2 A a n ^T lX Q lQ ll^ l o '^ ) 6 2 . (A.4) 

Aii = {MSTlXQaOb l^a t a lt^ b lS )K ,,K y

+ ( M T lX / i ln l l e la ^ (A.5)

A l  = t-(2 /5 r^ ){ (A 2  ^^^^fS )K lK l)  

+(M2){fx^K^/il a l )

^ + (1/2)(K ,+K ,) + 3.8K,K,)} 

+(7/1800rl^)(MaMi/el a l ) \

- { 7 l2 A n ^ r jX Q lO il^ l

^ (M 2 ^ ^ t2 ) \ k 1 ^ k I  +(38/5)#:* +#T6* + ) C  .

(A.6 )

= -(l-C X 6 /3 5 X /i,M * fi« a "  !^\b  

+ (3 /4 f f* x e ^ a /e -k  ‘̂ IkX#:.+ #:*)/C*]. (A.7) 

Aii^-O AI25T*J^a^K„Q l + a ,K ^Q l)/e ^  a l )
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- ( l / 2 0 )((a„^^„/i^ a i l

yC + i3 /l4 0 n h 2 X a „ K ,Q l 

•^CCt,K^Q!)/^ab<rlb)S2 ’ (A.8 )

= {IS/245T^XQIqI  l^ lb  (A.9)

A^= -{A ^I50n'^rj)\a„K ,Q la^K ^Q l)l& ^ a l \ Q ^

(A . 10)

/C  =(2 /ST ^)D ^\^K „  + K ^)+ i^ay^ + a ,fil)

6 o6 <T^t)]+(l/107r^C*)D^(A:„ + K^)S*J,

(A. l l)

=(2A/35T^)if!a„Q^ + a „ 0 ! ) / e ^  a ^ )D ^  

+ (2 7 /2 0 n h ^ )D ^ [K K „  + K ^ )+ (aafil + a tn l ) f  

■-ai, t r i , ) h 2  + O f^5n^ T ^)Jk .a„Q l-a^Q l)/ 

o l i ) o ^ ^ 2  . (A-12)

= (9 4 /3 5 f fV j; ') |a ,a ^ + a ,G j) /e ^  a J ) D i[

(A.13)

a2  = -(1 6 /5 r ^ )D ^  4 - { H S n ^ 2 ) D lA 2  • (A.14)

A ^ *  ■ (A.15)

AppendiX'B

In tttis Appendix, we give expressitms f<xr coefficients 
... fa t, appearing in the right hand side o f eqs. (19) and 
(20). Thus,

+ a*M i)/6«s <r]!;)/+^/8(2‘« ) )  

(:o,(2^ +a*(2|J )/€„* <T*fc), (B .l)

< y^ )+ ^ /8(2''’ ))([Ailfl?

+ Msfi«*)/€L trL )+ (7 /2 0 (2 "= * )fee2 / 

e L  j + ( A 2 / & r * ) t + ( 5 / 2 ’ '')((o„At*" 

+ a ^ f x l ) / e ^  a 2 ) + a n ^ ' ^ ) i ^ a „ Q i  + a ^ Q ^ ) f  

a i  j + ( f i ; ? /& r 2 ) [ - ( 2 « 'V i2 0 )

(G a C i,/e< ,„ < T ^ )]. (B.2)

= ( A S /& r " ) f c / 6 ( 2 " " ) ( / i „ V ^ 6 2 i  a ^ )

+ ( m ^ ' ^ ) i ^ n l Q ^  +  f i l ( ^ ) J e l ,  f f ^ ) ]

+ i S 2  / S n ^ h / m H a H l  / e L  

+ ( l / 2 4 0 ( 2 ‘'^ ))(/i* ft^  + f i ! Q l ) / s 2  f f l t )

+  ( 5 3 / 4 0 5 ( 2 ^ ' ^ ) ) { Q ^ Q l  / € ^  tT^S)]> (B 3)

‘̂ oi ^ \ra /5 )(K l-^ K i+ a 9 /5 )K lK i)- (4 /5 )D l,

+(4/5)D„ft(A:, + Jffc) + (l/5 )

X ( ( a „ / i^ + a j ^ f ) / e ^ < r ^ ^ ) D ^

+((12/35(2‘'^ )X (a „a *  + a t G ? )/ e ^  

-d /5 ) ( :a ^ A : ,/ it"  + a ^ K t i i l ) l G ^  a ^ )

X ( i+ (i/ 2 )(^ : ,+ A :f t )+ 3 .8 « :„ A :J .

-(l2/35(2''^)X (a„A:«(2fc + «s * :s G ? )/

Go* a l6 )+ (^ 3 6 (2 ‘' 2 ) ' 2 5 ) X e . e * / 6 a 6

+ (11/4«^)A 2, (B.4)

*  b*'® /5)0ifM*fi.Gs / € ^  a i i )  

+ (s/35(2‘'«)X[AiiAi*fl?(^/€L <t2 ) 

+  b / 2 4 5 ( 2 ‘'* )X fi’ f i ? / 6 L  a ^ ) ]
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+(/l2/»r*)[-(7/MXGjcJ/6L<’2 )

-|22/5(2''’))Di+(27/10(2''’))Drt(A:, + K.),

-(|/80(2‘” ))(;o. a:.;iJ a‘j

- (4 3 /5 0 (2 " ’ ) |o ,K ,# i t  + o A #‘ 2  ‘̂ 2»)|

+ (« ;* / ) I * ) t l / 2 0 ) (x i  + + (3 8 /5 )K ,'k J )

H i l W ) D i + i . \ m ) D J K ,* K i )

+ /̂(l«K2''’))((a.*r.ek a l t )

+ ^ /7 0 (2 ''’ ))(;o „g J + 0 tC 2 ) / e ^

f ^ = { v t i m y y i ) (B.6)




