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Abstract

: An effective pair potential for the semiclassical molecular fluid mixture 1s expressed in the effective Lennard-Jones (12-6) potential

form, which includes the influence of the angle-dependent potential and quantum effects through the expressions of the effective diameler G4, and
well depth €, . We employ the theory to estimate the thermodynamic properties of equimolar binary mixtures at zero pressures. Agreement with
experiment for the excess properties such as excess Gibb's function, excess enthalpy and excess molar volume for N, + Ar, O, + Ar, Hy + Ne, D+

Ne and H; + D, are found to be good.
Keywords

PACS Nos.  : 03.65.8q, 82.60.Lf, 31.15.Gy

1. Introduction

Aim of the present paper is to estimate the thermodynamic
properties of molecular fluid mixture in the semiclassical
limit. One of the theoretical method for calculating the
thermodynamic properties of classical molecular fluid is
the ‘preaveraged’ potential method [1,2]. Using this
method, Karki et al [3] have derived an effective Lennard-
Jones (ELJ) (12-6) potential for classical molecular fluid.
This was extended to include the quantum effects [4,5].
This method can be extended to study the thermodynamic
properties of molecular fluid mixtures in the semiclassical
limit.

In the present work, we obtain an effective pair
potential to evaluate the equilibrium properties of molecular
fluid mixtures in the semiclassical limit. We assume that
the total interaction potential is pair-wise additive, i.e.

QX XX )= Y, Y bes (X0 X, ). M

ab i<j
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where ua(X,, X)) is the pair interaction potential between
molecule i of species a and molecule j of species b, and
the vector X, = (r, @) represents both the position of the
centre of mass and orientation of the molecule i of
species a. The pair interaction potential is usually assumed
to be expressed as

UasXo X) = u%(ri 1) + 43 (X, X)), P)

where 42, is the spherically symmetric potential and
ug,is the angle-dependent part of pair potential.

In Section 2, we describe the basic theory for a
molecular fluid mixture in the semiclassical limit. Section
3 is devoted to derive effective pair potential of the
semiclassical fluid mixture, which is further expressed in
a Lennard-Jones (LJ) (12-6) potential form. Section 4 is
concerned with the effective pair potential for the
semiclassical binary mixture. The thermodynamic properties
of binary mixture is discussed in Section 5. The results
and discussion are given in Section 6. The summary is
given in Section 7.
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2. Theoretical basis

We consider a molecular fluid mixture of rigid linear
molecules, which are permanently in their ground electronic
and ground vibrational states. In quantum statistical
mechanics, the canonical partition function for a fluid
mixture containing s components is defined as {6]

N (! )

where

A = (2mA*fim,)'"?, (4a)

g.= (20, +1)  exp(-BJ,(J, +DA*I21,),  (4b)
J

(m, is mass and /I, is the moment of inertia of a molecule
of species a and f = (kT)™'). Here, A, is the thermal
wave length and g, is the single-molecule rotational
partition function of species a. N, is the number of
molecules of species a such that the total number of
molecules is N =Y Na.

In eq. (3), Zy is the configurational integral which is
defined in this case as

N
Zy = j I Wy (X1, X X )] [ X | )

i=l
where
dX;, = (An)y'drdw,
and Wy is the Slater sum.
In the semiclassical limit, where the quantum effects
are small, g, for linear molecule is given by [7]

9. = (B W) [1+ (1/6) (B WIL)), (6)

where the first term is the classical value for the single-
molecule rotational partition function. The Slater sum of
the fluid mixture in the semiclassical limit can be expanded
in powers of h? as (8]

wy (X, X5, ..., Xy )=exp(- B®) 1-{ E@’ﬁ’ /lzm,)

xi[v§¢-(1/2)6(v§¢)2]+

i=]

Y 02p2121,)
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N,

<2[v§,‘¢—(1/2)ﬂ(vi,¢)2] +0(r*) ™1

i=1

Substituting eq. (7) in eq. (5) and integrating by parts. y,
get

Zy = I...J.exp[— ﬁdil[l- {2(,,2,32 /24ma)z(v§q,

N
cop)f[Tax,
1=/

Assuming the total interaction potential to be pair-wise
additive and extending our method for one-componcn
system [5], we can express the configurational integral iy
the form

N =I...Iexp| —ﬁzzwfb('}j) ’llld’: , (9)

ab i<j i=]

+ Y (0B 1241,)Y V2 @

where ¥,,(r,) is the orientation-independent effectivc
‘preaverged’ pair potential of the semiclassical molecular
fluid mixture (acting between molecule i of specics « and
molecules j of species b). This is written as

Yo () =¥, (NAL ,l(r)]ab+5;ZEi’,l,,,(r)Lb, (10)

where ¥,,(r) is the ‘preaveraged’ pair potential for classical
molecular fluid, and ¥,/ (")), and ¥}, (M), are the
first order quantum corrections arising from the
translational and rotational contribution, respectively. They
are expressed as

¥ () = 028 14877k By (reny) - o,

2
= B < ugy (rey @, )V sy (rn @) >0, +-

(1
#h0le = Bren k£ uicwwn: |

= B < ugy (ranmn )V, uly (rawy) >0, *--
(12)

In eq. (10). we use the following quantum parameters
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A;%, = h/O‘ab(mal, E)”2 Iy

st =hloy (1, €)%, (13)

Here, mgp = 2mgmy/(m, + my) and I, = 21,0/, + I,).

3. Effective pair potential for semiclassical mole-cular
fluid mixture

For a molecular fluid mixture of nearly spherical
molecules, the pair potential is given by eq. (2).;’;' where
u’, is the central potential and uj, is the angle-dependent
part of pair potential. For central potential, we dpnsider

i

the Lennard-Jones (LJ) (12-6) potential )

Uy (N =4€, (0,411~ (0,471, (14)

where €, and 0O, are, respectively, the well-depth and
molecular diameter of species a and b. For angle
dependent interaction, we take [7,8]

olp =uDT" Fuly Fuly Fu (15)
where ul;™ is the interaction between permanent
multipole moment of molecules of species a and b, uj,'},
is the interaction of the induced multipole moment in one
molecule with the permanent moment in the other
molecule, u:bi‘ is the interaction between anisotropic
dispersion forces of molecules and u:,',"” is the anisotropy
of the short-range overlap forces of molecules. For
numerical calculation, these interaction potentials are
expressed in the explicit angle-dependent form [7,8]. There
M, and Q, are, respectively, the dipole and quadrupole
moments, @, is the average polarizability, K, is the
anisotropy in the polarizability of the molecule of species
a. D,, is the dimensionless shape parameter for molecules
of species a and b.

One can evaluate eq. (10) by employing the method
discussed previously for one-component system [5] and
evaluating the angle-integrals, we can obtain expressions

for Yu(r), [, ()], and [¥,, (7)), - Finally eq. (10) can
be written in the form

Ya(r)=4€, (M(a,,, 1IN + A3 0,/ +

A2(0 0 10 +(L4 + Al ko 1 Y +

AL, IS +ARO LN +
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Aap(@ o 17)'* + AR (0 4/ 1)

AZ O INP+ AR 0,/ +

AL 0w |- (a5 00100 +

AS (0w n = (I3, + AL (0, 11)°

A@a,in"°]), (16)

where the coefficient L7, and A, correspond to the LJ
(12-6) potential and the angle-dependent potentials,
respectively. The coefficients Lj, are expressed as

Ly = (5187 T,)A,, a7

Ly, =(1/4n°T )AL,

and the coefficients A7, are given in Appendix A, where
T,, =kT/e,, (T being the absolute temperature).

The effective pair potential ¥ (r) for such a model
can be expressed in the LJ (12-6) form by simply
replacing sab o, — 0%, (T.,, Ay, 8.,) and €,,—€l,
(T, Auyr 8sp) in €q. (14), where T, =kT/e,, is the
reduced temperature, and /4, and 4,, are the quantum
parameters, which are introduced to measure the deviation
from the classical behaviour. In order to obtain expressions
for ¢7, and €’,, we approximate r/o, =1lin LT, as
the quantum effects are largely determined from the hard
core [9] and further approximate r/o,, =~r,/o,
=2"¢ in A7 [10]. Then eq. (16) can be written as

‘Pai,(r)=4€ab [Xab(aablr)m—yab(oa,,/r)c] N (18)

where using the values of the coefficients I, and A7,
we obtain expression for X, and Y, in compact form

Yop = o + o I Top + o 1 Tt (19)
Xy =14by (T +eu I T2+ fur /Ty (20)

The expressions of au, ..., fo are reported in Appendix
B. In classical limit, A, =4, =0 in the expression of
sevey fab-

Eq. (18) can be used to determine o7, and €l,. oJ,
is the value of r at which ¥j(r) is zero i.e.
¥¢ (0%,)=0. Then, the position of the minimum of
W< (r) shifts from 20y, to 2¥6gT,, where the effective

Qabs
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pair potential is —€”, . Eq. (18) can then be expressed in
the LJ (12-6) :

=L [6L )" - 6L . e
where
O, =010, =FY°, (22a)
Em=€ny /€= X5 I F2, (22b)
with
Fap = Xa/Yabs (23)
X5 = X 5 — 0 (10F,, -22)(1 -(2F,,,,)"’3), 24
and
O = At 18T°T, . (25)

When the quantum effect is small, @, is small and X7,
is approximated as
Xo=Xa
giving

as given for one component fluid [S].

Thus, the effective pair potential is expressed as the
‘modified’ LJ (12-6) form by simply replacing

0w =0Ty A O0p) +

€p—En, Ty Augr Op) -

The advantage of this approach is that once the effects of
angle-dependent potential and/or quantum effects are
incorporated in o7, and €, the system can be treated
as the classical LJ (12-6) fluid mixture.

4. Thermodynamic properties of semiclassical fluid
mixture

In this section, we apply our theory to calculate the
thermodynamic properties of semiclassical molecular binary
mixtures like H, + D,, H, + Ne, D, + Ne, N, + Ar,
O; + Ar and N, + O,. In our approach, we consider the
reduced density and reduced temperature for the LJ (12-
6) fluid to be given by

Pab = PO

=kT/€¢b.

Shankar S Karki and Suresh K Sinha

and replace p,, and T, respectively, by
Pab = POay = PusBap>
TL =kTIel =T 1€, .

Then the free energy and pressure of the semiclassicy
molecular fluid mixture can be given by

A(PY. Tis 60p)= A (Doss Top)

«2 .
-Zax,, (d., 124n°T.,) )
PPose Tops Agps S0p)=Pry(PLy, TS, (28)

where A, and Py, are, respectively, the free energy and
pressure of the classical LY (12-6) fluid mixture at the
reduced density pl, and reduced temperature T7. Here
x, = NN is the concentration of species a.

Eqgs. (27) and (28) are the general expressions for a
molecular fluid mixture.

S. Binary mixtures

We apply this theory to binary mixtures such as (i) N; +
Ar, O, + Ar and N; + O, and (ii) H, + Ne, D, + Ne and
H; + D,. In the first case, the quantum effects are small
but negligible. In the second case, the quantum effects
are appreciable and play an important role in estimating
the thermodynamic properties of the systems. The force
and quantum parameters for these systems are those used
previously [8,11].

The unlike force parameters oy, €, and D;; of the
species 1 and 2 are given by the following combination
rules

Oi2 = (O + OR)2, (29a)
€12 = §€n€n)A, (29b)
Dy; = (Dy + D)2, (29%¢)

where &, is an adjustable parameter, which is less than
unity. We have used the value of &, obtained from the
measurement of second virial coefficient [12]. The
quantum parameters A%, and &3, of molecules of unlike
species are obtained by the following combination rule

(8]

2 _ 2 402 2 402
€ O3 = En O/} €x *‘022/‘22»2 ,

€ 51“3 ‘-‘Eu 5121"‘522 532]’2 .

(30a)

(30b)
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We adopt the van der Waals one (vdW1) fluid theory of
mixture [13] to calculate the thermodynamic properties of
the effective LJ (12-6) fluid mixture. This theory
approximates the properties of a mixture by those of a
fictitious pure fluid with the interaction parameters

3 3
U: = z xaxba:b
ab ’

r r’
—Ex xbe,,,, O'ab

3hH

(32)

e

where o7, and !, are the force parameters Pf the
effective LJ (12-6) potential of binary mixture of #pecies
a and b. .

In the vdW1 fluid theory of mixture, the free énergy,
enthalpy and pressure of the effective LJ fluid mixture
are given by

Ay =A+ NkTZxa Inx, +second order term, (33)
a

H;; =H, +second order term, 34)

P; = P, +second order term, (35)

where A,, H, and P, are the values of the free energy,
enthalpy and pressure for the pure fluid containing N
molecules in volume V and temperature 7, whose molecules
interact via the effective LJ (12-6) potential with the
parameters o] and €T.

In this work, we are interested to calculate the
thermodynamic properties at zero pressure, for which
simple expressions are available. We calculate A,, H, and
V, at zero pressure using the relations given by Grundke
et al [14].

6. Results and discussion

We employ the theory developed in the previous sections
to calculate the thermodynamic properties of binary
mixtures such as N; + Ar, O, + Ar and N, + O, at zero
pressure (i.e. P = 0), where the quantum effects are small
but not negligible. We first calculate the effective
parameters o7 and €7, which include the quantum effects
as well as the effect of the angle-dependent part of
potential. We use these parameters to calculate the
thermodynamic properties of the effective LI (12-6)
mixture at zero pressure both in classical (Cl) and
Semiclassical (SC1) limits.
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The calculated Cl and SCI values of Gibb's function,
enthalpy and molar volume are reported in Table 1 for

Table 1. Gibb's free energy, enthalpy and molar volume of the binary mixture

atP=0and x,=x;=05

Mixture K G/(3-mol-!)  H/(J-mol') V/(cm*-mol-')

N;+ Ar 83.82 ClI -3171.76 -5291.10 31.81

SCl1 -3123.55 -5220.25 32.14

Singh-Sinha (8] -3106.44 -5180.51 32.50

MD (15] -5455.00 31.99

0.+ Ar 83.82 Ci -3702.76 ~6055.62 27.57

SCi -3652.40 -5983.64 28.82

Singh-Sinha (8] -3590.63 ~5903.23 28.21

MD (15] -6304.00 27.61

N;+ O, 83.82 Cl -3265.16 -5427.43 31.26

SCl -3204.19 -5338.53 31.65

Singh-Sinha {8] -3178.00 ~5298.98 32.16

N;+ Ar, O;+ Arand N, + O, at T = 83.82 K for P =
0 and x; = x; = 0.5. Singh and Sinha [8] have studied
the properties of these mixtures by treating them
semiclassically and using the perturbation theory. These
values are also shown in the table. The molecular dynamic
(MD) values of N; + Ar and O, + Ar, obtained by Gupta
and Coon [15] are demonstrated in the table for
comparison. The agreement is found to be good. Further
comparing the classical and semiclassical values, we find
that the quantum effects increase the thermodynamic
properties.

In Table 2, we have reported the excess Gibb’s function
GE, excess enthalpy HE and excess molar volume VE at
zero pressure for N, + Ar and O, + Ar at T = 83.82 K
and x; = x; = 0.5 along with the experimental [8,16]
values. The results obtained by Singh and Sinha [8] are

Table 2. Excess thermodynamic properties of binary mixtures at P = 0 and
X=x= 0.5.

System NK) GE(J-mol') HE(J-mol-!) VE(cm>-mol-!)
N,+ Ar  83.82 Present work 35.80 41.30 -0.20
Singh-Sinha [8] 3279 37.97 -0.26
. Expt. [8,16) 34.00 51.00 ~0.18
O+ Ar  83.82 Present work 32.04 4542 0.11
Singh-Sinha [8) 52.60 75.74 0.10
Expt. [8,16) 37.00 60.00 0.14
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also shown in the table. We find that the agreement with
the experimental results is good.

We next apply the theory to calculate the
thermodynamic properties of the binary mixtures such as
H, + Ne and D, + Ne at zero pressure (i.e. P = 0), where
the quantum effects are appreciable. The quantum effects
for H, and D, are large. For better results, the parameters
o7 and €T for H,, D; and D, + Ne are calculated without
the shape parameter D and those for H, + Ne with
parameter D. We calculate the excess Gibb’s function GE
and excess enthalpy H® for H, + Ne at T = 30 °K and
for D, + Ne at 27°K at P = 0 and X, = X; = 0.5. We
calculate these properties with and without shape parameter
D. These results are reported in Table 3, where the
experimental results [17] are also shown for comparison.
The agreement with the experimental values is good.

Table 3. Excess thermodynamic properties of binary mixtures at P = 0 and
H=X= 0.5.

System T(K) GE(3-mol-') HE(J-mol!)

Hy+ Ne 30.0 Present work 121.33 205.32
Expt. (17] 121 208

D3+ Ne 27.0 Present work 101.65 159.74
Expt. [17) 104 165

Next, we apply the theory for the binary mixture H,
+ D, where the quantum effects are large. In order to test
the theory, we calculate the properties whose experimental
results are available for comparison. We have calculated
the thermodynamic properties of H, and D, [5] for a
range of temperatures where the agreement is good. Here,
we calculate the molar volume V of H, and D, at T =
20.4 K for P = 0, with and without the shape parameter
D. These results are compared with the experimental data
[18] in Table 4. The results with D are better. We

Table 4. Molar volume V(cm*mol-!) of H, and D, for P = 0.

Theory
System NK) Without D With D Expt [18)
H; 204 22.56 25.10 28.40
D, 204 19.51 20.36 23.63

calculate the excess molar volume VE for H; + D, mixture
at T =204 K for P = 0 for x; = xy» = 0.264, 0.434 and
0.698 with and without D. They are compared with
experimental data [18] in Table 5. The agreement is
relatively good where D is taken into account.

Shankar S Karki and Suresh K Sinha

Table 5. Excess molar volume VE(cm’mol-') of binary mixture H, - D, fo;
P=0.

Theory
System  T(K) s, WithostD  WithD Expi[ig)
H,+D, 204 0264  -0.022 0021 0100
0434  -0.002 0064 0147
0698 0029 0091 0100
7. Summary

We have extended the theory developed previously [4,5,19]
for one-component molecular fluid in the semiclassical
limit, to the molecular fluid mixtures. We have obtained
the effective pair potential in the LJ (12-6) potential
form by simply replacing o, — 67, (Ts,, ALy, O.) and
c €0y (Toys Agys 6.,), where T, is the reduced
temperature, and A, and §,, are the quantum
parameters, Thus, the quantum effects and effects of
angle-dependent interactions are incorporated through the
expressions of the effective diameter o, and well depth
G:r In this process the problem is simplified and the
semiclassical molecular fluid mixtures becomes equivalent
to the classical LJ (12-6) fluid mixture.

In this development, we have considered the first
order quantum corrections to define the effective LJ (12-
6) potential. So the effective LI (12-6) potential, thus
defined, is suitable in general, when the quantum effects
are small. However, the theory provides good results for
the binary mixture like H, + Ne, D, + Ne and H, + D,
where the quantum effects are large. This is probably duc
to the facts that the influence of quantum effects and
angle-dependent interactions are opposite in nature [5,19].
So with the proper selection of the angle-dependent
interactions, one can employ this theory for the systems
of appreciable quantum effects at low temperature.

One can improve the theory by considering the higher
order quantum correction terms to define the effective
pair potential. The second order correction term of 0(h*)
is of opposite sign [20]. When this is taken into account
to define the effective pair potential, its effect is opposite
in nature in comparison to the first order term i.e. it
decreases the effective diameter and increases the well-
depth. Hence one can improve the results by considering
the second order term in defining the effective pair
potential. However no such attempt has been made in this
paper. This method can be employed to H, + He mixture
at high temperature, where the quantum effects are small.
However this method is not suitable for this system at
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jow temperature, where the quantum effects are large. He
qolecules interact via the central potential only. When
the quantum effects are large, the first order quantum
correction term alone is not sufficient at low temperature
and a full quantum treatment becomes necessary [21].
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Appendix-A

In this Appendix, expressions for the coefficients A
appearing in the right hand side of eq. (10) are given as

A5, = ~(1/9600°T5, 0,0, /€. 05)522 (A1)

AS, =[1+(1/4)((a,u,3 +ayul)ed, o,f,,)

Nl 1<k a:.,>]

+(11144n°T,, W ulput 1€2, 08,802 . (A2)
8 _ [( ( 2 2 8 )
Ay =K3/8\(a, Q) +2, Q) €, Oy
+ QT (203 + i) €, by )
2 2 2 6
+(1/8n T,,,)[(SM)((a,,u,, +au U ) €y o,,,,)
+UI6Ty 2l 1€2, a2,) )

+11920n°T.2) (1202 + w2021 €%, 68, )83,
(A3)

A =(1120T2 Q207 1€2, 0.3)
+/82° 7|71 2@ 07 +0,0%) 1€ 0%,
#1121, (1202 + 0?1 €, o, )
Ay +(53/3240n°T,, )(Q20Q7 1 €2, 013)6,2 - (A4)
Agp = (ST, XQ,0, 1 € 3 Top(36/ K K,
+ (T uiud1€2, of (A.5)
42 =i-@rst){(c2 + k2 + 915K 2K2)
+(1/2) @ K puk +a K,ul)l e, of))
(1+/2)(K, + K,)+38K,K, )}
+TNB00T Wbl 1€, o)
~ (11240 T2 XQ202 1€X, oi)AL

+(1/20m°T} )[(K,f +K2+(38/5)K2 + KZ+)8,2
(A6)

AD = (-T2 )6/35X Q505 | €2 Oz)
+GI4T)Q,0, /€ 05N K, +KAZ], AT

A = —a135T (@K .02 +a, K0 €,y 0%)
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—wan k(K2 + K2 +9/5)K2K2)
—120)(@ K 2 + 0, Kop?) €0y 0%, )
A2+ (N0 T2 e K 02
+0,K,02)/ € 4 05845 - (A-8)
AL =(18/245T 2} Q20; 1€, 043) (A.9)

Al = —(43/50m°T} )[(a,,K,,Q,fa,, K,Q2) e 05, ]A,,?,
(A.10)

AL =(2/5T,)D, [4(1(,, +K,)+ ((aauf +a,u3)

€w 0% /102°T2)D (K, + K,) 62,
(A1)

AZ = (24/35T, (@, 02 +@,02 )/ €,y 02D,
+211200° T D, (K, + K,) + (@ p? +aypu?)/
10 05, )]43 + (3/35n2T,‘3)[((a,Q3 -, 0%)/

€. 0200 P2 . (A.12)

A2 = 941350 T (@, 0F +2,0%)/€ oy Oy Do

% (A.13)

A% =—(16/5T5,) D%, +(2/57°T,2) D62, (A.14)

AL = —(88/5n°T,2) DL AL . (A.15)
Appendix-B

In this Appendix, we give expressions for coefficients a,,
... fo», appearing in the right hand side of egs. (19) and
(20). Thus,

ag = l+(ll4)((a,p,f +ayul)le,, aﬁ,,)/+ (3/8(2"’))

((az,,Q,2 +o,0%) /e, af,,). ®.1)

be = 111200202 1€2, 05) + (/82" N0}

+u202)1e, o8, )+ (1120222 o202 /
€2, 010 ) (A2 18m )5+ (512 (ot 12
+a,u3)/€ 02b)+ al 25,3)((‘1an3 +a,02V/
€405 )]+ 622 /81:2)[-(2”6/120)
Qa0 /€0 03] (B.2)
e = (A2 18501162 2ud 1 €23, 02)
+ (11258202 + u20?)1€?, ob, )
+(522 /snz)[(ms)(u}u,f /€%, 65,
+(1/2402") 20} + w302y €2, 0%,)
+(5314052°°)Q2Q 1€k o)), B3
dy = [—(2/5)(1(3 +KZ2+(19/5)K2K} )— (4/5) D2,
+(4/5) Dy (K, + K,)+(1/5)
x ((aal‘bz +o 1))/ €y a:b)Dab
+(12/352" )@, 02 +2,0)/ € 1y 05 )Dss

~ /5@ Kot +a Kb €0y %)

x (1+(1/2)(K, +K,)+38K,K,),
~(2/352"*) (@, K .02 +a, K, 02)/
€ a5 )+ (362212940, 0, /€. 03K K]
+(11/4n)A3, | (B4)
ew = 2" 19042020,0, 1€ o1d)
+loras Nuzuiolol 1€k, o)

+ 8124521\ 0203 1€, o))
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c U2k a1200Q2QE 1€8, o)
—(U2P) K2+ K2 +(19/5)K2KD)
—lars@))0}, +{7/102))Dgy (K, + K
{800 ot Ko+, Kb e 0%)

-@3/50(22/3)X(aaxa“3 +abe,,l3 )/(Eab a:b){‘

+0132279)0,0, /€. 3K, K, ]

v@2 i r0)(K2 + K2 +(3819K3KE)
+(1/10) D, +(1/20) D, (K, +K})
+B10402"™ e, k.07 +0,K, Q1) €. O%)

+ (317002 {0, 03 + 2,03 €. 0%, )Du).B.5)

fp = (11800} s pe0m) - (B.6)





