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Abstract

We devote this research paper to construct a relationship between the average of the total number of quanta in a single-mode squeezed

vacuum state and the mean free path of atoms of a material through which the natural hight passes This relationship provides a method to measure
experimentally the mean number of photons present in this mode of the quantum radiation field.
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1. Introduction

The first scientific light scattering experiment was performed by
Tyndall [ 1], who observed the natural light scattered by particles
whose size was small compared with the incident wavelength
and noticed the appearance of a bluish blue hue in the scattered
radiation. Rayleigh [2] gave the theoretical explanation of this
fact, showing that the intensity of light scattered by such
particles, considered non-interacting, is inversely proportional
10 the forth power of the wavelength. This effect accounts in
particular, for the blue color of sky, once the scattering centers
are assumed to be the vapour molecules constituting the
atmosphere, possessing a mean free path larger than the optical
wavelength.

In 1998, the author established an interesting relationship,
which relates the mean number of photons (symbolized by €)
occupied by a mode of the natural light to the mean free path of
the atoms of the material through which the light passes [3].
Owning to this relationship, one can measure experimentally
the mean occupation number of photons present in a chaotic
ficld mode by measuring the mean free path (symbolized by 7).

Recently, we have defined by applying the Boltzmann
Ntegrodifferential equation, a fully quantum-mechanical P

function, [4]. By means of this function, we introduce here a
mixed-state density operator for a single-mode squeezed vacuum
state. This operator enabled us to define a relationship between
the total mean number of quanta present in a single-mode
squeezed vacuum state of the mode and the parameter ¢ that
depends on T.

In fact, we have evaluated, for two cases, the mean value of
the number operator a* a (a* and a are respectively the creation
and annihilation operators of a photon) [5]. It is found that for a
single-mode pure squeezed vacuum state, this mean value is
equal to sinh?r, while it is equal to the statistical average of this
function (sinh?r) for the mixed squeezed vacuum state, (r is
called the squeeze factor). This leads us to construct an
interesting relationship that relates the average number of
photons present in a single-mode squeczed vaccum state and
the parameter ¢ which depends on the mean free path 7.

In fact, if one could measure experimentally the mean free
path T, then we can formulate the number g, which is the main
factor in the theory. Once this number is fixed, we can determine
owing to the constructed relationship, the mean occupation
numbser of the thermal and squeezed states of the mode we are
studying.
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2. Definitions and notations

(a) Single-mode squeezed vacuum state :

The single-mode squeeze operator is defined by

S(r.(p)=exp[—;-z“a2 —%:(a’)z]. (1
where z = rexp (2i¢) 1s called the complex factor of the
squeezed state. The real numbers r and ¢ are known as squeeze
factor and squeeze angle respectively. These numbers are defined
in the range 0<r<eo, ~m/2<@<m/2. The single-mode
squeezed state ]r.(p) , results by acting operator (1) on the
ground state | 0) of the mode |6-9],

r.@) = S(r, 9)|0). )

The normal-ordered form of §(r, ¢) can be calculated. The
most straightforward method 1s to apply McCoy's theorem. This
allows an exponential of a polynomial in a* and a up to powers
of two 10 be written in the normal-ordered form. The result is
[10],

S(r. @) = {cosh r}_”: expl—%ez'”{lanh r} (a*);

xcxp[—ln {cosh r}a* a]exp[%e_z'"’ {tanh r} (a*)z]. 3)

If we insert operator (3) into (2) and use the identity a|0) = 0,
then we obtain -

|r,@) ={cosh r}_“2 exp [——;-ez”" {tanh r} (a* )2]|0) @

Now, knowing that the energy eigenstates [n) (n=0,1,2,3.......)
of a harmonic oscillator are constructed from its vacuum state
|0) by repeated application of creation operator as

~(04» )n
n) =

n)= (2

we can write (4) in the form

- (—— ¢*'% tanh r)
|7.@) = {cosh r}-uzz 2 - J(2n)!|2n);
n=0

0<r<oo, —w/2<p<m/2. ©)

Since | r,9) is an eigenstate of the unitary operator (1), it is
normalized to unity, such as

(ro|r.o)=1. ©)

(b) Mean number of photons present in a thermal mode -
Let 2 be a unit vector coinciding with the direction of tp,
velocity of a particle when its energy is u. We introduce the
function g(ug, u —u’) to represent the relative probability of ,
particle being left with parameters (£2,u) as a result of a collision
before which it was characterized by the pair (') (u,
= £2,8’ is the cosine of the angle though which the particle j,
scattered). We assume that g(u,, u —u’) may be expressed in
terms of Legendre polynomials P, (4y) such as

glug u—u')=(1/4m) Y, (2n+1) g, (u—1') P, (1y) 8
n=0

with

+1
8=’y =27 [duto8(pg, u =) Py(to), )

-1
where we have used the normalization condition of Legéndre

polynomials. Now, we introduce the symbols ¢ and B 10 denote
the integrals

a=2n jdu’(u—u')go (u—1') (10
u-y \
and
B=2n jdu'g.(u—u') (h
u-y

with g,(u—u’) and 8, (u—u’) are defined by eq. (9) for n =0
and 1 respectively, while ¥ represents the maximum energy los
(the maximum energy loss occurs when the particle is scattered
through an angle of 180°). Accordingly, the average numbei of
photons present in a thermal field mode as function of the mean
free path T(u), 1s given by |3]

€= du’ T* (). 12)
3a(1-P) j ( (
3. P-representation for a single-mode squeezed vacuum statt
For a system in the pure state (6) corresponding to no statistical
indetermination, the density operator p is defined by
p=|reNe.r G

which is a hermitian operator. The quantum statistical expectation |
value of the number operator a* a is given by [5]

<a*a>=Tr(pa' a). (4]
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This determines the average number of photons present in
Jtate (6). If we now substitute (6) into (13), we get

=3

(~1)"+n g2itm=me (% tanh? r)(ﬂu-n)lz

x[_(zm -nt@n-nt s

1/2
il ] |2m)(2n|.
If we insert (15) into (14) and use the eigenvalue equation

k)= Jk |k—1) as well as the completeness property of the
number states |k) (k=0, 1, 2), then we obtain

<a“a>=

2 2n-D'(1 2
2 n 0 (—2' tanh“ r (16)

cosh r 2=

The sum over n can now be carried out. By differentiating
both sides of the following relation

- T n =112
32Dt ‘)"(lmnhzr) =(1-tanh?r)™" g
~ n! 2

with respect to tanh? r, we get

L ] n 5 8 \-M2
E::-(-‘;"—D-:(-I—lanhzr) =-l-tanh“r(l—lanh'r) I. (18)
2 2

n!

Now, a substitution from (18) into (16) leads immediately to

(19)

<a*a>=sinh’r.

We consider a linear superposition of operator (13) in the
iorm

12
p= j:fmdr d ¢ rQ(r, @:8)|r.0) (0. 7|, (20

where r dr d@ is the element of area in the plane, while the
weighting factor Q(r, @;€) assumes the form

O(r. ¢;€) = ~(me)™"? cosqi—g— exp (—r’/e)] @l
r

with € defined by (12). Expansion (20) is known as the f.’-

tepresentation for the density operator in terms of rand @. This

representation was introduced by Glauber [11] and Sudarshan

[12]. independently, in 1963.

In order to preserve the Hermitian and unitary characters of
P, the P-representation (20) must be real and satisfy the
formalization condition

j' " dr do r Q(r, 9:€) =1. @)
-n/2

0

In fact, owing to successful mathematical manipulations in
wdition to some physical restrictive conditions, the steady-
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state Boltzmann integrodifferential equation [13], has been
reduced to a suitable form of a familiar second-order partial
differential equation in the two-dimensional space. The solution
of this equation is taken as a combination of two terms.
Accordingly, it is found that the first term has the same physical
and mathematical characters of the form of function (21). Details
are given in an earlier publication [4].

Indeed, it is easy to show that for all value of r, the real
weight function (21) takes positive definite values in the interval
-m/2<@<m/2, while it takes negative values otherwise in
the plane. This function distributes in phase through its
dependence on function cos ¢ . Despite of Q(r, ¢; £) being a
non-singular function, it may be considered more singular than
& - function, because cos @ projects all the vector states in the
plane into the direction of the beam represented by the weight
function Q(r, @: €).

According to (6) and (21), operator (20) can be expressed in
terms of the number states, as follows

2 o~ [ (/2 .
= Wm%oj() J'_m:cos(p exp [2‘(”‘ - n)q)]

] m+4n
L-mtanh r)
2

x2 2 7 (coshry "t re" " J2m)(2n)!

m!'n!

x|2m)(2n|rdrde. (23)

Actually, the integral with respect to @ can be casily carried
out by applying the rule of integration by parts, the result is

2 2 - ”
j::/zd(pcostp cxp [2;(". -n) (p] - __( )

1-4(m-n)? @)

If we insert the value of integral (24) into (23), then we get
aftter a little manipulation, the following simple form

> —pit@n-put?
p=4(”€3)’”2 E [Eg’PM__)—

=0 m!n!
1,.,(€)
- mn hd 2m 2n|. 25
1-4(m-n) |2m)( | 25)
where

1 (m+n)2

(€)= Io drr? (cosh r)'l exp (—r2 /€) (5 tanh® r
(26)

The properties of p will be discussed in the next section.
Indeed, we shall see that this operator verifies all the properties
of the density operators.
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4. Some properties of p

The first simple property of p is that its trace is unity i.e. Tr (p)
= 1. According to (25), we have

Cm-n1@en-nn "

m!'n!

Tr(p) = 4(ne™)™* 3,
m,n=0
I (E)

-(2n|2m).
l—4(m-n)"( n|2m)

Since the number states | k) (k =0, 1, 2....) form a complete
orthogonal sct of vectors, the above relation reduces to

_ 3, =12 - (2’!—1)'!
Tr(p) = 4(ne*) ™" Z——;—'—— 1,,(6).

n=0

@n

where

I, (€)= J:dr r* (cosh r)™" exp (-r* / €) (% tanh? r) 28)

which follows from (26) for m = n. Now, we insert (28) into the
right side of (27) and then we use expansion (17), to obtain
Tr(p) = 4(ne )2 j:dr riexp (-r*/e€). (29)

Using integration by parts, the right side of (29) becomes

- , R 312
Jo drriexp(-r° /€)= (me (30)
This allows us to write (29) as
Tr(p)=1. (€)))

Thus, the sum of the eigenvalues of p (which represents
probabilities) must be equal to 1. This result emphasizes the
important role of the weight function (21) in the theory of
quantum radiation field.

The matrix elements of operator (25) are given by

(21]p|2k) = 4(me?) ™2 Y,

In!
=0 m!n!

[(2»:-1)!!(2»—1)!!]”2

I'mn(€)

l—4(m—n)2 32)

Im Y nk *

If we use the properties of § — function, (32) reduces to the
form

2

@ -nk-nn "
1k

li(e)
1-4(-k)*’
(33)

(21 |p| 2k) = 4(7;5‘3 )—l/z[

Since each of / and k takes only integer values or zero; the
quantity | —4(/ - k)2 is always negative for [ # k . This indicates

that the off diagonal elements of the matrix (2/|p|2k) are 4
negative and the absolute values of these elements decreases
by increasing the value of the difference between [ and &. Oy
the other hand, since 1 - 4 (I - k)2 reduces to 1 for [ = k, the
diagonal elements of matrix (33) are given by

(k-1

Expression (34) shows that the diagonal elements of matrix
(33) are all positive definite numbers as they must be.

(21|p|2k) = 4(ne®)™'"?

Since the weighting factor Q(r, @, €) is subject to the
normalization condition (22), operator (20) is hermitian. In
addution, the trace of this operator is equal to 1 and its diagonal
elements are all positive definite. Thus, operator (20) possesses
the necessary characters of the density operators [14, 15).

5. Themean of photons present in a quantumstate

As we know, the operator that represents the number of ph&ons
present in a quantum state is a*a [S]. Therefore, the mean nun‘\bcr
of photons present in the mixed-state (25) denoted by <N>, 15
given by

<N>=Tr(pa® a). (35)

If we substitute (25) into (35), then we get

172
< N >= 4(’1,53) 172 2 ( m 1) ( n l)

mn=0 m!n!
I1,,,(€)
— 2 —(2m)d,,, -
l—-4(m—n)'( )Om

where the eigenvalue equation a|k) = Jk|k) has been used.
Also, if we use the properties of §,_, , the mean number <N>
reduces to

mn*®

- -
N>=8(ne") ”ZZn(ZLM-)——IM(E). (30

n=0

Inserting the value of /,,(€) gi;en by (28), into the right
hand side of (36), we obtain the expression

< N >=8(me)™2 J::ir exp (-r2 /€)

LA
cosh r
hod - "
Enu(}— tanh? r) . @an
n! 2

The sum over n in the right hand side of (37) may be carried
out by using (18), which allows us to have

<N>= 4(ne3)"'2j;3r rtexp (-r* /€)sinh®r. (39
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Now, integral (30) assures the normalization condition

4{“3)-1/2]‘0(1, rlexp(-r’/€)=1, which means that the

function 4(ne*)™?r? exp (~r* / £) may be considered as a

normalized density. Thus, expectation value (38) may be written
as|10],

<N>= (sinh2 r). (39)
where <smh2 r) denotes the mean value of sinh? r .

Relation (19) shows that sinh? r, which still depends on r
(that varies from 0 to o), defines the mean number of photons
piesent in pure state (13). Whereas, according to (39), the mean
number of photons present in the mixed state (20) is the
expectation value of sinh? r, which 1s simply a number as 1t
must be. Thus, while the mixed states supply us some interesting
iformation about the structure of the field of photons, the pure
Jate fails to do so.

Indeed, since the function sinh? r is independent of the
phase angle @, relation (38) can be written as

N 2 ':1 . inh® ,
< >—J'.md(pjoer(r,(p.e)sm r. (40)

The weighting factor Q(r, ¢; €) is given by (21) and satisfies
the normalization condition (22). In fact, relations (38) and
40) are identical. To see this, it is sufficient to insert the value
ol (r, @; €)_given by (21), into the right hand side of (40)
und then integrate with respect to @ to obtain back the relation
138)

| 6. Mean number of photons as function of the mean free path

| . .
Inorder to find the relationship between the average of the total

quanta <N> present 1n the mixed-state (25) and the mean free
th 7, it1s sufficient to carry out integral (38). This integral may
| be written again in the equivalent form

[N = 2(me’) V2 J:drrz exp(-r?/€) (cosh 2r=1).  (41)

The integral in the right hand side of (41) can be easily carried
jout to give

<N>=(£+-%)exp(£)—-;-. 4)

/
IWhere € is defined by (12) i.e.

4
£ = ————
3a(1-B)

Thus, (42) with € given by the above integral is the desi@
r"'ﬂllonship that relates the mean number of quanta present in a

I:""Ble-mode squeezed vacuum state and the mean free path
Tlu) '

I:du' Tw): 0<B<l.

In fact, the objective of this job is to construct relationship
(42), which allows fixing the mean number of photons in a single-
mode squeezed vacuum state as function of £ that depends on
the mean free path T, which can be measured experimentally.

7. Concluding remarks

From the results obtained above, we can conclude some
interesting remarks as follows : (i) A relation between the
weighting factor (21) and Glauber-Sudarshan's P function [15-
17], can be easily found. For this purpose, let us write here the P
function as

. | s
.f(ﬂ:;exp(-r'/s); 0<r<eo, 43)

where € denotes the mean number of photons occupying this
mode [3]. Accordingly, we can write function (21) in the form

e

Q(r,@; €)= ~(n)™""* cos @ f'(r). (44)

Function f’(r) denotes the derivative of f(r), defined by

(43), with respect to r. Relation (44) relates Q(r,@; £) with the
derivative of Glauber-Sudarshan's P-function.

(i1) According to (42), the mean number of photons present
1n a single-mode squeezed vacuum state is (€ +1/2)exp(g) -
172, where € represents the mean number of photons present in
the chaotic or thermal state of the mode. This shows clearly,
that a squeezed field is very dense comparing with a chaotic
field. Thus, squeezing is an effect, which may occur in fields
with high intensity. In this sense one may also say that the
squeezing effect is a macroscopic quantum-mechanical effect.
This fact has been shown by Walls [0)] and recently by Daoud
[18].

(1ii) It is clear that when T vanishes, the parameter

} "
= |4 IT ’
£ Ja(1-B) '[0 WO

tends to zero. In this case, the mean occupation numbers
of both chaotic and squeezed vacuum states of the mode
vanish.

(iv) According to (42), the expectation value of energy
contained in the squeezed vacuum state is equal Aw(e+1/2)
exp(€) (@ denotes the angular frequency of the field mode).
This energy tends to sw/2 as € tends to zero. This limit is
the energy contained in the vacuum state of a quantum
field mode. This assures the fact that the squeezing is a pure
quantum effect.
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