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Abstract A layer of compressible, clectrically conducting Walters' B’ elastico-viscous fluid heated and soluted from below, 1n presence of
magnetic field is considered. The presence of viscoelasticity, magnetic field and stable solute gradient introduce oscillatory modes in the system which
were non-cxistent in their absence. The sufficient conditions for non-existence of overstability are obtained For the case of stationary convection,
the Walters® elastico-viscous fluid behaves like a Newtoman fluid and compressibility, magnetic field and stable solute gradient have stahilizing effects

on the system
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1. Introduction

Chandrasekhar 1] has given a detailed account of thermal
convection in Newtonian fluid layer in the presence of magnetic
ficld. Veronis [2] has investigated the problem of thermohaline
convection in a layer of fluid heated from below and subjected
W a stable salinity gradient. The buoyancy forces can arise not
only from density differences due to variations in temperature
but also from those due to variations in solute concentration.
Thermosolutal convection problems arise in oceanography,
limnology and engineering. Examples of particular interest are
provided by ponds built to trap solar heat [3] and some Antarctic
lakes [4). Bhatia and Steiner [5] have studied the problem of
thermal instability of a Maxwellian viscoelastic fluid in the
presence of rotation and have found that the rotation has a
destabilizing effect in contrast to the stabilizing effect on an
ordinary (Newtonian) viscous fluid. Bhatia and Steiner [6] have
also studied the thermal instability of a Maxwellian viscoelastic
fluid in presence of magnetic field while the thermal convection
in Oldroydian viscoelastic fluid in hydromagnetics has been
¢tonsidered by Sharma [7].
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There are many elastico-viscous fluids that cannot be
characterized by Maxwell's constitutive relations or Oldroyd's
constitutive relations. One such class of elastico-viscous fluids
is Walters' B fluid (Walters [8]). Sharma and Kumar [9] have
studied the stability of two superposed Walters' B viscoelastic
fluids.

Sharma et al have [10] studied the double-diffusive
convection in Walters' B visco-elastico fluid in porous medium
in presence of uniform rotation.

Keeping in mind, the growing importance of non-Newtonian
and compressible fluids in chemical technology, industry and
geophysical fluid dynamics, the present paper attempts to
study the double-diffusive convection in compressible
Walters' viscoelastic fluid B/ in the presence of uniform magnetic
field.

2. Perturbation equations and dispersion relation

Consider an infinite compressible layer of Walters' elastico-
viscous, electrically conducting fluid B confined between the
planes z = 0 and z =d, acted on by gravity force g (0, 0,-g) and
auniform vertical magnetic field H (0,0, H). This layer is heated
and soluted from below such that a steady adverse temperature
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gradient B(=|dT/dz|) and a solute concentration gradient
B’(=|dC/ d]) are maintained.

For double-diffusive convection problem, the Boussinesq
approximation has been used, which is well justified in the case
of incompressible fluids.

When the fluids are compressible, the equations governing
the system become quite complicated. Spiegel and Veronis [11]
have simplified the set of equations governing the flow of
compressible fluids under the assumption that the depth of the
fluid layer is much smaller than the scale height as defined by
them, if only motions of infinitesimal amplitude are considered.
Spiegel and Veronis [ 11] defined f as any one of the state variables
(pressure (p), density(p) or temperature(7)) and expressed in
the form

fxoy.z,0)=fo+ fold)+ f(x, v2.1),

where £ is the constant space average of f, f, is the variation in
the absence of motion and f* is the fluctuation resulting from
motion. The thermal instability in compressible fluids in presence
of rotation and magnetic field has been studied by Sharma [12].

The linearized hydromagnetic perturbation equations for
thermosolutal convection in Walters' elastico-viscous fluid B/
[1,2,8,12] are
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Here q (u.v,w). h (h, h,h), 6p,8p,6 and v denote
respectively the perturbations in velocity (0, 0 , 0), magnetic
field H (0,0, H), pressure p. density o, temperature 7 and
solute concentration C. v, V', x, k', 4, and n stand for
kinematic viscosity, kinematic viscoelasticity, thermal diffusivity,
solute diffusivity, magnetic permeability and electrical resistivity
respectively. The equation of state is

p=p,[l-aT-Ty)+a’(C-Cp)). 0]

where the suffix zero refers to values at the reference level =0,
a is the coefficient of thermal expansion and o is the analogous

solvent expansion. Therefore, the change in density 8p caused

by the perturbations @ and ¥ in temperature and solute
concentration is given by

S =-p,(axb-a’). ®)
Eqgs. (1) —(6) and (8) yield
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We now analyze the disturbances into normal modes,
assuming that the perturbation quantities have the space and
time dependence of the form

[w. 6. h., Y] =[W(2).6(2). K(2). T(2)) exp (ik  x + tk,y + mt).
(13
where k , k, are the wave numbers along the x- and y- directions

respectively. k(: ‘/kf + k§ ) is the resultant wave number and
n is, in general, a complex constant.

The dimensionless forms of eqs. (9)—(12), using expression
(13),are

o(D*-a*)W-(1-Fo)(D* -a ) W- i‘;pf""d( -a*)DK
d2 2
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where G=c,B/g. a=kd, o =nd*/v, x*=x/d, y*=y4,
+=z/d and D=d/dz*, p, =v/n is the magnetic Prandtl
aumber, P =UV/K is the Prandtl number, g = v/’ is the

schmidt numberand F = v’/ 42 is the dimensionless kinematic
viscoelasticity.

Eliminating ©, I', K between egs. (14 - 17), we obtain

(6 -*)(0" ~a* - p) (D% ~a* ~g0)

[rr(D2 -a* - p,0)-(1- Fo)(D* - a* ) D* - a® - p,0)

+QDZ]W= (D2 -a* - pzo)[( G(;l)Raz(D2 -a* —qO')

—Sa’(D2 -a*- p,c)]W,

(18)
where
gapd*
R= is the Rayleigh number,
UK
a’ ;dd
S= S_U_l:_’__ is analogous solute Rayleigh number,
Hd?
and Q= L‘:—e—— is the Chandrasekhar number,
o,V

Consider the case in which both the boundaries are free, the
medium adjoining the fluid is perfectly conducting and
lemperatures, solute concentrations at the boundaries are kept
lixed. The boundary conditions, appropriate to the problem, are

W=D*W=0,K=0,0 =0, =0atz=0and 1.  (19)

The proper solution of the eq. (18) characterizing the lowest
mode 1s

W=W,sinmz, (20)
where W, is constant.
Substituting eq. (20) in (18), we get

R _( G YU+x)(+x+ip
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;E_T)Q,(Hx)x (1+x+ipo))

x (1+x+ip,0,)

"‘)[(1 +x)(1-in*Fo,)+io|

G ) (1+x+ipo))
G-1)" (1+x+igo;)’

@b

I Vhere R = R/nt, S, =8/n*, 0, =Q/n*, x =a*/n* and
10, = g/n? (where o canbe complex).
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3. Thestationary convection

For stationary convection (g =0). eq. (21) reduces to

_ (I+x) G

Eq. (22) implies that for stationary convection, compressible

Walters' elastico-viscous fluid B/ behaves like compressible
Newtonian fluid.

dr,

ds, G-Il @)
and

dR,_ _ 1+x

dQ, \G-1)\ «x @4

The stable solute gradient and magnetic field have stabilizing
effects on the system.

For fixed Q, and §,, let G (accounting for the compressibility
effects) be also kept fixed in eq. (22). Then we find

= G
R, C1 R, , (25)
‘where E( and R_ denote respectively the critical Rayleigh
numbers in the presence and absence of compressibility. The
effect of compressibility 1s thus to postpone the onset of double-
diffusive convection. The compressibility, therefore, has a
stabilizing effect on the thermosolutal convection.

4. Stability of the system and oscillatory modes

Multiplying eq. (14) by W*, the complex conjugate of W,
integrating over the range of z and making use of egs. (15) -(17)
together with the boundary conditions (19), we obtain

G \f ga’ax ) | ga“a’k’
1, - I, +po*l)+ :
o G-1)l VB )(2 P 3) L 8
(l4+qa"’15)+ M (Iﬁ+pzo*l,)+(l—Fa)lg=0. (26)

4mp,v
where g * is the complex conjugate of o

and I, = j(lDle +a2|W|z)dz.

0

I = j (i8I +a%l61* ) dz.
0
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I, = :[(|Dr|2 +a2|r|2)dz,

0
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0
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The integrals /, - I, are all positive definite. Putting 6 = &, +i0,
and then equating real and imaginary parts of eq. (26), we obtain.

G gazaK gata’k’ u.n
1 -l ) L+ Is+——"—p,I, - Flg |o
G-1) vB Pt vB’ s 4npmvp' T
G gdlax gala’x’ u.n
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and
ga-ax gata’x’
ll - F’n + l - I
G-l B ]p. 3 [ 7 lafs
un
l g, = O f
4”pmv |P2 ! | (29)

Itis clear from eq. (28) that &, is positive or negative which
means that the system is stable or unstable. It is clear from (29)
that o, may be zero or nonzero, meaning that the modes may be
non-oscillatory or oscillatory. The oscillatory modes are
introduced due to the presence of viscoelasticity, stable solute
gradient and magnetic field, which were non-existent in their
absence.

5. The case of overstability

Here, we consider the possibility of whether instability may
occur as an overstability. Since we wish to determine the critical
Rayleigh number for overstability, it suffices to find conditions
for which eq. (21) will admit of solution with o, real.

Equating the real and imaginary parts of eq. (21) and
climinating R, between them, we obtain .

Act +Bc, +C=0, (30

where A = piq*a(1+p, -n?Fa),

B=(p+q%)a’(1+p, -n*Fa)+Qg%a(p, - P2)
+8,p3 (@ -1)(p, - q). al)
C=a’(l+p -n*Fa)+Qa’(p - p,)
+S,a(@-1)(p, -q).

and ¢ =0l a=(+x).

Since 0, is real for overstability, both the values of ¢ are
positive. Eq. (30) is quadratic in ¢, and does not involve any of
its roots to be positive if

P> P2 Py >q and py > TFa, @)

which implies that ‘\‘

\

k<n k<k’'and k(' /d*)(x*+k*d*)<v. D)

Thus, k<7, k <k’ and k(" /d*)(n* +k*d*) <V arc the
sufficient conditions for non-existence of overstability, the
violation of which does not necessarily imply occurrence ol
overstability.

6. Conclusion

With the growing importance of non-Newtonian fluids in
chemical engineering, modern technology and industry. the
investigations on such fluids are desirable. The Walters elastico-
viscous fluid (model B’) is one such fluid. Walters [ 14] reported
that the mixture of polymethyl methacrylate and pynidine at 25°C
containing 30.5 g of polymer per litre with density 0.98 g per i
behaves very nearly as the Walters (model B) elastico-viscous
fluid.

A detailed account of the thermal instability in Newtonian
fluids, under varying assumptions of hydrodynamics and
hydromagnetics, has been given by Chandrasekhar [1]. The
problem of thermohaline convection in a layer of fluid heated
from below and subjected to a stable salinity gradient has been
investigated by Veronis [2].

Elastico-viscous fluids may have different role as compared
to Newtonian fluids, on the stability problems. For example. the
cffect of a uniform rotation on the thermal instability of
Maxwellian viscoelastic fluid is destabilizing [5] whereas the
uniform rotation has a stabilizing effect on the thermal instabilily
of Newtonian fluid. Similarly, for the case of two supchOSCd
Walters B viscoelastic fluids in porous medium [13], the systcm
is found to be stable or unstable if the kinematic viscoelastic!!y
(assumed equal for both fluids) is less than or greater than the
medium permeability divided by medium porosity, for the
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putentially stable arrangement. This is in contrast to the stability

of two superposed Newtonian fluids in porous medium where
(he system is stable for the stable configuration.

A layer of compressible, electrically conducting Walters' B’
elastico-viscous fluid heated and soluted from below has been
considered in the presence of a uniform vertical magnetic field.
For stationary convection, the Walters' B/ elastico-viscous fluid
behaves like a Newtonian fluid and compressibility, magnetic
field and stable solute gradient have stabilizing effects on the
wystem. The presence of viscoelasticity, magnetic field and
Jtable solute gradient introduces oscillatory modes in the system
which were non-existent in their absence. The sufficient
conditions for non-existence of overstability are obtained, the
violation of which does not necessarily imply occurrence of
overstability.
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