An optimal angle of launching a point mass in a medium with quadratic drag force

PS Chudinov
Department of Theoretical Mechantes．Moscow Aviation Instatute．
125093 Moscow，Russa：
E－mall choudm（ $(1) \mathrm{k} 8() 4$ manet mosh su

Kerenved 4 October 2002，arcepred $+A_{\text {pral }} 2003$

Abstract

loblract The problem of finding an optimal angle of launching a point mass in a medium with guatratic didg force in consideicd．An equation monon ate amalytically determmed These parameters are used to analytically construct six man functonal alationshops of the poblem An example 1 15した

kevoords ．Analytical formulac，functonal ictitionships，kincmatical patiameters
PI（S Nos．04．25－g． 4550 Dd

Ihe problem of the motion of a point mass under a drag force is （＂）Isidered in innumerable papers，beginning with Euler＇s $\| 1$ － $10 \mid$ Most of them solve the problem numerically．Analytical approiches to the solution of the problem are developed msulficiently Meanwhile，analytucal solutions are compact and whement for a direct use in applied problems and for a fuallatitive analysis．Comparatively simple approximate analytic lumulac to study point mass motion with quadratic drag force ＂ere obtanned within the framework of this approach in $[5|.|6|$ ． One of the most important aspects of the problem is the dele mination of the optimal angle of throwing which provides the maxımum range of throw［7］，［8］．This paper shows，how the lormulac $[5,6]$ are used to find the optimal angle of throwing and wher kinematical parameters of the motion．The given ＂\ample makes a comparison between analytically obtaned dharacterstics of motion and those calculated numerically． Numberic values of parameters are obtained by integration of pont mass motion equations．

The problem of the motion of a point mass under a drag knce with a number of conventional assumptions，in the case it the drag force proportional to the square of the velocity． $R=m g k V^{2}$ ，boils down to the solution of the differential ？いtem［9］：

$$
\begin{align*}
& V=-g \sin \theta-g k V^{2}, \quad \theta=-g \cos \theta / V . \\
& \dot{x}=V \cos \theta, \quad \dot{y}=V \sin \theta . \tag{I}
\end{align*}
$$

Here V is the speed of the point mass，m is the mass，θ is the trajectory slope angle to the horizontal，g is the acceleration due to gravity，x, y are the Cartesian coordinates of the point，and h is a proportionality factor（Figure 1）

Figure 1．Motion of a point mass
The well－known solution of eqs．（I）consists of an explicit analytical dependence of the velocity on the slope angle of the trajectory and three quadratures［9］

$$
\begin{align*}
& V(\theta)=\frac{V_{0} \cos \theta_{0}}{\cos \theta \sqrt{1+k V_{0}^{2} \cos ^{2} \theta_{0}\left(f\left(\theta_{0}\right) \cdot f(\theta)\right)}}, \\
& f(\theta)=-\frac{\sin \theta}{\cos ^{2} \theta}+\ln \operatorname{tg}\left(\frac{\theta}{2}+\frac{\pi}{4}\right. \tag{2}\\
& t=t_{0}-\frac{1}{g} \int_{\theta_{11}}^{0} \frac{V}{\cos \theta} d \theta, x=\lambda_{0}-\frac{1}{g} \int_{\theta_{01}}^{\theta} V^{2} d \theta, \\
& V=v_{0}-\int_{\theta_{10}}^{\prime \prime} V^{2} \operatorname{tg} \theta d \theta . \tag{3}
\end{align*}
$$

Here, V_{0} and θ_{0} are the instial values of the velocity and the slope of the trajectory respectively, $t_{\text {, }}$ is the mitial value of the time, x_{0} and y_{0} are the initial values of the coordinates of the point mass.

The integrals on the right-hand sides of (3) are not taken in finite form. Hence, to determine the variables t, x and y we must ether integrate (1) numerically or evaluate the definite integrals (3).

Using the integration of quadratures (3) by parts for enough small interval $\left[\theta_{0}, 0\right]$, the variables t, x and y can be written in the form $|5|$

$$
\begin{align*}
& t(\theta)=t_{0}+\frac{2\left(V_{0} \sin \theta_{0}-V^{\prime} \sin \theta\right)}{g(2+\varepsilon)}, \\
& x(\theta)=x_{0}+\frac{V_{0}^{2} \sin 2 \theta_{0}-V^{2} \sin 2 \theta}{2 g(1+\varepsilon)} \\
& y(\theta)=y_{0}+\frac{V_{0}^{2} \sin ^{2} \theta_{0}-V^{2} \sin ^{2} \theta}{g(2+\varepsilon)}, \\
& =k\left(V_{0}^{2} \sin \theta_{0}+V^{2} \sin ^{2} \theta\right) \tag{4}
\end{align*}
$$

Hence, for a small interval $\left[\theta_{0}, \theta\right]$, the trajectory of the point mass can be approximated by eq. (4). These formulae have a local form. We can construct the whole trajectory very accurately in steps. We can calculate $V(\theta), t(\theta), x(\theta), y(\theta)$ using eqs (2) and (4) at the right-hand end of the interval $\left[\theta_{0}, \theta\right]$ and take them as the initial values for the following step

$$
V_{0}=V(\theta), t_{0}=t(\theta), x_{0}=x(\theta), y_{0}=y(\theta)
$$

This cyclical procedure replaces both numerical integration of system (1) and the evaluation of the integrals (3). The decrease of k leads to the increased range $\left[0_{0}, \theta\right]$ of applicability of the formulac obtained. When $k=0$, i.e. when there is no drag force, eqs. (4) reduce to the well-known accurate formulae of the theory of the parabolic motion of a point mass and became valid for any θ_{0} and θ values. As calculations show [5], the
trajectory obtained by integrating system of eq. (1) and the trajectory constructed using formulae (2) and (4), are identical Here to construct the trajectory it is sufficient to use a step $\Delta 0=\theta-\theta_{0}$ of the order of 0.1°.

Eqs. (4) enable us to obtain comparatuvely simple approximate analytical formulae for the main parameters of motion of the point mass [6]. We will give a complete summary of the formulac for the maximum ascent height H, tume of flight T, particle speed $V_{"}$ at apex, flight distance L, time of ascent $t_{"}$, trajectory horizontal coordinate at apex x_{u}, the angle of incidence θ_{h} and the final velocity V_{k} (see Figure 1):

$$
\begin{align*}
& I I=\frac{V_{0}^{2} \sin ^{2} \theta_{0}}{g\left(2+k V_{0}^{2} \sin \theta_{0}\right)}, \quad T=2 . \\
& V_{a}=\frac{V_{0} \cos \theta_{0}}{\sqrt{1+k V_{0}^{2} \cos ^{2} \theta_{0} f\left(\theta_{0}\right)}}, \quad L=V_{n} I, \\
& t_{n}=\frac{T-k H V_{a}}{?}, x_{a}=\sqrt{L H \cdot \operatorname{ctg} \theta_{0}}, \\
& \theta_{h}=-\operatorname{arctg}_{\left(L-x_{a}\right)^{-} \quad V_{h}=V\left(0_{h}\right)}^{L H} \tag{5}
\end{align*}
$$

The function $V(\theta)$ in (5) is defined by relation (2).
In the case of no drag ($k=0$), eqs. (5) are reduced to the respective relationships of the point mass parabolic motion theory. All parameters defined by formulae (5) are functions ol the initual conditions of throwing V_{0}, θ_{0}.

In turn, eqs (5) make it possible to obtain simple analytic formulae for basic functional relationships of the problem $y(x), v(t), x(t), x(\theta), y(\theta), t(\theta)[\theta]:$

$$
\begin{align*}
& y(x)=\frac{H x(L-x)}{x_{a}^{2}+\left(L-2 x_{a}\right) x}, \\
& y(t)=\frac{H t(T-t)}{t_{a}^{2}+\left(T-2 t_{a}\right) \cdot t}, \\
& x(t)=\frac{L\left(w_{1}^{2}+w_{2}+w_{1} \sqrt{w_{1}^{2}+\eta w_{2}}\right)}{2 w_{1}^{2}+n w_{2}}, \\
& x(\theta)=a\left(1+\frac{1-n}{\sqrt{1+b \cdot \operatorname{tg} \theta}}\right), \\
& y(\theta)=c\left(d-\frac{2+b \cdot \operatorname{tg} \theta}{\sqrt{1+b \cdot \operatorname{tg} \theta}}\right), \\
& t(\theta)=a_{1}\left(1+\frac{1-\mu}{\sqrt{1+b_{1} \operatorname{vin} \theta}}\right) . \tag{6}
\end{align*}
$$

Here. $n=L / x_{n}, \quad a=x_{n} /(2-n)$,

$$
\begin{aligned}
& b=\left(L-2 x_{a}\right) / H, \quad c=H(n-1) /(2-n)^{2}, \\
& d=2+H / c, \quad w_{1}(t)=t-t_{a}, \\
& u_{2}^{\prime}(t)=2 t(T-t) / n, \quad \eta=2(n-1) / n, \\
& \mu=T / t_{a}, \quad a_{1}=t_{a} /(2-\mu), \\
& b_{1}=\left(T-2 t_{a}\right) / H .
\end{aligned}
$$

The function $V(\theta)$ in (6) is defined by relation (2). The functions $x(\theta), y(\theta), t(\theta)$ are defined on the interval $\|_{h}<\theta \leq \theta_{0}$. Thus, with the known motion parameters H, L, T, 1., 1_{1}, formulae (6) make it possible to construct functions $y(x)$, (1f). $r(t), x(\theta), y(\theta), t(\theta)$.

The formula for the range of throw is written as

$$
L\left(\theta_{0}\right)=V_{a}\left(\theta_{0}\right) \cdot T\left(\theta_{0}\right)
$$

The optomal angle of throwing α, which provides the max imum distance of flight, is a root of equation

$$
\frac{d L\left(\theta_{0}\right)}{d \theta_{0}} \cdot 0 .
$$

Differentating the $L\left(\theta_{0}\right)$ function with respect to θ_{0} and after certan transformations, we obtain the equation for finding the angle α

$$
\begin{equation*}
\operatorname{tg}^{-} \alpha+\frac{p \sin \alpha}{4+2 p \sin \alpha}-\frac{1+p \lambda}{1+p\left(\sin \alpha+\lambda \cos ^{2} \alpha\right)} \tag{7}
\end{equation*}
$$

Here $p=k V_{0}^{2}, \quad \lambda(\alpha)=\ln \operatorname{tg} \left\lvert\, \frac{\alpha}{2}+\frac{\pi}{4}\right.$
With $k=0$, the eq. (7) gives the known solution $\alpha=45^{\circ}$. With $k \neq 0$, the eq. (7) is easy to solve graphically or numerically.

With al condition

$$
p=k V_{0}^{2}=\text { constant } .
$$

in is possible to change values k and V_{0} simultancously. The (ptimal angle of throwing α will be alike. But main parameters ol motion H, L, T will change as it follows from the formulae (5). I et the values of motion parameters H_{0}, L_{0}, T_{0} correspond to drag coefficient k_{0}, and values H_{1}, L_{1}, T_{1} to drag coefficient $k_{1}=\imath k_{0}$. Then with the condition

$$
p=k_{0} V_{0}^{2}=k_{1} V_{1}^{2}=\text { constant }
$$

we get the correlations

$$
H_{1}=\frac{H_{0}}{q}, L_{1}=\frac{L_{0}}{q}, T_{1}=\frac{T_{0}}{\sqrt{q}} .
$$

Assume that with the given values of k and V_{0}, the angle α is found. Substituting it in formulae (5), we determine eight main parameters of the optimal trajectory. Using the parameters H, L, T, x_{u}, t_{u}, we construct with the help of eq. (6), six main functional relationships of the problem.

Let us find the optimal angle of launching and other characteristics of motion for the following parameters of the bascball [10]:

$$
k=0.000548 \mathrm{~s}^{2} / \mathrm{m}^{2}, V_{0}=40 \mathrm{~m} / \mathrm{s}, g=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

The results of calculations are shown in Table 1 and in Figures 2-7. The exact values of the motion parameters are obtanned by the numeric integration of eqs. (1). The relatonships $y(x), y(t), x(t), x(\theta), y(\theta), t(\theta)$ are presented in Figure 2 through Figure 7, respectively.

Table 1. Optimal thafectory parameters

parameter	exact value	calculated value by means (25)	erior ($/ 4$)
α (لeg)	4120	4080	-1.0
1. (iI)	1014	1015	01
$1 /$ (m)	270	271	04
T (s)	468	470	0.4
$V^{\prime}{ }_{\sim}(\mathrm{m} / \mathrm{s})$	214	216	0.9
$1_{\text {IU }}(\mathrm{s})$	222	219	-13
${ }_{1,}(\mathrm{~m})$	555	564	16
θ_{λ} (deg)	- 52 s	- $535^{\prime \prime}$	1.9
$V_{L}(\mathrm{~m} / \mathrm{s})$	262	206	15

Each of the Figures displays two functions. Thin solid lines show functions obtained by numeric integration of eqs. (1). Broken curves show the same functions constructed from formulae (5) and (6).

Figure 2. Graph of the dependence $y(x)$
The tabulated data show that analyucally calculated parameters of the optimal trajectory are determıned with errors of 1-2 \% .

Analysis of the curves in Figures 2 through 7 shows that numerically obtained functions $y(x), y(t), x(t), x(\theta), y(\theta), N(\theta)$ practically coincide with the same functions constructed from formulae (5) and (6).

Figure 3. (itaph of the dependence ${ }^{\prime}(t)$

Figure 4. Giaph of the dependence (t)

Figure 5. Graph of the dependence $1(0)$

Figure 6. Graph of the dependenee $v(0)$

Figure 7. Graph of the dependence $t(\theta)$

Figure 8 is an interesting geometric picture. If we use motion parameters L, H, x_{a} to construct the ABC triangle with the height $B B_{1}=L H, A B_{1}=\lambda_{1}^{2}, C B_{1}=\left(L-x_{1}\right)^{2}$, then in this triangle $\angle A \cong \theta_{0}, \angle C \cong \theta_{k}$.

Figure 8. Motion parameters
Thus, formulae (5) and (6) make it possible to calculate mann kinematical parameters of motion and analytically construel the most significant functional relationships of the problem directly from the known initial conditions of throwing $V_{0}, 0_{0}$ and factor k with an acceptable accuracy.

As a whole, the set of formulae (4-7) considerably widen, the possibilties of studying the problem of point mass motion with quadratic drag force and supplement numeric methods with the analytic ones.

References

[1] L. Eule in Research in Bullistos (ed) Eule L. (Firmatgir Moscow) p455 (1961)
[2] N de Mestre The Mathematic) of Irojecteles III Spert (New Yomb Cambridge Umversity) (1900)
13| R K Adar The Phyvic of Baseball (New Yoik Harper \& Row) (1リ90)
14] D Hart and T Croft Modelling with Projectilen (West Sibsex Ellis Horwood) (1988)
151 P S Chudinov J Appl Mathis. Mer his 65421 (2001)
16] P S Chudinov Intl. I Nonlın Sci Numet Sımulat 3 I2l (2002)
[7] C W Groetsch Am. J. Phys. 65797 (1997)
[8] R H Price and J D Romano Am. J Phys 66 109 (1908)
[9] 13 N Okunev Ballistle:s (Voyenizdat, Moscow) p 168 (1043)
[10] A Tan. (• H Frick and O Castillo Am. J Phys 5537 (1987)

