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Abstract

The problem of calculating the thermodynamic properties of polar fluid mixtures ol hard non-spherical molecules 1s studied.

Expheit analytic expressions for the virial coefficients and Helmholz frec cnergy are given. Numecrical results are estimated for the third vinal
welliient, equation of state and excess internal energy of quadrupolar hard gaussian overlap fluid mixtures They are found to depend on the

condions and shape parameters.
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The present work is concerned with the thermodynamic
properties of polar fluid mixtures of hard non-spherical molecules.
The hard Gaussian overlap (HGO) model has been used by many
authors for molecular fluids of hard non-spherical molecules
{1} This is because the HGO model has a close connection with
the kard ellipsoid of revolution (HER) and is a useful reference
system for molecular fluids of non-spherical molecules.

Considerable progress has been made in the study of
molecular fluids and fluid mixtures of the HGO molecules with
imbedded point dipoles and quadrupoles [2-4]. However, no
atlempt has been made to investigate the equation of state of

hard non-spherical molecular fluid mixture with electrostatic
mnteractions.

In the present work, we calculate the equation of state and
other thermodynamic properties of a polar HGO fluid mixture.
We employ the perturbation theory, where the HGO model is
taken as a reference and electrostatic interaction as a perturbation.

We consider a fluid mixture of non-spherical molecules
'Nleracting via the pair potential written as

“aﬁ(rw,a)z)=u;eco(ra),w2)+ufg(rw,wz), (1)
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where u:ﬂ(‘o is the hard Gaussian overlap (HGO) potential and
u‘ff, is the electrostatic potential acting between two molecules
of species @ and B. Here r =|r, —ry| is the centre-to-centre

distance and @, represents the orientational coordinate of
molecule i. The HGO potential is defined as

ugﬂo()(rwlwz)=“". r<0aﬁ(a)|w2),

=0, r<aaﬂ(w,w2). (2)
where O ,4(@,®7) is the distance of closest approach between
two molecules of species ¢ and B and is expressed in terms of
the Euler angles [5] as

Oqp(wwy)= O'gp[l - )(“,‘B(q.:os2 6, +cos’ 0,

5 ) -1/2
_2xaf,coselc0592coselz)/(l—xapcos Blz)] )]

Here agﬂ isa width and X qp is the shape parameter defined
by

Xap =(K§ﬁ—l)/(K§ﬂ+l), @)
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Kap being the length-to-breadth ratio of the molecule. The

effective values of 024, and K op between the HGO molecules
of unlike species can be given by |6]

o, = (o7, +0%,)/2, (5a)

K'2=(K“o(l)|+K.‘.2 ogz)/(a?,+a‘z’2), (5b)

u,t,} of eq.(1) 15 the electrostatic interaction due to the permanent
multipole moments | 1,7]

Uy (rww,) = (ﬂuﬂﬂ /’3) ¢”L4",(w,w2)+ (374 ;'2)
[“uQﬂ¢fzﬂ(wlw’)+#/1Qa¢:i}';( nwz)]

+(3/4)(Q, 0y / r*)0 5 (@,,). ©)

Here, @4 are angle-dependent part of interactions. (4, and
Q, are, respectively, the dipole moment and quadrupole moment
of a molecule of species o .

Using this division of the pair potential where the HGO

potential is taken as a reference, the perturbation expansion of
the residual Helmholtz free energy can be written as

[4-A*) NkT = ([A"50 — A*]7 NKT)+ (A5 1 NKT)

+{AFS I NKT)+..., 0)

where A* represents the Helmholtz free energy of an ideal gas
and A/G0 _ A the residual free energy of the reference (HGO)
fluid mixture. A is the n-th order perturbation term due to the
electrostatic interactions. Analytic expressions of A;° and
A{S are given by Gokhul and Sinha [4].

The total electrostatic contribution to the Helmholtz free
energy is obtained from the Pade’ approximant [8]

AA"S = ATV 1(1- A5 1 AF°). 8)

Then the total residual Helmholtz free energy of the polar
HGO fluid mixture is given as

[4-A*)/ NkT = ([A"90 - A*]/ NKT)+ (845 1 NKT). ©9)

The other thermodynamic properties such as the equation
of state P/ pkT and excess internal energy U — U* can be
obtained from the respective derivative of A,

The equation of state for the polar HGO fluid mixture,
obtained from eq.(7), can be expressed in the virial form i.e. in
the power of p ;

P/ pkT=A+Bp+Cp*, (10)
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where A = |, Band C are the second and third virial coelficien,
respectively. For the fluid mixture they are expressed as

B=Y x,x5B..
op (1h

C= Zxaxﬂxyca . s
a.fly (13

where x, = N, / N is the concentration of species ¢ .

In order to obtain expressions for B og 4nd Cpg, . the radial

distribution function (RDF) gég (r) of the hard sphere flud

mixture is expanded in powers of p as [9]

gég(r)=cxp[' m(r)] L+pY xyapp(D)+.. t

where a;'yf,(r) is the cluster integral for the hard sphere (HS)
mixture of the effective diameter duﬂ =K ;,;,3 aaﬂ andp=N/Y

1s the number density. An analytic expression for "ayﬂ( )
given by [10]

’”(r)_(zn/J)[d +d,,,) (3/4)( “’fir)"

+(1/8) P -(318)(dg, +dj, ) I

for daﬁ SrS(lay +dpy,
=0 for r>dy +dy +dg, . (14

Substituting eq.(13) in eq.(7), we obtain expressions for B,
and Cam . Thus, the second virial coefficient B 25 CAN be written
as

HGO
B, = Bug +Baﬂ+Ba,,+...._ (15

Here, B,Z,Go is the second virial coefficient of the HGO flud

mixture which is expressed as [11]

B0 = (1 D)[vg +va + Raly + RyLy (16)
giving
BH®C = v, + RL, = v [1+30,] (7
and
B9 = (1/12)[v, + vy + RiLy + Ry L]
=(1/2) Buco +(1/2)BHGO + ABHGO (18
with

AB = (3/2) v, [(Ry 1 R) - 1]+ (31 2)v,0,[(R, | Ry~ 1}(?
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tiere, R, is the (1/4m) multiple of the mean curvature
mtegral, L, the surface integral and v, is the volume of the
=R,L,/3v,
parameter of the molecule of species . B,",:ﬁ and BrJ!IJ are,

|c.~.pcctively. the second and third order perturbation terms due
10 the electrostatic interaction. They are given by

[1GO molecule of species a. a, is the shape

- —2n/3) g [(112) (g
+27140) (13 Qlp) 125 +(271228)(075) J,';;,] 20)

S =@nld) rf:',},[(‘) 164) (u:,;,)z (Q,:;;)(J},,'{" + J,',;J(Z))

*2 .3

‘(51/370)(H(x/1)(Qau) Jop +(91512) (@5’ 'Irzli‘l (e}

where
nn

m o 1Mt 1
o = ¢aﬂ ((01(02 )[cnﬂ (w 10> )/ oaﬂ]

. . ]
.“u;l = “rxuﬂ /kragﬁ ’

Q::/J QuQp /I‘Tdaﬁ

The third vinal coetficient can be expressed in a similar way

HGo

Copy = Cap” + Clpy + Cogy +- 2

where ((,,,y 1s the third virial coefficient of the HGO fluid

mnture, and C; oy and c ay are, respectively, the second and

third order perturbation terms due to the electrostatic interactions.

(',I,;;;U sexpressed as [11,12]

Ca® =3 [vavp +vpyy +vav, J4 [ra(Ryty + Ry L)

+p(Ry Ly + RaLy )+ vy (RaLy + Ry Lo )|
1D [RELpL, + RAL, Ly + R} Lo Ly))- 23)

e . . 2
I'he second order perturbation correction Cag, can be
Wiitten as

('f,,,, =-27/3) [a?,,,zv;ﬁ + a% Niﬁy + agy Nzay],
where
2 w3 \2 -« * 2 8 B
Nagy =[(#a§) I3 Y +(32pQun 12) Jop¥am

H30z5 14 115 v | @25)
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with

Yo = J'exp[ Pult (r*)]ag;},(r"‘)(r*)'"':dr* 26)

Here, a;ij;‘,(r*) is given by eq (14). Substuituting eq.(14) 1n

€q.(26), we can obtain Y, ayp forn20.

The third order perturbation correction C"‘:ﬂy can be written
as

Cﬂﬁr = Crvfr + Caﬁy , @n
where

1
ﬂﬂr —(7””)[ a/lNayﬁ +a,,y erﬁr +G(I)WN;MV] @8)

with
N(ly[l =l3{( ) ( Q afl /4)‘,('1/"“)
i) (3mp Qi /2 ) o' } s

+3(u;i,)(3Q,‘,f,/4) I Yo +(‘$Quﬂ/4) I Y”] (29)

Coy =(sn3/3)(aa,, ol o ')[(u“};uuyu' )1‘;;;;“

+3(u:j, Mgy (3Q;nz' / 4)) r‘:;#)
w30 1 4) 305 /4)) T

(30 14)0n /) Bes 14)TSC] oo

where

T = H My exp|-Blull )+ UR (r30)

“"“::-lyb('l; )}]('1.:)_’H l ("2’3)%‘ l(’l',\)*’m d’l.’.'. ‘1"1‘3 d’fz » (3

M = @amy7 ([ ¥ap(0,02) ¥hy (0,0) P4 (0,0,)
dw,dw, dw, (32a)

and
Yo (w,w!) = .;)m!,(w,wJ )[oaﬁ(w,wj)/a',’,ﬁ]_"”. (32b)

Here, A denotes integration over r,,, r; and r; . which
form a triangle. It can be approximately written as [4)
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Yop(0.))~ K" l’”d)”ﬂ(m,m,). 33)

Under this approximation, eq.(31) can be written as

mup

Lo 20y (=20 Vg ~( '-2/‘
u/l,r ~ Au/l " K Ko™ (34

p ay Ty (HS).

,-ump
afly
(HS) fluid mixture We adopt the van der Waals one (vdW 1)

flurd theory of mixture [0,13]. which approximates the properties
of a mixture by those of a fictitious pure fluid with the interaction

(HS) is the three-body integral for the hard sphere

parameter
\
0(‘) = Z“u ‘/lo:)(ﬂ - (35)
afl
Then T, (HS) can be expressed as
nmp 0 n-2 0 m 2 p-2
T (1) = (aby 104) (a%, 104)" (oh 1ay)
um/b( ’Ig) (3())
The values of T (HS) for p-p—p, pp-pu- Q. u-Q-Q

and Q-Q-Q interactions may be obtained by the method of
Larsen er al | 14]. Thus, the results are

'rlli';lp - K (u tm /:)Ih,lwunp( HS). (3711)
el =(n-2 seAnitp L
I = "n‘" ,”I\l.’.( N 4)”((’n /Uu)
m+ p -4
", /m.)( e s, (37b)
Tln:/gp _ K”(nt/n 4)/1,\,1-:::“ 3)/1(0(2)1/00)'
np-4)
(0% ray) """ Ty s, (37¢)
l‘.’!,":ll - K:_{“ bmip) /342 ‘Iv(;nup( HS). (37d)
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where | 14)
T3 (HS) = 0.0235,

T/*¢(HS) = 0.0118,

T2 (HS) = 0.0118,

7L (HS) = 0.0155.

The knowledge of Bi/s and Ba,, . and C(,,p and (“m
allows us to wiite the Pade' approximant |8]. which may be
employed to determine the whole polar contribution to the viryy)
coetficients.

We first calculate the third virial coefficient of the mixtuie of
hard dumbell (HDB) (with the site-site elongation L* = (L /6, )

n

When applying the proposed theory, we first define jhe

corresponding HGO, for a given HDB, such that ‘7//: = "wa‘

and vy e

(711 6)K 0 = (1 0)0 g1+ 31712 L. 12] i

From this, one abtains K for a given value of L*. We employ
DB
afly
muxture of the HDB. They are compared with the “exact' simulation
data |11,15])1n Table 1. The agreement is fairly good except when

L* s large (re. L¥ = 1.0).

¢q.(23) to calculate the third vinal coefticient € for the

Next, we apply the theory to calculate the third vinul
cocfficient C fly for some polar hard Gaussian overlap muxtures
such as binary mixture of (1) hard Gausian overlap (HGO) and
dipole hard Gaussian overlap (DHGO) (u, = 0, g, = p and ¢,
=@, =0) and (i1) hard Gaussian overlap (HGO) and quadrupole
hard Gaussian overlap (QHGO) (4, = ft, =0 and @, = 0.
@, = Q). In both these cases, the clectrostatic contribution (o
C,,, and C,,, arc zero, while finite and negative for C,,, and
Con

-

Table 1. Companison of the third viral coefficient €, Irr?," of mixturc of the hard dumbell

(7 1,70%) wih exact results

Condiwion  [5/1 (DB gb) ¢l a0 cHow g% Clbe 1 69
Theory Exact  Theory Exact  Theory Exact  Theory Exact
ali=a)y 06/00 1017 1064 642  6K2 405 434 274 274
06/03 1017 10064 8 47 878 719 722 598 5.93
10700 1343 18 68 7 82 9 88 4.80 522 274 274
10706 1343 1868 12.21 1547 11.19 1285 1017 10.04
=0 06/00 552 577 520 5.43 5.00 508 4.78 478
10700 645 8.08 6 04 7.50 5.63 6.29 5.27 5.27
v (27306700 349 365 4 44 4 54 539 5.57 679 6.79
1.0/00 405§ 504 507 6.24 602 6.85 7.44 7.44
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We have calculated Cog, for mixture of (i) HGO and DHGO
_nd () HGO and QHGO, having the same diameter is ‘7?1 =o°

1hey are reported in Figures | and 2 as a function of WxQ*?
fo /\'l / K: = 1792/[0 und 1792/1436. l'cspccti\/cly. (‘“l and
(. dunot depend on g ** /Q*?* and not shown in figures.
while €5, and €y, decrease with increase of g ** 70 *? and
Jhown in figures.

B
74 ceea,

.

o

Cin i,
o - N Wb ;

PR

(9}

3

3

0 025 05 075 1 125 15 175 ¢

Vieure 1o The thind vinmal cocefficient Copy ot the binaty miature of
160 and DHGO wih o = a9, as a funcuon of u** The dotted line
Ay /Ky = 17921436 and thick ne K, /A, =1792/10

il Wil

0 025 05 075 1 125 15 175 2
Q.I
bigure 2. "The third viral coctficient Cupy ©f the binary muxtuie of HGO
ad DHGO with a(l), - oc_.'l as a function of Q** Kcy parameters aic same

o Fgae |

Neal, we estimate the thermodynamic properties of the
inture of the HGO ad QHGO (u,; = 4, =0 andQ,=0.Q,=Q).
For this, we furst consider the HGO fluid mixture.

Singh et al [6] used the extended van der Waals one (vdW 1)
llud theory of mixture, which approximates the properties of a

Mizture by those of a fictitious hard-body fluid with the
pirameters

Vo = 2 Xa Xg Vap . (3%9)
ap
vk (x) = E-xaxpvaﬁFer ’ (39b)
af

Incase of the HGO fluid, Vop = nog;, K/6 and

T 4
Fa=(1-22) [1-0/6) 235 - 17400 1y

(1256, (40)

In the vdW I fluid theary of muxture, the pressure of the HGO
fluid mixture can be given by 6]

P 1 kT = 14 (2 (2= np) /(1 =7, ') FO). @)

where

No = Pvy = I’E Xee Xy Vo

aff (42)

which can be expressed for a binary mixture as

Ny = '1[' 209 (2vyy = vy = v )/ (v + "3"12)] (43)

with

=PV + 4uva) (44)

Boublik and coworker | 11,12] derived another expression for
the equation of state for the HGO mixtures

PO kT = 1101 -m+rs/pdl-n)°

Has?( -2m+ e 0] 3pa -, @5)
where
) = Ep“ R, = pz AqR,,
» p
q= 2 P R: = PZ'\‘u R (46)
o (z

§= ZpuLu = pzxul‘u*

Table 2. The cquation of state, P/ pAT of the equimolar mixture of HDB
under ditferent conditions

Condiion /15 P1phT
Eq41)  Eq (45) Exact
ol ~o% 06700 030 414 4.13 420
0.45 930 9 80 1015

06/03 030 422 4.10

045 10 07 968
v, = v 06/00 030 439 419 425
045 10 85 9.47 10.27
¢6/03 030 4.28 423 430
045 10.28 10 08 10.52

To test the accuracy of the theory, we first calculate the
equation of state P/ pkT of the equimolar mixture of the HDB
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using eqs.(41) and (45) for (1) o'” = a,, and (1i) V= V. The
calculated results are compared with the ‘exact’ simulation data
[11,15] in Table 2. The agreement with the simulation data is
good. The results obtained by eqs.(41) and (45) are comparable
to each other In Table 3, we compare the equation of state
P/ pkT of the equimolar mixture of hard sphere (HS) and prolate
spherocylinders (PSC) with ¥y = 2 obtained with eqs.(41) and
(45) with the ‘exact’ simulation data [ 1 1,10]. The results obtained
by eq.(45) are in better agreement with the simulation results.
We use eq.(45) for further calculation in the present work.

Tuble 3. The cquation of state, P/ pk7T ol the cquimolar mixture of hard
sphere and prolate spherocylinders with y = 2

Conditions Pl pkr
Eq (41) l:q (40) Exact
ol - ol 020 203 251 250
030 4 40 419 411
040 790 7135 731
045 10 77 997 9.87
Viiy = Vpsc 020 268 253 252
0130 402 426 420
040 8 40 779 739
045 1163 10 10 10 22

‘Table 4. Contnbution of quadrupole nteractions to the Helimholts free
cnergy of equimolar mixtuies ot the HGO and QHGO under different
condiion at n = 030

Q™ ) A,/ An Ayl AApade/
NkT NKT NkT NKT NkT
Ul —0y e s ey
050 -0 4970 00314 0.0003 00317 -0.4672
1 50 -4 4729 0 8477 0.0091 0 R568 -3 7538
V=V, K /K,=179210

0.50 -0 7540 00314 0 0003 00317 -0 7236

150 -0 7857 08477 00091 0 8568 -6 0250
0¥ =ad K, /K, = 179214365

050 -0.1804 00034 0.0004 0 0038 -0 1767

150 -1.6234 00921 00111 0.1032 -152064
vo=vy, K /Ky = 17921 4365

050 -0 2094 0.0040 0 0001 0 0041 0.2054

1.50 -1 8848 010706 0.0039 0.1115 -1.7795

We estimate the contribution of the quadrupole interaction
to the Helmholtz free energy of the equimolar binary mixture of
the HGO and QHGO under two different conditions namely (i)
when the diameters of each species are same (1.e. of| = 63, )
and (1i) when volume of each species are same (i.e. v, = v,). The
results for n =0.30 are shown in Table 4. The magnitude of the
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perturbation terms increases with increase of Q*2. From the tabye
we find that the series 1s fast convergent and A << A3, When
AA 4. | NKT is calculated with and without A4 term, the erpy

15 less than 1.0%. However, the relative contribution of the A,
term increase with increase of Q*2.

We have calculated the equation of state P/ pkT of (he
equimolar mixtures of the HGO and QHGO with Q**= 1.0, 'l‘hc
are demonstrated as a function of n in Figure 3. for (1) o, - !,
and (i) v, =v, at K, /K,, =1.792/1.0 and 1.792/1.430. The
value of P/ pkT increases with increase of .

9 -
7.5 4 .t
6 1
45 4
3 4
1.5 4

0 v r
0 015 02

P/ckT

V, =V,

r—

045

025 03 035 04

Figure 3. The equation of state P/ pkT of the equimolar mixtuie of
HGO and QHGO with Q" = 10 as a function of 1 Key parameters an
same as i Figure |

In Figure 4, the excess internal energy (U - U*)/NKT ol the
equimolar mixture of the HGO and QHGO with Q*2 =1 0 are
reported as a function of n . The magnitude of (/- U, ,)NAT
increases with increase of n.

HGO

035 04 045

025 03

0 015 0.2
n -
Figure 4. The excess internal energy ({/-U*) / NKT of the equimolat
mixture of HGO and QHGO with Q' = 10 as a function of 1 Key
parameters are same as in Figure |

The purpose of this work has been to develop a theory for
evaluating the virial coefficients and thermodynamic properties
of the polar HGO fluid mixtures. We have employed the
perturbation theory where the HGO fluid mixture is taken as &
reference and perturbation terms as a correction. We have
derived explicit expressions for the virial coefficients and
Helmholtz free energy for the polar HGO fluid mixtures. It 15
found that the contribution of the multipole interactions depends
on the conditions, the shape parameter K and the concentration

x|, X, in general and on the packing fraction 7 in particular
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