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Planetary orbits around a spinning gravitating star
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A b s t r a c t  I t is  a n  e m p i r i c a l  f a c t  b a s e d  o n  s o l a r  p h y s i c s  o f  s u n s p o t s ,  th a i  o u r  s u n  a n d  g e n e r a l ly  s ta r s  a r e  s p in n in g  g r a v i ta t io n a l  s o u r c e s  f o r  b o d ie s  

in o rb it in a n y  s u c h  s o l a r  s y s t e m .  T h u s ,  a  p l a n e t a r y  t h e o r y  f o r  th e  g r a v i t a t i o n a l  f i e ld  o f  a  s t a r  o r  a s a t e l l i t e  d y n a m i c s  a r o u n d  a  ( s p i n n i n g )  p l a n e t  -  

m d u d iiig  th e  p r o b le m  o f  a r t i f i c i a l  s a t e l l i t e s  -  s h o u l d  in  p r i n c i p l e ,  t a k e  i n to  a c c o u n t  th e  p o s s i b l e  e f f e c t  o f  a x i a l  s y m m e t r y .  B u t  to  t h e  b e s t  o f  o u r  

know ledge, e x i s t in g  f o r m a l i s m s  o f  g r a v i t a t i o n  p h y s i c s  d o  n o t  a d d r e s s  th e  p r o b le m  o f  s p in  r e f e r r e d  to  a b o v e  T h i s  p a p e r  p r o p o s e s  th e  f o l l o w i n g  s t r a t e g y  

lo handle th is  k in d  o f  c o m p u ta t io n a l  p h y s ic s .  O u r  c a l c u l a t i o n s  s u g g e s t  th a t  th is  k in d  o f  s p in  s h o u ld  g iv e  r is e  to  a  s l ig h t  r e s id u a l  p e r t u r b a t io n  o n  c o n s t a n t  

j a a l  v e lo c ity , c o m p u te d  b y  th e  s t a n d a r d  m o d e l  o f  o r b i t a l  th e o r y .  In  p a r t ic u la r ,  th e  s e c o n d  la w  o f  p la n e ta r y  m o t io n  m ig h t  r e q u i r e  r e v i s io n .  A ls o ,  it tu r n s  

oiK dial Ihc c l a s s i c a l  r e s u l t  o f  K e p le r  is  r e c o v e r a b l e  f r o m  o u r  r e s u l t  a s  a s p e c i a l  c a s e
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1. Introduction

Spin of physical systems, even in the classical sense, continues 
ti) offer newer surprises to workers in the field of physics. One 
nt ihese phenomena is related to solar physics. After having 
been practically ignored for more than two centuries, a long 
series of observations of the apparent motion of sunspots, 
beginning somewhere around 1850s, has established the 
problem of solar spin as an independent active area of study in 

own right. It is by now confirmed that the outer visible 
envelope of the sun does not rotate like a solid body. 
Astrophysical observations show that a typical sunspot takes 
about fourteen days to cross the solar disc and that this time is 
ibe same whether the spot passes through the centre of the 
ôlar disc or along a shorter path at some distance from the 

centre. Of course, the rate of motion of a particular spot is by no 
^eans uniform, it always appearing much slower when near the 
ĉ>lar limb than when near the centre. As such, different sunspots 

different periods of spin atid the period of solar spin varies 
a function of heliocentric latitude <P, given by ^ « (14.37 -
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sin̂ '̂̂  (p) degree / day for the diurnal angle ^ of solar spin, the 
spin period being minimum at the equator and increasing 
gradually towards the poles. After correction for the annual 
motion of the earth around the sun in the ecliptic, a mean period 
of 24.96 days at the solar equator has been derived.

The existence of solar spots [1.2] convincingly establishes 
the phenomenon of axial spin of our sun. This solar physics of 
spin gives birth to an important problem in celestial mechanics 
which lies heretofore unattended. Thus, a planetary theory for 
the gravitational field of a star or a satellite dynamics around a 
(spinning) planet -  including the problem of artificial satellites, 
should in principle, take into account the possible effect of axial 
symmetry. Such a relativistic correction of standard theories of 
classical mechanics can no more be ignored [3]. This is amply 
demonstrated the scries of 1997 resolutions and decisions of 
the Commission 7 of International Astronomical Union (lAU) 
on Celestial Mechanics and Dynamical Astronomy [4].

But to the best of our knowledge, existing formalisms of 
gravitation physics do not address the problem of spin referred 
to above. The work reported here proposes the following 
strategy to handle this kind of computational physics. As is 
well known, from the viewpoint of symmetry structure of space-
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times, effects of gravitational field of any spinning source on its 
attendant satellites in their respective orbits may be computed 
and modelled using a class of axisymmetric manifolds 
possessing stationarity.

The plan of the paper is as follows. In Section 2, considering 
a specific class of axisymmetric stationary solutions of Einstein 
field equations, we work out orbit equations in the context of 
the space-time manifolds mentioned. Next, in Section 3, we derive 
an interesting application of the modified Keplerian second law 
(MKSL) in a central force field. Finally, Section 4 comprises a 
summary and further research directions.

2. Perturbations on orbital motion due to the spin of the central 
gravitating source

An incorporation of the spin correction in orbital theory needs 
to be carried out in the framework of modern gravitation physics 
[5,6]. This means what would solve the problem is the choice of 
the class of all axisymmetric spacetimes. As a test case and for 
the sake of mathematical tractability, in an earlier paper we 
considered the needed incorporation of spin correction [7] in 
the class of axisymmetric space-time manifolds possessing 
staticity, first studied in [8]. To be able to interpret things 
physically, we carried out the analysis of orbital evolution 
equations by invoking the concept of relativistic multipole 
moments of the gravitating source as a perturbation on static 
axisymmeu-ic space-times.

However, what is nearer the ground reality is the class of 
axisymmetric stationary fields studied in relativ istic 
gravitodynamics (ROD) [9]. Now an attempt to incorporate the 
effects of the spin of the central body of any solar system into 
orbit calculations of a satellite or planet immediately confronts 
us with the problem of seeking an exact solution of Einstein 
field equations of gravitation for a reasonable stress-energy

tensor figuring in these field equations. In RGD, a
determination of such an exact solution, either the interior or the 
exterior gravitational field representing even a uniformly rotating 
homogeneous inviscid fluid mass, presents formidable problems. 
Even today, one is far from finding such an exact solution, if one 
exists in the case in question. In general, finding exact solutions 
of Einstein field equations for well-defined physical situations 
is extremely difficult and few such solutions are known. In fact, 
gravitational field of a uniformly rotating bounded source must 
depend on at least two variables. But finding any solutions of 
Einstein field equations depending on two or more variables is 
quite difficult, let alone a physically interesting one.

An important aspect of this difficulty is this. An essential 
property of a physically significant solution representing the 
exterior field of a bounded spinning source is that it should be 
asymptotically flat. It is because the gravitational field (due to a 
source with nonzero mass) tends to zero mass as we move further 
and further away from the source. However, no interior solution 
has yet been found which matches, on the boundary of the

gravitating source, smoothly onto the exterior solution 

possessing the property of asymptotic flatness. Although 
several stationary axially symmetric exact solutions of Emsiem 

equations are known, very few of these are asymptotically flat 
Thus their physical interpretation is uncertain.

Another desirable property of a physically relevant 

asymptotically flat solution of field equations of gravitation is 
that when the angular momentum of the source producing the 
field tends to zero, the solution tends to Schwarzschild solution, 
representing the exterior field of a spherically symmetric source 
This behaviour is what we would expect for relativistic stars, 
because for the latter the departure from spherical symmetry is 
usually caused by spin and if the spin vanishes we would get a 
spherically symmetric star, whose exterior field is a Schwarzschild 
solution. What we, therefore, need is a vacuu^ asymptoticiilly 
flat rotating solution of Einstein field equationp possessing the 
property that it reduces to a class of spherically symmetiic 
metrics in the limit of zero angular momentum.

The stationary spinning vacuum space-time in Boyer and 
Lindquist coordinates [ 10] is

ds ®ds 2  {l - 2 Mx 'a '^ )dx“ ®dx° - 4aMx' sin^ &d̂

-{2a}M x^ x^A  '+ | + a ^ \ % \ r }  x ^ d x ^  ® d x ~

-A (A ''dx^ ®>dx' +dx^ ®dx^),

where

A s  cos^ A s  “ 2A/jc‘

and the coordinate identification goes as follows ;

sf, .)c‘ s r ,  x^=q>, jc^s0 . (31

In eq (1). we interpret M  and Ma as mass and angular 
momentum. The above dass of space-times was first obtained 
in Kerr [11] by an approach involving a formal classification ot 
symmetries [12-15]; a simpler approach to this kind ol 
classification is provided in [16,17].

Let us now consider the motion of a test object, with a rest- 
mass m, along a trajectory in the external gravitational field of <i 
spinning gravitating source. In general, time-like geodesics, even 
in the space-time slice t = [constant] are fairly complicate 
because the field has no spherical symmetry. Evolution equations 
for test objects are Hamilton-Jacobi equations.

dS d S

dx^
(4)

H being relativistic superhamiltonian, S(x")  relativist'̂  
Hamilton-Jacobi function, and the rest of the nomenclatut  ̂
having the conventional connotation. Plugging tn®‘̂
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components from eq. (1) in the above equation yields

1 1 dS
---- i"  7 7 sin* jc*
2 4* sin* x^ d x- dx°

1 4  r  ^5 Y  1 1 r  55
^ 2  4 * l5 x *  J ■'2 4 * l5 x * (5)

d x ' (7)

= J  C - c o s * x * |a * ^ m - £ * j  + - 7̂ |— i d x

1/2

sin* G I

where

C = +cos^ - £ ^ )  + sin ^

(8)

(9)

gravitating star 

stationarity:
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Now, this equation does not have any explicit dependence 
on T,.x̂  or and so the solution S(jc“ ) of the equation must 
assume the following form :

= Ex^ + + Si(jĉ ) + 53(jĉ ), (6)

where the integral of motion E is energy of the orbiting celestial 
body relative to an observer at large distance from the gravitating 
source being considered and is the integral of motion 
representing the projection of angular momentum of the celestial 
object onto the spin axis of our gravitating source. Plugging the 
.V just written into the preceding equation and invoking the 
familiar principle of separation of variables leads to the following 
two separated equations :

= J 4 - ‘j £ |( j c ') % f l *  J -

-4 |rti* (jc 'j + ( L , - a £ ) “ + c j j

j  3
C -co s* x * ^a* (m -E * ) + — , (lla) 

dz  1 sin^ 0 1

-4 |m *(jc‘) '+ ( L ; - a £ ) * + c |J  , (Ub)

dx
a E -

dr sin jc"
'* { £ |( x ') '+ « * } L ,a ] .

(11c)

= -a(aE  sin* -  L ,) + -^ 
dx * A

E ^[x^ f + a^^U a  .(Hd)

Taking into account the space-time slicing (i.e. setting / = 
[constant]), let us now consider the motion of the satellite object 
with respect to a rigid lattice of the chronometric reference frame 
described by the space-time chart (3). We can assume that motion 
takes place in the equatorial plane {x^ ^ 9 - n i l )  .In this case, 
eq. (1 la) does not give us any worthwhile information except 
saying that the constant C gets a specific value. On the other 
hand, eqs. (1 Id, c) can be employed to look into the structure of 
orbits of objects executing motion in the gravitational field 
described by eq. (1). Work on this aspect of the problem is in 
progress at present. As regards eq. (lib ), as we shall see in 
Section 3, it sheds new light regarding conclusions of Galilei- 
Newtonian (GN) orbital theory.

3. Modification of Kepler's second law and applications

Let us look at possible consequences of the modification of 
classical orbital theory obtained in Section 2. Notice that in the 
equatorial plane, eq. ( lib )  assumes the following form ;

J*eparation-of-variabIes constant, p  being the jc^-component 
momentum of the heavenly body in question. Thus, feeding 

these values of S in eq. (6), equations describing the orbit of the 
c^'estialobject or satellite under investigation arc [18]

dS dS dS ^

Performing the needed differentiation and judiciously 
“ mbining things, yields the following four evolution equations 

motion in space^time regions possessing axisymmetry and

d x  ~  4

laME
(12)

This shows that aerial velocity is not, in general, constant 
due to spinning gravitating sources as described by vacuum 
gravitational field solutions given by eq (1), again in contrast to 
the case of Schwarzschild class of space-times currently used 
for orbit calculations, for instance those required in the 
construction of ephemerides and nautical almanacs. If we set a 
= 0 in the preceding equation, the result is

/ I \2 dx^
d r

(13)
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In other words, areal velocity becomes constant on setting 
solar angular momentum equal to zero, a situation not 
corroborated by astrophysical observations and 
experimentation. The calculations therefore, show that if we 
incorporate the contribution of spin of the central gravitating 
body in orbital calculations, a residual slight perturbation on 
the standard constant areal velocity should exist. In particular, 
the second law of planetary motion requires a revision. However, 
it turns out that the classical result of Kepler is recoverable from 
our result as a special case.

To be able to appreciate the need for the revision suggested 
by the new perturbation considered here, we need to look into 
the genesis of orbital theory. As we know, orbital mechanics of 
solar systems, stellar systems (like our own Milky-Way Galaxy), 
galaxy clusters, etc is essentially based on celestial mechanics. 
But this whole edifice presently rests on the conventional 
(empirical) Keplerian laws, based on Brahe's planetary 
observations that describe motion in unperturbed planetary 
orbits [19]. Moreover, when we refer to Keplerian orbits, we 
implicitly a.ssume that masses of planets are truly negligible and 
that Kepler's so-called laws are exact. In fact, however, with the 
exception of two-body motion (an n-body problem for the 
specific subcase of n = 2), astrodynamical problems are, 
generally, incapable of exact analytical solutions [20].

Due to the difficulty of absence of an exact solution to 3- 
body and, generally, n-body problem, one often tries to exploit 
the method of two-body problem ; this is particularly true for 
applications of standard GN-theory. The same difficulty is 
perhaps also responsible for the popular misconception that 
planets of our solar system have constant areal velocity. In fact, 
however, staying right in the framework of GN-theory, if we 
switch from the two-body problem to even the restricted three- 
body problem, areal velocity turns out to be nonconstant in 
general. This situation nicely compares with our finding of the 
general nonconstancy of the aerial velocity (MKSL) in relativistic 
astrodynamics.

Confining, for the moment, again to the specific context of 
solar system, note that eq (12) can be written as

^ 2  [x' -2 M ]u + 2 a M E

d x x ‘4
(14)

Again, as we know, the radial and transverse components of 
the central force are as follows :

F j,-m
dr^

-  JC
d r

d r d r

(15)

(16)

Sandwiching eqs. (14) and (16) together then yields 

Ft ^O.

This shows that in the new development presented in Section 
2, the transverse component of the force field is nonzero, m 
contrast to the GN-physics wherein such a component vanishes 
In particular, the transverse component of the central force field 
docs vanish if we neglect the spin of the gravitating source. li 
suggests that the inverse square law, as generally employed in 
GN-physics, needs a modification (even in non-quantum settings 
and situations where in Yukawa potentials may not apparently 
have applications).

To sum up, the preceding calculations and inferences flowing 
from them suggest the need for a new experimciital test of the 
GN-orbital physics to check the contribution of^ixisymmetric 
nature of the gravitational field to the overall gravity sensed bv 
an orbiting object. Recent advances in technology promise to 
provide high enough precision of the order of 10’® [2l ]. to design 
such experiments.

4. Summary and future directions

As shown in Section 1, the issue of enhancing our ability to 
carry operations into the interplanetary environment lor jobs 
like utilising the material and energy resources ol space and 
improving our ecosphere and biosphere, signals a paradigm 
shift in the current space science programmes. Clearly, this rests 
among other factors on the fundamental framework for launching 
artificial satellites and space probes in various kinds of orbits as 
envisaged by the current and future space science missions ol 
various countries. As shown in Section 2, although Keplerian 
laws of GN-physics have had fundamental place so far, they arc 
not altogether immutable and require a revision especially m  the 
light of modern gravitation physics and in particular, the new 
perturbation, the spin of the central gravitating body, controlling 
the orbital motion of the attendant objects.

Section 3  provides an immediate application o f  the  
modification (MKSL) obtairtSd in Section 2. Yet another facet of 
MKSL emerges from the fact that the existence of non-zero 
transverse components of the force is mathematically equivalent 
to the existence of a third body in the physical system being 
considered (a problem which is examined in another paper by 
us). The work presented here could also be of relevance to 
things like Global Positioning System (GPS) research and to the 
methodology of preparing more reliable nautical almanacs and 
ephemerides for geophysical surveys, geodesy work, terrestrial 
and space navigation, which are currently prepared at wtrrld 
observatories without taking the mentioned perturbation into 
account. More fundamentally, cumulative eff^ects due to spin 
may make motion of an orbiting object chaotic, stochastic, 
cascade, dump, or oscillatory in nature, which needs to he 
investigated. Spin may influence the velocity, distance from the 
central source, and perhpas length of the year too for the test 
object. Even phenomena like precession and mutation of celestia 
objects and prediction of eclipses might need a fresh chec
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Thus apart from various lines of investigation already indicated 
Section 3, there are a host of further open problems to look 

into for a sensible rehashing of existing basis of space science 
investigations under newly emerging economic secnarios around

1(1 globe.
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