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Abstract It 15 an empirical fact based on solar physics of sunspots, that our sun and generally stars are spinning gravitational sources for bodies

m orbit 1n any such solar system. Thus, a planetary theory for the gravitational field of a star or a satellite dynamics around a (spinming) planet —
mcluding the problem of artificial satellites — should 1n principle, take 1nto account the possible cftect of axial symmetry. But to the best of our
knowledge. existing formalisms of gravitation physics do not address the problem of spin referred to above This paper proposes the following strategy
W handle this kind of computational physics. Our calculations suggest that this kind of spin should give rise to a shght residual perturbation on constant
areal velocity, computed by the standard model of orbital theory. In particular, the second law of planetary motion might require revision. Also, it turns

out that the classical result of Kepler is recoverable from our result as a special case
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1. Introduction

Spin of physical systems, even in the classical sense, continues
W offer newer surprises to workers in the field of physics. One
of these phenomena is related to solar physics. After having
been practically ignored for more than two centuries, a long
series of observations of the apparent motion of sunspots,
hL’glnning somewhere around 1850s, has established the
problem of solar spin as an independent active area of study in
'y own right. It is by now confirmed that the outer visible
envelope of the sun does not rotate like a solid body.
Astrophysical observations show that a typical sunspot takes
about fourteen days to cross the solar disc and that this time is
the same whether the spot passes through the centre of the
solar disc or along a shorter path at some distance from the
centre. Of course, the rate of motion of a particular spot is by no
Means uniform, it always appearing much slower when near the
Wlar imb than when near the centre. As such, different sunspots
Bive different periods of spin and the period of solar spin varies
afunction of heliocentric latitude @, givenby & = (14.37 -
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sin™ @) degree / day for the diurnal angle & of solar spin, the
spin period being minimum at the equator and increasing
gradually towards the poles. After correction for the annual
motion of the earth around the sun in the ecliptic, a mean period
of 24.96 days at the solar equator has been derived.

The existence of solar spots [1, 2] convincingly establishes
the phenomenon of axial spin of our sun. This solar physics of
spin gives birth to an important problem in celestial mechanics
which lies heretofore unattended. Thus, a planetary theory for
the gravitational field of a star or a satellite dynamics around a
(spinning) planet - including the problem of artificial satellites,
should in principle, take into account the possible effect of axial
symmetry. Such a relativistic correction of standard theories of
classical mechanics can no more be ignored [3]. This is amply
demonstrated the series of 1997 resolutions and decisions of
the Commission 7 of International Astronomical Union (IAU)
on Celestial Mechanics and Dynamical Astronomy [4].

But to the best of our knowledge, existing formalisms of
gravitation physics do not address the problem of spin referred
to above. The work reported here proposes the following
strategy to handle this kind of computational physics. As is
well known, from the viewpoint of symmetry structure of space-
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times, effects of gravitational field of any spinning source on its
attendant satellites 1n their respective orbits may be computed
and modelled using a class of axisymmetric manifolds
possessing stationarity.

The plan of the paper is as follows. In Section 2, considering
a specific class of axisymmetric stationary solutions of Einstein
field equations, we work out orbit equations in the context of
the space-time manifolds mentioned. Next, in Section 3, we derive
an interesting application of the modified Keplerian second law
(MKSL) in a central force field. Finally, Section 4 comprises a
summary and further research directions.

2. Perturbations on orbital motion due to the spin of the central
gravitating source

An incorporation of the spin correction in orbital theory needs
to be carried out in the framework of modern gravitation physics
[5. 6]. This means what would solve the problem is the choice of
the class of all axisymmetric spacetimes. As a test case and for
the sake of mathematical tractability, in an earlier paper we
considered the needed incorporation of spin correction [7] 1n
the class of axisymmetric space-time manifolds possessing
staticity, first studied in [8]. To be able to interpret things
physically, we carried out the analysis of orbital evolution
equations by invoking the concept of relativistic multipole
moments of the gravitating source as a perturbation on static
axisymmetric space-times.

However, what is nearer the ground reality is the class of
axisymmetric stationary fields studied in relativistic
gravitodynamics (RGD) [9]. Now an attempt to incorporate the
effects of the spin of the central body of any solar system into
orbit calculations of a satellite or planet immediately confronts
us with the problem of seeking an exact solution of Einstein
field equations of gravitation for a reasonable stress-energy

tensor T‘w(x") figuring in these field equations. In RGD. a

determination of such an exact solution, either the interior or the
exterior gravitational field representing even a uniformly rotating
homogeneous inviscid fluid mass, presents formidable problems.
Even today, one is far from finding such an exact solution, if one
exists in the case in question. In general, finding exact solutions
of Einstein field equations for well-defined physical situations
is extremely difficult and few such solutions are known. In fact,
gravitational field of a uniformly rotating bounded source must
depend on at least two variables. But finding any solutions of
Einstein field equations depending on two or more variables is
quite difficult, let alone a physically interesting one.

An important aspect of this difficulty is this. An essential
property of a physically significant solution representing the
exterior field of a bounded spinning source is that it should be
asymptotically flat. It is because the gravitational field (due to a
source with nonzero mass) tends to zero mass as we move further
and further away from the source. However, no interior solution
has yet been found which matches, on the boundary of the

gravitating source, smoothly onto the exterior solutiop
possessing the property of asymptotic flatness. Although
several stationary axially symmetric exact solutions of Einsten
equations are known, very few of these are asymptotically fl
Thus their physical interpretation is uncertain.

Another desirable property of a physically relevan
asymptotically flat solution of field equations of gravitation
that when the angular momentum of the source producing the
field tends to zero, the solution tends to Schwarzschild soluton,
representing the exterior field of a spherically symmetric source
This behaviour is what we would expect for relativistic stars,
because for the latter the departure from spherical symmetry 1,
usually caused by spin and if the spin vanishes we would get
spherically symmetric star, whose exterior field is a Schwarzschild
solution. What we, therefore, need is a vacuurp asymptotically
flat rotating solution of Einstein field equations possessing the
property that it reduces to a class of sphcrié\ally symmetiie
metrics in the limit of zero angular momentum. '

The stationary spinning vacuum space-time in Boyer and
Lindquist coordinates [10] is

ds @ds = {l —2Mx'A™! }dxo ®dx® - 4aMx' sin? 2> A dx’ @d,
2 .2 - 2 2
—{Za“Mx'sm“ A '+(x') +a2}5|n2x3dx2 ®dx-

—A(A 'dx' @dx' +dx} ®dx?),
where

2.3

A=) +atcos?x®, A=) -2Mx'+d’, (O

and the coordinate identification goes as follows :

it, x'=r, xzs(p, x}=6. k)

In eq (1), we interpret M and Ma as mass and angular
momentum. The above ctass of space-times was first obtained
in Kerr [11] by an approach involving a formal classification ol
symmetries [12-15]; a simpler approach to this kind of
classification is provided in [16, 17].

Let us now consider the motion of a test object, with arest
mass m, along a trajectory in the external gravitational fieldofa
spinning gravitating source. In general, time-like geodesics, ¢¢"
in the space-time slice ¢ = [constant] are fairly (:Omphcialcd
because the field has no spherical symmetry. Evolution equations
for test objects are Hamilton-Jacobi equations,
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components from eq. (1) in the above equation yields

{(x')2 +a2}£+aa—s

dax! ax?

s 11
2 A4

1 1

, dS

S . 2
Sy tasin® xt

2 Alsin® x? 9x® dx

2
14 ( ds ) .

2 A% ax?
Now, this equation does not have any explicit dependence

on 7,x" orx?, and so the solution §(x*) of the equation must
assume the following form :

11(as™
275 ®

1
S(x'x%) = -2—m2‘t - ExX"+ Lx* +5,(x" )+ 5%, (6)

where the integral of motion E is energy of the orbiting celestial
body relative to an observer at large distance from the gravitating
source being considered and L, is the integral of motion
represcnting the projection of angular momentum of the celestial
object onto the spin axis of our gravitating source. Plugging the
§ just written into the preceding equation and invoking the
famuliar principle of separation of variables leads to the following
two separated equations :

Si(x") = jA"([E{(x‘)z +(12}— L:a]z

12
-—A{mz(x')2 +(L, -aE)’ + C}) ', (7

2 12
S»(N): C-cos® xN{a*(m-E*)+ —— dx?,
: I|: ( ) sin’ @ ®

where
C= p2 +cos? 13[02("!2 - E?)+sin™? xJLfl )

¥ separation-of-variables constant, p being the x*-component
ot momentum of the heavenly body in question. Thus, feeding
these values of § in eq. (6), equations describing the orbit of the
Celcstialobject or satellite under investigation are [18]

os as ) as

- =0, —=0, — =0, —=0.
C+(L, - aE) om? ' IE L,

1 Pefforming the needed differentiation and judiciously
“"“bln}ng things, yields the following four evolution equations
% motion in space-time regions possessing axisymmetry and
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stationarity :
dx3 /72
A= C--(:oszxt‘iaz(m—E2 +— , (l1a)
dt ) sinZG?I
> dx! 2
2__= 1 I
A . HE{(x) +a*t-L.a
, . 12
_A{m“(x') +(L:—aE)2+C}) . (11b)
dx? L (x')‘ +a’ 2
T— aE"' " h E ! + Z}L »
dt s x~” [ {(x) i

(1lc)

.43£0=-a(aEsin2x3—L)+£ E{(xl)2+a2 La(d
~ D+ 2@ |-(11d)

Taking into account the space-time slicing (i.e. setting ¢ =
[constant]), let us now consider the motion of the satellite object
with respect to arigid lattice of the chronometric reference frame
described by the space-time chart (3). We can assume that motion
takes place in the equatorial planc (x* =0 =7/2) . Inthis case,
eq. (11a) does not give us any worthwhile information except
saying that the constant C gets a specific value. On the other
hand, egs. (11d, c) can be employed to look into the structure of
orbits of objects executing motion in the gravitational field
described by eq. (1). Work on this aspect of the problem is in
progress at present. As regards eq. (11b), as we shall see in
Section 3, it sheds new light regarding conclusions of Galilei-
Newtonian (GN) orbital theory.

3. Modification of Kepler's second law and applications

Let us look at possible consequences of the modification of
classical orbital theory obtained in Section 2. Notice that in the
equatorial plane, eq. (11b) assumes the following form :

2 dx® x' =2M}L, +2aME
(=) i b -2miL, (12)
dt al

This shows that aerial velocity is not, in general, constant
due to spinning gravitating sources as described by vacuum
gravitational field solutions given by eq (1), again in contrast to
the case of Schwarzschild class of space-times currently used
for orbit calculations, for instance those required in the
construction of ephemerides and nautical almanacs. If we seta

=0 in the preceding equation, the result is

(W)L =L,

13
7 (13)
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In other words, areal velocity becomes constant on setting
solar angular momentum equal to zero, a situation not
corroborated by astrophysical observations and
experimentation. The calculations therefore, show that if we
incorporate the contribution of spin of the central gravitating
body in orbital calculations, a residual slight perturbation on
the standard constant areal velocity should exist. In particular,
the second law of planetary motion requires a revision. However,
it turns out that the classical result of Kepler is recoverable from
our result as a special case.

To be able to appreciate the need for the revision suggested
by the new perturbation considered here, we need to look into
the genesis of orbital theory. As we know, orbital mechanics of
solar systems, stellar systems (like our own Milky-Way Galaxy),
galaxy clusters, erc is essentially based on celestial mechanics.
But this whole edifice presently rests on the conventional
(empirical) Keplerian laws, based on Brahe's planetary
observations that describe motion 1n unperturbed planetary
orbits [ 19]. Moreover, when we refer to Keplerian orbits, we
implicitly assume that masses of planets are truly negligible and
that Kepler's so-called laws are exact. In fact, however, with the
exception of two-body motion (an n-body problem for the
specific subcase of n = 2), astrodynamical problems are,
generally, incapable of exact analytical solutions [20].

Due to the difficulty of absence of an exact solution to 3-
body and, generally, n-body problem, one often tries to exploit
the method of two-body problem ; this is particularly true for
applications of standard GN-theory. The same difficulty 1s
perhaps also responsible for the popular misconception that
planets of our solar system have constant areal velocity. In fact,
however, staying right in the framework of GN-theory, if we
switch from the two-body problem to even the restricted three-
body problem, areal velocity turns out to be nonconstant in
general. This situation nicely compares with our finding of the
general nonconstancy of the aerial velocity (MKSL) in relativistic
astrodynamics.

Confining, for the moment, again to the specific context of
solar system, note that eq (12) can be written as

a2 {x' -2M}L +2aME
dr x'A 9

Again, as we know, the radial and transverse components of
the central force are as follows :

di' Y
Fa=m g ™% ['dz 1)
_m d (2 dx®
FT'j,T,((") ;)- (16)

Sandwiching egs. (14) and (16) together then yields

This shows that in the new development presented in Section
2, the transverse component of the force field is nonzero, 1
contrast to the GN-physics wherein such a component vanishe
In particular, the transverse component of the central force tielg
does vanish if we neglect the spin of the gravitating source. |,
suggests that the inverse square law, as generally employed in
GN-physics, needs a modification (even in non-quantum settings
and situations where in Yukawa potentials may not apparently
have applications).

To sum up, the preceding calculations and inferences flowing
from them suggest the need for a new experimental test of the
GN-orbital physics to check the contribution of\axisymmetric
nature of the gravitational field to the overall gra\ﬂily sensed by
an orbiting object. Recent advances in technology promise to
provide high enough precision of the order of 1078 [21], to design
such experiments.

4. Summary and future directions

As shown in Section 1, the 1ssue of enhancing our ability 0
carry operations into the interplanetary environment for jobs
like utilising the material and energy resources ol space and
improving our ecosphere and biosphere, signals a paradigm
shift in the current space science programmes. Clearly, this rests
among other factors on the fundamental framework for launching
artificial satellites and space probes in various kinds of orbits as
envisaged by the current and future space science missions of
various countries. As shown in Section 2, although Keplerian
laws of GN-physics have had fundamental place so far, they are
not altogether immutable and require a revision especially in the
light of modern gravitation physics and in particular, the new
perturbation, the spin of the central gravitating body, controlling
the orbital motion of the attendant objects.

Section 3 provides an immediate application of the
modification (MKSL) obtairied in Section 2. Yet another facet of
MKSL emerges from the fact that the existence of non-zer
transverse components of the force is mathematically equivalent
to the existence of a third body in the physical system being
considered (a problem which is examined in another paper by
us). The work presented here could also be of relevance 10
things like Global Positioning System (GPS) research and to the
methodology of preparing more reliable nautical almanacs and
ephemerides for geophysical surveys, geodesy work, terrestrial
and space navigation, which are currently prepared at world
observatories without taking the mentioned perturbation int?
account. More fundamentally, cumulative effects due to Sp'"
may make motion of an orbiting object chaotic, stochast!c:
cascade, dump, or oscillatory in ‘nature, which needs t0 be
investigated. Spin may influence the velocity, distance from the
central source, and perhpas length of the year too for the tes!
object. Even phénomena like precession and mutation of celestal
objects and prediction of eclipses might need a fresh check
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Thus. apart from various lines of investigation already indicated
n Section 3, there are a host of further open problems to look
into for & sensible rehashing of existing basis of space science

jvestigations under newly emerging economic secnarios around

U globe-
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