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Abstract * The work given in this paper searches for the occurrence of naked singularities in higher dimensional Tolman type sphernically
swmmetnic spacetime and, if they exist, to invesugate whether the dimensionality of spacetime has any role 1n the nature of singulanties. We show that
dunensionabity of spacetime does not essentially change the basic nature of singularity of an inhomogencous dust collapsc. We examine here the nature
ol the central singulanty forming in the sphencally symmetric collapse of dust cloud and it is shown that this 1s always a strong curvature singulanty

where gravitational tidal force diverge powerfully.
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1. Introduction

An outstanding problem in gravitation theory and relativistic
astrophysics today is to understand the final outcome of an
endless gravitational collapse. Such a continual collapse would
tuke place when stars more massive than few times the mass of
the sun collapse under their own gravity on exhaustng their
nuclear fuel. According to the general theory of relativity, this
results cither in a black hole or a naked singularity which can
tommunicate with faraway observers in the universe. Various
Mmodels of spherical collapse have been studied over the last
few ycars, and these show that both black holes and naked
‘ngularities arise during gravitational collapse.

The models studied so far includes collapse of dust [1],
tadiation 2], perfect fluids [3] and imperfect fluids [4]. In each of
these cases, the formation of covered as well as naked
*Ingularities has been observed.

NOWadays there has been a growing interest in studying
Eravitational collapse in higher dimensions [5-10]. Many works
o0 higher dimensional solutions have appeared recently in
Iiterayre because of their implications in astrophysics,
cosmology, string theory and particle physics [6].

* Higher dimensional spacetime, naked singularity, cosmic censorship hypothesis, black hole, gravitational collapse

The results of gravitational collapse in higher dimensions
are of interest 1n the view of current possibilities being explored
for higher dimensional gravity. An interesting problem that arises
is the cffect that higher dimensions can have on the formation
of naked singularities. Sil and Chatterjee [8] studied dust collapse
in five dimensional spacetime. By considering a self-similar
Tolman type model in higher dimensional spacetime, they showed
the occurrence of a naked shell focusing singularity which may
develop into a strong curvature singularity.

In this paper, we consider nature and structure of singularities
n both marginally as well as non-marginally bound dust collapse
in 5-D. We show that the central singularity of collapse may
indeed be a (strong or weak curvature) naked one depending on
the conditions on initial density distribution.

The focus of our investigation will be the singularity that
may possibly form during the collapse, at the origin r =0 of the
spherical coordinates. This is the so-called central shell-
focussing singularity. Hence, we will specify initial conditions
only in a small neighbourhood of the center and investigate the
nature of collapse in that region, without considering the
evolution in the other regions of the spherical object. We will
also assume that the initial conditions are such that shell-
crossing singularities do not form during evolution.
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The organization of the paper is as below.

In Sction 2, the basic parameter of the Tolman-Bondi models
in 5D describing the inhomogeneous dust collapse are specified.
The existence and nature of the naked singularity is analyzed in
Section 3. Strength of this singularity 1s examined in Section 4.
We end the paper by giving concluding remarks in Section 5.

2. Tolman type model in higher dimensional spacetime

The metric of a spherically symmetric inhomogeneous dust cloud
in five dimensional spacetime | 8] is given by

ds® = —dt® +- R g
1+ f(r)

+R*(d6? +5in 6, 463 +sin” 0, sin” 6,d63). (1)
where f(r) is an arbitrary function of comoving coordinate r,
satisfying f >—LR(z,r) is the physical radius at a time t of
the shell labeled by r, in the sense that 47:R2(r,t) is the proper

area of the shell at time ¢. A prime denotcs the partial derivative
with respect to r.

The energy momentum tensor is given by
T =€8,6/, @)

where g(r,t) is the encrgy density of a cloud of radius r and is
given by

ery= F @
2R R'

The function R(r?) is the solution of

- F(r)
R2
R? +f(, @

where a dot denotes the partial derivative with respect to t. the
function f{r), F(r) are arbitrary, and the results from integration
of the field equations.

As we are only concerned with gravitational collapse of
dust, we require

R(t.r) <0.

We have used units which fix the speed of light and the
gravitational constant via 872G =c* =1.

For physical reasons, one assumes that the energy density
€(r,t) is everywhere non-negative.

Eq. (4) after integration yields

-R (LR
rt(r)—ﬁ(p]' ®)

where G(y) is a strictly real positive function and is given by

vy

G(y)=- y#0,

=12, y=0, (6

and 1 (r) is a constant of integration which can be fixed by (he
choice of scaling on the initial surface ( £=0). Using this scaling
freedom, if we choose R so that R(0, r) = r then

-rzcrz_f
JF O\ F M

t(r) gives the time at which the physical radlus (R) of the
shell labeled by r becomes zero. \

t.(r)

\

Thus, the range of coordinates is given by

0<sr<r, —eo <<t (r), (%)

where r=r_denotes the boundary of the dust cloud.

It has been shown [11] that shell crossing singularities
(characterized by R’> 0 and R > 0) are gravitationally weak
and hence such singularities need not be considercd seriously

We therefore consider only the shell focusing singulaniy
We thus assume in the following discussion.

From egs. (3) - (7), we can write

R’ =
NIE
a-) 1 n 2 2 -
- —(N-PX+|0-|==-B |X°G(PX P+—
2(71 B +[ (2 ﬁ) ( )]( + !

=r*H(X,r), ©

where we have used the following notations

o xR . _rr
u=r% X= - n(r) = B(r) I
P _JF _fuz
p(r)—T, A——, P—T‘.
1 2+B8-1
n , |
6 2(a-1)[G(P)(2 p)+—T==2 l+p] (i

H(X.r)=%(n-ﬁ)x

’

+[9—(g-p)x’G(Px’)Ip+

)

1 172
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The function B(r) is defined to be zcro when f (r) is zero
(marginally bound case).

The parameter o (which satisfies o > 1 ) is introduced here
{or cxamining the structure of the central singulanity at r=0.

One can write the energy density as

NA®

E=—F——.
RYH(X,r) (13

Since F’=nA*r?*~! itfollows from above that everywhere
H(X,r)20 and nA? 20 as a consequence of the weak
energy condition,

Kretschmann scalar (K = R, , R%“) for the metric (1) is
aiven by

144FF’ 288F

_ 28F7 .
R'R" R®

- R6Rr2

(14)

In Tolman-Bondi spacctimes, singularities occur, as one can
see from ¢gs. (3) and (14), at points where R = 0, which are called
shell focusing singularitics.

3. Existence of naked singularity

* Inorder to check whether the singularity is naked, we examine
the null geodesic equations for the tangent vector
K" =%/ dk » Where k is an affine parameter along the

geodesics.

tor radial null geodesics, these are

d P

K'=Z==2,
dk R (3)

. dr K'Ji+f PJi+f

k=2 = , (16)

dk R’ RR’
where the fuction P(t,r) satisfies the differential equation
P, R R |I+f
P RR g2 =0 a
Let u=r*(a21), then
dR 1 , . o dt
du g ro-! [R +R_r] (18

From eq. (1) we see that for outgoing radial null geodesic,
dt ‘ \ R’

o fizy (19)
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Since we are considering collapsing case, we require
. F
R=- ?-ﬂ- f. (20)
Using egs. (19) and (20), eq. (18) becomes
F
w®R__R | I'H +f
du or®! I+ f @y
A
Hx.w| Vxz*!
= 1- =U(X,u).
a JI+f 22)

The function H(X, r) in the above equation is strictly positive
and nonzero for all r> 0. If the null geodesics terminate in the
past at the singularity with a definite tangent, then at the
singularity, the tangent to the geodesic dR/du is positive and
must have a finite value. From eq. (21), we note that dR/du is
positive if R? > F. Thus boundary of the trapped surface i.e.
apparent horizon is given by

R=JF. @3)
Using above equation, we find from eq. (5) that
tan(r) = 1,(N=JF G(f), 4)

where t , (r) denotcs the time at which apparent horizon forms.

It can be easily seen from the above equation that all the
points on the singularity curve # (r), other than the central point
(r = 0) are covered by the apparent horizon. This is because,
since both the functions F(r) and G(r) are strictly positive for r
>0, with F(r)=0 at r=0, thercfore forall r>0

1,(r)>1t,(r) and r.(0)=t,/(0).

Thus only central singularity could be naked while non-
central singularities are covered.

After simplifying differential eq. (22), we see that dR/du is of
the form 0/0 in the limit approach to the singularity (R =0, u=0).
The point u=r%=0, R = 0 is thus a singularity of the
differential equation (22).

Hence we study the detailed behaviour of the characteristic
curves in the vicinity of the singularity. Defining quantity

X, = Iimﬁ-- lim R limd—R-
O " R>0,% R-0u R-0du )
r—=0 u—0 r—0
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which gives the tangent to characteristics which terminate in
the past at the singularity, it can be shown [12] that if the equation

j()o“"fo
_H(XO) | _x =006

Vix)=U(X0) - X
[1+ fo

admits a real positive root, then the central singulanty at r =0,
R =01is naked.

In other cases a black hole will be formed as the end product
of collapsc. We extend the earlier examples given inRef. [12] to
SD case.

A. Marginally bound collapse :

Let us consider first the marginally bound spacetime (f = 0)
characterized by the function F(r) and fr) as

f =0, Firy=Fyr", nz4 n22. (27
Here, F;, 15 a constant.
Thus,
ng=n, =0, p=0, P=0, @=r3“T”L|-ZJ' (28)
For @ to be finite we choose a =/, hence we gel
O=1--.
Also
nX 4-n
H(X,r)=-—+ -
a " ax 29
and

n
-1
A(r)=—‘/z=,/70r1 .
u

Limiting value of A(r) 1n the neighbourhood of r=0 1s
given by

A0) = JF,

=0 forn>?2.

forn=2

(30
With the help of above functions, eq. (26) becomes

Ay |[nX  4-n
V(X)= -.-a[_. 4-n)_y o
()‘} x]4+4x:|xo

ﬂ(_+4—n _nAg _(4—n)Ao_X

- =0.
44X 4 4x? Gh

Inthccasen>2 where A, = 0, the above equation become,
(n-4)(X*-1=0. @)

Butsince n 24, wecanwrite X==1.

Thus eq. (31) has only one positive root X = | why
satisfies the equation V(X) =0 for all n > 2, thus establishing
the cxistence of naked singularity for all these spacctimes

Inthecasen=2, A, = ‘/7‘; .henceeq. (31 )ihccomc.x
X+ JFRX*-X+JF, =0. ‘ a3

Numerical calculations show that the above equation has
real and positive root if

—11+5J5
<

Fy i.e. Fy<0.09017. ()

For example, for F, = 0.08, there are two positive routs
X =0.5984 and 0.3759. Hencc for all such values given by ¢y
(34), the singularity is naked. On the other hand. if the

-ll+5\/§

inequality is reversed, ie. Fy < , no naked singularty

occurs and gravitational collapse of dust results in a black hole
In the analogous 4-D case, one gets quartic cquation and
the shell focusing singularity is naked if and only if T <0 1809
[12].

B. Non-marginally bound collapse :

Next, consider non-marginally bound spacetimes (f (7)#0)
characterized by the functions F(r) and f(r) as

f(n = for?(+fir®),

F(r)= For‘,

fo .
=2 =p,>-1. 3
F, Po

where, fo FO, and fI are constants.

Hence, we get

Bo=2. N =4, p(r)=py(l+fir}), a=2

A(r) = JF;

1
0, = -2G
0 fl[ T (po)
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e
H(x.0)=X+T°- 36)

Hence, eq. (26) becomes

1 Ay 6,
=—|l=-—| X+—|-X=
VX 2[ X ][ X] 0

X'+ JFR X7 =0X +0,F, =0. 37

Numerical calculations show that eq. (37) has positive rcal
roots i

E,  —11+545
o, 2 (38)

4. Curvature strength

We now discuss the strength of the singularity by considering
the curvature growth near it.

following Clarke and Krolak [ 13], a sufficient condition for a
angularity to be a strong in the sense of Tipler [14] is that at
lcast along one null geodesic (with affine parameter k), we should
have in the himat of approach to the singularity

2 b
lll_l}})k R,K‘K® >0, (39)

where K15 the tangent to null geodesics.

For the Tolman type model in five dimension, the condition
(91 for radial null geodesics becomes

limk*R,, K“K" = lim k? 3F, (K')?

k20 k—0 2R’'R’

_ Ay [ kP

= 20kt lim 2ar (40)
where

. P ,/l+ K'

K=, K’=Tf, @1)

ind P satisfies the differential eq.(17).

For radial null geodesics, using L-Hospitals' rule and egs.

49y and (15)-(17) and the fact that at the singularity r —0, X
> X, we find that

S0 22 ) 2a( X +2A4) - AgTl

it ip=1lim P =0,ee;
k-0
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x 2
=—2L clsewhere. (42)
Hence, we get
limk R, K“K" = 6y Ay
k=0 [2a, + Ay (4 - o))
 F l. = - oo’
lt kl—ll(l) P P() 0‘ ’
_3npA
- 8ax? clsewhere, 43)

indicating that the naked singularity is strong curvature one.
5. Conclusion

The Tolman-Bondi metric 1n the 4-D casc has been extensively
used to study the formation of naked singularities in spherical
gravitational collapse. We have extended this study to higher
dimensional Tolman-bondi metric and found that strong
curvature naked singularitics do arise in these spacetimes. In
this work we have shown that the dimensionality of spacetime
does not essentially change the basic nature of the singularity
of an inhomogeneous dust collapse.
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