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yhatract

The expression for the leading quantum correction to the third virial coefficient and cquation of state of the fluid mixture of the hard

san overlap molecules are given The numenical results are discussed under the conditions of (i) @V, =%, and (i) v, =v, The quantum effects
iepend on the condittions and relative values of the shape parameters K in gencral and increase with the packing fraction n in particular .
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Introduction

¢ purpose of the present work is to develop a theory for
lulaing the quantum correction to the thermodynamic
erties of fluid mixture of hard non-spherical molecules. The
1d Gaussian overlap (HGO ) model has been widely used for
lecular fluid of hard non-spherical molecules [1]. This is
cause of the HGO model has a close connections with the
W elipsoid of revolution (HER ) and is a useful refcrence
slem for molecular fluids of non-spherical molecules.

Inthe semiclassical limit (i e, at high temperature) where the
funtum effects are small and treated as correction to the
aical behaviour, the hard convex bodies can be dealt with
¢Hemmer -Jancovici (HJ) method (2] . Singh et al [3] have
“loyed this method to calculate the leading quantum
"Tection to the thermodynamic properties of the HER fluid.
“mari and Sinha [4] have extended theory for the mixture and
tleulated (he quantum corrections to the second virial
XMficient and free energy for the HGO fluid mixtures.
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In the present paper, we calculate the classical and quantum
correction values of the third virial coefficient and equation of
state of the HGO fluid mixtures

2. Basic theory

We consider a fluid mixture of non-spherical molecules interacting
via the hard Gaussian overlap ( HGO ) potential defined as

Ugp (rw,@y) =<, r<o(ww,).

=0 , r>0p(00,), 6))

where Oqp (w,@,) is the distance of closest approach between
two hard — core molecules of species @ and f,r=1r -r)lis
the centre -to-centre distance and  ; is the orientational
coordinate of molecule i, O o5(@,@;) can be expressed in terms
of the Euler angles [4, 5] as

Oop(0,@,) = ogﬂ[l - ;{ga‘,(cos2 6, +cos? 0,

172

=2 X qp €086, c0s8, cosG,z)/(l —xf,p cos’ 0,2)]_ , (2
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where O 2,, is the widthand X qp the shape parameter defined
as

Xap = (K2 =)/ (Kag +1). 3)

Kap being the length-to-breadth rato of the molecule . The

cffecuive values of ¥, and K|, between the HGO molecules
of unlike species can be given by [3, 4]

oty =(al +0%,)/2, (4a)

K\, = (KI26(I)I + KZZG(Z)?)/(O(I’I +°(|)n)- (4b)

The free energy of the HGO flurd mixture correct to the first
order quantum correction, is written as | 4 ]

AINKT = A I NKT=(112) pZ oy XX p 1 dr < gy (rw,05)

U,':p("wlw'z) >‘l)|(l)'_v m(lzaﬂ)' 5)

where A€ and g,‘,ﬂ(rwlwz) are , respectively , the frec energy
and paur distribution function ( PDF ) of the classical hard convex
body (HCB ) fluid mixture, p = N /V is the number density and

Xo = Ng / N isthe concentration of species a ( Nis the total
number of molccules and V the volume of the system) Here,

U,',',;,(ra),wz) 15 the 'modified’ Ursell function of the hard-body
mixture and <(...) >wm, represents an unwceighted average

over the molecular orientations @, and w, for the quanuty
within the angular bracket i.e,

<) >0 =(4m) " dw, [dw,(...). (6)

Other thermodynamic propertics can be obtained from the
frec energy. Thus, the equation of state 1s given by

PIpkT = P* | pkT = (11 2)pE g XX pldr <[5 (r, @)
+p(7g:,l,(rw|wz)/(7p] Ugg(ro,@y) >, . +0( Zal,), )

where P 1s the pressure of classical HCB fuid mixture and
given by (6]

P >
pkT  (1-m)  p(1-m)

) Hast a=2m+sesn?|ra-m)

where
n=pxyy,+xvy), ®
and r,q and s are geometric quantities of a mixture defined as

r=XqPaR: =Py Xaky.

q= zvar paRaz =pzxaRa2 ’
5=Zapa€a =pza Xaéa- (10

Here, R, is the (Y n)~- multiple of the mean curvayr,
integral , &, the surface integral and v, is the volume of the
HCB molecule of species a .

3. Virial equation of state of dilute hard Gaussian overlap fly;g

mixtures

The PDF of the classical fluid mixture can be expanded in pow
of pas [7]

g:iﬂ(’lzw@z) =cXp [—ﬂu,,,;(r,zw,wz)]
[l+PZ,X,a((I)am(rlza)la)z)+ ...... ], (11

where the coefficient a"“’,,,p(rlzmlwz) 1s the cluster ]ﬁ{ltcgml

involving one field point and two basc points. Substituting ¢g
(11incq. (7). one can expresss the equation of state in theviral
form i.e in power of p

P/ pkT = A+ Bp+Cp*+.

where A = 1, B and C are the second and third virial coeflicients
respectively . They can be expressed as

B=B -(1/12)2 .4 x,,xﬂfdr <exp[—[iu,,,,(rw,w1)]

XUap(r@,@;,) > 4142

C=C' -Zopy XaXpXyldr < CXP[’ﬁ“aa(’lza’lwz)]

Xa g (720,0,)U 35 (720,03) >4 0 (14i
where B¢ and C* are, respectively, second and third vinal
coefficients of classical HCB fiuid mixture. Expanding eq. (8).1n
power of P , one gets

B¢ =Za.ﬁ Xfxx[]B:x[l Ol

with
s = (1/2)[»,, +vg+REp +R,,§,,] (1)

and
C* =Zopy XaXpXyCapy o

with

Capy =1/ 3)(["an +vgv, +vav7]+[va(Rp§y + Rrép)
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+vﬂ(Ry¢a + Raér)*""r(Raép + Rﬁg“)]

(I D[RIEpEy +REE Ea + RYEE)) (18)

Eq ( 18)isidentical to that derived by Boublik and Nezbeda
4] The second virial coefficient of the HGO fluid mixture is
qudied carlier[4].

In this paper, we calculate the quantum correction 10 the
ihd virial coefficient. For the HGO mixture, eq. ( 14 ) reduces to

C=C"+Zapy Xa XpXyCopy™ (19)

wheie

Copy™ ==(113) [ dry < a5 (n,0,0,)

Q1
X(”c:;i(rlzwle)'.'aaﬂy‘( )(rIZwIwZ)U(’;;'(rlZwlw2)

+a',,,,.,m(r,2w,a)2)U,';'r(r,._,w,mz)>mlw:. (20)

In onder to evaluate the quantum correction terms, we
iduce a reduced variable r*=r/0 5(w,®,), then the
1GO potential ( eq . (1)) reduces to the central hard sphere (HS)
aiential Consequently, the cluster integral of the classical HGO
tud mixture becomes that of the classical HS fluid mixturc i.e.

(

aVepro, ) =a"

S (%), @n

e '™ g (r*)  is the cluster integral of the classical HS
swlmixture of the effective diameter dap = K”"aﬂoouﬂ- An
alytic expression for a‘”s,,,ﬁ(r) is given by [8]

() = (2,,,3)[(01;, +dy, )~ (314)(d3, +dp, )r

A 2 _ 2 \?
+(118)r" = (3/8)(dg, —d}, ) /r.|,

for da[i <r de +dﬂ7’
=0, for r>da1 "‘dﬂr- 22)

In this approach , the ' modified' Ursell function
w{r @, @,) of the HGO fluid mixture is

Ugp(r@w) =Ugy(r/ 6 45(w, ®,)) (23)

:U(';bﬂus(’*)v

fere (71, < (r*) is the 'modified Ursell function of the HS
Wmixture and is given by [3 ]

U ns (r*) = (A5 / 045 (0,0,))8(r *=1) +0(Xp). (24)
Here, 8(r*-1) is the Dirac -delta function and lap is the
thermal wavelength of the molecule of species o and B defined
as

Agp = (270 B/ myy)'", 25)

where Mgy =2mg,mpg / (Mg, +mgg) and Mg, =Mg is the
mass of the molecule of species a . Substituting egs. (21)-(25)
in eq. (20) ,we obtain an analytic expression for C% agy as

C¥ upy = (n? /54)(3/~/§){F;,,(lap /o:’,p)[dgp

‘M;li(d(zlr +d§7)+8d§p(di., +d1;y)
-3¢1§,,(d,i, —d},y)z]*' F(:y(lul /o(o)ry)

[dfiy ~dg, (d3g +d, ) +8dg, (dip +dj, )

”

-3d2, (d,i,, -df,,)z]+ F,}r(ﬂ. oy /o‘,’,,)
[5, - 6 (a2 + 3, ) +8d, (a3 +d3,)

(43~ [} ofi). a9

where we assumed that d,4 = K(‘I’ﬂ-‘ogl, and [4]

KupF'ap(Kog) = (Dyg(0,02)), (27a)

Dy (@,3) = (47)”" [dF(0 0 (@,0,) 1 6%p ). (27b)

The values of Fn:B can be obtained as a function K,.p from

Eq.(27a)[4].

We evaluate the quantum corrections to the third virial
coefficient for the HGO mixture . We assume that the molecular

mass m, is proportional to the volume v, (i.e, proportional to

K o0 aa in case of the HGO molecule ) . Thus fromeq . (25) ,
we have [4]

Ay l6% =K/ Kp) * R (4,167, (28)
1/2
A 1% =V2[1+ (K, 1 KR | (A, 168 114 R), 29)

where R =09, /0'?, .
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From eq. (26) and with the help of egs. (28) and (29), we

obtain expressions for C; apy insimple form

m—(3/‘/—)An|(An/°n) (30a)
Cy =3/ ‘/—)Am(lu ’GH) (30b)
Clyy = (3/32) Al (A, /0Y)). (30c)
Ch -(3/\/—)A,n(/1,,/a,,) (30d)

wherc A' is the first order quantum correction coefficient for the
third vinal cocfficicnt . They are expressed as

Al =(5”2“8)(Kna(l)i‘)l’:|li- (3la)
Al = (2 154)(K,, o?,‘)l(f‘,‘,[l 121 + 16L]
12Fy[8L-30"]ay,), (31b)

-

Aly =(n?154) (K, 02;)2(5'1[1 —12M* +16M ay,

V2F5[8M -3M ]ay,). (31c)

A}, = (57 /ls)(K,za‘“) Fhay.

3l1d)

Table 1.
molecule with exact results

T K Dey, S C Singh and S K Sinha

where
12 52
ay = (K /1 Kyp) " R, (%)
A2
a =ﬁ[‘+(Kn/K22)R ]] /(1+R) (32b)
and
3
= (K> /Kn)(a?z/o'?l) , (33

R}
=(Kn/ Kzz)(a?z /0'(2)2) = L(Ky, /KZZ)(O?I /022)‘ (33

Finally, the third virial coefficient C,g, for the HGO muxiure
correct o the first order quantum correction , is expressed a,

Capy = Copy +3132) A, (A1 709,). )

We first calculate the classical third coefficient for the\HGO
mixture using eq.(18). They are comparcd with the exac
simulation results [6] 1n Table 1. The agreement is fairly geod®
In Table 2, we compare the third virial coefficient Cyp, 16%
the HGO mixture at 4,,/0}, =01 with the classical value
Capy (Where A,,/6},=00). The quantum correctior
increases the vinal cocfficient.

We are also interested 1n this paper 1n estimating the exces:
third viral coefficient of the HGO mixturc (relative to the pun

Companson of the classical third vinal coefficient Copy /o‘.? for the mixture of the hard Gausian overlap

(‘:“ /G(l,-? C|‘|:/(‘T‘|‘§ (711/0}":
Condition Ky /Ky
Theory Exact Theory Exact Theory Exact Theory Exact
/oY, 1792/1 0 10 17 10 64 6.42 6.82 4.05 4 34 274 2.74
1.792/1 436 10 17 10 64 8.47 8.78 719 722 598 593
v, =, 1.792/1 0 552 577 5.26 5.43 5 00 5.08 478 478
v, =23, 179/1.0 349y 365 4.44 4 54 5139 5§57 6779 679

‘Table 2. The third viral coefficient Cop, / '3 for the mixture of the hard Gausian overlap molecules for 4, /o",’, =00

and 0t 4, /0, =00 corresponds Cgpy,

Ciy/als

Clyp /ol

“1127912 ~1221 043
Condition K /K5,
Aylal, Ay /oy, Ayloy, Ay lol,
0.0 01 00 0.1 0.0 01 0.0 0l
o laY, 179210 1017 1094 6 42 7.06 405 4.50 2.74 311
1792/1.436 10 17 10.94 8.47 917 7.19 7.80 5.98 6.56
1 792/1 0 552 5.93 5.26 5.71 5.00 5.44 4.78 5.17
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cnmponcms). From eqs.(17) and (19), the excess third virial
cfficient of the HGO mixture is obtained as

AC = 3X|Xz[(X|C|‘.|z +11C1‘22)+(3/‘/§)
x(anlllz +22An )(}-n lof, )] (35)

In order to simplify eq. (35), we introduce the following
quanmics.

oK = 11601K,1 + 2205 K. (36a)

a"KA= 2,001 KAy + X269 K 0y . (36b)
From eq. (28),(36a) and (36b), we get

l,,/d?,=E,,(l/O’0). 37

where

2
ky ‘—(llkn +12K22R3)/(11Ku +x2(K/ Kzz)” R”z).

(38)
Then eq (35) can be expressed as
AC = act +(3/42)ac'(a16°), (39)
where
Act =3X|X:(X|C|‘|2+chltzz)» (40a)
AC]=311).’2(X|A|||2"'X‘.’Allzz)En- (40b)

The excess third virial coefficient AC/o{ of the HGO
nture 1s shown in Figure 1 for g} = g9, asa functionof %,
1 4/6” =00 and 0.1 .They are zeroat x, =0.0and x, = 1.0
dhimte in the intermediate range of %, .

St

I R SR} n i b n 4
T T L

0 + +——t—tt
0 010203040506070809 1

X1
Wure 1. Excess third vinal coefficient AC for the HGO fluid mixture
'K'u”(:z =1792/1.0 at A/0" =00 and 0.1. The thick line represents

tg!
% =01 and dotted line A/0° = 00.

4. Equation of state of dense hard -Gaussian overlap fluid
mixtures

Using the reduced variable r*=r/0y4(w,w,) . the PDF

8ap (r®,@,) of the classical HGO fluid mixture reduces to that
of classical HS mixture i.e.

Bip (r,@,) = gig(r 1 0 gg(@,@,)) = g 5" (). (@1)

Substituting eq. (24) in eq. (7) , we get
P/pkT = P/ pkT +(n/2) pZop xax,,[gg,;"(n

CHS

+pOg " (1)1 0p| FigKopohan +O(Ay). @

where  P“/ pkT is given by eq. (8). The quantum correction
term can be evaluated using the cxtended Van der Waals one
(EvdW1) fluid theory of mixture [4] . This theory approximates
the properties of mixture by those of a fictitious hard non-
sphere fluid with parameters :

Kod(: = Za[j XaZXp Kaﬁo(()l?i ’ (43a)

Kodélo = Zap Xa Zp Kapdgzﬁlap , (43b)

KodoAoF' (Ko) =g Xa X p KapOoprapFag - (43c)
Inthe E vd W1 theory of mixture , we further assume that
gt (=g " (dy) (44)

forall a, B where gc”s (d,) is the classical radial distribution

function ( RDF) of the hard sphere system at the core. Thus, eq.
(42) reduces to a simple form :

PIpkT =P/ pk T = (r/+2)(pKod5 )8 (do)

+pogy" (do)/ p| F'(Ko) (Ao 1do) +0(2}). @)

From eqs. (43a) and (43b) and using egs. (32) and (37), we
get

Aoldy=E(A1c°), (46)

where
E= (llz Ko + 23K0n09a5 + 22,2, Klzo?galz)/
(lend?i‘“'1%’(22“(2);+21112K|20(1);)Eu- 47
Similarly, from eqs (43b) and (43 c), we get

F'= (leKl 101 R + 21 K00 9 Fraan
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+21112KI20?;FIIZ(‘I2)/(ZIZKIIG(I):

+X§K210(£“11+21112K126(|,i‘“|:)- (48)
For the hard sphere fluid, g (d,)) is given by [3]
£ (dy) = (1-1012)1(1-10) 49)
where
1, = (/1 6) pKydy
which can be expressed as
N = U[l +1|Xz(2k'|2‘7(|’; - Kol - K:za(:);)/
(XIKIIG(I)i‘ +XzK220(:3)]- (50)
where
n=(”/6)P(X|K||U?i]+X:K22°g;)- (S1
Then cq. (45) can be expressed as
PIpkT = P* 1 pkT + B, *(116°), (52)

where

Iﬂ*=3ﬁno[(‘+n¢.-ﬂ5/2)/('—'10)4]”'(’(0)5 (53

1s the first order quantum correction coefficient .

To test the theory, we first calculate the equation of state
P/pkT of the equimolar classical HGO fluid mixture for
o‘l’l = ng and v, = v, using Eq (8).The calculated results are
compared with the'exact’ simulation data [6] in Table 3. The
agrecment is good . The values of the cocfficient P*, for the
cquimolar HGO mixture is given in Table 4. They arc positive
and increase with 7).

Table 3. The equation of state p° / pkT . of the equumolar classical
HGO muxtures under different conditions

P 1 pkT
Conditions n -
K, / K,.=1792/10 Ky, /K,,=1792/1.436
Theory Exact Theory Exact
q(;l =o'(:,)1 030 413 420 410
045 9.80 10 1S 9 68
Y= 0130 419 425 423 4.80
045 997 10 27 10 08 10 52

Table 4. The first order quantum correction coefficient P for

HGO mixture Aoy
Pllh
Conditions

K, \/K;=1.792/1.0 K /K, =| 79211 gy

a‘lll =a‘2'2 010 0.891 063

0.20 3.077 2178

030 8.375 5927

0.40 2] 758 15.399

V= 0.10 0.639 0 664

0.20 2217 2293

030 6.066 6 245

040 15.870 16 241

Table §. Percentage contribution of the quantum correction to the Pressure
100 x (P - P) / P, for cquimolar HGO muxture.

o), =0
KKy K, /Ky, LW
1792/10  1.792/1 436  1792/10 1 703 4
020 1108 813 811 8 0
030 16 88 12.63 12 66 12K
0 40 23 14 17 70 17 76 (70

We have calculated the cquation of state P/ pAT | for i
equimolar HGO mixture forarangcof n at A/ o =00 amd0i
(A16% =00 corresponds to the classical values). These value
are shown in Figure 2 for 6§, = 0%, and K| /K,, = | 792/l 1z
a funcuon of 1. In Table 5,we compare the percentage
contribution of quantum correction to the pressure of
cquimolar HGO fluid mixture for A /g = 0.1 .The percentag

contribution depends on the condition as well as value ol |
shapc parameters K. It also increases with of h.

14
12

10

P/ pkT
@ [--]

P

01 015 02 025 03 035 04 045
n

Figure 2. The equaton of state P/ pkT for equimolar HGO muuur;'/'
function of 1 for K, /K,, = 1.792/1.0 at Alg" =00and 0! u
corresponds 1o the classical values. The symbols arc same
Figure 1.
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3 ConClllSiOn

The purpose of presenl. paper is.to calculate Fhe quantum
.omection to the third virial coefficient and equation of state of
e fluid mixture of the HGO molecules under two
conditions, namely (i) The molecules of both species have same
dumeter and (i) the molecules of both species have the same
volume From the studies, we come to conclusion that the
quantum effects depends on conditions.
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