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1. Introduction

A fluid of hard non-spherical molecules is of current 
interest, because many of the properties of real fluids are 
determined by the repulsive interactions between their 
molecules, which can be modelled by means of hard 
bodies of similar shape. Moreover, such hard body fluids 
are the most covenient reference systems in framing a 
perturbation theory for real molecular fluids whose 
molecules interact via non-spherical pair potentials. The 
simplest hard body fluids are the hard convex body 
(HCB) fluids, such as hard ellipsoid of revolution (HER) 
fluids, hard dumbell (HDB) fluids, and hard spherocylinder 
(HSC) fluids. They have been extensively studied [1], 
because they can model the shape of the real molecules. 
An approach based on a physical interpretation of the 
reciprocal of activity has been employed for hard sphere 
fluid [2]. This simple approach was extended for a fluid 
of hard D-spheres with diferent values of D [3]. This 
approach can be extended to the HCB fluid.

In this present paper, we extend this approach to 
derive the equation o f state of the HCB fluids.

2. Basic theory

We consider a molecular fluid of N  molecules in a 
volume V at temperature T. The chemical potential of the 
molecuair fluid can be obtained from the partition function 
Qn as

/<p.7) = -  k n ^  In Qn/ ^ t.v 

= -  kT In [Qn^^Qn], ( 1)

where the partition function Qn for a linear molecular 
fluid is given by

where

dxi -  (4n)-'dridca, 

and

i^j

(3 )

(4 )

u(x»j(y) is the pair interaction potential between molecules
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i and J. Here, x, s  (r„cai) is the vector describing both the 
position r, of the center of mass and the orientation ct̂  of 
molecule i. Further in eq. (2), A is the thermal wavelength 
defined as

A = P I m j  *»

q is the single particle rotational partition function and fi  
= (kT)~\ where k is the Boltzman constant.

Substituting eq. (2) in eq. (1), we get

fi{p,T) = (p. T ) -k T  In a - ' (p. 7-). (5)

where

H ,j{p ,T )= -kT \x fyk -\lN )

- i tr in (A 'V //» ) .  (6)

Here, is the chemical potential of an ideal gas of 
density p  and temperature T, and a is the activity relative 
to that of the ideal gas at the same density and 
temperature.

We write

i

= U n  + 2 u n * \ , (7)
where

(8)

is the potential energy of the {N + l)-th molecule within 
the fluid. Then ar̂  can be expressed as [2.3J

Va ' = Jr£»Cyv+,exp[-2A<Af+i]. (9)

In order to perform the integration of eq. (9), the N  
particles of the system are first fixed in a most likely 
configuration, then the {N + l)-th particle wanders 
throughout the whole system. Other thermodynamic 
properties can be expressed in terms of o"'. Thus the 
pressure of the molecular fluid is

p

P /  /afer = 1 -  In «■' (P,r) + p-‘ Jin a"' (p', T)dp' • (10)
0

3. Hanl eUipsoid fluid

We consider a hard ellipsoid of revolution (HER) fluid 
having the major and minor axes (2a) and (2b)

respectively. We calculate a"' for the HER fluid, 
generalising the theory for the hard spheres [2] and hard 
D-spheres [3]. cr' is simply the probabily that at a point 
X = ro) chosen at random the (N + l)-th molecule could 
be inserted. This probability is a measure as the product 
of two terms a" ' = PiPz. The first term is the 
unconditional probability P\ that the randomly chosen 
point X does not overlap one of the N  molecules within 
V i.e.

P ^= \y-N {7tl6Y2a)(2b)^\v

1 -  (7d(>)pKa^, ( 11)

where K  »  2aJ2b and <7= 2b is the width of the molecule.

The second term is the conditional probability that no 
molecule will be in the additional volume in which the 
(N + l)-th molecule is to be accommodated. That 
additional volume is

S  = (;r/6)(4a)(4h)^ -(;r/6 )(2a)(2h)^

= i^ l6 )K a ^ -{n l6 )K a ^  = f;inl6)K(T^. (12)

Then, the conditional probability Pt that all N  molecules 
lie outside this additonal volume S is given by

Pj = [l -  (7;r / e)Ka^ l(V -  Af©)]^

= exp[l-(7ff/6)p/:<TV(l-pa))] , (13)

where co is an average volume per molecule and (V -  
N(0) is the free volume.

Then <r' is given by 

a-' = P,P2

= (l-(;ir/6)pAra^)exp[-(7w/6)p/r<r^/(l-p©)]

(14)

The value of © is the average volume occupied by a 
HER molecule in closed packed condition. It can be 
computed following the method o f Andrews [2].

Thus,

o)= (̂Ol + (p /P o){(o„ - o)l )  ̂

where ojl and are low and high density values of 
respectively and pb is the closed packed density. For the
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HER fluid. A) T JK tr^. It can be shown that

a>H = PS' = fyf2 (16)

and

(Oi_ = t(2^KB3 f 2 \ 2 ^ - l )

* f» 8 (E 3 /B |) - l]B 2 /5 6  . (17)

where Ej and 0 3  are the second and third virial 
coefficients of the HER fluid.

Finally, we wbtain a simple expression of or' for the 
HER fluid

a"‘ = (1 -  ( ,7 t /6 )K (T ^ p )e x J ^ O n /6 )K a ^ p /( l  -  p a ^

+ ip fp y ((0 t ,p o - l) )]

= (l-0 .7 4 0 5 z)ex p [-5 .1832 /(1 -Az + fi^^)] , (ig)

where

2 = fi/p^ = kaV^2,

A  = &>|,Po *

B = i4 -  1.

(19)

(2 0 a)

(20b)

03 = (5 /% )B \.  

and eq. (2 1 ) reduces to

P / a k T  = 5.1834z/(l -  1.5340z + 0.53402*)

-  (1.3504/2) ln(l -  0.74052)

-  (4.8534/2) ln(l -  1.53402 + 0.53402*)

-  (15.977/2) ln((l -  1.53402)/(1-z))

(23)
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(24)

as Jgiven by Andrews {2] for the hard sphere fluid. 
Ho^vever 0 2  and 0 3  for the HER fluid are given by [ 1 ]

j02 = (1 + 3a)V„ (25a)

and

03 = (1 + 6 ar + 3rf)V„*, (25b)

where

V „ = in f 6 ) K a ^

is the volume of a HER molecule and a  is the shape 
factor defined by

a  = 0j/3V„. (26)

Substituting eq. (18) in eq. (10), we obtain an expression 
for the equation o f state o f HER fluid

P/pifc7’ = 5.18342/(l-A 2 + 02)

-  (1.3504/2) ln(l -  0 .7 4 0 5 2 )

-  (C/2 ) ln(l -  A2  + 02*)

-  (27/2) ln((I -  0 2 )/(l -  2 )), (2 1 )

where

C = 5.1834/20,

D  = 5.18344/20(1-0). (22)

If the HER molecule be assumed to be the hard sphere 
molecule o f the effective hard sphere

d «  K''̂ cr\

then [1 ]

02 »  {2m)K<x\

Here, R  is the (l/4;0-multiple of the mean curvature 
integral and s  the surface integral. For hard sphere, a  »  
1 while for all other convex bodies, a  > 1 . For the HER 
fluid

A  = (0.7405/56)[48((l + 6 or + 3o?) /  (1 + 3o?)*) -  1] 

[ 1  + 3flj. (27)

4. Applications

We apply the proposed theory to calculate the equation 
of state for some HCB fluids.

4 .1 . H a r d  e l l ip s o id  o f  r e v o lu tio n  :

Knowing a  and K , one can calculate the coefficients A, 
0 , C and D  appearing in eq. (21)

We employ eqs. (21) and (24) to calculate the equation 
of state P /p k T  for the prolate ( K  >  1) and oblate (K < 
1 ) HER fluids. When the equation of state is calculated 
as a function of 17, the values o f P I f ik T  obtained by eq.
(24) does not depend on AT as K is associated in the 
expression of 17, whereas the value of P l f k T  obuuned by 
eq. (2 1 ) depends on K  due to the presence o f dr in eq.
(21). The values of the equatitm of state P l f k T  obtained



734 TKIHy, SS Kartd mdSKSinha

by eqs. (21) and (24), are compared with the exact 
stmulation results [1] f o r  K  > 1 and /T < 1 in Tables 1 

IbMt 1. Equation of state, P/f/kT of the prolate HER fluids (Af > 1)

K f! Eq. (21) Eq.(24) Exact[l]

1.25 0.207 2.492 2.485 2.53

0.282 3428 3.611 3.71

0.330 4s689 4.660 4.76

0.366 5.742 5.699 5.72

0.430 8.461 8.379 8.93

0.447 9.448 9.350 9.37

2.00 0.1974 2.434 2.373 2.65

0.2710 3.570 3.412 3.87

0,3190 4.664 4.366 4.93

0.3712 6.359 5.873 7.05

0.4569 13.989 12.282 14.00

0.5241 18.847 16.233 17.20

3.00 0.1885 2.427 2.275 2.78

0.2958 4.512 3.850 5.31

0.3560 6.670 5.384 7.35

0.4712 15.920 11.001 14.70

0.5236 25.662 17.333 21.30

IWkk 2. Equation of state, P /tfkT  of the oblate HER fluid (K<1).

K n Eq. (21) Eq. (24) Exact[l]

0.8 0.214 2.528 2.521 2.49

0.281 3.609 3.592 3.73

0.370 5.876 5.832 5.67

0.410 7.463 7.396 7.65

0.493 12.994 12.834 12.80

0.541 18.895 18.621 17.40

0.5 0.1%9 2.428 2.368 2.66

0.2680 3.512 3.360 3.91

0.3163 4.593 4.326 4.97

0.3510 5.626 5.235 5.96

0.3937 7.22 6.702 7.98

0.4660 11.970 10.615 12.40

0.5262 19.185 16.509 18.90

0.333 0.1827 2.353 2.214 2.87

0.2945 4.484 3.860 5.33
0.3267 5.791 4.577 6.41

0.4154 11.510 7.838 11.2

0.4712 15.920 12.511 15.6

m i  2, respectively. The results obtauied by eqs. (21) and 
(24) aie in  good agreement at low and/or values of K  
near unity.

The deviation increases with increase of rj and/or 
deviation of K  from unity. The values of P /p k T  obtained 
from eq. (21) are better when compared with the ‘exact’ 
data. Hence, we employ eq. (21) for further calculation 
of the equation of state of the HCB fluid.

4.2. Hard dumbell fluid :

We consider the fluid of hard dumbbell (HDB) (with the 
site-site elongation L *  = i7o). When applying the 
proposed theory, we first define the corresponding the 
HER for a given HDB such that Oher = cthdb 
= Hhdb

+ 3 I* /2 -L * ^  /2]

or.
K = I + 3L*/2 -  L*V2

(28)

(28a)
and

or = (1 + L*)(2 + L*)/{2 + 3L* -  L* )̂. (28b)

One obtains K  and a  for a given value of L*. Wc 
employ eq. (21) to calculate the equation of state, P//c*7 
of the HDB fluid. They are compared with the exact 
simulation data (I] in Table 3 for L * =  0.2, 0.4 and 0.6 
for different values of tj. The agreement is fairly good 
except when L* is large (f.e. L*  = 0.6) as well as rj is 
large ( t) ^  0.35).

Ibbte 3. Equatioo of state, P / a k T  of the HDB fluids.

7 L*

Theory

= 0.2 

Exact

L*

Theory

= 0.4 

Exact

L*

Theory

= 0.6 

Exact

0.1047 1.554 1.56 1.557 1.59 1.563 1.63

9.1571 1.969 2.01 1.978 2.04 1.995 2.13

0.2094 2.521 2.59 2.542 2.69 2.578 2.78

0.2618 3.270 3.36 3.311 3.49 3.382 3.67

0.3142 4.303 4.45 4.378 4.59 4.509 4.95

0.3665 5.760 5.95 5.891 6.21 6.127 6.69

0.4185 7.890 8.02 8.119 8.42 8.534 9.23

0.4712 11.133 11.17 11.531 11.67 12.268 12.87

4.3. Prolate hard spherocylinder fluid :

Next, we apply the theory to calculate the equation of 
state for prolate hard spherocylinder (HSC) fluid. For 
this, we assume Oher = Ohsc and V W = Vhsc

= ( fi /lD O r -  l ) a W

or

K =  O r -  m . (29)
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where Y  is the ratio o f maximum length (L  +  ol) and 

width O’. For this, we obtain K  and hence other parameters 

appearing in eq. ( 2 1 ) .  The values of P /p k T  of the prolate 

HSC fluid are compared with the ‘exact’ results [1] in 

Table 4. The agreement is very good.

Table 4. Equation of state. P /diT  of the prolate HSC fluids.

r n Theory Exact

1.4 0.3142 4.347 4.42

1.6 0.2948 3.967 4.10

0.3873 6.745 6.84

5. Concluding remarks

Using the physical interpretation of reciprocal of activity, 

we have given a simple expression for the equation of 

state of the HCB fluids. The results obtained for the 

HER, HDB and prolate HSC fluids are in good agreement 

when compared with the simulatitm data.
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