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Abstract

: Using the physical interpretation of the reciprocal of activity, an expression is derived for the equation of state of hard convex body

fluids. The theory is applied to evaluate the equation of state of hard ellipsoid of revolution, hard dumbells and prolate hard spherocylinders. In all

these cases, the agreement with simulation results is fairly good.
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1. Introduction

A fluid of hard non-spherical molecules is of current
interest, because many of the properties of real fluids are
determined by the repulsive interactions between their
molecules, which can be modelled by means of hard
bodies of similar shape. Moreover, such hard body fluids
are the most covenient reference systems in framing a
perturbation  theory for real molecular fluids whose
molecules interact via non-spherical pair potentials. The
simplest hard body fluids are the hard convex body
(HCB) fluids, such as hard ellipsoid of revolution (HER)
fluids, hard dumbell (HDB) fluids, and hard spherocylinder
(HSC) fluids. They have been extensively studied [1],
because they can model the shape of the real molecules.
An approach based on a physical interpretation of the
reciprocal of activity has been employed for hard sphere
fluid [2). This simple approach was extended for a fluid
of hard D-spheres with diferent values of D [3]. This
approach can be extended to the HCB fluid.

In this present paper, we extend this approach to
derive the equation of state of the HCB fluids.
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2. Basic theory

We consider a molecular fluid of N molecules in a
volume V at temperature 7. The chemical potential of the
molecualr fluid can be obtained from the partition function

On as
MpT) = - kT(@ In Q¥/AN)ry
= — kT In [Qn./On), ¢

where the partition function Qu for a linear molecular
fluid is given by

o =(Wag ] [ .. fexpl- U ][EIdx,. )

i=j

where

dx; = (4n)'drdw, (3)
and

Uy= Eu(xnxj) . “4)

isj

u(x,x;) is the pair interaction potential between molecules
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i and j. Here, x, = (r,w) is the vector describing both the
position r, of the center of mass and the orientation @; of
molecule i. Further in eq. (2), 4 is the thermal wavelength
defined as

A= (271112}3/»1)”2 ,

g is the single particle rotational partition function and 8
= (kT)', where k is the Boltzman constant.

Substituting eq. (2) in eq. (1), we get

u(p,T)= pia(p,T)-kTna™ (0.7), ®
where
p4(p,T)==kTin(yA g/ N)
~kTn{1?g/P). ©)

Here, u, is the chemical potential of an ideal gas of
density p and temperature T, and a is the activity relative
to that of the ideal gas at the same density and
temperature.

We write

Uya=Uy +2u(xi'xN+l)

= Uy + 2upas @)
where
Una = %)Z u(xanﬂ) (8)

is the potential energy of the (N + 1)-th molecule within
the fluid. Then a' can be expressed as [2,3]

Va7l = deN+| exp[—- 2Bup 4 ] . )]

In order to perform the integration of eq. (9), the N
particles of the system are first fixed in a most likely
configuration, then the (N + 1)-th particle wanders
throughout the whole system. Other thermodynamic
properties can be expressed in terms of a!. Thus the
pressure of the molecular fluid is

P
P/ka=l—lna"'(p,T)+p"Ilna“(p',T)dp'. (10)
0
3. Hard ellipsoid fluid

We consider a hard ellipsoid of revolution (HER) fluid
having the major and minor axes (2a) and (2b)

respectively. We calculate a-' for the HER flyig,
generalising the theory for the hard spheres [2] and harg
D-spheres [3]. a*! is simply the probabily that at a poiy
x = rw chosen at random the (N + 1)-th molecule coulg
be inserted. This probability is a measure as the product
of two terms a! = P\P,. The first term is the
unconditional probability P, that the randomly chosen
point x does not overlap one of the N molecules within
Vie.

R = - N i6X2axan? v

1 - (W6)pKo?3, (1
where K = 2a/2b and o = 2b is the width of the molecule.

The second term is the conditional probability that no
molecule will be in the additional volume in which the
(N + 1)-th molecule is to be accommodated. That
additional volume is

S = (/6)4a)(4b)® - (m 16X2a)(2b)*

=(8n/6)Ka> ~(n/6)Ko* = (Tn/16)Ko>. (12)

Then, the conditional probability P, that all N molecules
lie outside this additonal volume S is given by

P, =[1-On16)ka® 1V -~ No)]"

= exp[l ~(17/16)pKo’ I(1 - pw)] , (13)

where @ is an average volume per molecule and (V -
Nw) is the free volume.

Then a! is given by

al = P,\P,

= (l -(n/6)pKo 3)exp[- (1m16)oKa> 11~ pa))] .

(14)

The value of @ is the average volume occupied by 2
HER molecule in closed packed condition. It can be
computed following the method of Andrews [2].

Thus,
w=aw, +(p/py)wy ~@,),

where @, and wy are low and high density values of ¢
respectively and o is the closed packed density. For the

(19



Simple equilibrium theory for equation of state of hard convex body fluids

HER fluid, m = v 2/Ko3. It can be shown that
wy =pg' =Ko 12

and

(16)

w, = [3(2‘)(3, /B})- 1]32 12323 -1

=[«:a;(133 /B,’)-l]azlse , (17

where B, and B; are the second and third virial
coefficients of the HER fluid.

Finally, we wbtain a simple expression of a-! for the
HER fluid

al=Q- (7:/6)Ka3p)exp[— (Tn/6)Ko>p/(1- pw,
+(p! P) (W P~ l))]

= (1-0.74052)expl-5.1832/(1 - Az + B2Y)] | (1)

where
2= ppy = ka2, (19)
A=W Py, (20a)
B=A-1 (20b)

Substituting eq. (18) in eq. (10), we obtain an expression
for the equation of state of HER fluid

P/ pkT =5.1834z/(1- Az + B2)
- (1.3504/z) In(1 - 0.7405z)
- (CR) In(1 - Az + BZ)

- (Dfz) In((1 - B/l - 2)), 1))
where
C = 5.1834/2B,
D = 5.1834A/2B(1-B). (22)

If the HER molecule be assumed to be the hard sphere
molecule of the effective hard sphere

d = Klnaa'
then [1]
B, = 2a3)K0o?,

753
By = (5/8)B3. (23)
and eq. (21) reduces to
P/okT = 5.1834z/(1 - 1.5340z + 0.5340z%)
- (1.3504/z) In(1 - 0.7405z)
— (4.8534/z) In(1 - 1.5340z + 0.5340z%)
- (15.977/2) In((! - 1.53402)/(1-z)) (24)

as /given by Andrews {2] for the hard sphere fluid.
However B, and B, for the HER fluid are given by [1]

By = (1 + 3V, (25a)
and

By = (1 + 6 + 3a®)V,?, (25b)
where

Vn = (W6)K0?

is the volume of a HER molecule and @ is the shape
factor defined by

a = Rs/3V,,. (26)

Here, R is the (1/47)-multiple of the mean curvature
integral and s the surface integral. For hard sphere, a =
1 while for all other convex bodies, @ > 1. For the HER
fluid

A = (0.7405/56)[48((1 + 6 + 3% / (1 + 3a)?) - 1]

[1 + 3a}. (01))

4. Applications

We apply the proposed theory to calculate the equation
of state for some HCB fluids.

4.1. Hard ellipsoid of revolution :

Knowing a and K, one can calculate the coefficients A,
B, C and D appearing in eq. (21)

We employ egs. (21) and (24) to calculate the equation
of state P/pkT for the prolate (K > 1) and oblate (K <
1) HER fluids. When the equation of state is calculated
as a function of 7, the values of P/okT obtained by eq.
(24) does not depend on K as K is associated in the
expression of 7, whereas the value of P/pkT obtained by
eq. (21) depends on K due to the presence of « in eq.
(21). The values of the equation of state P/okT obtained
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by egs. (21) and (24), are compared with the exact
simulation results [1) for K > 1 and K < | in Tables 1
Table 1. Equation of state, P/7T of the prolate HER fluids (K > 1)

/4 n Eq. (21) Eq.(24) Exact{]]
125 0.207 2492 2485 2.53
0.282 3.628 3611 371
0.330 4,689 4.660 4.76
0.366 5.742 5.699 5.72
0.430 8.461 8379 8.93
0.447 9.448 9.350 9.37
200 0.1974 2434 2373 2,65
0.2710 3570 3412 387
03190 4.664 4.366 493
0.3712 6.359 5.873 7.05
0.4569 13.989 12.282 14.00
0.5241 18.847 16.233 17.20
300  0.1885 2427 2275 278
0.2958 4512 3.850 531
0.3560 6.670 5.384 135
0.4712 15.920 11.001 14.70
0.5236 25.662 17.333 21.30

Table 2. Equation of state, P/7kT of the oblate HER fluid (K<I1).

K n Eq. (21)  Eq. (24) Exact(l]
08 0214 2528 2.521 249
0.281 3.609 3.592 373
0370 5.876 5.832 5.67
0.410 7463 7.396 7.65
0.493 12.994 12.834 12.80
0.541 18.895 18.621 17.40
0.5 0.1969 2428 2368 2.66
0.2680 3512 3.360 391
03163 4.593 4326 497
03510 5.626 5.235 5.96
03937 7.22 6.702 7.98
0.4660 11.970 10.615 12.40
0.5262 19.185 16.509 18.90
0333 0.1827 2353 2214 287
0.2945 4.484 3.860 5.33
0.3267 5.791 4577 6.41
04154 11.510 7.838 1.2
04712 15.920 12,511 15.6

and 2, respectively. The results obtained by egs. (21) and
(24) are in good agreement at low # and/or values of K
near unity.
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The deviation increases with increase of 7 and/or
deviation of K from unity. The values of P/okT obtaineg
from eq. (21) are better when compared with the ‘exact’
data. Hence, we employ eq. (21) for further calculation
of the equation of state of the HCB fluid.

4.2. Hard dumbell fluid :

We consider the fluid of hard dumbbell (HDB) (with the
site-site elongation L* = L/0). When applying the
proposed theory, we first define the corresponding the
HER for a given HDB such that oygg =0ypg and Vi,
= HHDB Le

(/6)kOER =(n/6)a,iDB[1+3L*/2—L*3/2]

(28)
or,
K=1+3L*2 - L¥/2 (28a)
and
a=(1+L*2 + L%/Q2 + 3L* - L*). (28b)

One obtains K and «a for a given value of L*. Wc
employ eq. (21) to calculate the equation of state, P/pkT
of the HDB fluid. They are compared with the exact
simulation data [1] in Table 3 for L* = 0.2, 0.4 and 06
for different values of 7. The agreement is fairly good
except when L* is large (i.e. L* = 0.6) as well as 7715
large (7 > 0.35).

Table 3. Equatioo of state, P/okT of the HDB fluids.

n L* =02 L* =04 L* = 06
Theory  Exact Theory  Exact Theory Exact
0.1047  1.554 1.56 1.557 1.59 1.563 1.63
9.1571 1.969 2.01 1.978 2.04 1.995 2.13
0.2094  2.521 2.59 2.542 2.69 2.578 2.78
0.2618 3.270 3.36 3311 349 3.382 3.67
03142 4303 445 4378 4.59 4.509 4.95
0.3665  5.760 5.95 5.891 6.21 6.127 6.69
04185  7.890 8.02 8.119 8.42 8.534 9.23
04712 11.133  11.17 11.531 11.67 12.268 12.87

4.3. Prolate hard spherocylinder fluid :

Next, we apply the theory to calculate the equation of
state for prolate hard spherocylinder (HSC) fluid. For
this, we assume Oigr = Ousc and Vigr = Visc i€

(6)KOuee® = (712)(3y - 1)07nsc
or

K=QGy- 1, 9



Simple equilibrium theory for equation of state of hard convex body fluids 55

where 7 is the ratio of maximum length (L + @) and
width o. For this, we obtain X and hence other parameters
appearing in eq. (21). The values of P/okT of the prolate
HSC fluid are compared with the ‘exact’ results [1] in
Table 4. The agreement is very good.

Table 4. Equation of state, P/chT of the prolate HSC fluids.

¥ n Theory Exact
14 0.3142 4347 442
1.6 0.2948 3.967 4.10
0.3873 6.745 6.84

5. Concluding remarks

Using the physical interpretation of reciprocal of activity,
we have given a simple expression for the equation of
state of the HCB fluids. The results obtained for the
HER, HDB and prolate HSC fluids are in good agreement
when compared with the simulation data.
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