jndian J. Phys. 78 (6), 505-509 (2004)

&

5 %
:IJP &

NTIONg,
¢ W
()
.

Large amplitude ion-acoustic solitary waves in a relativistic
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Abstract

1s derived without neglecting electron mertia. It is shown how the negative 10n concentration, solitary
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I. Introduction

When the speed of the particles is comparable to the
velocity of light, the relativistic effects play a significant
role in the formation and propagation of solitary waves.
For example, very high speed ions are observed in the
solar atmosphere and interplanetary space. In the plasma
sheet boundary of the Earth’s atmosphere and in the Van
Allen’s radiation belts, high energy ion beams arc
frequently observed [1,2]. Propagation of ion-acoustic
solitary waves has been studied both theoretically [3-6]
and experimentally [7-9] by several authors. Most of the
theoretical methods, however, used reductive perturbative
technique (RPT) to derive KdV (Korteweg-deVries) or
MKdV (Modified KdV) equation for nonlinear waves.
But this  technique is valid for small amplitude waves
only [10]. Large amplitude solitary waves do exists in
nature and in 1985, Nakamura [7] observed the large
amplitude solitary waves in laboratory. Several approaches
other than RPT are developed to study the nonlinear
Wave phenomena like Sagdeev’s pscudopotential equation
(11], Nonlinear Schrodinger equation, Sine Gordon
cquation [12] and Burger equation [13].

: Exact Sagdeev potential for a muludimensional relativistic mulu-component plasma consisting of both positive and negative ions

Lv,
- all play significant role in deternuming

: Ton-acoustic solitary waves, large amphitude, relativistic multi-component plasma.

In 1983 Lonngren [14] studicd solitary waves in
multi-component plasma. Das [5] and Das and Tagare [6]
also studied solitary waves in multi-component plasma
with negative ions. This study is also extended to space
plasmas through the derivation of Kadomtsev-Petviashvilli
(K-P) equation [15] by Troven [16]. To study large
amplitude solitary waves, Sagdeev’s [10] pseudopotential
approach is very uscful particularly for travelling wave
solutions. Originally, Sagdeev’s pseudopotential was
derived [17-19] mostly for unidirectional soliton
propagation in plasma. Only recently, Roychoudhury et al
[20] derived the multidimensional Sagdeev potential
equation in multi-component plasma. But in their study,
they considered plasma to be non-relativistic and also
they neglected the mass of the electron. In this paper, our
aim is to derive the generalized multidimensional Sagdeev
cquation in multi-component plasma taking into account
the relativistic effect of the ions and taking into account
the electron inertia. Here, we shall show how the negative
jon concentration restrict the region of soliton solution.
The effect of relativistic parameter in determining solitary
wave solution is also discussed.
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The organization of the paper is as follows. In Section
2 basic equations are derived. Sagdeev’s pseudopotential
is derived in Section 3. The conditions for existence of
solitary waves are discussed in Section 4 and Section 5
is devoted to discussion and conclusions.

2. Basic equations

Our analysis is based on the continuity and momentum
fluid equations for the ions and electrons and Poisson’s
equation which are given below :

For ions :
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For electrons :
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Poisson’s equation :
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where Q=—<, m, and m, are electron and positive ion
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and negative ions, v, is the normalized velocity of a
particle normalized to the ion-acoustic speed
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and @™ respectively when the ion plasma frequency
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3. Pseudopotential analysis

In order to investigate the propertics of the solitary wave
solution of equations (1)—(5), we introduce a lineur
transformation as

n =E[(.mn)(x. y.2)- Vrj
=E[Lx -vi]
=§(lx+my+nz-—Vt).

Hence, we have
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Eq. (1) thus becomes
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Hence, €q. (2) becomes
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Now multiplying the egs. (10), (11) and (12) by {, m
and n respectively and adding we get
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Now considering the propagation of solitary wave in the

directiori of v, (i.e. (L, )2 =va,2 ), we get
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Using (14) and (15) in (13), we get
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Integrating (15), we get
=V(Lyy)+cy =—paq 20 +C, (18)
when v, v,y = 7(0) La0 ~ as 90,
- Vao
2
Hence, we get
Vitwaoo ~ Ly v 1+ 2 = 10)= Hatal’p. (19)
Similar‘y, from eq. (3), we obtained
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where v, is the initial velocity of the electron and n is
the initial electron density.
Considering L.v,g = 0, eq. (20) reduces to

n.=n 4
« Oy Ly, @n
Similarly, from eq. (4), we have
~Vd(Lv,)+d(Lv,)* = 2 L2d¢—»2 1 _-’—dn,. (22)
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Intcgrating and using the boundary conditions
n, »n,,v, >0, as ¢ =0, we get

0 1%
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Let us find the standard pseudopotential y in the form

f:-;—f*%% (24)
where
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Integrating the above integral and using the suitable
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boundary conditions, one has

Vo= Y, 2 - LyaJLver -LyetO). 9)
Similarly,
1 1
v, = "V”.-o[ . Q(L.vf)—-;} 29)
Considering n. =1, we have
ve=l-go +QV(Lv,) (30)

4. Solitary wave solution

Whether the solitary wave solution of eq. (24) exists or
not, can be determined from the nature of the
pseudopotential y. Considering the very simple case where
ion-drift velocity, electron inertia, relativistic effect are
negligible and also considering only one species of positive
ion, we get

v, =1-¢€°, (30

Sagdeev shows that in this case, solitary wave solutions
exist for 1 < V < 1.6.

For a solitary wave solution, the pseudoparticle starts

9
at a position ¢ = 0 with a small velocity ;1_," and it will

be reflected back at some positive ¢ =@, and then come
back to ¢ = 0. Then the condition for the potential well
is

d?
Yoo (33)
$=0
Also y(¢) will be negative from ¢ = 0 to ¢ = ¢&. The
condition is that the physically complex ¥ will not be
allowed because this implies complex ion density which
is impossible. So, here the condition for the existence of
soliton solution is

V- LJ’“
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(34)

and

w(g)=0,

where @ is the point where () crosses the ¢ axis fron
below.

(35)

5. Discussion and conclusions

w(@) is derived for
multicomponent multidimensional plasma. In Figure |,

The exact pseudopotential
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Figure 1. ¢(¢) is plotted against ¢ for different values of ny = 0, 0.01, 0 |

Ly,
Other parameters arc V = 31, L., = 30,

=0.01
W) is ploted against ¢ for different values of negative
ion concentration (ngy = 0, 0.01, 0.1). Other parameters

Ly,

~

are V = 31, Ly, = 30, =0.01. For ng = 0 or

0.01, M) crosses the ¢ axis from below at a positive
value of ¢ = @, (say), where @, is the amplitude of the
solitary wave. But for ny = 0.1, y(¢) is positive throughout
the region and so no soliton solution would exist. Hence
from this figure, it is seen that a small concentration of
negative ion (ng) reduces the amplitude solitary waves
but for a large concentration (ny = 0.1) of negative ions,
no soliton solution would exist.

Lvg .
To see the cffect of the relativistic parameter -

Ly
Figure 2, @(¢) is plotted against ¢ for  =-=0.001, 0.0!

and 0.1. Other parameters are ng = 0.01 and V = 31.37.
It is seen from this figure that for small values of

v
relativistic parameter L__“” =0.01 or 0.001|, the

amplitude of solitary waves remains almost same but for
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Figure 2. y(@) is plotted against ¢ for different values of =0, 0.01,

01 mg =001 and V = 31.37. Other parameters are samc as those

Frgure 1.

L'va()

=0-11uf(¢)

a larger value of reltivistic paramcter

hecomes negative through out the region and hence no
solution exists in this case.

To see the cffect of solitary wave velocity V, y¢) is

plotted against @ for V = 31, 31.37 and 31.6 in Figure 3.
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Other parameters are ny = 0.01 and

clearly seen from this figure that y(@) does not cross the
¢ axis from below for V > 31.37. Hence, V = 31.37 is
the critical value of the solitary wave velocity above
which no soliton solution would exist. The shape of the

sohtary waves may casily be found out from the relation
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Figure 3, w(@) is plotted against ¢ for different values of V = 31, 31.37,
316. and ng = 0.01. Other parameters are same as those in Figure 1.
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Hence, we can conclude that the concentration of negative
ions has a significant role in the existence m multi-
dimensional multicomponent plasma. The solitary wave
velocity and the relativistic parameter have also significant
roles in determining the region of existence as well as in
the shape and the amplitude of the solitary waves.
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