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Abstract : Exact Sagdeev potential for a multidimensional relativistic multi-component plasma consisting of both positive and negative ions
LVn

IS derived without neglecting electron inertia. It is shown how the negative ion concentration, solitary • all play significant role in determining 

the nature of solitary waves
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1. Introduction

When the speed of the particles is comparable to the 
velocity of light, the relativistic effects play a significant 
role in the formation and propagation of solitary waves. 
Foi example, very high speed ions are observed in the 
solar atmosphere and interplanetary space. In the plasma 
sheet boundary of the Earth’s atmosphere and in the Van 
Allen’s radiation belts, high energy ion beams arc 
frequently observed fi,21. Propagation of ion-acoustic 
solitary waves has been studied both theoretically [3~6] 
and experimentally [7-9] by several authors. Most of the 
theoretical methods, however, used reductive perturbative 
technique (RPT) to derive KdV (Korteweg-deVries) or 
MKdV (Modified KdV) equation for nonlinear waves. 
But this, technique is valid for small amplitude waves 
only [10]. Large amplitude solitary waves do exists in 
nature and in 1985, Nakamura [7] observed the large 
amplitude solitary waves in laboratory. Several approaches 
other than RPT are developed to study the nonlinear 
'vave phenomena like Sagdeev’s pscudopotential equation 
tH], Nonlinear Schrodinger equation, Sine Gordon 
equation [12] and Burger equation [13].

In 1983 Lonngren [14] studied solitary waves in 
multi-component plasma. Das [5] and Das and Tagare [6] 
also studied solitary waves in multi-component plasma 
with negative ions. This study is also extended to space 
plasmas through the derivation of Kadomtsev-Petviashvilli 
(K-P) equation [15] by Troven |16]. To study large 
amplitude solitary waves, Sagdeev’s [10] pseudopotential 
approach is very useful particularly for travelling wave 
solutions. Originally, Sagdeev’s pseudopotential was 
derived [17-19] mostly for unidirectional solilon 
propagation in plasma. Only recently, Roychoudhury et al 
[20] derived the multidimensional Sagdeev potential 
equation in multi-component plasma. But in their study, 
they considered plasma to be non-relativistic and also 
they neglected the mass of the electron. In this paper, our 
aim is to derive the generalized multidimensional Sagdeev 
equation in multi-component plasma taking into account 
the relativistic effect of the ions and taking into account 
the electron inertia. Here, we shall show how the negative 
ion concentration restrict the region of soliton solution. 
The effect of relativistic parameter in determining solitary 
wave solution is also discussed.
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The organization of the paper is as follows. In Section 
2 basic equations are derived. Sagdecv’s pseudopotential 
is derived in Section 3. The conditions for existence of 
solitary waves are discussed in Section 4 and Section 5 
is devoted to discussion and conclusions.

2. Basic equations

Our analysis is based on the continuity and momentum 
fluid equations for the ions and electrons and Poisson’s 
equation which are given below :

For ions :

drtq
dt

-+V.(n„v„) = 0.

dVaY“ - + (v„. V )(f>„y) = -qaPa ^  ̂  > 
at

( 1)

(2)

where

y = .

''ax ^ ’̂ (ly ^ '̂ oe ■

„ . a a

For electrons

a«.
a/

+ V.(/I,v,) = 0 ,

V (v ,) ',)  = | - -  -  V.«.. 
ax n.

Poisson's equation :

(3)

(4)

(5)

where C = - ^ ,  and rria are electron and positive ion
m„

masses respectively. n  = — ,a  = i , j ,  represents positive
m,

and negative ions, is the normalized velocity of a 
partic le  norm alized to the ion-acoustic speed

= &  \l m̂i
qa is the charge ratio (+1 or -1  ). n„ are

respectively the electron and ion densities. Space and

~kf'time are normalized to the Debye length =

and 01 * respectively when the ion plasma frequency 

I4m„e^ _
^ 1 -  J —~ — • Te is the electron temperature.

3. Pseudopotential analysis

In order to investigate the properties of the solitary wave 
solution of equations (1H 5), we introduce a linear 
transformation as

= ^[L X -V t]

= ^{lx + my + n z-V t) .

Hence, we have

dt

dx ^ d n ’ 

dy dri ’

a .  a

Eq. (1) thus becomes

dn^ dn^v
dt) dr] dri dr]

or

dr] dr]
(7)

Integrating, we get

-V h„+ rt« (L .v„)= c,. (8)

The initial conditions are |n |-> 0 ,no  

So c, =-Vh«o+"aoU'»'afl]- Ant* so

«o = «a0 Ysb''< !L
V - L v ^

(9)
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Flence. eq. (2) becomes

„divaxY) . ^d{vaxY)_ .. _ ,d<t>
( 10)

Integrating (15), we get

-  V( Lv„y) + +  C. (18)

-V
^^<ryY  ̂ .. v^('’avy) d<i>

+ (L.v„)----=-Ma9a"»
dn dr]

dr] dr] dr]

dr]

dtp

(Jl) when âO

p ?
as 0 —> 0 .

Now multiplying the eqs. (10), (11) and (12) by /, m 
and n respectively and adding we get

- V ' [^■•’aYl+Z^yax (v«t)')+ m^yav (vetyX)+dri dr\ dr} '

(12) Hence, we get

[4*'«ol'o -  L.-yaY]+Ĉ  (x -  Xo ) = 

Simi)ai(|y, from eq. (3), we obtained

V-L.v,o
'V •  "fO V - L v .

(19)

(20)

n ŷcB.— {yazY)+lm Vay— (v^x)+Vtt,— (vô ŷ) the initial electron density. 
dt} dr} dr}

where v<-o is the initial velocity of the electron and aî ) is

■̂ mn y^  ^  (v'<ttX)+v<K - j  (v^x)
dr] dr]

Considering iLv̂ o = 0, eq. (20) reduces to 

V'nt = n,Q-— —
V -  L.Vg

Similarly, from eq. (4), we have

(21)

In

or

VtC i  (''<«X)+ Voy (v„jX) dr} dr}

y —  [/-v„y]+ ~  [l .v^yY = -M a tP

= j  in )
dr]

2 d<t>

-  VdiLv, ) + d(.L.v, f  = ^  l}dp -  ̂  l}  -j--dn,. (22)

Integrating and using the boundary conditions 
n, n,o,v, - id ,  as (P-*d, we get

(14)dr] 2y dq dq

Now considering the propagation of solitary wave in the 

dircetiori of v„ (i.e. (£.v„)^ =*’a^)> we get

<p=;P^ [(L.V, f  -  2V{L.v, )]+ log - -
2L- V - L v . (23)

X + v.
dy_
dv„

dyg
dq

Let us find the standard pseudopotential y/ in the form 

d ^ tp  d i j /

(15)

and

dy V,
1 - ^

-3
n y

dy, c

Using (14) and (15) in (13), we get

-Vd(Lv,Y)+

dr}  ̂ 00 

where

(16) when

— — -dv„=-HaqaL^d(p.
y

l - h (17)

Wai<t>) = jnadp,

1

(24)

(25)

(26)

(27)

Integrating the above integral and using the suitable
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boundary conditions, one has

Wa = -  L.v^oY{o)).

and

Similarly,

We = Q(Lk )-:
V - L . V ,  ■'  V

Considering =K we have 

V
V',. = 1 - V -L v .

■ + ^V(L.v, )

(28)

(29)

(30)

4. Solitary wave solution

Whether the solitary wave solution of eq. (24) exists or 
not, can be determ ined from the nature o f the 
pseudopotential y/. Considering the very simple case where 
ion-drift velocity, electron inertia, relativistic effect are 
negligible and also considering only one species of positive 
ion, we get

'o )= 0 . (35)

where (i>o is the point where <i<0) crosses the 0  axis from 
below.

5. Discussion and conclusions

The exact pseudopoten tial y/{<p) is derived for 
multicomponent multidimensional plasma. In Figure 1,

Wr

=V‘ 1 - 1 --
V-

(31)

(32)

Sagdeev shows that in this case, solitary wave solutions 
exist for i < V < 1.6.

For a solitary wave solution, the pseudoparticle starts

at a position ^  = 0 with a small velocity and it will

be reflected back at some positive 0 = 0o ^nd then come 
back to 0 = 0. Then the condition for the potential well 
is

d V <0
^=0

(33)

Also will be negative from = 0 io (p = 0q. The 
condition is that the physically complex y/ will not be 
allowed because this implies complex ion density which 
is impossible. So, here the condition for the existence of 
soliton solution is

(V '-zT v jV "  ( V - L . v , ) t - e ( V - L . v j f ‘’

Figure 1. is plotted against </> for different values ol «yo = 0, O.OI. 0 1 

Other parameters arc F = 31, - 30, = 0.01

yK,(j)) is ploted against (f> for different values of negative 
ion concentration (n̂ o = 0, 0.01, 0.1). Other parameters

L v.
are V = 31, Lv„n = 30, — 0.01. Por tijo -  0

0.01, y/(^  crosses the 0 axis from below at a positive 
value of 0 = 0m (say), where 0„ is the amplitude of the 
solitary wave. But for = 0.1, y/{0) is positive throughout 
the region and so no soliton solution would exist. Hence 
from this figure, it is seen that a small concentration of 
negative ion («^) reduces the amplitude solitary waves 
but for a large concentration (n̂ o = 0.1) of negative ion.s, 
no soliton solution would exist.

To see the effect of the relativistic p aram eter-------m

Figure 2, y/(,0) is plotted against 0  for — = 0 .0 0 1 , o.Ol

and 0 .1 . Other parameters are rijo = 0.01  and V = 31.37. 
It is seen from this figure that for small values of

re la tiv istic  param eter | * = 0.01 or 0 .0011, the

amplitude of solitary waves remains almost same but for
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015 
0.1 

0 05

hVas; .01 

.001

0 I fljO = 

lMj:urc 1.

0.01 and V = 31.37. Other parameters are same as those in

;i larger value of reltivistic parameter
L.VaO = 0.1],¥«l»

tx'comes negative through out the region and hence no 
solution exists in this case.

To see the effect of solitary wave velocity V, is 
plotted against ^  for V = 31, 31.37 and 31.6 in Figure 3,

L.v„
Other parameters are njo = 0.01 and '̂ aO = 0.01. It is

dearly seen from this figure that ip(¥) does not cross the 
() axis from below for V' > 31.37. Hence, V = 31.37 is 
the critical value of the solitary wave vekwity above 
which no soliton solution would exist. The shape of the 
solitary waves may easily be found out from the relation

f̂ igure 3. is plotted against ^ for different values of V = 31, 31.37, 
31.6. and np = 0.01. Other parameters arc same as those in Figure 1.

H-:d
dtj)

(36)

Hence, we can conclude that the concentration of negative 
ions has a significant role in the existence in multi­
dimensional multicomponent plasma, l l ie  solitary wave 
velocity and the relativistic parameter have also significant 
roles in determining the region of existence as well as in 
the shape and the amplitude of the .solitary waves.
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