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Abstract

A Maxwell molecule interactions model by the Monte Carlo method s proposed for space plasma  simulations

The model describes

4 .ollimon between a minor ton with a background neutral.  As a result of a Maxwell mmolecule collisions, the magnitude of the relative velocity 1s
achaneed but ats direction is altered However, the velocity of the center of gravity remains the same both 1n magnitude and direction before and after

e colliston
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Indealmg with gas mixtures, it 1s convenient to describe cach
species 1 the mixture by a separate velocity distribution function
1u.v . 1) The velocity distribution function is defined such

that  (r,. v 1) dv dr represcnts the number of parucles of

‘ecies s which at time 1, have velocitics between v and v +

Fdv and positions between r andr +dr,. The evolution in time

the f (r,.v,. 1) 1s determined by the net effect of collisions

W the flow 1n phase space (r, , v,) of particles under the

Mluence of external forces (gravitational, clectric, polarization,

" magnetic). The mathematical description of this evolution
‘#hen by the well-known Boltzmann equation [ 1]
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there E 15 the electric field, B is the magnetic field, d/dr isthe

mederivative, Y is the coordinate space gradient, V isthe

ity space gradient, c is the speed of light, and e, and m,

fm the charge and mass of species 5. The quantity (6f,/61)

L[_)Iﬁ_l\ the rate of change of f(r.v,. 1) inagiven region
“rrcspondm

In the stmulation, pairs of particles are generated at random, the changes 1n the velocities due to Maxwell molecule nteractions are

Monte Carlo sumulation, Maxwell-molecule interactions, space plasma.

of phase space (r, v) as a result of collisions. As far as the
colhision term is concerned, the appropriate expression for binary
clastic collision betwcen ions and neutrals is the Boltzmann
collision integral [2]

éf, Y -
'5—f;“ =Zjdvhdﬂg.\o.\l(g.\'h'x)[f.\fb—f\fh]' (2)

where dv, is the volume element in velocity space, dQ is an
element of solid angle n the center-of-mass reference frame, ¥

is the center-of-mass scattering angle, g, is the relative velocity
of the colliding particles s and b, o, (g,,, %) is the diffcrential
scattering cross section, and the primes denote quantities
evaluated after a collision. For partially ionized plasmas
(Boltzmann's equation can be solved for each test species
indcpendently of the other specics), there are essentially three
collision terms that have been extensively used to describe the
relevant collision processes (ion-ion Coulomb interactions, ion-
ncutral polarization interactions and ion-neutral resonant charge
exchange interactions).

In this paper, however, our main concern is for ion-neutral
collision processes dominated by the long-range polarization
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interaction [3]. With this so called Maxwell molecule interaction,
the 10n-neutral collision frequency is independent of velocity,
and as a consequence, the calculation of ion velocity distribution
funcuon is sigmficantly simplified This interaction model is
often used to stmulate non-resonant 1on-neutral interactions
[4]. For this modcl, the differenual scattering cross section

o(g,,.x) 1sindependent of scatiering angle ¥ and inversely
proportional to the relative speed g, t.e.

constant
()’\I(R\h‘x)= Tt (3)
8

In this case, the probabihty ol collision between two particles
(s and b) 1~ independent of their velociues (v and v, ). and we
constder the escape ol a minor 1ons s through a background
neutrals h ( we assumed one neutral species). In the present
study, we conline our attention to the Monte Carlo simulation
of the Maxwell molecule interactions, i.¢ . we are interested in
computing the velocity ol the test 1on (minor) after Maxwell

molccule collision with the neutral b

In order to simulate the effect of Maxwell molecule
interactions in a plasma, we introduce a Maxwell molecule model
by a Monte Carlo methaod for a particle simulation. The Monte
Carlo method is used to approximate the solution of physical

problem by using random sampling  The standard procedure of

the Monte Carlo simulation is to follow the motion of the minor
1on (one ata time) for a short period of tme, at the end of which
the change 1n the mior 10n velocity duc to Maxwell molecule
interactions is determimned.  The test ion s 18 mjected into the
simulation region with a random itial velocity that is consistent
with the assumed non-drfting Maxwellian immediately below
the injection region. The mimor (test) 1on s is considered to
under the influence of the
The time mterval between two successive
collisions is randomly generated using a properly weight random
number generator [S-7]. When a collision occurred, the minor
n velocity after collision was determined by using another set
ol random numbers having statstical propertics deterined
according to the chosen Maxwell molecule collision model, Now,

move for a shortinterval of time At
external forces

we use Monte Carlo technique to generate the initial velocity of

the minor ion s. We describe the Maxwell molecule interactions
and gencrate the period  Ar  between successive collisions
and scattering angle, we generate the random velocity of the

background ncutrals 5. Finally, we obtained the minor ion
velocity after collision.

Outside the simulation region, the minor (test) ions s arc

assumed Lo be in static cquilibrium with some thermal velocity
. 12 . . N .

(2KT, /m,)"" . their velocity distribution function £\ can be
written as 4 non-drifung Maxwellian, offset in velacity,

f"(v\.)-—-cxp(—m\\';1 /2kT‘). @)

As mentioned earlier, I f;(V)dv gives the number depg;,

(n) of the test ions. Integrating over the entire velocity space
the velocity distribution function is then '

v

V72 m
=n|—"—| exp|-—|.
fiv) "\(27”‘7.\) P 24T, )

In most of space plasma investigation, the ratio of ion-neyr,

collision frequency v, to the ion cyclotron frequency Q
very small. As v, /0, — 0. the test ion velocity distribygy
function in velocity space becomes symmetric about an ay
that is parallel to the magnetic field direction [8]. Because of th,
cylindrical symmetry, it is convenient to introduce a cylindricy
coordinate system with its axis along the magnetic field. In i,
coordinate, the 1on velocity components in the parallel ng
perpendicular dircctions of the magnetic field are denoled )

vwand v, . .
|

In the cylindrical coordinate system and in terms of \\ and
vy, the test velocity distribution function f,(v,) cq"\(i|

becomes

fivo)y=n (v f(vy),
where

172

j\(pl‘): L cxp M ‘o
2m T, 24T, ‘

-m, \’. 1y

m
S, =( ' ex
) p 2T,

\ 27T, (6by

fi0%) and f,(v,,) represent the normalized velocity

distributions of the minor (test) ions in the parallel and
perpendicular directions of the magnetic field, respectively

Now, we will use random numbers generator to obtain a sl
ol test particles distributed according to some given distributions
(6a) and (6b). We need this to create the test particles and 10
inject them into the simulation region.

Generationof v, :

m,
For test ions distributed according to f‘.(vu):[—z;ﬁ‘l

—my V}_‘

®XP| =7 |+ the probability of the test ion of being insom
range of values dv,, is then P(v )dv, =2rv [0V,
which leads to [9]

(w2

L AT, ™

PO =2, Sk Jexp
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{he values of vy, aregivenby

j P(v},)dv, =rand (), ®)

chere rand () is a pseudo-random number with uniform
robability between the limits 0.0 and 1.0, that is, taking each
alue of rand() in turn, we must solve eq. (8) and find the
orresponding value of v, . which is shown to be

) 24T,
vl = -(T]log [rand ()-1]. ©)
ihis v, tsthe perpendicular velocity of the randomly injected

o 1on 1nto the simulation region.

Seneration of Vi o

We must notice that we are interested in test ions that are crossing
he bottom boundary of the simulation region (i.e. vy, >0).
The probability of finding a particle with parallel velocity vy,
wept across the boundary is proportional to the flux of such
wrticles f\(\'l\ Wy e P("l\) = ('V|,\f,\ (Vi ) . where c is the

oo

normalization constant obtained from jP(\";\ ydvy, =1
n

knowing ¢, we get

m, . —m\\'lz\
— |V Xp -
%7, )" 24T,

(10)

P(\“‘ ).= 2( 5 ~7'

Simular to eq. (9), the value of the test ion parallel velocity is
2nen by

\; =—(—2-E-]I0g[mnd()—l]. ()

m,

fhe numerical values of v, and Wy, arc different from cach
wther because of rand (). Al this stage, we have created, at the
baundary level of the simulation region, a test ion from the
carresponding test velocity distribution.

The background neutrals are assumed to be in static
tquilibrium and, consequently, their distribution function fis
sumed to have a Maxwellian distribution

2 2
my,
) expl T2

m
folv) = nh(z b

T, 2kT, (12
s £,(v) can be writfen in terms of Vip and v,
b)) = my £y () fo (1) (123
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with
m 2 ny, vy
= 'S Ve
Sr(vg) [27:!:7}, XF 24T, (12b)
ny, —myV
= ex
Jr(vip) (ZM'T;,) P( 2T, (12¢)

The generation of v, is similarto generation of v, , therefore

"24T,
vip = ’"bh log[rand ) - 1] (13)

Howcver, the generation of Vg, 1s different from the

generation of Vi, In the case of Vi, we were interested in
those test particles that can reach the boundary of the simulation
region, whilc in Vy, case, the background neutrals exist in the
simulation region.

The probability of picking up a ncutral from the neutral
particles of the background that arc distributed according to

fv (Vu,) along the direction of the magnetic field, is proportional
to fh("w) .l P("v,)-‘-dh(vu,) , where ¢ is the
proportionality constant. The integral of the probability over
the whole intervals (—so,0) is equal to 1:

P (Vu))dvv, =1, this leads to

g‘—.!

Alvw) =( o cxp[ R (14)

27kT,, ) 24T,

Generation of a ncutral particle from the above probability
distribution, is given by the following equation

rand() = J P(vy,)dvy, .

(15

The integral is computed

n:md()=l 1+erfl L
- 2kT,

where erf is the error function.

Hence, we obtain an explicit formula for vy,

172
- =(3:;7;L) erf ' (2rand()-1). (16)
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Eqs. (9).(11),(13) and (16) give the velocites of the colliding
particles (test ion s and background neutral b). Now, we will
investigate the effect of Maxwell molecule interactions on the
above velocities and consequently, the velocities of the colliding
particles after collision.

Our aim 15 1o simulate the interaction of a test ion moving
under the influence of an external forces through a background
of ncutrals atoms, these ncutrals are distributed according (o
Maxwell distribution function with background temperature 7,
The simulation steps must provide us the time between each
pair of collisions (interactions) and the change in the test ion
velocity due to cach collision. For a Maxwell molecule
interaction, the collision frequency w is dependent of the relative

velociy g, =v, -v,.

Consider the test particle with veloeity v, |, the probability

that this test particle survives at ume ¢ without suffering a
collision 1s P(r), while the quantity wdt is the probability that
the test particle collide with the background neutrals between
ume fand 1 + dr.

The probability that a particle will suffer no collision in the

interval dris given by P(r+dt) = P(t) (1= wdt) , using Taylor
expinsion and the condition P(0) = 1, the probability P(t) will be

P(ry=cxp(-wr). (17)

[n order to determine the time iterval T between collisions,
we set up the equation :

T

rand() = J e "dr.

Computing the integral on the right, we get the relation

rand() =l/w(l—¢"" r). and hence

T=—log(l-(w)rand())/ w. (18)

The mean distance travelled by the ftest particle between
collisions 1s called mean free path 4 and given by

P (\f\ +Vi\)l/l {:;:l Iug[I— wrund()]}. (19)

w s the collision frequency for Maxwell molecule teraction
and given by Schuri [1).

Thus, we can generate parr of particles (test and background
neutral) atrandom. Next we calculate the changes in the velocities
duc to binary collisions in the ime interval 7 . Asaresultof a
binary collision, the magnitude of the relative velocity g, is
unchanged but its dircction is altered by the scattering anglc

X However, the velocity of the center of gravity vq; given
by

my, +m,v,

Vo =
G
”13+mh

remains the same both in magnitude and direction befo,

.. Ie an
after the collision. d

The relative velocity and the velocity of the center of graviy
after the collision are given by ’
B =Vi—V (204

and

’ ’
my, +myvy
m, +my,

Ve = (2%'

where prime denotes after collision.

From ¢gs. (20a) and (20b), the velocity of test particle afy
collision is |

8y, .
m, +m, (R0c)
and similarly
"lhg,\h
m, +ny, (200

The parallel and perpendicular components of the relamne
veloeity g, are

Eupl =Vau—Vm.

S 2
8L = ("\J. V= 2v v C"W’) , &

where @ is the angle between v, and v, in the perpendicula
planc.

Similarly, the parallel and perpendicular components of v,

are
— n )
Vear = Vy, + Vi
m, +m, m, +m,
me m,
VCGL vis oV
m, + m, m,+m,
12
2mgmy cos @
(m, +my)

After collision, we are interested to determine the velocn;
of the test particle v, ; however, the velocity of the backgrou"
is generated randomly for each collision as shown earlier.
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from eg. (20¢), we have

4
My 8 chy
Vi = VeGi
» m, +my,
2
m, 2m, ' ,
v ~8wy t =" Vg1 &y COSP
L o +m, " m,+m, CCLSPL
(23)
where @ is the angle between v, and gy, in the

perpendicular plane, & = 8c0s0’ | g isthe angle between

the relative velocity g” and the parallel direction and
, 2
, 2 ’
[ =(R _g.\hl) .

Now, the question arises as to how to select the random
dnections, i. e. the angles @,9" and 9’. Thc angles ¢ and ¢’
take on values from O to 27 and are chosen randomly with a
umform distribution between ) and 27 .

‘The tormulas for construction of @ and ¢’ will be written

¢ =2m rand()
and

¢’ =2 rand(). 24

However, the cosine of the angle 8’(cos6’) |, be uniformly

distibuted over the interval -1, |]. The formula for constructing
o’ Hollows:

cos@’ =2 rand()-1. (25)

The values of rand() in these formulas should of course, be
ditlerent

We have presented a Monte Carlo method for a Maxwell

molecule interaction. The major steps of the Monte Carlo
simulation are

W Testion (minor) is randomly generated (i.e. Vi and

v,, are determined) from a non-drifting Maxwellian
distribution (of temperaturc T,)

245

(i) The time interval between collisions is randomly
generated such that it has an exponential probability
density function (i.e. P(r)=e™ )

@iii)  The final velocity of the test ion due to the external
forces is computed.

(1v) A neutral particle from the background is randomly

chosen from a Maxwellian distribution (of temperature
T).
h

(v)  Therelative velocity g and the velocity of the center
of gravily v, between the colliding particles (test
ion s and neutrals b) are computed. While Ve is the
same before and after collision both in magnitude
and dircction, the magnitude of g remaining same, its
direction after collision is changed.

(vi) v, and g after collision are used to calculate the
velocity of the testion (v)) after collision.

Steps 2-6 are repeated using this velocity (v;) as the initial
test ion velocity.

The result of such procedure gives information about the
test ion (minor) for a long period of time.

Time average of various kinds can be computed from such
data; this time, averages have been set equal to the instantaneous
averages over the assembly, in accordance with the Ergodic
theory.
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