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Abstract : In the solution of Schrtklinger equation for a particle, confined within one-dimensional infinitely hard boundancs, there are 
discrete energy states in which the particle can exist. The particle has finite probability of finding itself inside the boundaries for ground, first, 
second... n-th excited states (i.e. for quantum numbers « = 1.2, 3,..n). To explore the optimized possibility of finding a particle inside the 
lK)undarics for any quantum number, we use the Stochastic Uopfield Neural Network Model with Mean field Approximation of Simulated Annealing, 
in this process, the network activation dynamics at a given temperature, reaches the thermal equilibrium position. This equilibrium position is the 
steady state position of the network that is achieved only if the probability of visiting the global minimum energy states becomes maximum and it 
relers to the optimized probability of finding the particle inside the boundaries.
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1. Introduction

Now a days, the computer technology has led to belief 
that a machine can realize intelligent tasks. An intelligent 
system, capable o f modeling the human behavior, has 
captured the attention of the world for years [1,2]. The 
approach of neural computing is to capture the guiding 
principles that underlie the brain’s solution for many 
intelligent tasks and to apply them to computer systems. 
Wc do not know how the brain works for these intelligent 
tasks but we do know that it uses billions of slow units 
•hat are highly interconnected in immensely complex 
tashion, each being connected to thousands of others and 
working together to solve all the tasks. We call this 
structure a Biological Neural Network [3]. Brain’s basic 
structure is intrinsically suited to parallel problems rather 
than serial ones. We can simulate this structure in a serial 
fashion, allowing the parallelism of the brain’s structure.

call this structure an Artificial Neural Network [4]. It 
t̂ onsists of nunm ous simple processing units [5] that can

be globally programmed for computation and are enable 
to collectively solve complicated and ambiguous problems.

In problems such as Pattern ClassiHcation, Associative 
Memories, Optimization, Vector Quantization and Control 
Applications, the principles of neural network are directly 
applicable. The most successful application o f neural 
network is for the optimization problems [6]. It is possible 
to capture such a problem with a feedback network, 
where the units and connection strengths are identified by 
comparing a cost function of the problem with the energy 
function of the network given by Hopfield [7,8], expressed 
in terms of processing elements and connection strengths. 
The solution of the problem can be achieved by 
determining the state of the network at the global minimum 
energy of the energy landscape. In this process, it is 
necessary to escape the network from the local minima of 
the energy landscape, which is accomplished by using a 
simulated annealing schedule of mean field approximation
[9].'
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In this paper, we observe the bound states for a 
panicle confined in a finite one-dimensional box with 
infinitely hard boundaries. These bound states may be 
obtained by solving the Time Independent SchrSdinger 
Equation flOJ for the wave function confined within the 
finite boundaries 0 < x < 1. So, the particle has finite 
probabilities of finding itself in the bound states for 
ground, first, second... n-th excited states {i.e. for quantum 
numbers n = I, 2, 3...«). A Hopfield-type feed back 
network can be used to store a pattern environment in the 
form of quantum numbers and the probabilities of finding 
the particle inside the boundaries for the quantum numbers. 
'Fhe trained network is capable of estimating the optimized 
probability of finding the particle inside the boundaries 
for any unknown quantum number for which the network 
has not been trained. As this unknown input pattern is 
represented to the network, it approaches the higher 
energy states. In order to achieve the global minimum 
energy states by escaping the local (false) minimum enetgy 
states, we are using Simulated Annealing in which the 
constraint parameter (temperature T) is reduced as per the 
annealing .schedule [II] of mean field approximation [12]. 
At the allowable lower limit of constraint parameter (i.e. 
r  = 0) or thermal equilibrium, the network achieves the 
global minimum energy states reprc.senting the optimized 
probability of finding the particle inside the boundaries.

2. Bound state condition and the Hopfield model

We may specify the particle’s position with the assumption 
that it is confined to move along jc-axis between finite 
boundaries x = 0 and x -  I o f infinitely hard walls. For 
convenience, we may assume that the potential energy V 
of the particle is infinite on both sides of the boundaries 
and zero inside. Therefore, the Time Independent 
SchrOdinger Equation becomes.

HjF
+ —  E\i/ = 0 , (2. 1)

or.

a l i f  2^  + k \ - 0 , 
dx

(2.2)

where

ilmE

Xjf = Asin(fcc -f 9). (2.3)

Using boundary condition 0 as x ->  0 and ^  o 
as X —> /, we get

0 = 0  

and

jfc„ = nTdl,

where n is an integer.

Substituting the values of 6  and ^  from eqs. (2.4) and 
(2.5) in eq. (2.3), we get the plane wave solution within 
the boundaries as

(2.4)

(2..-5)

, . nxn= A sm -----
I ( 2.6)

Thus, the normalized wave function may be given as 

|2  . nxn
sin — • (2.7)

The corresponding eigen values may be obtained from 
the eq. (2.5) as

=
V ( 2 .8)

and

E = h}n^n  ̂
2m/^

(2.1)

The integral of over the whole space within 
boundaries, is finite. The probability of finding the particle 
between the region Xa and x* within the boundaries x = 0 
and X = / in the n-th excited state, can be defined as

and

(p v .)„ = A '/s in ^ [^ ^ jd x

The solution of eq. (2.1) can be given as
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1 V  f  2nxJC siiv
/ (2. 10)

On putting « = 1, 2, 3.........n, we get the probabilities of
finding the particle inside the region and as

............ (P v J f l  for ground. first....n'*

excited states.

The graphical representation for wave function ^2. 
.....y/„, and the p robab ility  densities

............ can be shown by the

Figure 1. The ifr„ may be negative or positive, but

V \ A J \
k \ / N

(a) Graphical representation of 
wave function

jc=0 jc=/
(b) Graphical presentation of 

probability densities

Figure 1. Graphical representation of wave function and probability densities 
of a particle confined in a box with rigid walls,

will always be positive and since will be normalized, 
its values at a given x  will be equal to the probability 
density for finding the particle there, by -»  0 as 
•* -> 0 and X -*  1. A t a particular region in the box, the 
probability of finding the particle may be different for 
different quantum numbers. A particle in the lowest eneigy 
level i.e. n = I (ground state) is most likely to be in the 
nuddle of the box, while a particle with the next higher 
eneigy levels can never be there.

The Hopfield network is a fully interconnected network 
[7,8] in which weights are symmetric and output function 
of each unit is bipolar. The input pattern can be applied 
to all of the nodes at once. It moves through the succession 
of states until it reaches the stable state. We can use this 
model with its energy function estimation and we assume 
that the energy associated with each output state depends 
on netf/ork parameter like weights, bias etc. This energy 
landsci|>e refers to change in output state of the network 
with tiine and the hollows of the landscape represent the 
basins [of attraction called global minima, which are the 
areas inhere the energy function of the landscape is 
minimijm i.e. energy minima and can be used to store the 
input ^ ttem s. First of all we specify the limit of the 
region ivithin the boundaries with the values of x„ Xt and 
in this region the network can estimate the probability of 
finding the particle for different quantum numbers with 
the help of eq. (2.10). Now, we have a pattern environment 
in the form of sample of quantum numbers n = 1 ,2 , 3...n 
and probabilities of finding the particle inside the

boundaries ^ )z ’........... i  fo r these

quantum numbers and it can be represented to the network. 
The state of the network changes with time. This change 
in the state of the network continues until the network 
activation dynamics reaches a stable state (global minimum 
energy state). At the stable state, sample of quantum 
numbers and the probabilities of finding the particle 
inside the boundaries for these quantum numbers are 
stored in different global minima. The activation dynamics 
of the network can be expressed as

5^.(/-fl) = sgn
i*J

= Si i t )

with
W y ^ S iS j , (2. 11)

as the weights are symmetric and states are bipolar.

At the stable state, each minima of the energy landscape 
represents a different probability for a different quantum 
number. The number of input patterns that can be stored, 
depends on the number of units and the strength of 
connecting links. The energy function of global minimum 
of energy landscape can be given as

I
2 ‘

E(S) = - - Y ^ y S , S j  + Y ^ t S , ,
i*j i

(2. 12)

where is the threshold function.
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Now, as the unknown input pattern sample in the form 
of quantum numbers (which is not given earlier) is being 
presented to the network, it starts iterations and settles to 
a stable state. ITiis state can be represented in the form 
of associated energy as

(2.13)
l*J

The network can estimate the optimized probability of 
finding the particle inside the bound states for the given 
quantum number by minimizing the difference between 
the energy functions. The change in energy function due 
to update of fc-th unit is given by

AE=^E'(S)-E(S)

+ i 5 ; i v , 5 , s , + j ; 0 , ( s ; - s . )
i Ĵ

■ i j

Since S, = S', for i ^  j, eq. (2.14) becomes

(2.14)

AE = -S i

landscape which represents the stable states. At the stable 
state, the optimized probability from the stored sample 
will be recalled.

Consider a case in which the number of desired 
patterns is less than the number of basins of attraction 
There will be so called local (false) minima due to  the 
additional basins of attraction. Durihg recall, it is likely 
that the state of the network, as it evolves from the initial 
state corresponding to the input pattern, may settle m a 
local (false) minimum. The recalled pattern corresponding 
to the false minimum may not be the correct pattern, thu.s 
resulting in an error in recalling of the desired pattern. 
Error in recalling of desired patterns due to false m inim a 
can be reduced by designing the energy minima fo r the 
given patterns in an optimal way, so that the given 
pattern corresponds to the lowest energy minimum in the 
network and further by using a stochastic update o f  the 
state of each unit instead of the deterministic update 
dictated by the activation values and the output function. 
In order to reduce the error in recalling the desired 
pattern and reach the global minimum energy s ta te s  bv 
escaping the local (false) minimum energy states, w c can 
use Simulated Annealing in which the constraint param ctci 
(temperature T) is reduced as per the annealing schedule 
[11] of mean field approximation [J2j. As the tem pera tu re  
is reduced slowly, the probability of visiting the lowct 
energy states increases and at the possible m in im um  
energy state (global minimum energy state), the netw ork 
will be in the thermal equilibrium (as shown by F ig u re  2).

(2.15)

But we have assumed that the weights are symmetric Le. 
Ŵi = Wjf, so we have

(2.16)

If in addition, = 0, then since S* = S; for i ^  j ,  we 
have

(2.17)

As the change in eneigy function becomes minimized, i.e. Figure 2. Achieving the global minima by reducing the temper****'' 
A£ £  0, the networic settles to the minimum of energy according to the annealing schedule.
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A( the thermal equilibrium, the network captures the 
approximately correct probability o f finding the particle 

inside the boundaries.

3 Optimization for boundary state condition with 
simulated annealing

To explore the optimized probability of finding the particle 
msiJc the boundaries, a structure and learning algorithm 
similar to the Hopfteld net with the probabilistic update 
rule can be used. The probabilistic distribution of states 
vull Ik’ stationary or independent of time for a network to 
tie HI stochastic equilibrium. On decreasing the temperature 
according to the probabilistic annealing schedule, the 
network produces a new energy landscape, which contains 
ihe m inim um  energy states with respect to the previous 
oRc. This process continues until the network reaches the 
global minimum energy state. This state refers to the 
optim i/ed probability of finding the particle inside the 
boundaries.

Now, after specifying the limit of the region within 
ilic boundaries with the values of and Xt, the network 
can estimate the probability of finding the particle for 
Jiffcrcnl quantum numbers with the help o f eq. (2.10) 
and store them in the different global minima of energy 
tunciion using the activation dynamics expressed by eq. 
(2 11).

As the new quantum number n = m is being 
represented to the network, it approaches higher energy 
states, so that the probability of visiting the lower energy 
states decreases. The probability distribution of states can 
be given as

1
P{s) = - e (3.1)

Here, i  represents the partition function.

Thus, we can see from eq. (3.1) that at high 
temperatures, the probability of visiting the lower energy 
states decreases. Now, as the temperature is reduced as 
per the annealing schedule of mean field approximation, 
the probability of visiting the lower eneigy states increases. 
Finally, at the allowable lower limit o f temperature i.e. 
F = 0, the probability of visiting the lower energy states 
approaches 1 {i.e. highest probability), so that the network 
settles in the global minimum energy state, describing the 
optimized probability o f finding the particle inside the 
boundaries for the unknown quantum number. The 
"hplementation of simulated annealing requires computation

of stationary probabilities at thermal equilibrium for each 
annealing schedule. To speed up this process, we may 
use mean field approximation [12] in which the stochastic 
update of bipolar units is replaced with deterministic 
states. The basic idea of mean field approximation is to 
replace the fluctuating activation values of each unit by 
their average values

(3-2)

where (S ,)is  the average o f tlie states of j-th unit 

and

(5,) = tanh (3.3)

In the mean field approximation, the activation o f i-th 

unit y, is replaced by (y ,) ,  so that using eq. (3.3), we 

have

{ i,)  = .anh
T- (3.4)

The set of these equation is a result of minimization of 
an effective energy defined as a function of temperature 
[13]. Thus, eq. (3.7) may be expressed as

(5,) = tanh 1 dE{{^))
T  a t e ) ) (3.5)

The change in enctgy function for the average states of 
i-th unit is given by

So that from eq. (3.6), we have

(5,) = t a n h j - i : [ |X '^ ^ 5 ^ + ^ /

(3.6)

(3.7)
' i*J

These nonlinear determ inistic equations are solved 
iteratively. As the temperature is lowered to the minimum
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value, the steady equilibrium values of (5 ,) have been 
obtained. At the allowable lower temperature, the 
probability of visiting the global minima has the maximum

value i.e. P(s) = - e
z

£(4)
T 1, SO that the network will

achieve one of the global minima, which represents the 
optimized probability of finding the particle inside the 
boundaries for the given quantum number. I'he average 
value of the state of the network is described in terms of 
the average value of the output of each unit of the 
network, which represents the optimized probability of 
finding the particle inside the boundaries for the given 
quantum number as the new energy function represents 
the global minimum of the landscape.

i.e. = (3.8)

where k is the proportionality constant.

The above procedure can be explained by following 
algorithmic steps.

4* Algorithm

(1) Initialize the weights and threshold by providing 
small random numbers and set the network to its average 
value.

(2) Calculate the probability of finding the particle 
inside the boundaries for different quantum numbers as

1 )  . / 2nxtt'\
s i n -------'

I I2nit

1**

JJ
(3) Store the pattern environment in the form of 

quantum numbers and the probabilites of finding the 
particle inside the boundaries for these quantum numbers 
in different global minima of energy landscape by using 
the activation dynamics of the Hopfield neural network as

S,(r+l) = sgn|2S;(0lVy =5.(0 
i*j

with

(4) Present any unknown quantum number n = m to 
the network for which the network has not been trained.

(5) Reduce the temperature as per the annealing

schedule, so that the probability of achieving the global

minima approaches 1 i.e. P{s) = —e ^ «  1.
z

Thus, for each schedule

(5.1) estimate the energy function for these stored patterns 
as

E(s) = - ^ ' ^ W y S , S j + ^ e , s , .
i^j i

(5,2) calculate the average value o f states as

/   ̂ r?(/ ct\\^
(5,) = tanh

1 a£ ((s)) 

T a((5,))^

(5,3) calculate the change in energy function for the 
average value o f states o f i~th unit as

^^ ((■ ^ )) l Y w c  +f l
^ i*j

(5.4) calculate the probability for achieving the global 
minima using equation

1 -B il  
P(s) = - e  T . 

z

(6) End.

5. Conclusion

To estimate the optimized probability of finding the particle 
inside the boundaries for any given quantum number; we 
may use a structure and learning algorithm similar to the 
Hopfield Model with Mean field approximation of 
Simulated Annealing. In this outgoing Discussion, the 
following observations can be made

(i) We can train a network which is capable of storing a 
pattern environment in the form of quantum numbers n ~ 
1, 2, 3,...« and the probabilities o f finding the particle

.............(Px.i» )„ for these quantum numbers.

(ii) Hopfield energy function can be used to represents 
the stored probability functions with their quantum 

numbers.

(iii) We can optimize the probability o f finding 
particle inside the boundaries for any given quantum 
number using a mean field a[q»oximati(m of the annealing
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schedule. As the temperature gradually reduces according 

to the annealing schedule, the probability of visiting the 

minimum energy states increases. Each schedule determines 

a new energy function of the network and the network 

estimates the energy function for this state. At the thermal 

equilibrium, the network produces the stable states 

according to the annealing schedule, which represents the 

optimized probability of finding the particle inside the 

boundaries.

(tv) In this way, the network which satisfies the bound 

state condition of a particle confined within finite hard 

boundaries, is capable o f estimating the optimized 

probability of finding the particle inside the boundaries 

for any given quantum number.

(v) Hver since the Schrddinger equation was conceived in 

1926, quantum mechanics, at least in estimation of non­

specialists, has been bedeviled by the mathematical 

complexity of its formulation. The central problem is to 

solve the Schrddinger equation and explore its applications 

to understand the modem physics. A particle trapped in a 

box with infinitely hard walls is the simplest quantum 

mechanical application of Schrddinger equation. The last 

70 years have seen many elegant solutions of different 

applications of this kind. The advantage of using the

optimization technique of ANN in aspect of solving this 

problem is that we can get the most elegant solution for 

this problem. The result of optimization technique with 

Artificial Neural Network, may be used to solve such 

kind of quantum mechanical problems in future.
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