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Abstract

: Pair correlation functions have been calculated using decoupling approximation under Percus Yevick approximation by

employing spherical harmonics coefficients and a potential model suggested by Singh and Singh [Phys. Rev. B33 2725 (1986)) for the hard
cllipsoids. It has been reported that the decoupling approximation compares well with Monte Carlo results of Nezbeda only at lower values

of packing fraction and parametric ratio of length-to-breadth.
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1. Introduction

Matter usually exists either as a dense solid or as a dilute
vapor at low pressure. A third state of matter appears at
higher pressure is the liquid state [1]. Liquids are of two
lypes viz., (a) atomic or simple liquids in which
intermolecular potential energy between molecules depends
only on the intermolecular distance R, e.g., alkali metals
and certain molten salts. The atomic liquids are also inert
gases where two molecules do not interact with each other
and the liquids are made up of atoms only, and (b)
molecular liquids in which intermolecular potential energy
depends not only on their intermolecular distances but
. also depends on the molecular orientation, vibrational co-
ordinates, etc, e.g., Ny, COy, CCly, CHg, etc. [2,3].
In the rigd molecular approximation [4,5], intermolecular
| potential energy U(Ry; 3, £2) for a pair of molecules
depends on the vector R = (R, 6, ¢) from center of
molecules i to center of molecules j and on orientations £2;
and £, of the molecules relative to some space fixed set
of axes. For the linear molecules (e.g., COs, N, HC, etc.),
2 = (6, ¢), where 8, @ are the usual polar angles and
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for the nonlinear molecules (e.g., H;O, CCly, erc.), £2, = (6,
&, x), where 8, ¢, x are the Euler angles. Thus, structural
study of molecular liquid is very complex compared to
simple liquids. Several approximations are in use to make
its study easy. One of the efforts made by several workers
{4-6] is to find an analytical solution by expanding pair
correlation function (PCF) using spherical harmonics
coefficients [4] and Ornstein-Zernike (OZ) equation [6].
The shape and size of pair correlation function have been
used to study the structural behaviour of neutral molecules
[6-11] as well as the ordered structures of suspended
charged molecules [12-15].

From the survey of literatures, it is found, that the
study of hard ellipsoid using decoupling approximation [7]
under Percus Yevick (PY) approximation [16] has not been
done so for. A potential model suggested by Singh and
Singh [7] for the hard ellipsoids has been used along with
the decoupling approximation to calculate PCF. The results
of present calculation have been compared well with Monte
Carlo (MC) results of Nezbeda [8]. It has been reported
that the decoupling approximation approach of course
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under restricted conditions, is in good agreement with MC
results at lower values of parametric ratio of length-to-
breadth of hard ellipsoids and packing fraction.

2. Theory and calculations

System composed of hard ellipsoid of revolution is
conveniently parameterized by length-to-breadth ratio Xp =
a/b, where 2a and 2b denote lengths of major and miror
axes of ellipsoids. This model includes as limiting cases of
hard spheres, hard platelets and hard needles systems.
The potential energy of interaction of a pair of hard
ellipsoids of revolution is represented as [7}

URy $2i, £2) = oo, R, <D (-Qu); (la)

=0, R, 2D (2 (1b)

where D(£2,) = D(R; $2y) is the distance of closest
approach of two molecules with the relative orientation
£2;. For D(R;), expression is given by the Gaussian
overlap model of Beme and Pechukas [7] as

D(.Qu) = D(RU, .Q,'j)

1w {4 + By 2, e 2x(e, )

x(ﬁu'5/)(51-5,-)}}><{1-X’(éf-e‘;)’}z]m. @

where €, and € j are the unit vectors along symmetry axes
of two interacting hard ellipsoids.

Dy = 2b,

x =(x2-1)/(x2 +1), ©)
and I}‘, is a unit vector along intermolecular axis.

Ornstein-Zernike (OZ) equation for non-spherical
molecules is given by [5,16]

h(RU,Q,,.Qj)=C R‘.j'.Q‘.,Qj)

+Y pio? j: (o(Ry. 2.2, )n(R,. 2.2, )a’R @

where h(Ry.-QpQ j) is the total correlation function (TCF)
which is related to PCF g(R;,£2,,9,) as
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R, 2,.2,) = &R, 2.2;)-1 5

together with the closure relations

h(R;,92,.2;)=-1, R;<D(Q;);

c(R;,2,9,)=-BU(R,.2,92,); R,2D(Q,),

as the direct correlation function (DCF); 8= kT, p is the
density of molecules and o its diameter. Total volume
fraction of molecules can be evaluated by

=7 3
n==Y 00, 6

In Rose's convention [7], the molecular pair correlation
function can be written as

gnm(R)=4”<8(Rij)y17,,(9i)ylm(9j) 0]
and
g(R;)=4n233 g, (RY, (2, 1n(R2,), ®

where R = | R, = R, - R, |, m=- and the sum on n
runs from -1 to + 1. We need only to note that spherical
harmonics are normalized and orthogonal i.e.,

[ (@ (@42 = 8,18 0
and that
Y= (@)= (1"1, (@) (10

The expansion coefficients g, 1.(R,) are the projection
of g(R,) on corresponding angular functions. But

Yim (6,¢)= (“l)’"{(21+ 1)’4"}"2{(1-m)!/(1+m)g}“2

X B, (cos@)exp(im@), m > 0

and

{n l

2
P =[1-x2)"(@/dx)™ B (x)» i)
where Py, is the Legendre polynomial coefficients.

Spherical harmonics coefficients have been evaluated
in the expansion of pair correlation function g(Ry, £ 9
for the hard ellipsoids using decoupling approximation. b
this approximation, PCF has been approximated for t¢
system of ellipsoidal structures using the PY approximatio®
with hard spheres diameter D, replaced by the distance o
the closest approach D(Ry, $2, $2). Thus,
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oRyy 2 D) = 8ROID()) = g(R*), (13)
where
R* = R/D($2;) and g(R*) = gpy(R*). (14)

A computer program has been developed in FORTRAN to
.alculate the pair correlation function. All the calculations
jave been carried out in double precession on the HP-712/
300 computer at Computer Center, B.H.U.

3. Results and discussion

The g11m versus distance R* curves denoted by T.H. in all
igures represent the present theoretical results obtained
ssing decoupling approximation under PY approximation
for the different values of parametric ratio X, and packing
fraction 77 are compared with the Monte Carlo results
jenoted by M.C. curve of Nezbeda [8]. The values for the
nput parameters X, and 7 have been taken from the work
»f Nezbeda [8] in order to test the accuracy of the results
»btained using decoupling approximation.

Figure la shows the comparison between results

(a) M.C.=====-X; = 2.0 and 7 = 0.3879
M.C. wmeemeeeee Xo = 1.6 and = 0.2948
T 15 e~ TH. Xo = 2.0 and = 0.3879
/" X\.\
Eooo ": // -‘\;\'T.H. - ==-Xp 1.6 and = 0.2948

0
1 2 R —>

(b) M.C.——X, = 1.4 and 7 = 03142

M.C.=:=-=: Xo = 1.6 and 7 = 0.3873

T.H.-—-=—X, = 1.6 and 5 = 0.3873

0.3142

1.0

0.5

1 2

Figure 1, Variation of goo with distance R*.
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obtained using decoupling approximation ie., present
theoretical results and MC results of g With distance R*
for the systems (Xo, 7) = (1.6, 0.2948) and (2.0, 0.3879). It
is observed that the height of first peak in the theoretical
curve is less than that in MC curve for the system (2.0,
0.3879) whereas its heights are almost equal for the system
(1.6, 0.2948) in both the curves. The position of the first
peak height in theoretical curve shifts towards higher R*
for the gystem (1.6, 0.2948) and it is nearly the same for
the thegretical as well as MC curves for the system (2.0,
0.3879); Almost no difference is found between theoretical
and M results for the position and the magnitude of

depth the curves for these systems.

The? results of gop With distance R* calculated using
decoupling approximation for the system (Xo, 7) = (1.4,
0.3142) and (1.6, 0.3873) have been compared with MC
results in Figure 1b. The shape and size of the first peak
of gono in theoretical curve coincide with the MC curve for
the system (1.4, 0.3142). But, a slight difference may be
seen in the first depths in both the curves. The depth is
deeper in theoretical curve than in the MC curve. A
constant difference between theoretical and MC results
has been observed in shape and size of the gooo versus R*
curves for the system (1.6, 0.3873). Magnitude of the
height of the first peak in theoretical gopo versus R* curve
is less than in MC curve while the depth in theoretical
curve lies deeper than in the MC curve for this system.

The values of g, calculated for the systems (Xp, 7)
= (1.4, 0.3142) and (1.6, 0.3873) are shown in Figure 2a
along with the MC results. It may be seen clearly that the
height of the first peak in gy versus R* curve in the
present study is somewhat larger than the MC while its
position shifts slightly towards lower values of R* in the
theoretical curve in comparison with the MC curve. The
magnitude of depth in theoretical curve is less than in MC
curve for the system (1.4, 0.3142) and it is almost equal for
the system (1.6, 0.3873). The position of depth in theoretical
curve is at lower values of R* than that in the MC curve.

Figure 2b compares the present results with MC results
for gao of the systems (Xo, 7)) = (1.6, 0.2948) and (2.0,
0.3879). The difference in the first depths in both curves
is found to be more in case of the system (2.0, 0.3879) as
compared to the system (1.6, 0.2948). The positions of
depths are almost constant. The first peak's heights in
theoretical and MC curves are found to be equal for the
system (2.0, 0.3879) but the theoretical height of first peak
is a little higher than MC for (1.6, 0.2948). The position of



174 Rakesh Kumar Pandey and Jokhan Ram

(a) M.C.——Xp = 14 and n = 03142
M.C.--=-=-Xo = 1.6 and 7 = 0.3873
§ 1 pp— Xo = 1.6 and n = 0.3873
T.H. ==X, = 1.4 and 7 = 0.3142
i
1 2 R* -
(b) M.C.=====-X, = 2.0 and 7 = 0.3879
M.C. -oemeenen Xo = 1.6 and n = 0.2948
T.H. =X, = 2.0 and 7 = (0.3879
T.H. =:=-=-X, = 1.6 and n = 0.2948
8200
1
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Figure 2. Variation of gio with distance R*.

the first peak in the theoretical curve lies at lower values
of R* as compared to MC curve.

The values of gy obtained in the present calculation
for the systems (Xp, 7) = (1.4, 0.3142) and (1.6, 0.3873) are
compared with the MC results in Figure 3a. The magnitudes
of height of first peaks are nearly equal but position of
first peak in theoretical curve shifts towards lower values
of R*. The amplitude of depth is more for MC curve and
a large difference in positions of maximum depths is found
between the MC and theoretical curves. The depth's
position for the system (1.6, 0.3873) shifts towards higher
side of R* for MC curve.

A comparison between theoretical and MC results for
&220 is shown in Figure 3b for the systems (X,, 7) = (1.6,
0.2948) and (2.0, 0.3879). This figure clearly depicts
discrepancies between theoretical and MC results for the
system (2.0, 0.3879) with respect to heights and positions
of peaks and depths. The discrepancy is found to be less
for the system of (1.6, 0.2948).

(a) M.C.——X, = 14 and n = 03142
MC. --=-~ Xo = 1.6 and 7 0.3873
T.H. a==e=-Xp = 16 and 7 = 0.3873

weXo = 1.4 and 7 = 03142

]

1 2 R* —>
(b) M.C.——X, = 2.0 and 77 = 0.3879
M.C.----= Xo = 1.6 and 77 = 0.2948
T.H. =====-X, = 2.0 and 7 = 0.3879
T T.H. ==X, = 1.6 and 1 = 0.2048

Figure 3. Variation of g with distance R¥*.

4. Conclusions

Our results are in agreement with the MC results only for
low X, and 7 values. However, these results overestimate
the MC results for X = 2.0, 7 = 0.3879 whereas il
underestimates the MC results for X, = 1.6, 7 = 0.2948.
These results show that decoupling approximation is nol
good enough for X, > 3. For the accurate evaluation
therefore, some other approximations viz., HNC, BGY, et
may be used.
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