A new relation to estimate adiabatic compressibility of binary mixtures at different temperatures and concentrations

R G Bindu, lype Lilly, M Laila, P G Thomas Panicker, 1 Domini and S Mohanan*
Depariment of Physics, University College, Thiruvananthapuram-695 034. Kerala. India

E-mail•unicollphy@satyam.ne
Received 10 August 2001, accepted 4 December 2002
thotract . Using the defintion of adiabatic compressibility, a new relation has been deduced to estimate the adıabatic compressibility of liquid misures at different temperatures from the knowledge of temperalure coefficients of sound velocity and density of pure components The validity in the relatoonship is examıned by comparing the calculated values with the experimental values of adiabatic compressibility of three binary liquid IIItiutč, benzene + toluene, pyndine + water and polymethylmethacrylate + chlorobenzene at different temperatures and the results are explained on the bass of molecular interaction between the components
kerwords . Binary liquid mixtures, adiabatic compressibility. molecular interaction.

PA('s Nos. • 43.35.Bf, $6260+v$

1. Introduction

The ultrasonic technique, due to their simplicity and accuracy, whemg most widely used in the study of liquid state, the most complicated among the three states of matter. We are engaged in a systematic study of liquid state using a few opto-acoustic properties of liquids [1-3]. In this paper, we are reporting the deduction of a new relation to estimate the adiabatic compressibility $\boldsymbol{\beta}_{s}$ of liquid mixtures at different temperatures Irom the knowledge of temperature coefficients of density ρ of purc components and sound velocity \boldsymbol{U} in them. This relation is uned to estimate β_{x} of threc binary mixtures viz. benzene + whene, pyridine + water and polymethylmethacrylate + chlorobenzene (PMMA + CB) at different temperatures. The estumated values are then compared with the experimental values tor these systems.

2. Experimental details

The sound velocity and density have been determined experımentally for the binary systems pyridine + water and hen/ene + toluene. Chemicals of AR/BDH grade and distilled waler were used for experimental purpose. The purity of these

[^0]liquids were tested by comparing their densities with those in literature and found to be in good agreement. The ultrasonic velocities of these mixtures were measured using a single-crystal ultrasonic interferometer supplied by Mittal Enterprises at a frequency of 2 MHz and the densities were determined by a 12 cm^{3} double-stem pyknometer. The masses were recorded on an electronic balance having an accuracy of $\pm 0.1 \mathrm{mg}$. The experiments were carried out at different temperatures using a thermostatically controlled water circulating arrangement with an accuracy of $\pm 0.1 \mathrm{~K}$. The data for calculating $\boldsymbol{\beta}_{s}$ of polymethylmethacrylate + chlorobenzene system were taken from literature [4].

3. Theory

The adiabatic compressibility ($\boldsymbol{\beta}_{s}$) is related to ρ and U through the relation

$$
\begin{equation*}
\beta_{s}=\left(U^{2} \rho\right)^{-1} \tag{1}
\end{equation*}
$$

As temperature of the liquid changes, the adiabatic compressibility also changes. Both U and ρ are temperature sensitive parameters. So differentiating eq. (1) with respect to temperature and dividing by $\boldsymbol{\beta}_{\boldsymbol{s}}$ throughout, we get
$\left(1 / \beta_{s}\right)\left(\partial \beta_{s} / \partial T\right)_{p}=-(1 / \rho)(\partial \rho / \partial T)_{p}-(2 / U)(\partial U / \partial T)_{p}$

$$
\begin{equation*}
=\alpha+2 \beta \tag{2}
\end{equation*}
$$

where $\alpha=-(1 / \rho)(\partial \rho / \partial T)_{p}$, is the temperature coefficient of density
and $\beta=-(1 / U)\left(\partial(/ / \partial T)_{p}\right.$, is the temperature coefficient of sound velocity

Fromeq. (2)

$$
\begin{equation*}
d \beta_{1} / \beta_{1}=(\alpha+2 \beta) d T \tag{3}
\end{equation*}
$$

Integrating eq (3)

$$
\begin{equation*}
\ln \beta_{1}=(\alpha+2 \beta) T+C \tag{4}
\end{equation*}
$$

where C'is a constant of integration
If β^{\prime}, is the adtahatic compressibility at another temperature $T^{\prime}\left(T^{\prime}<T\right)$, then from eq. (4)

$$
\begin{equation*}
\ln \beta_{1}^{\prime}=(\alpha+2 \beta) T^{\prime}+C \tag{5}
\end{equation*}
$$

Firom eqs. (4) and (5), we get

$$
\ln \left(\beta_{1} / \beta^{\prime}\right)=(\alpha+2 \beta)\left(T-T^{\prime}\right)
$$

or

$$
\begin{equation*}
\beta_{s}=\beta_{1}^{\prime} \exp (\alpha+2 \beta) \Delta T \tag{6}
\end{equation*}
$$

where $\Delta T=T-7^{\prime \prime}$.
This is the temperature dependent iclation of adiabatic compressibility ol a hiquid.

If the adiabatic compressibility $\boldsymbol{\beta}^{\prime}$, of a hquid mixture at a temperature $7^{\prime \prime}$ is known, the adiabatic compressibility at a higher temperature T can be estimated using eq. (6) knowing the values of α and β. In the case ol a binary mixture, α and β were taken as the mean of the component values $\alpha=\left(\alpha_{1}+\alpha_{2}\right) / 2$ and $\beta=\left(\beta_{1}+\beta_{2}\right) / 2$, where α_{1} and β_{1} are the temperature coefficients of density and sound velocity of i-th component.

4. Results and discussion

The calculated values of β, using eq. (6) along with the experimental values for tie hinary systems hentene + toluene, pyridine + water and polymethyl methacrylate + chlorobenzene are presented in Table 1. The varrations of β, with molefraction of the first component (x_{1}) at diflerent temperatures for the above mixtures are shown in Figures 1 to 3.

Figure 1 shows the variation of $\beta_{1}{ }^{\text {Eipt }}$ and $\beta_{s}{ }^{\text {cal }}$ with molefractions for the binary mixture benzene $\left(x_{1}\right)+$ toluene ($1-$ x_{1}) at 313 and 323 K . We choose this system for our present
study because it has been accepted as an ideal mixture [5]. The figure shows that the calculated values agree well with the experimental values within experimental error for the whole composition range at both temperatures. This indicates that the system acts as an ideal mixture having no molecular interaction which is in agreement with the accepted fact. It also exhibits that for a non-interacting system, the calculated values using the new relation agree well with the experimental values.

Figure 1. Variation of $\beta_{1}{ }^{\text {Ly' }}$ and $\beta_{1}{ }^{\text {c/l }}$ with molefraction $\left(x_{1}\right)$ for the binary mixture benzene + toluene at 31.3 and 32.3 K

Figures 2 (a-c) show the variation of β_{s} with molefraction for the binary mixture pyridine $\left(x_{1}\right)+$ water (1-x $)$ at 303,308 and 313 K respectively. As the shape of the curves using calculated values are similar to the experimental curves, the calculated values agree with the experimental values. At lower temperature, the theoretical curve deviates slightly from the experimental curve

Figure 2(\mathbf{a}). Variation of $\boldsymbol{\beta}_{s^{E x p}}$ with molefraction (x_{f}) for the binary mixture pyridine + water at 303 K

Table \perp Variation of $\beta_{s} E_{x p t}$ and $\beta_{s}^{\text {cal }}$ with concentration for different binary mixtures at different temperatures.
(a) Benzene + Toluene

x_{1}	$\mathrm{U} \mathrm{ms}^{-1}$			$p \mathrm{~kg} \mathrm{~m}^{\prime}$			$\beta^{\text {Exp }} \times 10^{10} \mathrm{~m}^{2} \mathrm{~N}^{-1}$			$\beta_{3}^{\text {cal }} \times 10^{19} \mathrm{~m}^{2} \mathrm{~N}^{-1}$	
	303 K	313 K	323 K	303 K	313 K	323 K	303 K	313 K	323 K	313 K	323 K
000	1289	1248	1212	8.58 .1	8417	8400	7.01	763	8.10	7.56	815
0)20	1285	124.5	1205	8588	8500	840.4	705	7.59	8.19	760	8.20
1) 40	1282	1243	1202	8.59 .5	850.4	8416	7.08	7.61	822	7.64	8.23
060	1280	1238	1199	869.6	852.0	8429	709	7.66	825	765	8.25
080	1278	1237	1194	861.9	853.0	8450	7.10	7.66	8.30	7.66	8.26
100	1275	12.36	1193	866.1	8556	846.2	7.10	7.65	8.30	766	8.26

(b) Pyridine + Water

	303 K	308 K	313 K	303 K	308 K	313 K	303 K	308 K	313 K	308 K	313 K
1) 00	1510.4	15207	15287	995670	994055	992200	4403	4350	4313	4506	4611
1) 01	1531.1	15380	1544.5	996102	994.192	992 200	4.282	4.252	4225	4.382	4.484
() 02	1544.1	15487	15533	996317	995056	991749	4210	4190	4179	4.308	4409
1113	1552.5	15556	15564	997.749	995115	99247.5	4158	4.153	4.159	4.255	4354
$110+$	1556.6	15590	15588.7	997.749	995507	992.357	4136	41.33	4148	4.232	4.331
1105	1560.5	15607	1559.9	997.533	995.899	992.435	4117	4122	4141	4213	4.311
1106	15632	15627	15603	998122	995997	9926.51	4.100	4111	4138	4.196	4.294
(1) 107	15647	15628	15595	998.612	996194	992.357	4.090	4110	414.3	4.185	4283
008	15660	15629	1558.1	998514	996233	992769	4084	4109	4149	4.179	4.277
0109	1.5677	156.32	15582	998.279	995.978	991710	4076	4.109	4153	4171	4.268
1110	1.5673	1562.3	15.565	999142	996449	992926	4074	4112	4.157	4169	4266
011	15669	15610	15546	999.181	996625	992.220	4.076	4.118	4170	4.171	4.268
012	15668	15604	15.528	999.063	996.096	991827	4.077	4123	4182	4172	4.269
1113	15669	15600	15520	999.122	99.5899	991710	4.077	4126	4.186	4172	4.269
014	15668	15585	1550.4	999122	995880	991533	4.077	4134	4196	4172	4269
015	15661	1557.8	1.548 .4	999.142	995.625	991.533	4.081	4.139	4.207	4176	4.274
016	15648	1556.2	1.5454	999.005	995.585	991.180	4.088	4148	4.224	4183	4.281
017	1564.7	1554.6	1544.3	998.848	995703	990612	4089	4156	4.233	4.184	4.282
018	15635	1553.6	1542.3	998.612	995.252	990494	4.096	4163	4.244	4.192	4.289
020	15619	15507	1539.1	998.651	995.173	991122	4.105	4179	4.259	4.201	4.299
1) 40	1528.7	1512.6	1495.4	995533	990.818	98.5 .572	4.298	4411	4537	4398	4501
060	14759	14.58 .4	14415	987.844	984.009	978.200	4.647	4.778	4920	4.755	4.866
080	14340	1415.4	1397.5	979.193	974479	968596	4.966	5122	5286	5082	5.200
100	14001	1381.9	1362.6	973348	968646	962.650	5.241	5.406	5595	5363	5488
(c) Polymethylmethacrylate + Chlorobenzene											
	303 K	313 K	323 K	303 K	313 K	323 K	303 K	313 K	323 K	313 K	323 K
() 00	1251.0	12150	1179.0	1107.5	1104.04	110212	5.769	6.136	6528	6.115	6.482
() 25	12510	12150	1179.0	11089	110612	1104.38	5.762	6124	6.514	6108	6.475
0) 50	12520	12150	1181.0	1110.3	1108.29	110717	5.740	6112	6476	6085	6.450
075	1252.0	12150	1181.0	11151	1109.92	111067	5.721	6103	6.455	6065	6.429
100	1253.0	12190	1184.0	1115.9	111392	1112.71	5.708	6.041	6411	6065	6.414
200	1254.0	1221.0	1190.0	11173	1115.89	1114.73	5.691	6.011	6.335	6.033	6.395
1.00	12570	1226.0	1201.0	1118.1	1116.10	1115.99	5.660	5.961	6.212	6.000	6.360

[^1]As the temperature is increased, this deviation is also increased indicating the presence of molecular interaction in this system. Other studies at low concentration have established the fact that there is strong molecular interaction between the components of this system [6].

Figure 2(b). Varation of $\beta_{1}{ }^{\prime \prime \prime \prime}$ and $\beta_{1}{ }^{\prime \prime \prime}$ with molefraction $\left(x_{1}\right)$ for the binary moxture pyridine + water at 30 K

Babu et al [6] studied pyridine water binary system at only one temperature $v z, 303 \mathrm{~K}$ and obtaned a compressibility minimum at 0.13 molefraction of pyridine. They explaned the minımum compressibility as the formation of pyridine-water complexes at low concentrations.

Water is a hydrogen bonding solvent and pyridine with lone pair of electron on N -atom is also capable of H-honding with water molecules. A hydrogen bond is a very strong dipole attraction between a hydrogen attached to a strongly electronegative atom such as fluorine, oxygen, and nitrogen of a polar molecule [7]. In pyridine-water system, it is found that the excess values of $\beta_{s}\left(\beta_{1}{ }^{t}\right)$ are negative up to $x_{1}=0.28$ molefraction of pyridine and changes sign beyond this. The experimental curve crosses the theoretical curve at around $x_{1}=$ 03 molefraction at 308 K and at higher temperature 313 K . this point shifts to lower concentration. This is the point where $\beta_{1}{ }^{\boldsymbol{E}}$ changes sign from negative to positive. It has been reported that the negative value of $\beta_{1}{ }^{E}$ is an indication of strong heteromolecular interaction in liquid mixtures and is attributed to charge transfer, dipole-dipole, dipole-ınduced-dipole interaction and hydrogen honding between unlike components, while a positive sign indicates a weak interaction and is attributed to dispersion forces (London forces) [8, 9]. Compated to water
molecule, the size of the pyridine molecule is large having a ring structure. At low molefractions of pyridine, both these polar

Figure 2(c). Variation of $\beta_{s}{ }^{E v \prime}$ and $\beta_{3}{ }^{c a l}$ with molefraction $\left(x_{1}\right)$ for the binary mixlure pyridine + water at 313 K .
molecules exhibit strong dipole attraction and forms a compact structure (ie. complex formation) with four water molecules and a pyridine molecule through hydrogen bonding. This results in the compressibility minimum at low molefractions of pyridıne which inturn makes $\beta_{s}{ }^{E}$ to maximum negative. Further, the presence of maxima or minima or any abrupt change from the normal behaviour in the physical properties of a liquid mixturc can be used as an indication of complex formation in it |10| Thus, the β, minima at around $0.1,0.085$ and 0.06 molefractions of pyridine at 303, 308 and 313 K respectively show that there is formation of pyridine-water complexes at low concentrations of pyridine. The shift in $\boldsymbol{\beta}_{\text {s }}$ minimum towards lower concentration at higher temperature shows that the number of molecules forming complexes decrease with increase in temperature due to thermal randomization. Beyond $x_{1}=0: 28$ molefraction of pyridine, the $\boldsymbol{\beta}_{s}{ }^{E}$ values are found to be positive. This is because as the concentration of pyridine increases, the large pyridine molecule exhibits steric hindrance to the attractive dipole interactions which results in the disruption of the compact structure of the mixture and causes a positive excess value for β_{3}. Thus at low concentrations of pyridine, formation of pyridine-water complexes are effective whereas at higher concentrations its structure breaking property predominates.

Figure 3 shows the variation of $\beta_{s}{ }^{\text {Ept }}$ and $\beta_{s}{ }^{c a l}$ as a function of concentration for the binary mixture PMMA $+C B$ at two different temperatures 313 K and 323 K . The deviation
hiween experimental and calculated values of adiabatic compressibility remains almost same upto $\mathrm{X}=0.75$ at 313 K and Hercafter shows a decreasing trend．But this decrease in trend suithe ceven from lower concentration at 323 K ．The decreasing uicnd can be seen upto 3% of solute PMMA concentration at hoth temperatures．The experimental curve crosses the Hreoretcical curve at about $\mathrm{X}=1$ for both temperatures．It is clear Irom the figure that the deviation widens with increase in inncentration at both temperatures．But at higher temperature， inc widening increases very rapidly with increase in unicentration．This shows the presence of interaction in the いいとm

Fiqure 3 Vartation of $\beta^{T y \prime \prime}$ and $\beta^{\prime \prime \prime \prime}$ with Wt \％of PMMA（X）for Ith hmary mixture Polymethylmethacrylate＋Chlorobenzene al 313 and ${ }^{\prime}{ }^{\prime}$ ？

PMMA is a polymer which has bulky COOCH_{3} groups and H_{1} groups attached to alternate carbon atoms in the chain．At is connentrations of PMMA，only a few PMMA molecules Hidut wcakly with chlorobenzene molecule resulting in small willive deviation of $\boldsymbol{\beta}_{1}$ ．Even though the deviation is positive $4 \oplus \mathrm{X}=0.95$ at 313 K and up to $\mathrm{X}=1$ at 323 K ．the deviation thanges sign beyond the above concentrations．This is because whe concentration of PMMA increases，the number of PMMA lecules in the binary mixture also increases which results in
direct interaction between PMMA molecules．Thus，it can be seen that though interaction between PMMA and CB molecules exists at low molefractions of PMMA，due to its large number and bulky size，direct interaction between PMMA molecules begins to dominate over PMMA and CB interaction．This causes a negative value for $\beta_{s}{ }^{E}$ at higher concentrations of PMMA．This result is in good agreement with that of Kalyanasundaram et al who studied this system using ultrasonic velocity［4］．

The graph of pyridine－water system is taken with a scale different from that of the other two systems to get better clarity at lower concentration range．

5．Conclusion

An estimation of adiabatic compressibility of liquids at any higher temperature can be made using eq．［6］if its value at a lower temperature is known．The results show that the estimated values agree well with the experimental values for ideal mixtures such as benzene－toluene system．The deviation in $\boldsymbol{\beta}_{s}$ in a binary mixture may be due to the interaction between the molecules of the system．

References

［I］S Mohanan，V K Vadlyan and K V Kurian Appl Phy＇s．Lell 70805 （1997）
［2］S Mohanan．V K Vardyan and K V Kurian Acrustica，Acta Acustica （W Germany）． 83367 （1997）
［3］R G Bindu and S Mohanan Proc Twelfih Kerala Science Congress （Kerala，Indıa）p． 106 （2000）
［4］S Kalyanasundaram，A Manuel Stephan and A Gopalan Indiun J． Pure Appl．I＇hy：s 34353 （June 1996）
［5］Gordon M Barrow Physical Chemistry（Tokyo ：McGraw Hill， Kogakusha Lid）p．280（1979）
［6］P Babu，G Chandra Sekhar and N Prabhakara Rao Indian J Pure Appl Phys 3888 （2000）
［7］Peter P Betlow．Donald J Burton，Joseph E Routs Introduction to the Chemustry of Lite（CBS College publishing，USA） 321 （1982）
［8］R J Fort and W R Moore Trans．Faraday Soc 612102 （1965）
［9］Y Marcus Introduction in Liguid State Chemistry，（London Wiley－Interscience）（1977）
［10］C S Adgaonkar，S N Jajoo and V S Deogaonkar J．Acoust．Soc of India 775 （April 1979）

[^0]: Corresponding Author

[^1]: x_{1} - Mole fraction
 x - WI. \% of PMMA

