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ibstract A review of the resonance Raman effect in one-dimensional (1D) system is presented Due to the strong electron-phonon coupling and
ne quantum confinement of ¢lectrons and phonons in 1D systemns, interesting ctfects are observed, such as asymmetries in the Stokes/anti-Stokes
pectia and hine-shape dependence on satisfying the resonance condition. Analysis of these cffects give detailed information about the confined
thonon and clectron states. showing that resonance micro-Raman spectroscopy of phonon modes can determine clectronic and structural properties
i1 1D-systems The single wall carbon nanotube (SWNT) 1s used as a prototype 11 system for describing resonance Ramnan scattering in 1D, since many
spetinental resalts are now available for this system at the single nanotube level, and because detailed theoretical inodeling can be carried out for this
vstem The results on SWNTS should provide a valuable guide for Raman studies on other 1D systems It is also shown that the resonance Raman effect
novides a useful technique for obtaining phonon dispersion relations for nanoscale samples, and that measurements on low dimensional systems can
o used 1o obtain important information about related higher dimensional systems that is otherwise difficult to obtain
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1. Historical Introduction

[e concept of light scattering first intrigued Sir C. V. Raman
when he observed the wonderful blue opalescence of the
Mediterranean sea during his voyage to Europe in 1921. After
ietirming o Caleutta, much of his work during 1922—1927
locused on determining the connection between the state of
polarization of the scattered light in fluids and the optical
anivotropy of the molecules. In April 1923, he experimentally
discovered for the first time that, besides the Rayleigh type of
molecular light scattering, another extremely feeble type of
secondary radiation existed whose wavelength was different
fom he primary or incident radiation. Highly purified samples
ol alcohols and glycerine oblained {from repeated slow distillation

the liguid in vacuum, consistently showed, in every case,
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that the color of the scattered light was different from that of the
incident light and was red-shifted in frequency. These secondary
radiations were also strongly polarized, which allowed Raman
to realize hat the observations made in his laboratory were an
optical analogue of Compton effect. Raman also realized that
his scattering experiments with visible light at S00 nm will differ
in intensity by several orders of magnitude when compared to
Compton’s experiments with x-rays (wavelength of 0.7 nm), since
one of the characteristics of inelastic photon scattering is that
the intensity of light scales to the fourth power of the photon
energy. This difficulty was overcome by using a 7 inch refracting
telescope in combination with a short-focus lens to condense
sunlight into a narrow intense beam suitable for spectroscopy
[see Figure 1(b)] [1].

In subsequent experiments, Raman used the monochromatic
radiations from a mercury arc as the primary source of radiation,
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and he was successful in capturing the spectrum of liquid carbon
tetrachloride CCl, on a photographic film [Figure 1(a)] which
included a number of sharp lines or bands on a diffusc
background which were absent in the light of the mercury arc
11]. Using the Compton effect in which the conservation of
encrgy and momentum principles hold as a guide for the
interpretation of his light scattering cxperuments, it at once
became clear to Raman that, if the scattering particle gams
energy during the cncounter with the photon, the latter 1s
deprived ol encrgy 1o the samc extent. and accordingly is red-
shifted in frequency [ 1]

4358 A

4046 A

(n) (b)

Figure 1. c) Ranan spectrum of carbon tetrachlonde 1ecorded on
photographic film and (b) original Raman appacatus used by Su CV
Raman [1]

Raman's interest in carbon-related materials began with CCI,
which exhibited sufficiently strong Raman lines so that a
spectrum could be recorded [Figure 1(a)]. Raman was always
interested in finding materials that showed a strong Raman effect.
Thus alife-long interest in diamond developed for Raman, when
his younger brother who had just graduated in physics, madc a
briet spectroscopic examination of his wedding diamond ring,
and found that it exhibited strong and sharp Raman lines
corresponding to the now well-known frequency shift of 1332
em™'. Figure 2 shows two examples of the Raman spectra of
diamond obtained by Raman and his colleagucs at increasing
exposure times [2, 3]. Raman was struck by the appearance of
sharp lines in the spectrum, since he knew that molecules
exhibited sharp lines and bulk diamond couldn’t be viewed as a
“grant molecule”. Based on a detailed theoretical model which
Raman developed [3]. he concluded that a crystal can be viewed
as a collection of independent, non-interacting supercells, as
far as the optic modes of vibrations are concerned. Thus 1s similar
to how we now view light scattering from crystalline solids, 75
years later.

The universality of Raman scattering phenomenon and the
present casc of this experimental technique enable Ramap
spectroscopy to provide an insight into the ultimate structure
of the scattering substance.

(n) (h)

Figure 2. (a) Raman spectruimn of diamond [2. 3] (b) A schematie of
phonons volved in Raman scattering from diamond. Note that Raman
himself recogmzed that harmonics and combination modes should also be
observed.

Even though the first experiments by Sir C.V. Raman on the
inelastic scattering of light were reported 75 years ago, and the
ficld has been very active over the intervening years, new
directions for Raman spectroscopy continuc to emerge a
science progresses. We report here one recent new direction
brought about by the availability of one-dimensional systems
at the nanoscale, the new science they offer, and the highly
scnsitive probe that Raman spectroscopy provides lo
investigate, one-dimensional systems such as single wall carbon
nanotubcs, at the single nanotube lcvel [4].

2. Electrons and phonons in one-dimensional systems

The Raman spectroscopy of molecules is now very well
developed, going back to the pioneering work of Sir C. V. Raman
and the fertile research field that this work generated [5]. In
terms of dimensionality considerations, molecules can be
regarded as a zero-dimensional (OD) quantum dot system. The
Raman spectra for 0D molecular systems are very rich, showing
hundreds perhaps thousands of sharp lines for vibration
rotational Icvels, and many harmonics and combination mode!
can be resolved and quantitatively interpreted,with Ramat
spectra observed at the molecular level [5).

Unlike OD molecules, 3D and 2D solids inelastically scaltf
light through the interaction of the photons with the collecti¥
lattice vibrations or phonons, and not through the scattenté
by individual vibrational and rotational modes of the constituet
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aloms or molecules. In OD molecules, the individual vibrational
.nd rotational levels are well separated in energy, thus giving
rise (0 many combination modes and overtones that can be
,csolved in the Raman spectrum. The situation is quite different
,n 3D and 2D solids, where there is a quasi-continuum of energy
Jlates. so that the individual Raman scattering transitions are
not well separated in energy, but rather form broad features in
ihe Raman spectrum. Thus, the Raman spectra for 3D and 2D
olids exhibit much broader Raman spectral features in the first-
ider spectra, and the harmonics and combination mode features
iend 1o be very broad, of low intensity, and generally contribute
a4 broad background scattering rather than a resolvable line
wpectrum. In this article we show that resonance Raman spectra
jor one-dimensional systems, are quite different from that for
2D and 3D solid state systems, insofar as 1D systems provide a
much richer Raman spectra than their 2D and 3D counterparts,
but at the same time the 1D resonance Raman spectra are strongly
mllucnced by the quasi-continuum 1D states where phonon

dispersion @, (¢) oceurs.

We start our discussion by describing what we mean by 1D
or 2D systems. In 3D space, a 1D system is not strictly one-
dimensional, nor is a 2D system strictly two-dimensional, but
these low-dimensional systems have a (inite (nano-scale) length
L the direction(s) perpendicular to the periodic 1D or 2D
dircctions.  In the nanoscale direction, the wavevector is
quantized as (27 / L) p where p is a subband index (p =1, 2, 3,

o) Wherep s given by L/a and a is the lattice constant
ol 2D graphite. By considering L to be of nm length, the number
ot allowed states p is small WPax ~ 10), 50 that quantum effects
talso called quanum confincment effects) become important.
Each value of p denotes a good physical quantum number for
describing the ID and 2D cnergy subbands for electrons and
phonons Thus the ID subbands are described from the 2D
cnerzy band by cutting the 2D Brnillouin zone by parallel lines
aliened i the direction of the nanoscale dimension.Along the
contimuous direction, such as the length of a nanowire or a

“nanotube, the quasi-continuous wavcevector A is given by
-1!1'T <k<m/T where Tis the lattice constant of the
[ nanotube. The nanotube potential V(r) exhibits 1D periodicity
ong a macroscopic lengthscale, which might typically be of
msize. When we consider 1D subbands as coming from a 3D
nergy band structure (or 2D subbands from a 3D encrgy band
liucture), we can consider parallel cutting planes to reduce the
imensionality, as illustrated in Figure 3, where the energy-
homentum contours are shown for the valence and conduction
ands, cach obeying a linear dependence of energy on wave

‘clor-and forming a degenerate point where the two bands

,mwh (o define a zero gap semiconductor (as in 2D graphite).

the planes cutting these contours denote the dispersion relation

“l the 1D system derived from the 2D system, each cutting

lane giving rise to a different subband. The extrema in each
‘g planes gives the wave vector and energy for the van
Jove singularity (, Ej ).

Electrons likewise behave quite differently in systems of
different dimensionality. For example, the electronic density of

(a)

E,* '

Energy
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N
—

Figure 3. (a) The encigy-momentum contours for the valence and
conduction bands for a 2D system, each band obeying a linear dependence
of energy on wave vector and forming a degenerate point where the two
bands touch to define a zero gap semiconductor. The planes cutting these
contours denote the dispersion relation for the 1D system derived from
the 2D system. Each cutting plane gives rise to a different subband. The
extremma 1n each cutting planes gives the wave vector and energy for the

van Hove singulanity (k. E). The energies E!™ and E' for valence and
conduction bands are indicated on the figure and the corresponding
wavevecton at the van Hove singulanties are kl.‘"’ and k,“). (b) The ID

density of states for the conduction and valence bands corresponding to
the E(k) dispersion relations for the subbands shown 1n (a)

states (DOS) profiles for systems of different dimensionality
(3D, 2D, 1D, and OD) are very different, as shown in Figure 4. In
general the density of states profiles can be represented as

0 for E<E,

PE=NcE-E)F for E,>E M
where d denotes the dimensions and assumes the values 1, 2,
and 3, respectively, for 1D, 2D and 3D systems. Here E ,can be
considered as a critical energy in the density of states. Fora 3D
system EJ might correspond to an energy threshold for the onset
of optical transitions, or to a band edge state in a semiconductor.
For a 1D system, E] would correspond to a van Hove singularity
in the density of states occurring at each subband edge, where
the magnitude of the electronic density of states becomes very
large.

In contrast to 3D and 2D systems, 1D systems exhibit DOS
profiles which are more similar to the case of 0D systems (see
Figure 4), having very sharp maxima at certain energies and a

o
E 0D E

Figure 4. Typical density of states for 3D, 2D, ID and 0D systems.
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rather low DOS magnitude between the maxima. Thus, it is to be
expected that 1D systems would be much richer in their resonance
Raman spectra than 3D and 2D solids, where the many levels
are all smeared out into spectral bands. We would thus expect
1D systems to show Raman spectra similar to those of 0D
molecules, i.e., having many combination Raman bands and
overtonces.

A single wall carbon nanotube (SWNT) is both a molecule
and a very spccial 1D system. Since the cross-section is a
cylinder only one atom in thickness, it should be closely related
10 0D molecules. Although nanotubes have lengths that can
span hundreds of pm and therefore exhibit a continuum clectron
and phonon spectra 1n the continuum direction, nevertheless
the nanotubes behave like individual molecules. insofar as every
nanotube that has a different diameter and chirality, can be
considered as a distinct molecule with a distinct Raman spectrum,
as we show in §4. The resonance Raman spectra for SWNTs do
indeed show well-resolved overtones and combination modes
in the Raman spectra. Nanowirces, in contrast, cannot in general
be considered as distinct molccules, for which the location of
every atom can be specificd. and this is so because the lateral
surfaces of a nanowire arc in general not uniquely specified. The
present review focuses mostly on the transition from 3D to 1D
systems, and on how such a transition affccts Raman
spectroscopy.

Bcecause of advances in modern technology, 1t 1s now
possible to both fabricate such 1D systems and to characterize
them, and also 10 control process parameters so that the
wransition between low dimensional and 3D systems can be
investigated. If the low dimensional systems have the same
crystal structure as the bulk parent material. the clectronic states
of the low dimensional structure can be obtained as a subset of
the clectronic states of the bulk counterpart. Considering
wavevectors of the electronic states in the reciprocal space of
the bulk material, all the wavevectors within the first Brillouin
zone are allowed. Howcever, when we move to the case of low
dimensional structures, the structural lengths 1n the nanoscale
directions contain only tens of atoms, so that quantum effects
become important. The electronic wavevcctors in these
nanoscale directions become quantized, in order to maintain an
integer number ol wave funcuion nodes along the nanoscale
directions, 1n accordance with quantum theory. Thus, the
reciprocal space of the bulk parent material is quantized in the
nanoscale directions The number of quantized states is equal
Lo the number ol unit cells of the bulk parent material which is
nceded to construct a unit cell of the low dimensional structure.
For example, if one grows a thin {ilm from a bulk three-dimensional
crystal, the electronic states for the thin film can be constructed
from the three-dimensional reciprocal space of the parent bulk
material as wavevectors lying i certain parallel equidistant
planes. This is an extended represcntation of the two-
dimensional reciprocal space of the thin film, where each

electronic energy subband from the two-dimensional reciprocy)
spacc corresponds to a different plane in the three-dimension;
reciprocal space of the parent bulk material.

Similarly, when one-dimensional nanotubes are rolled up fron,
the two-dimensional sheets of the three-dimensional layereg
bulk materials, such as graphite, boron nitride, or a transitioy
metal dichalcogenide, different subbands in the one-dimensiong|
reciprocal space of the nanotube can be expanded into the tw.
dimensional reciprocal space of a single sheet of the bulk layereg
material as a set of the parallel equi-distant lines. These lincs are
known as“cutting lines,” and thc method of constructing the
one-dimensional electronic energy subbands by cutting the two.
dimensionalel ectronic dispersion relations with these lines |
known as the “zonc-folding” method [6]. In the case of 4
nanotube 1D system, the total number of the cutting lines for,
given nanolube is given by the ratio of the number of atoms
within a unit cell of the nanotube to the number of atoms withiy
a unit cell of a single sheet of the parent layered matenal
FFurthermore, the length of each cutting line is inversdly
proportional to the length of a unit cell of the nanotube, and the
scparation between two adjacent cutting lines is 2/d,, whcrc%{,
is the nanotube diamcter |7]. The orientation of the nanotuhei
in the two-dimensional reciprocal space of the parent material i}
determined by the nanotube chiral symmetry, i.e., the relatve
orientation of the nanotube axis with respect to the principl
axcs of the unrolled flat layer of the two-dimensional paren
material. Although the zone-folding method is very useful in
nanotube science, it experiences certain limitations for small;
diameter nanotubes, when curvature effects become important
due to the hybridization of the electronic in-plane and out-of-
plane 7 orbitals and o orbitals. The zone-folding method can
be applicd to the phonons in the same way, as was discussed
above [or the clectrons.

3. Resonance Raman scattering in one-dimension:
materials

3.1 First-order Raman scattering :

In this section we brielly present the basic ideas ol resonanc
Raman scattering in general emphasizing the main difference
among 3D, 2D and 1D systems.

3.1.1. General Formulation

First-order Raman scattering is usually described within th
Born-Oppenhcimer approximation (the key insight of th
approximation is that the motions of the electrons are muc!
faster than that of the ions), and involves quantum mechanici
interactions that are trecated in third-order time dependcn
perturbation theory. The Raman scattering process ¥
schematically described by the following events:

i) The first electronic transition to an intermedial
electron-hole pair state takes place with th¢

annihilation of the incident photon (k,,®,);
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n) The second electronic transition to “another”
electron-hole pair state occurs with the creation
(Stokes) or annihilation (anti-Stokes) of a phonon

(qvah) ’

i) The third transition back to the clectronic ground
state occurs with an electron-hole recombination
process, thus creating the scattered photon

(ky,@,).

Processes i) and iii) involve the electron-radiation interaction
Hamiltonian (H ) and process ii) involves the electron-lattice
Hamilloman (H ) interaction. The conservation of energy and
momentum relations

hw, = hw,y tho ,

hAl = r’k: ih(]l,h .

are vahd n each of 1)—iii) processes.

By evaluating the usual cxpression for the Raman cross-
wection | 8], the Raman intensity is proportional (o the square of
the Raman matrix element K, which can be written in the form of
an miegral over energy,

] M, M M,
k"= . _PEME (3
(E,—E-iy)(E,-EXE, —iy)
where My, M and M, arc the transition  matrix clements that
jecouple the mitial states (0) to the final states (f) through
fintermediate states (). In the initial state all N clectrons are in
illw valence band and there are no excited electrons. In quantum
fmechanical  notation, these matrix elements are  wrilten as
:/’ill,,\.|()), (]|H£L|j'>. and (f|HER|j). respectively, and
2 E) i Eq. (2) 1s the joint density of states (JDOS)! that is
alculated. taking into account the selection rules for the optical
ransitions connecting states 0 and j° as well as states j and f,
shich could typically be states in the valence and conduction
wnds 11, for the moment, we assume that the matrix elements
WM M, arc independent of E, then the quantity K can be
salculated by knowing the explicit form of p(E) . The quantity
¥ iclates to the width or the lifetime of the statc under resonance
sondiions, which can be seen to occur for E in the vicinity of E,
o the incident photon or in the vicinity of E; £ E; for the
callered photon. When one of these resonance conditions
L“"h cither the incident or scattered photon) is satisfied, the
henomenon is called Raman scattering, in contrast to the

trencral the density of states(DOS) 1s the number of states per unit
1y while for the joint density of states (JDOS) the cnergy unit is
:I‘l-lu:(l by an energy difference involved 1n an optical transition. If the
sletce and conduction bands are synunetric. the DOS and JDOS arc
lated by a factor of 2. but if they ure not symmetric the transition
18y under consideration must be considered explicitly.

situation where E is a virtual state and no resonance process
occurs.

However, the matrix elements M, M, and M, themselves are
dependent on E and on the internal parameters of the system,
such as the diameter and chirality of a nanotube or a nanowire,
and the direction of the polarization of the light. Of particular
importance to Raman scattering are the selection rules introduced
by these matrix elements, and these selection rules will in general
dcpend on the physical system under investigation.

3.1.2 The role of dimensionality

Typical joint density of states profiles are obtained from the
density of states expression for a single electronic band given
in Eq. (1). When Eq. (1) is used to denote the joint density of
states. in the case of a direct transition, as in the case of carbon
nanotubes, then E stands for the electronic transition energy
connecting the maximum in the valence band with the minimum
in the conduction band. We discuss below the effect of the
density of states profile in the joint density of states p(E) in
1D, 2D and 3D on the Raman intensity

By introducing the joint density of states from Eq. (1) into
Eq. (2), the quantity K within the constant matrix clement
approximation is given by

i(l—l) for d=1

E’m a b
K=M,M M;,x -In- for d=2 ©))
E
2% (a-b) for d=3
b/:h

where d denotes the dimensions of the system,
a=(E,-E;-iy)"* and b=(E,-E, +E,, —iy)". Fora
carbon nanotube with light polarized along the tube axis, then
the transition energy becomes E, = E, and the transition
energy is from the i"" state in the valence band to the i state in
the conduction band. It is important to obscrve that for either a

3D, 2D or 1D system, there is an enhancement in K when either
E, =E, (resonance with thc incident photon) or
E =E;tE,, (resonance with the scattered photon) occurs.

However, if 7 # 0, there is no divergence for the factors in the
denominator of K which means that there is no longer a
divergence in KX for 3D or 2D systems. But for a 1D system, the
divergence in K does not only occur in the denominator terms,
but in this case a divergence can also occur because of the van
Hove singularity in p(E) .The divergence in the denominators
a and b leads to a very strong enhancement in the Raman signal,
whenever are sonance occurs either with the incident or
scattered light for asystem with any dimensionality, However,
for 1D systems there is an additional strong enhancement that
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comes from the singularities in p(E) associated with the van
Hove singularitics, wheie a large number of stales contribute to
the resonance scatterg over a small energy range. This unique
property of the 1D system has allowed the observation of a
strong Raman signal from just one carbon nanotube as described
i §4, and has allowed the study of not only their phonon
propettics, but also thewr structural and clectronic properties by
the resonance Raman effect, which will be described below. Since
there we more possibilities for resonances to occur n 1D
systems because of the presence ol muluple van Hove
singularities in the joint density of states, there are more
possibilities that the incident photon excites an clectron to the
vicinity of a resonant state ( E,,,, = £,), and that after this
scattermg event, the clectron is again scattered to the vicinity
ol another resonant state E - What 1s meant by the vicinity of
aresonant state 1s discussed in §3.1 3. In the case of resonance
with both Eand E . there arc two resonant events in the
sequence of scattening processes of a single electron and this
process s called double resonance. Even greater enhancement
occurs for the case of double resonance than for the case of
ordiary resonance Raman scatiering When such a double
resonance sequence oceurs, the enhancement can be large
enough that the scattering intensity of a higher-order process
becomes comparable to a resonant first-order process

For the case of low dimensional systems, the matrix clements
will also be moditied significantly because of the availability of
initial and final states and because the nature of all states (the
initial, intermediate and final states) are modified relative to their
3D counterparts.

3.1.3 The Resonance condition for a 11 svstem

The presence of the cutting lines can have great implications on
the Raman scattering 1n one-dimensional systems, in
comparison to Raman scattering in the parent bulk material. The
fesonance nature of Raman scattering 1n one-dimensional
materials, as discussed below in more detail, can be understood
m terms of cutring lines. The resonance Raman scattering
mvolves only those electronic states with cnergies close to the
resonance with a given laser excitation energy. In most layered
materials, these resonant clectronie states, form cqui-energy
contours around the encrgy band extrema in two-dimensional
reciprocal space. For example, when one goes from a flat sheet
ola layered material 1o a nanotube, the one-dimensional cutting
!mcs are superimposced on the electronic cqui-cnergy contours
mtwo-dimensional reciprocal space, as discussed in §4.1. Thus,
the set ol 1esonant elecuome states of the one-dimensional

nanotube is limited o an imtersection of the cqui-cnergy contour
with the cutting hines,

We now discuss the implications of cutting hines on
resonance Raman scattering 1n general. Let us consider the
mtersection of a given cutting hine with an ¢qui-energy contour

>
“In this usage of the teim “pre-tesonance."the states

are real states, and
are not virtual states, as s usually tmplied by ‘

“pre-resonance,”

in more detail. In the vicinity of the electronic energy band edges,
such as those associated with infrared (IR) and red laser lines,
the equi-energy contours [sec Figure 3(a)] can be considered g
circles for most layercd materials. Three different cases are showy
in Figure 5 for the intersection of an equi-energy contour with ,
cutting line. For the case shown in Figure 5(a), the equi-energy
contour is tangential to the cutting line at the point where the
contour and the line cross each other. There are a large number
ol electronic states along the cutting line which are very cloge
to the clectronic encrgy that is resonant with the laser excitation
cnergy, becausc the direction of the slope of the constant energy
contour lies along the cutting line. For cach cutting line, there js
a specific cnergy value, such that the equi-energy contour for
this encrgy is tangenual to a given cutting line at the poin
where the contour and the line cross each other. These energy
values correspond to the local maxima in the joint density of.
electronic states (JDOS), and the energy values where the JDOS*I‘
reaches its local maximum values are called van Hove)
singularities (VHSs) in the IDOS, as discussed above, but shown
from a different point of view in Figure 5. In the case of Raman
scattering in onc-dimensional systems, when the laser excitation
energy £, malches the energy of the VHS, the light scattering
1s substantially enhanced duc to the high density of electronic
states atthe VHS.

(a) (b) (c) (d)
K, k §
k, » k, Energy

Figure 5. (1) The resonance condition E .= E and two preresonun
conditions (b) Ee = E, =8 E and (¢) Eper = E,+8E  while (d) the
DOS profileof the VHS E and the threc dashed hines denote the laser
cnergies from (a) 10 (¢), as ‘uhelcd in the figure (see text for discussion of
preresonant conditions)

However, the resonance case, as shown in Figure 5(a). 1»
rarely satisficd in practice,and we rather have what is called the
preresonance condition, where the equi-energy contour 1
slightly shifted in either direction from the-point where it would
have been tangential to the cutting line at the cross point of the
contour and the line, as in Figure 5(a). The two preresonant
cases are shown in Figures (b) and (¢), where the equi-energy
contour is shifted from the VHS in two opposite directions by
anenergy 6 £ 2. By comparing Figures 5(b) and (c), one can sce
that there is a different number of close-lying resonant states,
depending on which direction the equi-energy contour is shifted
from the VHS, i.e., the JDOS profile of the VHS is asymmetric.
decreasing gradually or sharply on the two different sides of
the VHS, as shown in Fi gure(d). When the laser excitation energy
increases above the VHS, the number of resonant states
decreases gradually [see the bold lines in Figure 5(c)), while for
the laser excitation encrgy decreasing below VHS, there are no
resonant states present [see Figure 5(b)). Note that for both
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prercsonant cases, there could be substantial contributions to
\he Ruman scattering from the electronic states at or close to
(he VHS. which arc not exactly in resonance with the laser
cxcitation energy, but still can contribute significantly to the
Raman signal duc to the extremely high DOS at the VHS [see
eray hines in Figures. 5(b) and (c¢)]. While these preresonant
clectronic states are the only states that contribute to Raman
weattering in the case when the laser excitation energy is below
the VHS [see gray lines in Figure(b)], there are both types of
clectronic wavevectors, preresonant and resonant, in the case
when the laser excitation encrgy lies above the VHS [see gray
and black bold lines in Figure 5(c¢)]. The appearancc of two
dillerent types of wavevectors contributing to the Raman
mtensity may result in a broadening of the Raman features in
(he case of the preresonant condition when the laser excitation
cneray exceeds theVHS.

For clarification, a JDOS profile is shown in Figure 5(d) in
the vicinity of the VHS generated by the cutting lines utilized in
l1oures S(a) to (¢), where the three dashed lines correspond to
the thiee different energies of the equi-cnergy contours shown
m lguies 5(a) to (¢), the last two of which show preresonant
conditions, and the first shows an exact resonance. We nole
that the JDOS profile of the VHS is asymmetric, as predicted by
analvsis of the crossing points between the cutting line and
vanous equi-energy contours. While Figure 5(d) provides a
smplified representation of the preresonance conditions
pictuted in Figures 5 (a) to (¢), 1t loses important information on
the distribution of the resonant waveveetors. An analysis of
the Raman scattering from a one-dimensional system using the
1DOS profile shown in Figure 5 (d) is suitable for rough
predictions of the behavior of the Raman leatures, while a
detarled analysis of the Raman features must involve
consideration of the resonant wavevectors themselves, and the
nature of the resonance (or preresonant) state, shown in Figures
Sta)to(¢). For example. when using JDOS proliles, such as the
one shown in Figure 5(d), for analysis ol the Raman spectra, it
must be kept in mind that there could be two different types of
preresonant electronic states for case (¢) in Figure 5(d),
corresponding to black and grey bold lines in Figure 5(c), and
these two types of preresonant electronic states correspond to
two ditferent dashed lines in Figure 5(d) labeled by (c) and (a),
tespectively, yet the excitation energy corresponds Lo the dashed
Ime (¢) only.

12 Higher-order Raman scartering :

In higher-order Raman scattering processes the wave vectors
foran individual phonon can vary from zero to a reciprocal
latuiee vector, and in the ease of higher-order processes involving
More than one phonon, the momentum conservation
Cqunements become

ki=k; + 29;’ @)

wherc k, and k, denote the electron wave vectors inthe final
and initial states, respectively, and i denotes the various
phonons participating in the scattering process. We focus our
analysis here, for example, in a two phonon process. whereby
the scattering event involves wavevectors ¢, and ¢, such that
q,=-q,and |g,| =|g,| =g| in order to fulfill the momentum
conservation requirement. If the two phonons belong to the
same phonon branch, the phonon energy (@ ,,(g)) = @ ,,(q2)
= ,,(-q) =®,,(q)) . The energy conservation requirement
implies that the difference between incident and scattered
photons is 2@, being + and - for Stokes and anti-Stokes
processes, respectively. Itis important to notice that in a sccond-
order scattering process, such as a harmonic process, any
wavevectors within the Brillouin zone can contribute to the
spectra. The second harmonic of a phonon with any symmetry
1s expected to have a second harmonic that is Raman-active
with A symmetry.

The calculation of the Raman scattering intensity is similar
to what was discussed for the one-phonon process in §3.1,
cxcept that a matrix element connecting the first and second
phonon has to be included in Eq.(3). as well a third term in the
denominator. In this process, a very special situation occurs
when two resonant terms go to zero simultaneously, thus leading
to a double resonance process. These double resonance
processes arc much stronger than single resonance processes
in higher-order Raman spectral features. For example, a second-
order process obeying double resonance conditions can have
an intensity comparable to a single resonance first-order
scattering process. Since electrons and phonons are coupled
to cach other in the resonance scattering process, the double
resonance response depends on the electronic structure of the
system. A particularly interesting example of this phenomenon
occurs in graphite, where a lincar dispersion of the electronic
states 1s observed near the Brillouin zone boundary where the
valence and conduction bands arc degenerate [9, 10]. This
special clectronic structure combined with the double resonance
phenomenon allows us to choose the phonon wave vector by
changing the laser energy, and this provides us with a method
to probe the phonon dispersion relations of nanometric carbon
samples [ 10] which would be difticult to probe by other currently
available techniques. In fact, a number of higher-order modes
have been observed in the Raman spectra from carbon nanotubes
[11], and are made observable by the double resonance process.
Only the simplest and most extensively studied examples are
reviewed in this review article.

4. Resonance Raman scattering in one-dimensional prototype
materials

Presently there are many known 1D system. Nanowires have
been fabricated for many semiconductors, including group IV,
I1-V, II-VI and 1V-VI materials, semimetals such as Bi, Sb, and
metals such as Ni, Co, Au, and many others. Nanotubes have
been prepared for fewer materials, including carbon, BN, various
transition metal chalcogenides, bismuth and phosphorus. In a
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few cases, Raman spectra have been taken However. the most
detailed Raman spectroscopy studies by far have been carried
out on single wall carbon nanotubes (SWNTs). which have
hecome a prototype system for 1D Raman spectroscopy 14].
Furthermore, the carbon nanotube system s sufficiently simple
5o that detailed calculations can be carried out, and this has
indeed heen done. Ttis for these reasons, that this review focuses
on the Raman spectra of carbon nanotubes. with particular
attention given 1o the spectra from just one nanotube, where
the power of the Raman scattering techmque for studying one-
dimensional systems 15 most cvident

4.1 Geometrical and electronic structure of carbon
nanotubes .

A single wall carbon nanotube can be considered to be a single
atomic layer of 2D graphite (called a graphene sheet) rolled up
into a scamless cyhnder [Figure 6(A)]. The structure of cach
nanotube 15 uniquely described by two integers (n,m), which
refer to the pumber of @, and a, umit vectors of the 2D graphene
lattice that are contatned n the chiral vector, C, = na, + ma,,
which spans the circumference of each nanotube [sec Figure
6(B)][6] From the (1, m) ndices, the nanotube dhameter d, and
chiral angle @ can be obtamed from the relations

d, = (ay/ m)n* +nm+nt)"? and cos@ =(2n+m)/
(n* +nm+m?)"* In Figure 6(B) the vectors a, and a, denote
the unit cell for a 2D graphene sheet, which contains 2 carbon
atoms, while the vectors C, and T denote the much larger unit
cell for the nanotube.In general, the diameter of the nanotube is
small, and there are only a few ( ~ 20) carbon atoms around the
circumterence, with d on the order of | nm and length on the
order of 1 pym, to give a large aspect rato (length to diameter
ratio), thereby yielding a strongly 1D system. The number of
carbon atoms within the nanotube wunit cell is

1,02
N =2n"+m" +nm)/dy where (IR 1s the greatest common
divisor ol (2m + n) and (2n+ m), and the length of the translation
vector T s ﬁml, Idyg .

Figure 6. (1) Classihcation ot carthon nanotubes | (a) armchair, (b)
aigzag. and () chial nanotubes From the hgure it can be seen that the
ouentation ot the siv-membered tng in the honeycomb lattice relative
to the axis of the nanotube can be taken almost arbitrarily. (B) The
unrolled honeycomb lattice of a nanotube When we connect sites O and
, -

A and B and B', a nanotube can be constiucted  0A and OB define the
chual vector €, and the translational vector T of the nanotube,
respectively The rectangle OAB'H defines the unit cell for the nanotube
The vector R denotes a symmetry vector |6].

The reciprocal lattice vectors K, along the nanotube axig
(continuous) and K, along the circumferential direction
(quantum confined wavevectors) are obtained from the relation
R,-K,=2r5, where R and K are the lattice vectors in real
and reciprocal space, respectively [16]. By using the
orthogonality relations, we obtain:

C, K, =2r, T-K, =0,

C, K,=0, T K,=2rm. ©)
K, and K, can be wrilten as :
] 1
Kl = *I;I'(—fzb. +I|/72 ), K-_, = ,—V-(mbl -nbz), (6)

where b, and b, arc the reciprocal lattice unit vectors of a two-
dimensional graphene sheet shown in Figure 7 and they are!

given in (x, v) coordinates by \
FEAREL VAL
bl=|—'| =, h=|—=-1|—, o
3 a 3 a

while 1 and 1, arc integers The (1, m) integers appearing in Eq.
(6) deline the chiral vector €,.The N wave vectors
MK (u=0,..., N=1) giverise o N discrete k vectors in the
circumlercnuial direction and they are related to the cutting Iimes
shown in Figure 7.

Figure 7. The Bnllown zone of a carbon nanotube 1s represented by the
line scgment WW' which s parallel to K,. The vectors K| and K, are
reciprocal latice vectors corresponding to C, and T, respectively The
figure corresponds to C,=(42), T=(4, -5, N=28, K, =(5b, + 4b,)128.
K, = (4h, - 2b,)128 [6]

The most remarkable property of carbon nanotubes is thal
they can be either metallic or semiconducting, depending on
their (n,m) indices or chirahity. Specifically, the SWNTs for which
(n~m)=3q are metallic,while those for which (n - m) =3¢ % | art
semiconducting, where ¢ 1s an integer. The energy band gaps
for semiconducting tubes EISl typically are in the range of
several hundred meV and exhibit a 1/d, dependence.
Furthermore, the electronic energy band structure and the
density of clectronic states are also uniquely determined by
(mm) [6, 12, 13]. As discussed in §3, the singularities in the
density of states are called van Hove singularitics (VHS), and



Resonance Raman scattering on one-dimensional systems

they appeir prominently as sharp peaks in the density of states,
1s shown in general in Figure 4, and for three specific (n, m)
wngle wall metallic nanotubes in Figure 8(a).
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Figure 8. (a) The 1D elechiome density of states for the valence and
conduction bands vy energy (the Fermn level 1s at £ = 0) tor three metallic
nanotubes of approximately the same diggmeter. showing the elfect of
urality and tngonal warping (see teat) on the van Hove singulanitics in
the density of states (9.9) Guimchan). (12,6) (chiral), and (15.0) (ngzag)
with diameters 122124 and 1 17nm. respectively  The plots are made
the ught biding approximation, assuming that the cnergy overlap
tlegral s ¥ = 29 ¢V and the wave funcuion overlap integral vamishes:
- 0 16] (b) Plot of the 2D equ-cnergy contours of 2D graphite,
wowmg tigonal warping effects in the contours, as we move from the K
I mmnthe K - r or K - M directions The cqui-energy contours are
aicdes nean the K point and near the center of the Bullouin zone =, but
near the M points on the zone boundary, the contouwrs are straght hnes
which connect the nearest M pomnts [7)

.

4.2 Raman spectra from one isolated nanotube :

The 1esonance Raman effect occurs when the energy of the
merdent or scattercd photon 1s in resonance with an inter band
tansition from the valence band state 7 (o a conduction band
state ¢ for light polarized along the nanotube axis (2) [14, 15].
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Since the resonance enhancement for a 1D system is very high,
itis possible to see Raman spectra from one isolated single wall

carbon nanotube. |

Figure 9 shows typical Raman spectra from a single isolated
semiconducting and a metallic single wall carbon nanotube on
a Si/SiO,substrate. The four most important features seen in
Figure 9 are the radial breathing mode (RBM) where the carbon
aloms are all vibrating in phase in an A symmetry mode in the
radial direction of the nanotube (see left inset to Figure 9 to
view the atomic displacements associated with the radial
breathing mode), the tangential G-band which is derived from
the in-plane Raman-active mode in graphite (see right inset to
Figure 9 to view the longitudinal and transverse displacements
for the G-band with A symmetry), the disorder-induced D-band,
and its second-order harmonic (thc G-band). It is significant
that the Raman signal from one nanotube, ~ 1 nm in diameter, is
of comparable intensity to the signal from the silicon atoms,
which are approximately 10° times more numerous within the
lascr spot size of ~ | pm, as can be seen in Figure 9 [16].

The Raman spectra in Figure 9 at the single nanotube level
provide two important picces of information. The first relates to
the diameter selective aspect of the spectra, and the second
relates to distinguishing between semiconducting and metallic
nanotubes. [4, 16]. Referring to Figure 8(a) we see the density of
states of the conduction band for three metallic (M) carbon
nanotubes, all withabout the same diameter. Within the simplest
model for the electronic structure where the overlap integral
within the light binding model vanishes (i.e., s = 0) [6], the density
of the states for the valence band is the mirror image of that for
the conduction bands [Figure 8(a)]. Since the energy separation
for the lowest energy inter band transition El':’ , from the highest
valence VHS to the lowest conduction band VHS, varies
inversely as the tube diameter, the resonance condition depends
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Figure 9. Raman spectra from a metallic (lop) and a semiconducting (bottom) SWNT at the single
nanotube level using 785 nm (1 58 ¢V) laser excitation, showing the radial breathing mode (RBM,
D-Band, G-band and G’ band) features in addition to weak double resonance features associated with
the M-band and the 1TOLA feature (see $4.9 [11]. The mode on the left and the nght show,
respectively, the mode displacements associated with the RBM and G-band norimal mode vibrations.
The vibrations along the nanotube axis are denoted by G* and the vibrations in the circumferential
direction are denoted by G-, because the G~ modes downshift in frequency relative to the G * modes
because of the nanotube curvature effect. The isolated carbon nanotubes are sitting on an oxidized
silicon substrate which provides contributions to the Raman spectra denoted by ‘* that are used for
calibration purposes as described below [17]).
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on the nanotube diameter. Furthermore, since the radial breathing
mode trequency for an isolated nanotube varics as
Oy =1 d, | the diameter of a nanotube in resonance with a
given laser excitation energy E,,.. can be dctcrm.m‘ed
experimentally by the Raman cffect. For an isolated SWNT sitting
on a SI/S10), substrate, the constant o has been determined to
be 248 cm‘an [16]. Because of this diameter sclectve effect
| 18], study of the radial breathing mode cquencies for various
E, ., values can be used tor charactenizing the diameter
distribution of SWNTs 1 a sample of SWNT bundles L19].
Inspection of the two spectra in Figure 9 indicates a distunctly
dilferent G-band Iineshape, which can be used (o disunguish
metallic from semiconducting nanotubes

4 3 Determining the geometrical structure of a nanotube by
Raman scattering .

Since the clectronic energy bands of 2D graphite do not show
simple circular constant energy contours, in Figure 8(b), but
rather show a trigonal warping elfect [6, 7], there is a weak
dependence of the clectronic energy levels of single wall carbon
nanotubes (SWNTs) on chunal angle 8, as well as a much
stronger dependence on nanotube diameter d,, which determines
the number of carbon atoms in the circular cross-section of the
nanotube shell one atom in thickness [6].

The weak dependence of the clectronic energy bands of
SWNTS on chiral angle @ relates to the 3-fold symmetry ol the
clectronie dispersion relations about the A-point of the 2D
graphene Brillouin zone [sec Figure 8(b)], where the graphenc
valence and conduction bands are degenerate, forming a zero
band gap semiconductor [6]. This tngonal warping eflcet in
Figuie 8(b) 1s responsible for cach (n, m) SWNT having a unique
spectrum of singularities in the density of states of their
conduction and valence bands, when the energy bands of the
2D graphene lattice are cone folded to form the energy bands of
the SWN'Is [6, 7] This chirality dependence of the van Hove
singularitics [7, 20] in the 1D electronic density of states (DOS)
ol the conduction band, 1s demonstrated i Figure 8(a) for three
metallic (n, m) nanotubes, all having about the same diameter d,
(trom | 17 nm to 1.24 mm), but having different chiral angles:
0 =" (zigzag), 10.16° (chiral), and 30.0" (armchair) for
nanotubes (15,0), (12,6), and (9,9), and diameters of 1.17, 1.24
and 122 nm. respectively. The plot shows that as the chiral
angle 1s varied from the armchair nanotube (9.9) (9 = 30°) to the
sigrag nanotube (15.0) (@ =0°), a sphitting due to trigonal warping
cftects [see Figure 8(b)] develops in all of the singulariues in the
DOS 7. 20). and this splnting increases 1in magmitude with
decteasing chiral angle. Since the peak energies in the density
of states [see Figure 8(a)] are unique for cach (n, m) value, the
interband transition energics E, between valence bandstate
and conduction band state i are also unique, where i = 1,2, ...

1 .t .
Selection rules allow only 1 to 1 transitions between the valence and
conduction bands for hight polurized along the nanotube axis, which 1s the

donunant polanizatuon direction of a nanotube because of its large length
to diameter ratio

and the superscript index M or S is added to denote metallic o
semiconducting tubes. For carbon nanotubes, interbang
wransitions are strongly favored when the photon energy exciteg
an electron from the ith peak in the valence band density of
clectronic states to the ith peak in the conduction band density
of states”. These would correspond to vertical transitions in the
extended zone (2D graphene). This energy is denoted by E,
which is called the peak cnergy or van Hove singularity in the
joint density of states, giving risc to a unique set ofsingularies
in the joint density of states (JDOS) E, for each (n, m) value. A
plot of the singulanities in the JDOS denoted by E is presented
n Figure 10 as a function of nanotube diameter d, [21]. Rehable
values of E,, are obtained by the tight binding approximation for
d>09nm

As can be scen in Figure 10, the tngonal warping effect
|Figure 8(b)] causcs a spread of the interband energies E,
between the singulantes in the joint density of states (JDOS),
for nanotubes with the same diameter d,. Here the imcgen\
denotes the singularities in the JDOS as the energy relative 1o
the Fermu level E - increascs. From the above discussion, we
conclude that each nanotube (n, m) has a unique set of interband
energies E, . denoting the cnergy differences between the rth
van Hove singularities in the conduction and valence bands
And, conversely, 1f onc interband energy E, and a nanotube
diameter d, are specified, then its corresponding unique (n, m)
can in general be identified
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Figure 10. Calculated energy separations £, between van Hove singularities
tin the 1D clectionic density of states of the conduction and valence
bands for all (n./m) values vs nanotube diameter 0.4 < d, < 3.0 nm, using i
value for the carbon-carbon energy overlap integral of y, =29 eV and?
nearest neighbor carbon-carbon distance e = 1.42A 7, 21
Semiconducting (S) and metallic (M) nanotubes are indicated by crosses
and open circles, respectively The index i in the interband transitions £,
denotes the transition between the van Hove singularities, with i = | bein
closest to the Fermi level taken at E = 0 (7, 21, 22).

This fact leads to whatis special about the resonance Ramah
effect in this 1D system, and this is the information about th¢
geometrical structure of the nanotubethat is provided by
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.wonance Raman spectra at the single nanotube level. Normally
1 resonance Raman elfect just gives spectral information, or
Jjormation ahout phonon frequencies, electronic cnergy levels
nd the electron-phonon interaction, but not structural
\lormation directly. But in the resonance Raman process for
s 1D system, every (n, m) nanotube can be considered as a
ilferent molecule, and is in resonance with a unique sct of
ynerband cnergies E" (n,m), as shown in Figure 8(a) and 10, so
wat lor this 1D system, resonance Raman spectra can also
ield structural information through identification of the (n,m)
alues that correspond to the observed Raman spectra for a
nen isolated SWNT. Once (n.m) is known from measurements
iade on the radial breathing mode feature, Raman studies on
wlated carbon nanotubes can be carried out to understand
wletal the dependence of all the features shown in the spectrum
| INgure Y on diameter d,, chiral angle 6 . laser excitation cnergy
Eon, - and other pertinent parameters. Furthermore, the spectra
Iserved for these other features in Figure 9 are also sensitive
v and @ and canbe used to corroborate the (1, m) assignments.

Resonance Raman characterization of the (n, m1) indices for
ne nanotube is important for scientific studies of SWNTs,
molar as many physical properties, such as transport, optical,
ncchanical,and other properties, that depend sensitively on the
n, m) mdices [6], can be studied systematically at the single
umotube level through usc of the resonance Raman effect to
denuly their (n, m) values

The determination of (n, i) by resonance Raman scattering
lepends on the determination of both E, and d, by exploiting
he umique relation between E and (1, m) shown in Figure 8(a),
nd the direct determination of , from the radial breathing mode
clation @ ggyy =248/d,, as discussed above. The
lciermmation of E is carried out most conveniently and
«ensthively by measurement of the radial breathing mode feature,
hough other featurces (such as the G-band, D-bandand G'-band)
i the resonance Raman spectrum (see Figure 9) are often used
Wwconfirm the (i1, m) assignment made from analysis of the RBM
\wetum If a tunable laser were available to be tuned to E,
which could be detected as the E, ., value wherc the maximum
mlensity in the Raman spectrum occurs), then a simple
Mcasurement of @ ggyy L0 yield , and to identify the index i in
F, tsce Figure 10) would be sufficient to determine (n, m). In
Plactice, such a tunable laser system has thus far only becn
Applied to single nanotube Raman spectroscopy studies over a
‘mall energy range (~0.15 eV) for only one SWNT [17], and this
M part due 1o the fact that only a few laboratorics world wide

'eavarlable tunable laser systems working over a broad energy
Mge i conjunction with aRaman micro-probe system.

chcnheless. an (n, m) determination can in most cases be
Made 1f a nanotube is within the resonant window of a single
Vailable [aser excitation line, which in practice is satisfied for
“w, Within ~ £ 0.1 eV of an interband transition for that
"otube, If only a single laser line is available, then the E; is

determined from its relative intensity in relation to how well the
nanotube is in resonance with £, (see §3.1.3}), making use of

the tight binding determination of the E, values for (n, m) SWNTs
within the resonance window [ 16].

One method to determine E, directly requires measurement
of both the Stokes and anti-Stokes radial breathing mode spectra
[23, 24), and this is discussed in § 4.4 in terms of the availabity
of a single laser excitation line, but the availability of a tunable
laser for the measuremnt of the anti-Stokes/Stokes intensities
substantially increases the accuracy in the determination of the
E, value, as discussed in §4.5.Thus, through the quantum
confinement effect in a 1D system, the appearance of sharp
singularities in the density of states, and the fact that each
nanotube can be considered as a distinct molecule with a unique
structure specificd by its (n, m) indices and with a distinct set of
van Hove singularities where the resonance Raman effect
provides the greatest enhancement to the Raman signal, it is
possible to use resonance Raman scattering as a sensitive probe
of the geometric structure of a 1D system.

4.4 Tunable Laser Spectroscopy :

The resonance Raman intensity is proportional to the joint
density of electronic states (JDOS) in the sample and, therefore,
resonance Raman scattering (RRS) measurements made with a
tunable laser provide a highly reliable technique to study the
JDOS of isolated SWNTs, and consequently the profile of the
DOS can be determined. Thus RRS can be used to determine
the energy value for the one-dimensional van Hove singularities
of a SWNT with a precision better than 5 meV, thereby providing
important information, that could be used for subsequent
measurements on the same SWNT. As we see below, with RRS,
the measured width of the JDOS 1s on the order of ~0.1 - 1.0
meV, further demonstrating that SWNTs really provide a
remarkably good model for 1 D mesoscopic systems. This result
can be compared with the DOS obtained, for example, by
scanning tunneling spectroscopy. RRS has an advantage over
techniques such as scanning tunneling spectroscopy (STS),
since RRS useslight to probe the DOS of SWNTs and is not
expected to significantly perturb their ID electronic structure,
as does STS which is a much more strongly interacting probe.
The observation of a measurable Raman signal from one SWNT
suggests that the intrinsic van Hove singularities in SWNTs
must be much sharper than were observed in STS experiments
[25,26].

Due to the quantum confinement of the DOS, strong resonant
effects oceur in the Raman scattering from an isolated SWNT
when the energy of the incident or scattered light matches an
clectronic transition E, between van Hove singularities in the
valence and conduction bands, thereby strongly enhancing the
Raman signal [25, 26).

Figure 11 shows an atomic force microscopy (AFM) image
of the substrate with lithographic markers on an 8 x 8 um? lattice.
The light spot (~ | um diameter) is located close to the marker (~
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| pm sizc) i order to achicve good precision i always returning
the light spot to the same position on the substrate as the laser
energy E, 18 changed. The dashed circle in Figure 11 displays
the position where the laser spotis placed, showing the presence

Figure 11. AFM imoge of the sample The left image shows the markers
used o localize the spot position (dashed circle) on the substiate during
the Raman experiment, and lor fuither AFM characterization of the
SWNTs present within the light spot (nght image) [17]

ol some 1solated SWN'Ts (sce right AFM image of Figure 11).
The excitation was provided by a tunable Ti.Sapphire lascr
(power level P < 10 mW on the sample) pumped by an Ar ion
laser (6W) The cident hight was filtered with a single-
monochromator (McPherson - 1200g/mm), and the scattered light
was analyzed with an XY DILOR triple-monochromator equipped
with a N, cooled CCD detector. Raman spectra of the sample
were measured in the laser excitation range 720 nm (1.722 ¢V)
< E,.., S$785nm(1.585¢V)withsteps of 4 nm (~0.009cV) All
the Stokes and anti-Stokes spectra were corrected to account
for spectrometer efficiency at each laser energy. and the spectra
were then normalized by the 303 cm™' Si substrate peak
intensities. The anti-Stokes intensities were multiplied by
{ln(w)+||/n(w)} , where n(w) =1/[exp (hw/k,T)—=1] 1s
the Bose—Einstein thermal factor. @ is the phonon requency,
kg 1s the Boltzmann constant, and T'is the temperature. Although
high laser power was used to measure the Raman spectra, T was
found to be close to room temperature (not higher than 325 K),
and this was confirmed by changing the laser power from I mW/
pum* (10 MW/ecm?) to 10 mW/um? (100 MW/cm?). where the
Stokes/anui-Stokes intensity ratio for the 521.cm" and 303 cm™
' Si peaks remained constant, the @ g, peak for the nanotube
did not show a tempera'ure-dependent shift, and the intensity
ratios between the RBM features, and the 303 cm™' Si peaks
also remained constant, 1n both the Stokes and anu-Stokes

spectra. The gold marker near the hght spot, however, probably
experienced some heating.

With the light spot position shown in Figure 11, the Raman
spectra were measured wath different laser excitation encrgies.
Figure 12 shows the Stokes and anu-Stokes Raman spectra of
one light spot for several different excitation laser energies, with
E, ... increasing from the battom to the top spectra (see caption).
From Figure 12, the RBM leature at 173.6 c™ appears and

disappears over the tunable energy range of E, .. therchy
allowing us to tunc over the whole resonant window of one vy,
Hove singularity in the JDOS of this resonant SWNT. Th,
linewidth for this @ ggy =173.6 cm™ peak is S cm™, typical of
that of onc 1solated SWNT [30]. The points in Figure 13 shoy

the peak intensity of the 173.6 cm™ RBM feature vs. E,_in the
Stokes and anti-Stokes processes. As discussed in e
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Figure 12, Stokes and anti-Stokes Raman spectra from 1solated SWNIy
on o SYSI0, substrate for several different laser excitation eneigies  Fion
bottom to top, the spectra were taken at laser energies £, = 1624
1 631, 1 640, 1 649, 1 666, 1 685, 1.703, and | 722 eV The flat region
appeating m all Stokes spectra comes from light leakage, and was cut oul
from the spectra [17]
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Figure 13. Raman intensity vs luser excitation energy E, e for 'hti
wgpnm =1736 cm™! peak 1 the Stokes and anti-Stokes Raman processes '
Circles and squares indicate two different E,,., runs on the same SWNT

sample The line cuives indicate the resonant Raman window predu.'lrd '
from Eqgs (8) and (9). with £, = 1655 eV, I', =8 meV,and I, ¥°
meV. The upper inset compares the theoretically predicted Stokes and

anti-Stokes resonant windows The lower inset plots the JDOS for ont

isolated (18,0) SWNT with ", = 0.5 meV for all van Hove singulam®

up to 25 eV[17)
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peainning of this section, these resonant windows reflect the
IDOS of the resonant SWNT.

Figure [13] shows that the resonant window in the anti-
Stokes process is clearly asymmetric, exhibiting, from lower to
lgher E,,,» @ very sharp increase in signal, followed by a slower
Jecrease. The Stokes signal quality is not as good as the anti-
Stokes signal due to the frequency dependent spectrometer
clficiency that drops off rapidly with increasing laser wavelength,
being worse in the Stokes frequency region. However, a similar
Epl dependent behavior is observed for hoth resonant
windows (see Figure 13). This asymmetric behavior is caused
by the asymmetry in the JDOS p(E) of one isolated SWNT.
The RBM peak intensity I(E,, ). which is a function of E, .

wan be evaluated from p(E) according o

I El.lu't )=

M
_E_ira )(Elu.\'w iE,,;, ~-E-iI’ )

r

(E)dE (B)
(Eluuv p

wheie the first and second factors in the denominator,
1espectively, describe the resonance effect wath the incident
and scattered light. where the + (=) apphies to the anti-Stokes
(Stokes) process for the phonon ol energy Eph. and I, gives
the mverse litetime for the resonant scattering process. Here M
-M MM, s considered to be independent of £ in this small
cencigy range, where M, M , and M/ are, respectively, the matrix
clements for the electron-radiation absorption, the electron-
radiation emission, and the electron-phonon interaction.

For one 1solated SWNT, the detailed JIDOS profile must be
tahen mto account, and p(E) can be expressed by

1 “(‘_ « E

pLE)=Re
| S ayolE-E, ity E+E, +irp]| ©

where ag - is the nearest-neighbor distance between carbon
aloms, ¥, is the tight binding overlap integral, and I', is
mtroduced as a measure of the finite nanotube size effect on the
width of the JDOS singularity for the E, electronic transition.

The sum over i takes into account the different van Hove
smgularities of one SWNT.

The line curves in Figure 13 show plots for the Stokes
(dashed linc) and anti-Stokes (solid line) resonant windows,

using Egs. (8) and (9) and E,,=21.5meV obtained from o ggy
=173.6,cm™', The width of the resonant windows gives I', =8
meV The [it between the cxperimental points and Eqs. (8) and
D yields E,; = 1.655+0.003eV and I, in the range of ~0.1-1.0
meV, which is much smaller than the widths for the DOS features

observed by STS (~ 30 meV) {25, 26]. and accounts for the
obverved asymmetry in the resonant window of one SWNT.

The upper inset shows a comparison between the theoretically
predicted Stokes and anti-Stokes resonant windows, revealing
a shift in these resqnant windows due to the resonant condition
for the scattered photon, E = E, + E, for the anti-Stokes (+)
and the Stokes (-) processes.

From theory, taking v, =2.90¢V, a_=0.142nm,and o =
248 cm™' nm in the relation w gy, = a/d, [16], we have very
few possibilities for SWNT indices (n, m) which satisfy the
observed E, ~ 1.655 ¢V and @Wggy ~ 173.6 cm™'. The best
candidates are metallic SWNTSs with an E,"l' that is split by the
trigonal warping effect [ 7). Three candidates were considered in
the identification : indices (12,9) have d, = 1.45nm, E* = 1.684
eVand 1.725 cV.and W gy =171.2cm™"; indices (17.2) have d,
= |.44 nm, Eﬂ =1.650eV and |.817 eV, and Wggy =172.7
cm'; while indices (18,0) have d =143 nm, El‘,' =1.655¢V and
1.831 eV, and @ ggy =173.5 cm™'. The best fit was obtained by
identifying the signal as coming from a (18,0) SWNT. The
cxperimental value at E, =1.655 eV is in very good agreement
with the E ,",’ predicted for the (18,0) SWNT based on tight-
binding calculations [6]. The second van Hove singularity
predicted at 1.831 cV was not observed because the laser could
not be tuned above 1.722 ¢V. Inside the dashed circle in the right

image of Figure 11, there is one SWNT (with d=15% 0.2 nm)
which is a good candidate for the resonant (18,0) SWNT.

Finally, the lower insct to Figure 13 plots the highly singular
JIDOS vs. E lasey TOT ONE isolated (18,0) SWNT obtained from Eq.

(9) and considering the experimental value I, = 0.5 meV taken

(ATg}

tor all van Hove singularitics, since I'; is related to finite size
effects for cach SWNT.

In summary, by using a tunablc laser, it is possible to study
the JDOS profile p(E) of one isolated SWNT, giving the
singular E_ valuc with a precision better than 5 meV. The value
obtained for I'; ~0.1-10 meV is considerably smaller than
the values obtained with STS [25, 26] suggesting that the DOS
in SWNTs exhibits strong 1D behavior. Therefore, resonance
Raman spectroscopy can bhe used to characterize the JDOS of
an isolatcd SWNT, thereby providing important information that
could be subsequently used for other properties measurements
on this characterized SWNT.

4.5 Stokes/anti-stokes asymmetries :

In the non-resonance Raman spectra, the anti-Stokes to Stokes
intensity ratio for a Raman line is used to determine the
temperature of the sample through the relation

Ing /15 =exp(-Ey 1 kgT) (10)
In the case of resonance Raman scattering for a 1D system, this

approach for determining the temperature of a system cannot
be carried out because the 1, (/I ratio does not depend only on
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the thermal population factor, but also depends on the resonant
contribution from the scattered photons that has different
encigies for the Stokes (E,,, - E,) and anti-Stokes (E,,, +
E ) processes. This effectis a consequence of the dl.splfu:cmcnl
of the Stokes and anti-Stokes resonance windows, as discussed
in §4.4, where a tunablc laser 1s used. Special 1D aspects of the
density of electronic states are obtamed by measuring the Stokes
and anti-Stokes spectra of carbon nanotubes in both single wall
nanotube bundles and 1solated carbon nanotubes. The
iformation provided by study ot both the Stokes and anti-
Stokes spectra in SWNT bundles includes the observation of
resonance Raman scattering profiles to which only metallic
nanotubes contribute (Stokes spectra), and other scattering
profiles to which only semiconducting nanotubes contribute
(anti-Stokes). This is unique o the resonance Raman spectra of
carbon nanotubes, and reveals their 11 character. whereby in
one process the laser is inresonance with ametallic 1D system,
while in the other process a 1D semiconducting system is being
probed [29)

In the case of isolated nanotubes, the mlormation provided
by the anu-Stokes and Stokes spectrais even richer. Because off
ditlerentiesonant denominators in the Raman intensity [see Eq
(IM], the 1, /1, rauo 1s sensitive o the laser excitation energy
,"In\r‘
the quantized electionic state £, [23]. One-dimensional systems,
such as carbon nanotubes, are suitable for illustuating this
concept because the tesonance 1s very sharp m energy and
large asymmetnies between the anti-Stokes and Stokes mtensities
can be observed, as shown in Figure 14 (a) and (b) The radial
bicathing modes for these two nanotubes yield d, values that
are very close to onc another, so that it 1s not possible (o
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and this sensitivity can be used to measure the energy of

distinguish one nanotube from another from the measured d
values. However, the ratio of the anti-Stokes to Stokes
intensities, is very different for the two nanotubes, and thig
large asymmetry in /, /I is then used to sensitively deternune
the energy E,, of the resonant van Hove singularity in the joint
density of states (right hund panels in Figure 14). This
determination 1s done by calculating the experimental E;*
that would produce the measured / A./Is ratio. By using this
approach, the nanotube geometry (n, m) is determined as the
best fit of the measured ¢, and E;**" to the predicted d, and E,
values for a given (n, m), thereby providing a precise
experimental determination of the (n, m) indices. This is illustrated
in Figure 14 for the (n, m) nanotubes (12, 1) and (11, 3), which
have very similar d, values, but very different experimental Efz
values of 1.587 and 1.554 e¢V. respecuvely [23]. These
experimental values for I:zs2 are 1o be compared o their
corresponding theoretical values of 1.585 and 1.564 eV, obtained
on the basis of ught binding calculations [6].

Based on the anui-Stokes to Stokes asymmetries, we can
predict the situation whereby the 7, /1 is equal to one. In this
case, only the resonant denominator term that contains the
resonance with the incident photon 1s contributing to the total
intensity and both anti-Stokes and Stokes are cqually
cnhanced. This special situation occurs when the laser excitation
energy 1s very close Lo E . Such a situation is observed for the
nanotube depicted in Figure 1S. In these spectra we see that the
RBM intensities are very large compared to the feature [rom the
sthicon substrate at 303 cm™!, because of the strong resonance
condiion, i.e., close to the case (a) in Figure 5. In this section,
we have illustrated by showing some examples of the Stokes
and anti-Stokes spectra for the radial breathing mode of carbon
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rigure 14, Resonance ant-Stokes (AS) and Stokes (S) spectra for a (12.1) semiconducting SWNT on a
SUSI10, substiate using 1 579 eV (785 nm) laser excitation (upper panels) and the predlclc(-l joint density

of states (heavy line) and resonance windows for the
(dashed hine) processes for the (12.1) SWNT (lower )

RBM mode in the anti-Stokes (solid linc) and Stokes
panel). (b) is the same as in (a), except that the data

:}u: fon [llclltll.l) SWNT The energy );i‘2 in (a) and (b)in the lower panels is varied to obtain the
;:pe::unl‘a' ly measured 1 / 4, ratio at Epne =1.579 eV given in the upper panels of (a) and (b), where
the AS spectra are normahized by the Boltzmann factor for casy compansons of the relative AS. and S

ntensities. In the lower panels the laser hine at E, .= 1579 eV 15 denoted by a solid vertical hine [23)
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nanotubes how the special 1D electronic structure allows the
resonant Raman effect to measure  the critical points in the
density of electronic states to an accuracy of ~ 10 meV using
one laser line, and to an accuracy of S meV using a tunable laser
(e §4.4). It is expected that this kind of approach could also
be applied to other low-dimensional systems in order to
Jetermine the energy of the confined states by using light
wealermg.
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Iigure 1S, (@) Resonance anti-Stokes (AS) and Stokes (S) spectra for a
(HES) metalhe SWNT on a S|/S|0_. substrate usmgl 579 ¢V (785 nm)
Liser excutation (upper panels), and the predicted joint density of states
theavy hine) and resonant windows for the RBM mode n the anti-Stokes
tsohd hine) and Stokes (dashed hne) processes for the (14.8) SWNT (lower

panch) The two van Hove singularitics labeled [-,‘I‘I’ for the (14.8) SWNT,
spht by the tngonal warping effect. are mdicated on the Figure [23].

16 G-band lineshape Dependence on the Resonance
Condinon

In§45 we discussed the introduction of asymmetries into the
Stokes and anti-Stokes intensities by the resonance conditions
lor the scattered photon, thus giving rise to departures from the
usual Bose~Einstejn thermal relation |Eq. (10)]. However, this
ditlerence 1n resonance conditions for the scattered photon,
not only causes Stokes vs. anti-Stokes asymmetry, but it can
ahvo cause changes in the lineshape of a Stokes Raman feature
composed of different phonon constituents.

Stong resonance occurs when the incident or scattered
photon energy matches an actual electronic transition between
Van Hove singularities in the 1D material. Resonance with the
icident photon enhances the Raman cross section related to
all phonons 1n the 1D material by the same amount. However,
't onance with the scattered photon can enhance different
Stokes Raman peaks by different amounts. Since the scattered
Photon cnergy depends on the phonon energy, different
mounts of resonance enhancement occur for phonons with
dilfereny cnergies. Similar to the case of the Stokes/anti-Stokes
"iensity ratio(§4.5), where the scattered photons have different

cnergies A®, —h® , as compared to hw, +hw , , a Stokes
Raman process in\(olving two phonons @, and @ ;2 with
diffcrent energies will exhibit scattered photons with different
frequencies A®; —h®,, and h®, —h,,; . Therefore, the
relative intensitics between the Raman peaks in the Stokes Raman
spectra will depend on the resonance condition, namely how
close these photon energies are to the LD van Hove singularities
E . The observation of this effect is discussed below for the G-
band Raman feature in SWNTs.

The G band is a complex SWNT spectral feature. Due to the
folding of the graphite Brillouin zone into the SWNT zone, and
due 1o the symmetry-breaking effects associated with the
nanotube curvature, the E, peak in the Raman spectra of
graphite splits into several modes with different symmetries in
the Raman spectra of SWNTs [31, 32]. Six modes [two A(A ll\,).
two E |(EU\,) and two Ez(Ezg)l are both predicted and observed
to be Raman active in the G band of SWNTs |6, 33-40]. Symmetry
assignments of the different phonon modes in semiconducting
SWNTs were determined by polarized Raman experiments
performed on a bundle of aligned SWNTs (4, = 1.85 £ 0.25 nm)
using an excitation laser energy E, =~ =2.41¢V [35]. The G-
band profile for semiconducting SWNTs in the SWNT bundle
was deconvolved into four spectrally resolved SWNT
components with the following symmetry assignments :
Wy, ~15499cm™[Ey(E; )], o ~156Tcm™'[A(A),) +
E(E ), w§~1590cm™[A(A,)+E(E,)], and

@}, ~ 1607 cm™'[E;(E,, )] .[35] For metallic SWNT, the G-
band profile is quite different due to plasmon-phonon coupling,
and we focus our discussion on the more simple G-band spectra
of semiconducting SWNTs.

The intensity ratio between the two most intense features
denoted by @ and g and corresponding to the lower and
upper frequency components, is in the
0.1< 1, /1, <03 formost isolated semiconducting SWNTs
(~90%) that have thus far been studied (41]. However, unusually

high or low /- /1, ratios have been observed for a few
spectra coming from SWNTs under special resonance
conditions, as discussed below.

range

In this review we only discuss isolated SWNTs resonant
with the incident light. In this case, the RBM, the G band and
the D and G’ bands are all present in the spectra and we can
perform a tentative (n, m) assignment based on analysis of the
RBM feature andon corroboration from the properties of the G-
band, D-band and G’-band spectra [4]. Since the E, values
depend sensitively on both nanotube diameter and chirality,
the (n, m) SWNTs that should exhibit special G-band spectra
can be predicted by resonance Raman theory.

We show in Figure 16 the RBM and the G-band spectra for
three different isolated semiconducting SWNTs coming from
three different light spots on the sample. These three tubes all
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cxhibit sinilar diameters (d, 1.60 nm), and the (n, m) indices for
cach nanotube were determined on the basis of therr RBM
spectra [ 16] to yield the diameter and chiral angle for each tube.
For all three nanotubes in Figure 16, the incident laser 1s resonant
with the EL clectronie transition. The spectia in Figure 16
show that the relative intensities between the w,; and the @ ;

modes are quite different from one spectium to another [41].
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Figure 16. RBM and the G-band Raman spectia tor three isolated
semiconductg single wall cabon nanotubes with sunlar diameters (d, -
160 nn) that are resonant with the laser (., © 2409 ¢V) at three
different spots on the sample The frequencies (widiths) of the intense
peaks are displayed i em™! The shoulder obseived 1o the nght side ol the
RBM specual feature comes trom the SYSI10, substrate  The tentative (n,
m) mdices and respective chiral angles @ tor cach nanotube are also

displayed |41)

To understand the special G-band spectra shown in Figure
16. it1s important 1o consider that. (1) the electronic transition

Table 1. Mude frequencies (cm "Wenergy (eV) lor the scattered photons
lot the diffetent G-band featutes observed lor the thice SWNT\ shown in
Figme 16 We here use k.., = 2409 ¢V 10 calculate Fro I"/'/r Also
dsplayed 1 the table we the observed RBM fiequency @ggay (em™), the
nanotube diametes d, (nm), nanotube chial angle 0. (degrees), the
caleulated @ gy, = 248/d (em '), and l:,',‘ (V) |1 = 14 values tor each
ol the SWNTs i Figure 16 Here we see that l;“‘\ =222 [ (20,0) 15

L) tor @, (2214 eV and ©g, (2216 ¢V), while E},

for (19, 2) 1 closer 10 (., - L) tor @} (2211 ¢V) (see bold faced
aumbers)

closer to (/
Inves

(0 m T.!-(T)l— (19.2) (18.4)
d 159 15y 1ol
b 00 49 98
2481, 156 2 155 6 1539
LWL 2.22/2 40 22172 40 216239
B T E— <
@, -, EL) 1595220 1391/2.211 1589/2 212
wg (k- k) 1576/12.214 15712 214 157172 214

0, (£, - £, 15572216

lev ph

energy E, 1s different for different SWNTs, depending on their
chirality due to the trigonal warping effect [7]; (ii) the phonop
cnergy E/ », 18 different for different @ ; frequency modes, such
as OG (1591-' = 198 meV) and @g (1571 cm™ = 195meV), ang
thus the energy E,, , Eph for the scattered photon will also be
different for different G-band modes. Therefore, for differen
SWNTs excited withthe same £, and having almost the same
d. different phonons may be enhanced differently by 5
resonance process occurring with the scattered photons. The
insct to Figure 17(a) and Table | illustrate this picture, as we
discuss below [41].
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Figure 17. (a) Plot of the clectronic transitions L, tor single wall caibon
nanotubes vs, nanotube diameters lor d, between 07 < d <3 nmasa
function of diameter, obtained trom tght binding calculations [6] with
Yo =290 ¢V Crosses give the 15,-) values for semiconducting SWNT.
and circles give "::;" values lor inetallic SWNTs The inset shows a zoom
of the region where the crosses correspond 10 the E:R and [;“_‘ clectronic
transitions for the three SWNTs shown in Figure 16 The vertical hines
mdicate the incident photon energy E, . = 2409 ¢V, and the scattered
photon energies for @G (E) — Eg = 2211 eV) and WG (Ejer — Epy =
2214 ¢V) scattering processes  (b) and (c) show schematic figures for the
two possible scattering processes for SWNTs with d, = 1.60 = 0.05 am
[vertical dashed hines 1n (2)]. where resonance (indicated by the bold
arrow) can occur with erther (b) the incident photon, or (c) the scattered
photon (E o - Epll ~241 =020 =22} eV) [4H.

Figure 17(a) shows the electronic transitions E, for SWNTs
as a function of diameter. The E,.. =2.41 eV laser excitation
energy 1s denoted by a horizontal line, as well as the energy
level for the Stokes scattered light E —E,~241-020=
2.21 ¢V. From their RBM features, we assi gn the tubes shownm
Figure 16, from the top to the bottom as (20, 0), (19, 2)and (18.4).
and the analysis summarized in Table 1. Although the three
SWNT: have similar diameters, they exhibit different chiral angles
(see Figure 16), and therefore, due to the trigonal warping effect,
they cxhibit different E, values [see Table 1 and the insct 0
Figure 17(a)]. The frequencies for the various G-band peaks
and the expected scattered photon energies are also displayCd

in Table 1. In the case of the (20,0) and (19,2) SWNTS, the S,
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alues are within ~ 10 meV of the energies of the scattered
hotons (E E,,~ 2.21eV), while for the (18,4) SWNT, the

laver
2% value is far from the scattered photon encrgies (~ 50 meV).
Jihough the tight binding calculation [6] is not accurate to
)V precision, we can say that in the case of the (20,0) SWNT,
t2 18 closer to the scattered photon cnergy involving wg
-E,= 2.409 -0.195=2.214 ¢V), while in the case of the

e Ep
19. ‘_’) S(VNT. E_,S, is closer to the scattered photon energy
wolving @g; (Ey,,,, ~E,;,=2.409-0.198=2.211 ¢V) [see inset to
wure 17(a)]. Note that the lowest frequency mode at 1557
m ! (£, symmetry), [35. 42] for the (20, 0) SWNT is also
nlmnchI by the scattered photon resonance that 1s close (o
11~ and the E, symmetry G-bandpeak can be clearly observed
wo G-band spectrum for the (20,0) SWNT in Figure 16]). The
twervations show a higher relative enhancement for wg for
e 120.0) SWNT, a higher relative enhancement of the w{;
-ature for the (19, 2) SWNT, and the usual lineshape for the (18,
) SWNT. consistent with predictions for the scattered photon
«onance based on the tentative (n, n1) assignments [41]. Since
w cnergy difference between modes in the G-band is only a
‘wmeV (24 em’! s equivalent to 3 meV). the observation ot
s 1esonance elfect indicates that the resonance window is
harp (less than 10 meV), in agrecment with the discussion in
14117.19).

In summary, the relative intensities of the G-band features
1 smgle wall carbon nanotubes are found to vary from one

abe 1o another, with l,,,‘, /l“,:; lymng in the range 0.1-0.3 for
nost ol the observed SWNTS (about 90% ). However, when the
csonance occurs with the scattered photons, the energy
allerence between the electronic transition E, and the scattered
hotonenergy £~ Eph will be difterent for different frequency
honons (@; and wg; ) associated with different (n, m) SWNTs.
Ihe van Hove singulanty of a specitic (n, m) SWNT happens
obevery close 0 E,, ~ Eph for one of the G-band modes. it
vl be this particular phonon mode that will be strongly
nhanced, giving rise to special and unusual G-band profiles

F7 Dispersive modes used to probe electronic structure :

b contrast to the non-dispersive modes discussed 1n the
levious sections, the dispersive modes are special because
e 1esonant processes couples electrons and phonons through
V double resonance mechanism. This mechanism allows one to
Mobe not only phonons with ¢ = 0 (i.c., at the zone center or J°
Pomt) but also phonaons within the Brillouin zone. In this section
¢ hirst describe this mechanism for graphite. After that we
discuss how the large dispersion of these modes provides a
Milive probe of quantum effects in the clectronic structure,
thus ¢stablishing resonance Raman spectroscopy in carbon
"otubes as an accurate tool for accessing and probing the
tectronie structure on ameV scale.

4.7.1 Double Resonance in graphite

Two-dimensional (2D) graphite is a zero band gap semiconductor
with a special electronic structure associated with its linear k-
dependent cnergy bands for the valence and conduction bands,
which cross at the zone edge (K-point). Optical processes in
the visible range occur around the zone edge and the linear &
electronic dispersion relations give rise to a very special
resonance Raman effect. This effect, called the double
resonance effect in sp? carbon materials, is responsible for
activating several phonon modes within the Brillouin zone. The
dispersive modes (D and G' modes) are the modes that have
been most intensively studied in sp? carbons since the 70’s [44).
The disorder-induced /2 mode (one phonon process) requires a
delect for one of the intermediate states, while the G’ (a two
phonon process) does not. The resonance process for the D
band is depicted in Figure 18 (a), and the G'"-band process,
involving two phonons at g and —g, 1s indicated in Figure 18(b).
The electrons have initial wave vectors k (measured from the K
point) in the graphite Brillouin zone, and also a scattered
clectronic state with wave vector K + g (@ is the phonon
wavevector), which satisfies the energy-momentum
conservation rclation

E(k+q)=E(k):thw,,,,. an

(a)
q
V k+q
K
k
D-band

Figure 18. Double resonance Stokes process at the K point in the 2D
graphite Brilloutn zone. (a) The scattering process for activating the
Stokes /) band and where the resonance is with the incident photon.The
dashed line indicates the clastic scattering by a defect (b) The scattering
process for the Stokes G’ band Other possible scattering events, not
shown n the figure, involve elastic scattering first and phonon scattering
second for the D-band, 1esonance with scattered photons, and anti-

Stokes processes [43]

Here £ corresponds to the Stokes and anti-Stokes processes.
Energy and momentum conservation requirements select two
possible equi-encrgies E(k + q) where the electrons have k + ¢
wave vectors. One of these cqui-energies E (k + g) exists around
the same K point as the initial state k and the second is located
around the inequivalent K’ point 1n the first Brillouin zone for
graphite. After the annihilation of the incident photon, Figure
18(a) ahows an electron in an actual state k is scattered to a
resonant state k + ¢ and then elastically scattered by an impurity
or defect back to a virtual state with the wave vector k. After
this, the electron-hole pair recombination occurs and the
scattered photon is created. The scattering by the phonon and
impurity/defect can occur in either order but the intermediate
state at (k + ¢) and one of the states at K (either the incident or
scattered photon at k) is also resonant. For the G’ band, which
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involves two phonons with g and -g wave vectors, clectrons 1n
the k + ¢ states are now melasucally scattered 10 a final state

with wavevector k.

Of particular 1importance, the cnergy and momentum
conservation requirements lead to a relation between the k for
electrons and the g lor phonons By scarching for a double
resonance that satisfies the condition m Eq (1) within the
Brilloutn zone of graphite, and by neglectng the tngonal warping
elleet tor simplicity, 1t 1s found that g values that strongly
contribute to the double-1esonance condition are preferentially
located near g ~- 2k This relation s spectal and causes different
merdent photon energies (£, ) to excite different k states,
which i turn change the g phonon wavevector magnitude, thus
allowing one 1o use phonons 1o probe the electronic dispersion
relations through the strong clectron-phonon coupling under
resonance Raman conditions This simple relation between the
clectronic wave vectors k and phonon wave vectors g has some
restrictions i the case of carbon nanotubes. because of the
cutting hines that restrict the number of avatlable states, and
this s discussed m the next section

472 Effect of cutting hines on 11 Raman scartering for

dispersive modes

The big advantage of working with dispersive modes 1s the
possibihity to probe the phonon dispersion relations of nano-
metrie samples, where inelastic neutron scattering 1s not suitable
for measurements on such kinds of samples. The power of the
model that has been  proposed for deseribing the double
resonance effect tor dispersive bands [ 10, 45]1s that it has been
successiully used for achieving a very detailed understanding
ol the scattering mechanism ol the D-band and the G'-band in
2D graphite samples.[46] But this model, as imtially proposed,
still has limitations, because the resonance Raman measurciments
lead to an average over the 2D Brillouin 7one states. since the
resonance occurs for all wavevectons that ate on an equi-energy
contour that matches the Taser energy Thus, for a 2D system,
the double resonance technique deseribed above does not reveal
detals of the phonon stucture as a function ol wavevector
drrection. being sensitive only to the waveveetor magnitude.
In this scenario. not all the formation provided by the
expernimental results 1s used, so that improvements in the models
cannot profit from all the iformaton that the measurements
actually provide. One way to overcome this barrier. 1s to probe
the low-dimensional system directly, whereby the confined states
allow onc to probe limited regions of phonon reciprocal space.

The pionecring use of this idea was made  possible by
carrying out measurements on isolated single wall carbon
nanotubes. These 1D matenals open up a unique opportunity
because they are resonantly probed in the experiments through
a process involving the confined clectronic states that are, in
fact, represented by individual points in the Brilloun zone of 2D
graphite. More than that. these individual points are umique for
cach different nanotube and the points exhibit an angular
dependence on chiral angle 6 due 1o tngonai warping effect as

discussed in §4.3. By this approach it is now possible to establig,
a resonance Raman process that is scnsitive to both magnitud,
(laser encrgy magnitude) and direction (different chiralities) of
the phonon wavevector, The measurements of several individyy
points in the 2D Brilloumn zone, i.e., measured with many differen
nanotubes 1n the laboratory, provide access to very delaileg
information about the phonon structure within the Brillouin zone,
thereby allowing us to lecarn how to improve the mode|
calculations, and to learn not only about the new scattering
phenomena, but also about the materials themselves.

In the case of graphite, the electronic valence and conduction
bands cross at the hexagonal corner (K point) of the first Brilloui
sone ol a sigle graphitic layer [see Figure 8(b)]. and thus the
clectronic equi-cnergy contours represent circles around the £
point in reciprocal space (sec Figure 19). However, the shape,
of the contours deviate {rom circles further away from the &,
point, i.c., with increasing laser excitation energy, and these
contours become triangularly distorted. This phenomenon i
well known in carbon nanotube science as a trigonal warping
¢ffect [7] Due to this tngonal warping cffect, the van Howe
singularttics (VHSs) in the DOS of carbon nanotubes of the
same diameter but different chiralities diverge from each othe
as the clectronic wave vector moves away from the K point [see
Figure (b)], thus making 1t possible to identify the nanotuh
structural indices (n, m) by resonance Raman spectroscopy (see
§43)]16].

(@ KI72 (b) Krr2
M M M M
-~
e ~
Kr/2 K172 Kr/2 Kr/2
M M

Figure 19, (a) The clectonic equi-energy contours and (b) the phonon
equi-tiequency contours lor 21D graphite in the vicimty of the hexagon

corner K of the Brillownn zone [43]

Like the clectronic equi-energy contours, the phonon equ-
frequency contours also exhibit distortions from a simple circula
shape. As was shown recently, the double resonance nature ol
the dispersive Raman bands, which is selective of (he
wavevector magnitude, can be successfully combined with the
wavevector direction selectivity, which arises from the low
dimensionality of the carbon nanotubes, thus allowing us 10
probe dircctly the phonon equi-frequency contours of graphitt
and (o measure the phonon trigonal warping effect [43). The
clectronic equi-energy contours and the phonon equi-frequency
contours arc shown in Figures 19(a) and (b), correspondingly
The anisotropy obscrved in the phonon equi-frequency
contours appears explicitly in the Raman spectra of carbon
nanotubes in the form of a two-peak structure of the dispersi't .
Raman features, as described below.
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473 Two-Peak Raman Structures for Semiconducting and
Metallic SWNTs

An anomalous two-peak structure of the G'-band Raman feature
has been observed for both semiconducting [47] and metallic-
|48] SWNTs. The phonon anisotropy. or the phonon trigonal
waiping effect, is responsible for the appearance of two peaks
u the double resonance Raman features of metallic SWNT,
winle a ditferent mechanism gives rise to a similar effect for
wmiconducting SWNTs.[47] Scmiconducting and metallic
SWNTs may both have two VHSs within the resonant window
ol the incident and scattered light, as shown in Figures 20(a)
and (hy for semiconducting (17,6) and metallic (27,0) nanotubes,
conespondingly. Each of the two resonant VHSs give rise 1o a
Ailterent peak in the double resonance Raman features. as shown
i Frgures 20 (¢) and (d). In the case of semiconducting SWNTSs,

= |El=2 150V
|E2 460V
|

Aa nan wt2nsit, 13U )

2600 2650 2700 2750
Raman Shift (cm™')

nRaman Intensity

650 2675 2700 2725
Raman Shift (cm™')

Figure 200 Cuting hnes for (a) senuconducting (17. 6) and (b)ymetalhic
o SWNTS Two equi-energy contours n (a) and (b) are shown for
wwonanee with the incwdent £ = 241 ¢V and with the 2.08.V photony
cattvred by G-band phonons The superscupts indices 1 and ¢ i (b) stand
tor lower and upper energy components ol the van Hove singularity
I The meaming of * 15K 6 " and * 3KM’ 18 that the dicated points
withe figure are 015 and 0 30 of the distance from K 10 6 and from K
w3 gespecuively  The cortespondig (wo-peak structures predicted for
the double 1esonance Raman teatures i the spectra for the G'-bands are
hown m (c) and (d). for the semiconducting (17.6)and the metallic (27.0)

anotubes and values for the energies of the pertinent van Hove singularities
aenven [43)

TNy speaking, ths 1s not exactly the case Duce to the electronic
"ngonal warping effect, both resonant wavevector magnttudes and resonant
Yaeveaor directions differ from the simple model presented above,
i‘,,‘! Ik,|=|l(.|/3 for semiconducting nanotubes and ll,"l=|k,’l for
tetatlic nanotubes, and thus both the ctfects of the phonon dispersion

Fihe phonon anisotropy give rise to the two-peak structure of the
“persive Raman features, In the vicinty of the K pont. i ¢., for smaller
BCLencition energics, the trigonal warping effect 15 weak, and therefore
" ™o peak structure or the ¢-band sphtung for metallic nanotubes 1s
“temed mostly by the phonon anisotropy and for the semiconducting
motubes mostly by the phonon dispersion. Further away from the K
"WLore . at higher laser excitation energies, the two-peak structure
.lll'(““’" lor both metallic and senuconducting nanotubes 1s no longer
“Cied by pure phonon anisotropy or phonon dispersion effects, but
et by hoth anisotropy and dispersion.

the K point is located at a distancc between two adjacent cutting
lines, which is in the ratio of 1:2 (see Figure 20(a)), and thus the
wavevectors for the two resonant VHSs (&, and &, in Figure 20
(a)) have a difference in their magnitudes which is equal to 1/3
of the distance between the two adjacent cutting lines[6]. This
difference in the magnitudes of the electronic wavevector (k)
results in a two times larger difference in the resonance phonon
wavevector (¢g) magnitudes, due to the double resonance
condition g = -2k on the wavevectors [49]. The difference in the
phonon wavevector magnitudes results in a difference in the
phonon frequencies, and thercfore in the Raman shifts, as shown
in Figure 20(c). This difference arises from the dispersion of the
phonon branches (the G-band phonon branch).

The casc of the two-peak feature for metalhc SWNTs differs
in the sense that one of the cutting lines crosses the K point, as
shown in Figure 20 (b), so that the two wavevectors
corresponding to the two resonant VHSs that are located at the
two different sides at the same distance from the K point. These
two wavevectors therefore have the same magnitude but
opposite directions.*

Thus. the phonon wavevectors also have the same
magnitudes and opposite directions, and for metallic SWNTs
the dilference between the two resonant VHSs arises, not from
the difference 1n the magnitudes of the resonant electronic
wavevectors. but rather from the difference in the directions of
the resonant electronic wavevectors, t.e. from the electronic
trigonal warping efiect, which predicts different clectronic
cnergies for the phonon wavevectors of the same magnitude
and opposite directions. Similarly, the double-peak structure of
the dispersive Raman featurcs in metallic nanotubes (see Figure
20 (d)) arises not from the phonon dispersion, but rather from
the phonon trigonal warping cffect. Thus, theory tells us that
simular cxperimental observations of a splitting of the double
resonance Raman features have different origins in the cases of
semiconducling and metallic carbon nanotubes. For
semiconducting nanotubes, the double-peak structure arises
from the phonon dispersion, while for metallic nanotubes. the
double-peak structure arises from the anisotropy in the phonon
dispersion relations, or the phonon trigonal warping effect.

After presenting the theory on the cffect of cutting lines for
the dispersive mode profiles. we now present some experimental
results for isolated semiconducting and metallic nanotubes. We
focus our analysis on the G’ band (rather than the D-band),
because the G’ band exhibits a larger dispersion and the effects
associated with this dispersion are more easily accessible,
because the features can be experimentally resolved. By carrying
out experiments on several isolated tubes, some of the G’ band
features for both metallic and semiconducting tubes are found
to exhibit a two-peak profilc (see Figure 21), whereas other tubes
have just a single peak. In the case of semiconducting tubes,
the two-peak structure is associated with the different quantized
wavevectors k, and k_, involving the incident and scattered
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photons of the double resonance process, respectively, as shown
in the experimental spectra (or the scmicnnducung(lS.7)lur?c
in Figure 21 (a). When only one quantized wavevector ks
imvolved. as in the case of the (17.7) tube, where only the &,
waveveetor is mvolved,only one peak 1s observed. as depreted

i Figure 21 (b) (47]
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Figure 21. G-band peak prohles tor semconducting tubes i () and (b)
147]. and  tor metalhic tubes i) and () [48] Two-peak profiles are
observed in () and (¢) and one peak profiles m (b) and () The hiequencies
(lnewidths) are hsted i units of cm'!

In the case of metalhic tubes, the two-peak structure arises
from the same quantized subband «, and involves two van Hove
singularities that are sphit by the tngonal warping cffect, as
discussed above. This effect s indeed chirality dependent and
goes [rom asingle peak for @ = 30° (armchaur tube) to a maximum
sphituing for @ =0" (21gzag tube) |see Figure 3(a)]. Itis striking
that these peaks 1n the electronic structure connect with phonons
via the double resonance mechanism, thus giving rise to difterent
profiles for the experimental ¢ -band spectra |48 ], and this effect
for metallic tubes s tllustrated, for example, with the (27,3) and
(15, 15) tubes [see Figure 21(c) and (d)], for which two-peak and
onc-peak profiles are obscrved, respectively, thus supporting
the theoretical framework discussed above for cutting hine
effects on the profile of the dispersive G'-band feature. On the
basts of these phenomena, the profile of the G-band mode 1s
then used to probe singulan points in the 2D Brillounn zone of
graphite, and this phenotaena s discussed in §4.8

4.8 Trigonal warping of the phonon constant energy surfaces:

Resonance Raman scattering in a graphene layer involves all
the clectronic states with wavevectors along the equi-cnerg

contour corresponding (o a given laser eacitation energy. The
threc equi-cnergy contours corresponding (o the three E

lurer

values 1.58¢V, 2.41¢V, and 2.54 ¢V commonly used in Raman
spectroscopy studies are plotted in Figure 22, where k-space in
the vicinity of the K point in the 2D BZ of graphite is shown,
Compared to the case of graphite, the number of electronic states

in SWNTs 1s limited by quantum confinement to a subsei ¢
allowed states, which can be picked out by the zone-foldiny
method [6]. For each SWNT, the allowed states are located along
cutting lines. The distance betwcen adjacent cutting line,
|K\|=2/d, 1s mversely proportional to the SWNT diameicr ¢,
while the orientation of the cutting lines is given by the SWNT
chiral angle @ betwcen them and the line connccting the |
points i the 2D BZ [6]. Four cutting lines are shown in Figur,
22 by gray lines on either side of the K point,two for zigzag (¢
= ()) and two for armchair (@ = #/6) SWNTs, The van Howe
singularitics (VHSs) in the density of states (DOS) of SWNT,
appear at points & in the 2D BZ where, the cutting lincs e
tangential to the equi-energy contours. When the SWNT
chirality changes from @ =0 10 /6. the two k, vectors at the
VHSs on cither side of the K point move along the equi-cneryy
contour, taking all possible directions away [rom the K pom,
such as kI and KM for zgzag SWNTS, and two equivalen
directions between K[ and KM for armchair SWN'TS (see
Figure 22). Accordingly, the resonant phonon wavevectorn g
also take all possible directions away from the K point, because
ol the coupling between the  resonant electronic and phonon
waveveetors ¢, = =2k, in the double resonance process 49|

15Kl

Figure 22. The electronic wavevectors k, of the VHSs 1n SWNT ol
7igzag (a) and armcharr (b) stiuctural symmetries. The cutung lines lo
the armchan tubes are vertical sohd gray hines labeled *b’ and for z1g7
tubes the cutting lines (dotted gray lines labeled *a’)  make an angle of W
with the vertical Three equi-energy contours are shown for the three

laser cnergies 158 ¢V, 2.41 eV, and 2.54 ¢V [43].

Thus, by combining the double resonance process with (he
low dimensionality of carbon nanotubes, a procedure is obtaincd
that is selective not only of the wavevector magnitude in the 2D
reciprocal space of graphite, as is known for the case of graphil¢
and SWNT bundlcs [ 10], but also is selective of the wavevector
direction in the 2D reciprocal space [43]. While the wavevecl”
magnitude is selected by the laser excitation energy as for the
case of graphite and SWNT bundles [10], the wavevecl'
direction 1s sclected by the SWNT chiral symmetry, changint
from the KM and g dircctions for zigzag SWNTs t0 4
intermediate direction between KM and KT for armchair SWNT
143].
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Anisotropy in the phonon dispersion rclations, or the phonon
nigonal warping effect, has been probed for the D/G’ phonon
modes by resonance Raman spectroscopy on isolated SWNT,
jollowing the procedure briefly described above [43] Among
many isolated SWNTS from which Raman spectra were recorded,
|1 SWNTs have been selected which show strong G'-band
Raman features, and  best satisfy the preresonant condition of
the type shown in Figure (b) to ensure the probing of an
mdividual point in the BZ and to allow an (n, m) assignment (o
pe made for a further determination of the resonant electronic
and phonon wavevectors k: and q,= - 2k/. The G'-band features
measured from these 11 SWNTs have been fitted with Lorentzian
peaks. and the frequencics have becn upshified by 35.4 cm nm/
d 1w account for the softening of the force constants due to the
curvature of the SWNT surface [50]. The phonon frequencics
are then divided by 2 since there are two phonons involved in
the G'-band process. The resulting phonon frequenciesas a
function of the phonon wavevector g, in the 21 BZ along with
previously reported measurements on HOPG, graphite whiskers,
and SWNT bundles for the other phonon modes have been
used to it the caleulated phonon dispersion relations using a
nonbimear least squares minimization of the functional made of
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the differences between the observed and calculated phonon
frequencies [51]

The rcsullmé phonon dispersion shows significant
anisotropy around the K point in the 2D BZ, as shown in Figure
23. Solid lines in Figure 23 show the phonon dispersion relations
as a function of phonon wavevector (a) magnitude and (b)
direction, while the dashed lines show the corresponding
elcctronic dispersion dependences on electronic wavevector
(a) magnitude and (b) direction. The lower and left scales in
Figurc 23 (a) and (b) correspond to the phonon wavevector and
frequency, and the upper and right scales to the electronic
wavevector and cnergy. Two diffcrent curves in Figure 23 (a)
correspond to the opposite directions KM and KT for the
wavevector in the 2D BZ. The wavevector magnitude
Gy = 2k, =0.24 KI" in Figure 23 (b) corresponds to the laser
excitation cnergy of 2.41 eV, shown by the central vertical line in
Figure 23 (a). Symbols in Figure 23 (b) correspond to the
experimentally measured phonon {requencies for 11 SWNTs,
and different symbols correspond to different interband
transitions, as shown in Figure 23(b). From Figures 23 (a) and
(h).onc can clearly see the anisotropics of the clectronic and
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Figure 23, The sohd/dashed hines show the fitted phonon frequency for the D-band phonon mode/
clecuomie energy (lefi/ight scales)as a funchon of (a) the magniude of the phonon/electron wavevector
measured from the K pomnt in the 2D BZ (lower/upper scales) and (b) the direction of the phonon/
clectron wavevector measured trom the K pont in the 2D BZ (lower/upper scales). Vertical lines i (a)
cortespond to the phonon wavevectors (lower scale) excited in the double resonance processes with
the laser energies of | 58 ¢V, 241 eV, and 2 54 ¢V that are commonly used in Raman spectroscopy
studies of carbon nanotubes The symbols 1 (b) are the phonon trequencies from experimental
Raman scattering data (lower und left scales) [43]

" Stnctly speakng. the picture presented here 1s mcomplete.  Due to
the electromic tngonal warping effect, both the resonant wavevector
magnitudes and the resonant wavevector directions differ from the simple

model presented above, |k,+||—|L,| =|L,|/3 for semiconducting nanotubes

! )
and 4" =1kl for metallic nanotubes. and thus both the eftects of the

Phenon dispetsion and of the phonon anisotropy give rise to the two-
Peak stiucture of the dispersive Raman features. In the vicimty of the k
fomep e for smaller laser-excitation cnergics. the tngonal warping
dledt v weak, and therefore the two-peak structure splitting for metallic
notubes 15 governed mostly by the phonon amsotropy, and for the
:L‘I‘.nmmluctlng nanotubes mostly by the phonon dispersion. Further away
1onthe K point, ie.. at higher laser excitation energies, the two-peak
Mucture sphting for both metallic and semiconducting nanotubes 1s no
lonzer governed by pure phonon amisotropy or phonon dispersion effects,
Wt ather by both anisotropy and dispersion

phonon equi-energy and equi-frequency contours around the
K pomt. For a quantitative comparison between the phonon
and clectronic anisotropies, onc can see from Figure 23 (b) that
the differcnce between the phonon frequencies for the opposite
directions of the phonon wavevector KM and KT is equal
t024 cm™'. The phonon frequency changes by 89 cm™! from ¢ =
0 (the K point) to ¢ = ;= 0.24 KT, and thus the magnitude of
the phonon trigonal warping effect is given by 24 cm™'/89 cm™!
=27%. Similarly, the magnitude of the electronic trigonal warping
effect from Figure 23(b) is given by 0.36 ¢V/2.49 eV=14%. The
magnitude of the electronic trigonal warping effect in this figure
is some what smaller than the magnitude of the phonon trigonal
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warping cffect, in part® because of the factor of 2 in the double

resonance condibon ¢, = =24,

4.9 Dowuble resonance-mduced combination and overtone

modes :

In this sectton we show how resonance Raman spectroscopy in
carbon nanotubes allow one to precisely assign the combination
and overtone modes due o the mghly selecuive scattering
imposed by the electronie stacture and double resonance This
18 & umigque sitvation compared to bulk 31 systems,where such
second-order modes cannot always be cleatly assigned

Second-order combianon and overtone modes m highly
ordered pyrolyuce graphite (HOPG), in sigle wall catbon
nanotube (SWNT) bundles, and m isolated SWNTS have been
observed  Dispersive and non-dispersive Raman bands in the
range 1650~ -2100 cmi”! have been observed. and the licquency
v laserenergy £, behavior of these features are in agreement
with predictions from double 1esonance Raman theory. In the
case of SWN'IS, these second-order bands depend on the one-
dimensional structure of SWNTY, and, at the single nanotube
level, the spectra vary fiom tube (0 tube. depending on tube
tameter and chuality, and on the cnergy of the van Hove
singulanty ielauve o £, (1]

Raman spectroscopy has alieady proven to be a power{ul
technique to study carbon matenials |52, ncludmg single wall
carbon nanotubes (SWNTS) thiough the diameler selective
resonance Raman effect [18, 28] 1t has been known tor some
time {52] that graphite-related materials exhibit a tich Raman
spectra, with several fiest- and secend -order features, disorder-
induced bands, some of them bemg dependent on laser
excitaionenergy £, - However, many of these [eatures remained
unexpluned for along ume. Itis only 1ecently that the appcarance
ol these features and their dependence on E,,.., were explamed
as due 1o a double resonance process that enhances the
scattering of light by certam modes in the internor of the Brillouin
sone (g #0) of graphite-related materials [ 10, 11, S1.53]. Weak
Raman features observed in the frequency range 16502100
em 'in graphite-related materals (r.c., HOPG. SWNT bundlcs
and 1solated SWNTS) have been identilied with the overtones
and combmation modes of the several phonon branches n
graphite, as predicted by double resonance theory |10, 53).

In particular, a mulu-featured band at about1750 cm ' has
been observed in HOPG [54). i irradiated graphite [55), and in

SWNT bundles [56]. and has been assigned 1o an overtone of

the infrared-active out-ol-plane (0TO) mode at 867 em! 1n
graphite Another very highly dispersive mode at higher
frequencies (around 1950 cm') that has previously been reported
for SWNT bundles [57]. and s feature has been tentatively
identified as a combination of the in-planc transverse oplic (ITO)
and longitudinal acoustic (LA) modes, namely (iTO+LA). Thus,
the results for both the features around 1750 e and the feature
around 1950 ¢cm™' have been identificd as combination modes

[10,53]. In the casc of isolated SWNTS, the multi-featured bang
at 1750 cm™! shows a richer behavior than in HOPG (and is more
complicated than the [)-band and the G'-band in isolated SWNT,
|47. 58]), varying from Lube to tube, thus suggesting a strong
dependence on the one-dimensional structure of SWNT;
[

5. Conclusion

In summary, this review article has focused on novel resonance
Raman effects related to one-dimensional structures, which have
been illustrated through the model 1D carbon nanotube systen).
Due (o the strong electron-phonon coupling and the quantum
confinement of ¢lectrons and phonons in 1D systems, interestng
clfects are obscrved,such as asymmetries in the Stokes/antj-
Stokes spectra, linc-shape dependent effects associated with
how well the system satislies the resonance condition, and many
other unusual results. Analysis of these effects give detailed
mformation about the conlined phonon and electron states,
showng that resonance micro-Raman spectroscopy of phonon
modes can determine electronic and even structural propertics
n1D-systems. Carbon nanotubes were used as a model 1D
system because they are the best prototype for 1D materials
presently avanlable. but the theoretical and experimental findings
can be considered more broadly in tuture work for studying
resonance Raman spectroscopy in [Dsystems in general. Fmally,
1t1s also shown that the resonance Raman effect provides u
useful techmque for obtaiing phonon dispersion relations for
nanoscale samples, and that measurements on low-dimensional
systems can be used (o obtain important information about
related higher dimensional systems that would otherwise be
difficult 1o obtan.
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