

X-ray structural analysis of $\mathbf{1 H}$, $\mathbf{4 H}$-terahydroquinolizino-(9, 9a,1gh) coumarin

Rajnikant ${ }^{1 *}$, Dinesh ${ }^{1}$, Mousm ${ }^{1}$, Babu Varghese ${ }^{2}$ and Bandhan Sharma ${ }^{1}$
${ }^{1}$ Condensed Matter Physics Group. University of Jammu. Jammu Tawi-180 006, India
${ }^{2}$ Regional Sophislicated Instrumentation Centre.
Indian Institute of Tothnology-600 008, Chennai, India
E-maıl: rkabiverma@iediffmall com

Received 26 March 2004, acrepted 19 October 2004

Abstract

The crystal structure of $1 \mathrm{H}, 4 \mathrm{H}$-terahydroquinolizmo-(9 . 9 a , Igh) coumarin ($\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$) has been determined by X -ray crystallographic lechnıques. The compound crystallizes in monoclinic space group $P 2,1 n$ with $a=8115(3), b=19067(10), c=8.383(6) \AA, \beta=11545(15)=Z=4$ The structure has been solved by direct methods and refined to reliability index of 5.9%. The fused benzenc and pyrone rings are planar. The piperidine ing (' of the molecule adopts a distorted sofa conformation whereas the piperidine ring i) exists in distorted chair conformation The crystal structure is stabilized by intermolecular C-H.O hydrogen bonds.

Keywords : Coumarin derivative, structure analysis, hydrogen bonds

PACS Nos. . 61.10.Nz, 61.50.Ah

Coumarins exhibit a wide spectrum of biological activity including antithrombotic and vasodilating effects on coronary vessels, a tonic influence on capillary blood vessels, reduction in blood pressure, antispastic and photosensitizing effects [1]. They are found as heterosides in many dicotyledonous families, e.g. Apiaceae, Asteraceae, Fabiaceac, Moraceae, Rosaceae. Rubiaceae and Solanaceae [2].

Coumarins derivatives are efficient laser dyes in the bluc and green region of the spectrum [3]. The mobility of the amino group reduces the fluorescence efficiency of these dyes in polar solvents [3-5] but with a structurally rigid amino group, these derivatives show a high quantum yield of fluorescence in polar solvents $[5,6]$. X-ray studies of the title compound $1 \mathrm{H}, 4 \mathrm{H}$ -tetrahydroquinizilino-(9, 9a, 1gh) coumarin (I), have been carried out to determine its three-dimensional structure and also to understand the role of hydrogen bonding in the molecular packing. The chemical structure of this compound is shown in Figure 1.

The title compoud was procured from Aldrich Chemical Company (U.S.A.) and its crystallization was tried with a variety of organic solvent systems. Good quality single crystals of (I) were grown using toluene as solvent. A white rectangular shaped

[^0]single crystal of (I) with dimensions $0.3 \times 0.2 \times 0.2 \mathrm{~mm}$ was mounted on an Enraf-Nonius CAD-4 diffractometer for automatic intensity data collection using $\operatorname{MoK} \alpha$ radiation ($\lambda=0.71069$

Figure 1. Chemical structure of $\mathbf{1 H} .4 \mathrm{H}$-tetrahydroquinizilino-(9. 9a, lgh) coumarin.
\AA). The compound crystallizes in monoclinic space group P2, n with unit cell parameters $a=8.115(3), b=19.067(10), c=$ $8.383(6) \AA$ and $\beta=115.45(15)^{\circ} . \omega / 2 \theta$ scan mode was employed for data collection with 0 -range of $2.14-24.96^{\circ}$. A total of 2285 reflections were measured and out of which 2058 were found unique. Two standard reflections (321) and (103) measured after every 100 reflections and showed no significant variation in intensity. Reflection data were corrected for Lorentz and polarization effects and no absorption correction was applied.

The structure was determined by direct methods using SHELXS86 software [7]. Full matrix least-squares refinement of
the non-hydrogen atoms including their thermal parameters was carried out using SHELXL 93 software [8]. Final refinement with anisotropic thermal parameters of non-hydrogen atoms and fixing the hydrogen atoms stereochemically resulted into $R=0.0598, w R 2=0.1337$. Atomic scattering factors were taken from International Tables for Crystallography (Tables 4.2.6.8 and 6.1.1.4, Vol. C, 1992). The crystallographic data for compound (I) are summarized in Table 1.

Thble 1. Crystal data and structure refinement details.

Crystal description	Rectangular plates
Empurical formula	$\mathrm{C}_{14} \mathrm{H}_{1}, \mathrm{NO}_{2}$
Formula weight	241.28
Temperature	293(2) K
Radiation	MoK α
Wavelength	$071069 \AA$
Unit cell dimensions	$\begin{aligned} & a=8.115(3), b=19.067(10) \\ & c=8.383(6) \AA, \beta=11545(15)^{\prime \prime} \end{aligned}$
Volume	$11712(11) A^{\prime}$
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
Z, Calculated density	4, $1.368 \mathrm{Mg} / \mathrm{m}^{2}$
$F(000)$	512
No. of reflections collected	2285
Reflections unique	2058
Reflections observed [1>2o(1)]	1090
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\mathbf{2}}$
Data / restraints / parameters	2058 / $0 / 163$
Goodness-of-fit on F^{-2}	0.950
Final R indices [$\left.F_{0}>4 \sigma F_{0}\right]$	$R 1=0.0598, w R 2=01337$
R indices (all data)	$\mathrm{RI}=0.1149, w R 2=0.1548$
Largest diff. peak and holc	$0.26<4 \rho<-0.31 \mathrm{cA}^{-7}$

The final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms are given in Table 2. The bond distances and bond angles are presented in Table 3. An ORTEP view of the molecule with the atomic numbering scheme is shown in Figure 2[9]. The geometrical calculations were performed by using the PARST program [10].

The bond distances and bond angles in the coumarin moeity are normal and are in good agreement with analogous structures [11-15]. The fused benzene ring A and pyrone ring B are almost planar and dihedral angle between the two rings is $0.6(1)^{\circ}$, thus making the coumarin moiety close to planar. The piperidine ring C of the molecule adopts distorted sofa conformation with asymmetry parameters [16] $\Delta C s(C 7)=8.89$ and piperdine ring D of the molecule exists in distorted chair conformation with

Table 2. Atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) for all the non-hydrogen atoms (e.s.d.'s in parentheses)

Atom			Z	U.
O1	$0.1633(2)$	$0.4015(1)$	$03051(2)$	$0.048(1)$
C2	$0.1321(4)$	$0.3366(2)$	$0.2251(4)$	$0.054(1)$
C3	$-0.0376(4)$	$0.3269(2)$	$0.0719(4)$	$0.055(1)$
C4	$-01581(4)$	$0.3794(1)$	$0.0090(3)$	$0050(1)$
C5	$-0.2453(3)$	$0.5038(1)$	$0.0378(3)$	$0043(1)$
C6	$-02069(3)$	$0.5666(1)$	$0.1254(3)$	$0.0 .42(1)$
C7	$-0.0360(3)$	$05746(1)$	$0.2789(3)$	$0038(1)$
C8	$0.0869(3)$	$0.5176(1)$	$0.3368(3)$	$00.39(1)$
C9	$00394(3)$	$0.4560(1)$	$0.2428(3)$	$0040(1)$
C10	$-0.1261(3)$	$04462(1)$	$0.0926(3)$	$0042(1)$
O11	$02528(3)$	$02934(1)$	$0.2907(3)$	$0077(1)$
C12	$-0.3369(3)$	$06276(1)$	$0.0693(3)$	$00.04(11)$
C13	$-0.3205(4)$	$0.6680(2)$	$02327(4)$	$0.058(1)$
C14	$-01265(4)$	$0.6934(2)$	$0.3298(4)$	$0062(1)$
N15	$0.0055(3)$	$0.6365(1)$	$0.3697(3)$	$0049(1)$
C16	$01860(4)$	$06518(2)$	$05071(4)$	$0063(1)$
C17	$0.3289(4)$	$06021(2)$	$0.5125(4)$	$0004(1)$
C18	$02667(3)$	$05268(1)$	$0.4975(3)$	$0052(1)$

$$
U_{a_{11}}^{*}=(1 / 3) \Sigma_{1} \Sigma_{1}, U_{1,} a_{1}^{*} a_{1}^{*}\left(a_{1} \cdot a_{1}\right)
$$

Figure 2. ORTEP view of the molecule, with displacement ellipsods drawn at the 50% probability level.
asymmetry parameters $\Delta C_{2}(\mathrm{C} 7-\mathrm{C} 15)=13.2$ and $\Delta C s(\mathrm{C} 7)=$ 12.2.

The molecules of (I) are linked by two intermolecular C-H...O hydrogen bonds as given in Table 4. The symmetry related O11 at $(x-1 / 2,-y+1 / 2,+z-1 / 2)$ and $(-x,-y+1),-z)$ are hydrogen bonded to C3 and C12 at (x, y, z). Based on the compiled data for a large number of $\mathbf{C}-\mathrm{H} . . . \mathrm{O}$ contacts, Steiner and Desiraju [17] find significant statistical directionality and the C-H...O interactions in (I) may be termed as 'weak' hydrogen bond, with a greater contribution to packing forces than simple van der Waals interactions. A view of the molecules down c-axis in the

Table 3. Bond distances (\AA) and bond angles (') for all non-hydrogen atoms (e.s.d.'s are given in parentheses).

$\mathrm{O} 1-\mathrm{C} 2$	$1378(4)$	$\mathrm{N} 15-\mathrm{C} 14$	$1459(4)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.383(3)$	$\mathrm{N} 15-\mathrm{C} 16$	$1.452(3)$
$\mathrm{C} 2-\mathrm{O} 11$	$1.215(4)$	$\mathrm{N} 15-\mathrm{C} 7$	$1.366(4)$
$\mathrm{C}-\mathrm{C} 9$	$1.374(3)$	$\mathrm{C} 14-\mathrm{C} 13$	$1508(4)$
$\mathrm{C}-\mathrm{C} 7$	$1.438(3)$	$\mathrm{C} 17-\mathrm{C} 16$	$1.483(5)$
$\mathrm{C} 8-\mathrm{Cl}$	$1.512(3)$	$\mathrm{C} 18-\mathrm{C} 17$	$1509(4)$
$\mathrm{C} 13-\mathrm{C} 12$	$1.527(4)$	$\mathrm{C} 12-\mathrm{C}$	$1503(3)$
$\mathrm{C} 16-\mathrm{N} 15-\mathrm{C} 7$	$122.6(2)$	$\mathrm{C} 18-\mathrm{C} 8-\mathrm{C} 7$	$119.0(2)$
$\mathrm{C} 14-\mathrm{N} 15-\mathrm{C} 7$	$122.3(2)$	$\mathrm{C} 8-\mathrm{C} 18-\mathrm{C} 17$	$110.2(2)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 9$	$122.6(2)$	$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 16$	$1121(2)$
$\mathrm{N} 15-\mathrm{C} 14-\mathrm{C} 13$	$112.2(2)$	$\mathrm{N} 15-\mathrm{C} 16-\mathrm{C} 17$	$1139(2)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$1083(2)$	$\mathrm{N} 15-\mathrm{C} 7-\mathrm{C} 8$	$120.3(1)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 6$	$109.3(2)$	$\mathrm{N} 15-\mathrm{C} 7-\mathrm{C} 6$	$1201(2)$
$\mathrm{C} 12-\mathrm{C} 6-\mathrm{C} 7$	$118.4(2)$		

Table 4. Geometry of intermolecular interaction (e s d's are given in parentheses)

I-H. A	D $\mathrm{A}(\mathbb{A})$	H A (A $^{\prime}$	D-H A (*)
(3-H3. O11 ${ }^{(1)}$	3.29 (4)	235 (4)	1531 (1)
C12-H12B. O11 ${ }^{\text {(i) }}$	3.69 (4)	276 (4)	1615 (4)

Symmetry code (1) $x-1 / 2,-y+1 / 2, z-1 / 2 ;(11)-\lambda .-v+1,-z$.
unit cell shows their placement in reversed orientation (Figure 3).

Figure 3. Packing diagram, viewed down the r-axis.

Acknowledgment

We are thankful to the Council of Scientific and Industrial Research, New Delhi, Govt. of India for funding under a sponsored research scheme.

References

[1] I Wolska, T Borowiak and M Gawrun Arta Crvst C46 2146 (1990)

12] Weinmann Hisorv of the Development \& Applications of Coumarin and Coumarin-related Compounds (Chichester : John Wiley) p1 (1997)
[3] K H Drexhage in Dye Lasers. Topic in Applied Physic: Vol. 1 (ed) F P Schafeı ch 4 (New York. Springer-Verlag) (197.3)
141 S A Tuccio, K H Drexhage and G A Reynolds Opt. Communt. 7 248 (1973)
[5] G A Reynolds and K H Drexhage Opt. Commun. 13222 (1975)
[6] J B Marling. J G Hawley. E M Liston and W B Grant Appl. Opt 13 2317 (1974)
[7] G M Sheldrick, SHELXS86. Program for Cirystal Structure Determination (Ilniversity of Gottingen. Federal Republic of Germany) (1986)
[81 (; M Sheldrick. SHELXL93 Program for Refinoment of (rystal Structures (University of Gottingen. Germany) (1993)
[9] L J Farrugia I Appl Crust 30565 (1997)
[10] M Nardellı J. Appl Crwit 28659 (1995)
[11] K Rajalakshmi, N Jain, S Deepthi, H G Krishnamurthy and V Pattabhi Acta (rys! C55 813 (1999)
[12] K A Solomon, S S Rajan, G Gopalakrıshna, V Kashinath and V P Santhana Acta Cryst. C59 (2002)
[13] A Usman. A Razak. H K Fun, S Chantrapromma, B-Gi Zhao and J-H Xu Acta Cryst E58 57 (2002)
[14] R Krishna, PG Arvindan, M Yogavel, Velmurugan, S S S Raj. H K Fun. M S Sundaram and R Raghunathan, Acta Cryst., E59 1395 (2003)
[15] Rajnikant. Dinesh, Kamnı and Bandhan Sharma Indicin J Pure Appl. Phys. 42524 (2004)
[16] W L Duax and D A Norton Atlas of Steroidal Structure 1 (New York: Planum) (1975)
[17] G J Desiraju and T Steiner The Wrak Hydrogen Bond (IUC:r, New York) (1999)

[^0]: * Corresponding Author

