Comparative study of mixed product and quaternion product

Md. Shah Alam
Department of Physics. Shahjalal University of Sctence and Technology,
Sylhet, Bangladesh

Abstract Mixed number is the sum of a scalar and a vector The quatemon can also be written as the sum of a scalar and a vector but the product of mixed numbers and the product of quaternions are different. Here, we studied the mixed product which is derived from the product of mixed numbers and the quaternion product which is derived from the product of quaternions it was observed that mixed product is more consistent with Physich than that of quaternion product.

Keywords . Mixed number, mixed product, quaternion product
PaCS No. $0290+p$

1. Introduction

1.1. Mixed product :

Mixed number $[1] \alpha$ is the sum of a scalar x and a vector A :

$$
\text { 1.e. } \alpha=x+\boldsymbol{A} \text {. }
$$

The product of two mixed numbers is defined as [1]

$$
\alpha \beta=(x+A)(y+B)=x y+A \cdot B+x B+y A+i A \times B . \text { (1) }
$$

Taking $x=y=0$, we get from eq. (1)

$$
\begin{equation*}
A \otimes B=A . B+i A \times B . \tag{2}
\end{equation*}
$$

This product is called mixed product [2] and the symbol \otimes is chosen for it.

1.2 Quaternion product:

The quaternion can also be written as the sum of scalar and a vector [3]

$$
\text { i.e. } \underline{A}=a+\boldsymbol{A} .
$$

The multiplication of any two quaternions $A=a+A$ and $B=b+B$ is given by [3-5]

[^0]\[

$$
\begin{equation*}
\underline{A B}=(a+\boldsymbol{A})(b+\boldsymbol{B})=a b-\boldsymbol{A} \cdot \boldsymbol{B}+a \boldsymbol{B}+b \boldsymbol{A}+\boldsymbol{A} \times \boldsymbol{B} \tag{3}
\end{equation*}
$$

\]

Taking $a=b=0$, we get fromecq. (3)

$$
\begin{equation*}
\underline{A B}=-A \cdot B+A \times B . \tag{4}
\end{equation*}
$$

This product we call quaternion product.

2. Consistency of mixed product and quaternion product with physics

2.1 Consistency with Pauli matrix algebra :

It can be shown that $|6|$

$$
\begin{equation*}
(\sigma . A)(\sigma . B)=A . B+i \sigma \cdot(A \times B), \tag{5}
\end{equation*}
$$

where \boldsymbol{A} and \boldsymbol{B} are two vectors and σ is the Pauli matrix.
From eqs. (2) and (5), we can say that the mixed product is directly consistent with Pauli matrix algebra. From eqs. (4) and (5), we can also say that the quaternion product is not directly consistent with Pauli matrix algebra.

2.2 Consistency with Dirac equation :

Dirac equation $(E-\alpha . P-\beta m) \psi=0$ can be operated by the Dirac operator $(t-\alpha . V-\beta n)$, then we get

$$
\begin{equation*}
(t-\alpha \cdot V-\beta n)\{(E-\alpha . P-\beta m) \psi\}=0 \tag{6}
\end{equation*}
$$

For mass-less particles i.e. for $m=n=0$, we get [7]

$$
\begin{align*}
& (t-\alpha \cdot V)(E-\alpha . P) \psi=\{t E+V \cdot P+i \sigma \cdot(V \times P)\} \psi_{1} \\
& +\{-(t \sigma . P+E \sigma . V)\} \psi_{2}=0, \tag{7}
\end{align*}
$$

where ψ is the wave function and ψ_{1} and ψ_{2} are the components of ψ.

Putting $t=0$ and $E=0$ in eq. (7), we get

$$
\begin{equation*}
(\alpha . V)(\alpha . P) \psi=\{V . P+i \sigma .(V \times P)\} \psi_{1}=0 . \tag{8}
\end{equation*}
$$

From eqs. (2) and (8), it is clear that Mixed product is consistent with Dirac equation.

From eqs. (4) and (8), it is also clear that quaternion product is not consistent with Dirac equation.

3. Applications of these products in dealing with differential operators

In region of space where there is no charge or current, Maxwell's equation can be written as
(i) $\nabla \cdot E=0$,
(ii) $\nabla \times E=-(\partial B) /(\partial t)$,
(iii) $\nabla \cdot B=0$,
(iv) $\nabla \times B=\mu_{0} \varepsilon_{0}(\partial E) /(\partial t)$.

From these equations, it can be written as [8]

$$
\begin{align*}
& \nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0}\left(\partial^{2} \boldsymbol{E}\right) /\left(\partial t^{2}\right), \\
& \nabla^{2} \boldsymbol{B}=\mu_{0} \varepsilon_{0}\left(\partial^{2} \boldsymbol{B}\right) /\left(\partial t^{2}\right) . \tag{10}
\end{align*}
$$

Using eqs. (2) and (9), we can write

$$
\nabla \otimes \boldsymbol{E}=\nabla \cdot \boldsymbol{E}+i \nabla \times \boldsymbol{E}
$$

$$
=0+-i(\partial B) /\left(\partial_{t}\right) .
$$

or

$$
\begin{equation*}
\nabla \otimes E=-i(\partial B) /(\partial t) . \tag{11}
\end{equation*}
$$

or

$$
\nabla \otimes(\nabla \otimes E)=\nabla \otimes\{-i(\partial B) /(\partial t)\}
$$

$$
=-i(\partial / \partial t)\{\nabla \otimes B\}
$$

$$
=-i(\partial / \partial t)\{\nabla . B+i \nabla \times B\}
$$

$$
=-i(\partial / \partial t)\left\{0+i \mu_{0} \varepsilon_{0}(\partial E) /(\partial t)\right\}
$$

or $\quad \nabla \otimes(\nabla \otimes E)=\mu_{0} \varepsilon_{0}\left(\partial^{2} E\right) /\left(\partial t^{2}\right)$.

It can be shown that $\nabla \otimes(\nabla \otimes E)=\nabla^{2} E$.
From eqs. (12) and (13), we can write

$$
\nabla^{2} E=\mu_{0} \varepsilon_{0}\left(\partial^{2} E\right) /\left(\partial t^{2}\right)
$$

which is exactly same as shown in eq. (10).
Similarly using mixed product, it can also be shown that

$$
\nabla^{2} \boldsymbol{B}=\mu_{0} \varepsilon_{0}\left(\partial^{2} \boldsymbol{B}\right) /\left(\partial t^{2}\right)
$$

Therefore, mixed product can be used successfully in dealing with differential operators. Using the definition of quaternion product (eq. 4), it can be shown that quaternion product can not be used in dealing with differential operators.

4. Elementary properties of these products

4.1 Elementary properties of mixed product :

(i) Mixed product of two perpendicular vectors is equal to the imaginary of the vector product of the vector-
(ii) Mixed product of two parallel vectors is simply the scalar product of the vectors.
(iii) It satisfies the distribution law of multiplication.
(iv) It is associative.
4.2 Elementary properties of quaternion product :
(i) Quaternion product of two perpendicular vectors is simply the vector product of the vectors.
(ii) Quaternion product of two parallel vectors is negative of the scalar product of the vectors.
(iii) It satisfies the distribution law of multiplication.
(iv) It is non-associative.

5. Conclusion

A comparison of Quaternion and mixed products is given m Table 1. From the table we may conclude that mixed producis more consistent with different laws of Physics than that Quaternion product. From the table we may conclude that mixed product is more consistent with different laws of Physics than the Quaternion product.

Acknowledgments

I am grateful to Mushfiq Ahmad, Department of Physics. University of Rajshahi, Rajshahi, Bangladesh and Prof. Habibul Ahsan, Department of Physics, Shahjalal University of Science and Technology, Sylhet, Bangladesh and Prof. Anwarul Haque Sharif, Department of Mathematics, Jahangir Nagar University. Dhaka, Bangladesh for their help and advice.

Table 1. Comparison of quatermon product and mixed product

	Quaternion product	Mixed product
I. Mathematical expression	$\underline{A B}=A . B-A \times B$	$A \otimes B=A \cdot B+i A \times B$
2. Consistency with Pauli matrix algebra	It is not directly consistent with Pauli matrix algebra	It is directly consistent wath Pauli matrix algebra
3. Consistency with Dirac equation	It is not consistent with Dirac equation	It is consistent with Dirac cquation
4. In dealing with differential operators	It can not he used in dealing with differe tial operators	It can be used successfully in dealing with differential operators
5. Elementary properties	(i) Quaterhion product of (wo perpendicular vector is simply the vectoryproduct of the vectors.	(i) Mixed product of two perpendicular vectors is equal to the magmary of the vector product of the vectors
	(ii) Quaternon product of two parallel vectors is negative of the scalar produce of the vectors.	(ii) Mixed product of two parallel vectors is smply the scalar product of the vectors.
	(iii) It satisfies the distribution law of multiplication.	(iii) It satisfies the distributoon law of multuplication.
	(iv) It is non-associative.	(iv) It is assoctative

Kilerences

$11 \mid$ Md Shah Alam Situḍy of Mexed Number Proe Paksoan Arad So 37119 (2000)
121 Md Shah Alam Moed Porduct of Vertors J Theoretics Vol 3 (2001)

1i| A Kyrala Theorefocal Phestes (Philadelphia \& London • W B Saunders Company) (Toppan Company Limuted Tokyo. Japan) (1967)
|4] hup //mathwoild woltam com/Quatermon himl
[5] htip://uww es appstate edu/-4/g/class/2110/mathtestalg? ? 000)/ quaternmonsl html

16] LI Schafl Qumbum Mer humu (New Yook McGaw Hill)
17] Md Shah Alam Shohhr Ihew (1)epartment of Physics. (1mincruty of Rajshahn. Raphahn. Bangladesh) (1994)
 (New Delhi Prentice Hall of Inda) (199.4)

[^0]: Corresponding Author

