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A bstract ; The phonon dispersion in the substitutional f e e  alloy Nio5Feos has been calculated theoretically by applying Bom -von Karman 
formalism including interaction upto fifth neighbours. The Mean Square Displacement (MSD) o f surrounding host atom s with hydrogen and deuterium 
interstitials using G reen 's function technique and scattering matrix formalism are investigated for the temperature range (500 K -1250 K) from 
normal pressure to 2.5 G Pa pressure. The M SD o f atoms surrounding the interstitial are found to be smaller than those o f host crystal. The diffusion 
parameters for hydrogen and deuterium are calculated using reaction coordinate technique for the temperature and pressure ranges mentioned above. 
It is found that the activation energy for hydrogen diffusion is less than that o f  deuterium diffusion and the diffusivity ratio I  approaches 
the value of 1.75 at higher temperatures. The results are compared with the existing results and a good agreement is observed.
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1. Introduction
Hydrogen is the promising medium for both energy 
transmission and storage. Hydrogen can be stored safely 
inside certain metals and alloys. Attempts have been 
made for selecting good energy storage media. With a 
variety of experimental data on the nature of hydrogen 
diffusion in metals from absorption/desorption, NMR, 
Gorsky, Neutron scattering, e/c., a wide range of values 
for the diffusion parameters have emerged. Hence, a 
theoretical study on this aspect is derived for the alloy 
Nio.5Feo.5, The Nio.5Feo.s system forms substitutional face 
centered cubic structure with a small mass disorder at 
room temperature [1]. Each basis of the lattice is shared 
by the average atomic mass of this alloy. The effects of 
force constants and mass disorder are small for the alloy 
considered here. Hence, a Bom>von Karman formalism 
using the average atomic mass and resulting in average 
force constants, can be used for this disordered alloy to 
compute the phonon dispersion [2]. When hydrogen is

pumped into this alloy under high pressure, hydrogen 
migrates through the host lattices by thermally activated 
jumps to neighbouring empty interstitial sites. The 
diffusion of hydrogen into this material is characterised 
by the diffusion coefficient D = 0 ^ y e x p ( —E^ t  k ^ T ) which 
determines its storing capacity.

The objective of this paper is to study the effect of 
pressure on the isotopic diffusion of hydrogen. The Mean 
Square Displacement value of the surrounding atoms 
with hydrogen and deuterium interstitials are evaluated 
using Green’s function technique and scattering matrix 
formalism. The diffusion parameters are calculated using 
reaction coordinate technique in the cif-phase of the 
Nio.5Feoj5 system under the influence of pressure at various 
temperatures (500 K to 1250 K).

2. Theory and method of calculation
The substitutional alloy Nio.5Feo.5 has the lattice constant 
Oo = 3.5868 A at NTP [1], In the adiabatic and harmonic
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approximation, the phonon frequencies of the normal 
modes of vibration of a cubic crystal are calculated by 
solving the secular equation

\ D { q ) - O i ^ { q ) l \  =  0 , (1)

where /  is the unit matrix and D  is the dynamical matrix 
which is given by

D
k' a/b

I'

k '

exp(»9 .( /? ( /') - /e ( /) ) ) .  (2)

Here, q  is the wave vector, nik is the mass of the /:-th 
atom in the /-th unit cell, m* is the mass of the A:-th atom

in the /-th unit ceil. r.] ‘is the atomic force

constant, /?(/) and /?(/') are the position vectors. The 
average atomic mass of the alloy A^Bx^x ts determined 
from the relation

M   ̂+ (1 -  x ) M  B . (3)

The dynamical matrix elements are evaluated according 
to Bom-von Karman formalism extending to fifth 
neighbour interaction and is given in the Appendix. The 
matrix diagonalization is carried out for 73 wave vector 
points of the f e e  lattice. The phonon frequency dispersion 
is calculated by solving eq. (1) using the computed force 
constant parameters given in Table 1.

The Green’s function matrix of the metal atoms is 
calculated from the equation

S  afi
Nyfln t tm s

k'

gg i ,k \q , j ) e * p  { k ' \ q , j )

e x p [2ffi(9 . r ( * f ) ) ] . (4)

Figure  1. Com puted force constant parameters o f  Nios Fcoj alloy at normal 
pressure.

where N  is the total number of cells in the unperturbed 
crystal, (A: 1^7) is the or-th component of the eigen 
vectors of phonon {q^j)>r  defines the distance of the 
ifc-th atom in the /-th cell from the /:-th atom in the 
zeroth cell and diw the maximum angular frequency 
of the host crystal. When the alloy is loaded with 
hydrogen, it occupies the octahedral interstitial site [3]. 
With the interstitial atom in the (0 0 0) oq position, 
there are six nearest neighbour metal atoms at the positions

Position of atoms Force constant 
(in ao units) parameters

Force constant 
value (N/m)

A, 16.4800

Bx 18.7200
C, -1 .2900

(100) Aj 0.4S00

B2 -0 .0400

f ' i i l
Ay 0.5700

By 0.30001 2 2 j
Cy 0.1500
Oy 0.19(X)

A4 0.4900

(HO) 4̂ 0.4700

C4 -0 .4100

Aj -0 .3300

Bs -0 .1400

Cy 0.0400

Ds 0.0800

(O O) ao. (O 0 > 2 ) *̂0 and (0  0

The displacement of the six metal atoms in the defect
space are calculated using the relation

l / ,  = |/ + g (si + a y a ^  )[/ - g { S l  + aya^  )] |f/|o •

(5)
where the Green’s function matrix g  and the change in 
the dynamical matrix are of the order (18 x 18), the 
metal-hydrogen interaction matrix a  is of the order (18 x 
3).

The interstitial Green’s function matrix y  is of the 
order (3 x 3) which is defined as

y(<o*) = [m ,(a )J (9 )-a > ;)]  / (6)

{ ^ 2  ® ‘'0* ( 1 4  ® (°  >2 4 ^ - y a ^ U t .

where m, is the mass of the interstitial atom, /  is the unit 
matrix and co/ is the vibrational frequency of the interstitial 
in the otherwise frozen lattice. The matrix Uio of order 
(18 X 1) represents the displacement of the six host 
crystal atoms in the normal lattice. The displacement of 
the interstitial hydrogen atom is calculated using the 
relation

(7)
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Since £/|o involves the inverse matrix which is complex 
in nature and is of the order (18 x 18). more computer 
time is needed. The defect space contains one interstitial 
atom and six equidistant atoms and only first neighbour 
interaction is considered. Therefore, even though the 
system is disordered, as a small group, the defect space 
is ordered one. Hence, the matrices g  and S i  are block- 
diagonalized using the symmetric cooixlinates for the O* 
group [4J to reduce the computing time. The matrix a  
consists of force constant parameters representing metal- 
hydrogen interaction. The elements of a  are fitted using 
the potential p  [5] which is of the form

(/^ *  ) • Parameters a  and are fitted using |

the localized nnodes (Oh = 1.001335 x 10'̂  rad s"' andO)2 „
= 0.708051 X 10*'* rad s”* [3], The mean square 
displacement values are calculated using the relation

CO
(8)■cothf Irfct).

I  ]
7'he diffusion coefficients of hydrogen in the alloy are 
calculated by applying reaction coordinate approach 
suggested by Flynn [6] in the limit of an elastic 
continuum. When hydrogen jumps from one interstitial 
position to the other, the neighbours exert a strong 
repulsive force on jumping atoms. TTie jump will be 
completed only if the fluctuations in the reaction 
coordinate of diffusing atom is sufficiently strong to 
force the moving atom past its neighbours towards the 
vacant position. To implement this, the reaction coordinate 
is derived as

(9)

with j  = 1,2,3............j n \
where is the displacement of diffusing atom and 

Uj refers the displacement of the >th atom of m' 
neighbouring atoms obstructing the jump. Jump occurs 
only when the coordinate exceeds a critical value Zc-  
The Jump frequency of hydrogen has been obtained from 
Kac^ equation [7] given as

%

t j)r
exp - x t

' ^ \ x { d > j ) \ '

(10)
The I critical value of the reaction coordinate Zc is 
conwered as 30% of the atomic radius of the metal 
atonis.

'0ie diffusion coefficient at a given temperature T  is 
calculated using the equation

£) = Docxp -
k s T (11)

where Ea is the activation energy. The pre-exponential 
factor £>o is estimated from the relation

F
(12)

where Fq is the pre-exponential factor of the jump 
frequency and I is the jump distance. When the pressure 
is increased, the lattice gets compressed. The new lattice 
parameters are calculated using the compressibility relation.

3. Results and discussion
The evaluated phonon frequency dispersion for normal 
pressure is shown in Figure 1 along with the inelastic 
slow neutron diffraction experimental data [2].

Wave Vector {q>
__  wvM obiaiiMKl in the pmMMit workTheoretical curve* obtained by Okcrye and Satya Pal A • a Experimental data of Halbnan and Brockhoine

^gure 1, PhomHi dispeimioii in alloy.
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The theoretical result carried out in the frame work 
of transition metal-model potential approach [8] and the 
mean crystal model including a short range three body 
interaction model 19] worked out by Okoye and Satya 
Pal (10] is also shown in this figure. It is found that the 
computed values agree well with the experimental values 
whereas other theoretical values obtained [10] fall short 
of the experimental data. Thus, a Bom-von Karman 
analysis using the average atomic mass and resulting 
average force constants is justified for this alloy. At high 
pressures, the lattice parameters are decreased due to 
reduction in volume. With the new lattice constant values, 
phonon frequencies are determined and they are found to 
be increased with pressure as expected.

From the evaluated Green's function values, the MSD 
of the defect space atoms are calculated at 500 K, 
750 K, 1000 K, 1250 K temperatures. It is found that 
the MSD of H/^H atoms are much larger than that of 
surrounding metal atoms. Moreover, the MSD of defect 
space atoms are found to be less than that of host 
eiystal. This is attributed to the coupled vibrational motion 
of interstitial H with surrounding metal atoms in which 
as the vibrational amplitude of H dominates, naturally 
that of other one becomes smaller. The same trend has 
been observed experimentally for the NbH* system [11-
13]. The variation of MSD values with temperature for 
H and interstitial under normal pressure are shown in 
Figures 2 and 3 respectively.

Figure 2. MSD of Nio.̂ Ê eos with hydrogen interstitial.

For both type o f  impurities, the M SD  values increase 
with temperature and decrease with pressure as expected.

> •• Deulerium > Metal Atoms i
F igure  3. MSD o f Nio.5Fcso.5 with deuterium interstitial.

The change in MSD with pressure is very small and the 
percentage of variation of MSD goes on decreasing in 
the higher pressure region. This is due to the shrinkage 
of the lattice.

The diffusion constants obtained for normal pressure 
is given below :
For H, D  (cmVs) = 7.6244 x 10-̂

exp(-92.4827 meV/ifea T),

For 2h , D (cm2/s) = 6.5800 x lO-̂
exp(-137.1372 meV/JtaT).

It is found that the activation energy for deuterium is 
greater than that of for hydrogen. Arrhenius behaviour is 
observed over the complete temperature range of study. 
It is observed that the pre-exjx>nential factor Do  is mass-

dependent and obeys the law d S  _ 
d I »  V

within error

bars. Previous result [14] states that below certain 
temperature (773 K for Pd), f e e  metals show the reverse 
isotope dependence on the activation energy. But the 
Nio,5Fco.5 system shows the normal isotope effect i.e.

at the temperature range of study. The 
diffusivity ratio /  ̂ 2  ̂ is always greater than 1 and 
approaches the value of 1.75 at higher temperature. This 
is due to the high activation eneigy of deuterium.

Since neither experimental nor other theoretical results 
are available to compare the results for dris system  
except the study o f  isotopic d iffusion in N i [15], 
comparison has been made with the alloy FcofTio^  [16,17].



Diffusion of hydrogen and deuterium in Nio^Feo.s alloy — effect of pressure 605

The results of Feo.5Tio.5 alloy are given below :
For H, D  (cm /̂s) = 1.064 x 10"̂

exp (-503.3 meV / he T) [Ref-16]. 
For H, D  (cmVs) -  1.01 x 10“̂

exp (-496 m cV /kB T ) [Ref-17].
For D (cmVs) = 0.82 x lÔ ^

exp (-512 m e V /k sT )  [Ref-17].
On comparison, it is observed that the activation 

energy in Nio.sFeo s is very much less than that in Feo sTio.̂ . 
Also the variation of diffusion parameter with pressure in 
Nio.5Feo.5 at the temperature of 500 K shown in Figure 4

-Hydrogen - • - Deuterium
Figure 4. Diffusivity o f  H and in Nio^Feo.s alloy as a function o f pressure 
at 500 K.

indicates that the pressure does not influence much on 
the diffusion of hydrogen isotopes in the system of study 
at hand. Hence, the system of study seems to be very 
good storage medium for hydrogen and deuterium.
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A ppendix

D yn a m ica l m a tr ix  e le m e n ts  o f  N i^ ^ e ^  ̂  a l lo y  :

Z>(l,l) = — i— [4 A ,(c o s;r  c o s ^  + c o s ;r
M a s s

cosjr ^j) + 4C, cos^  qy c o s n  q^ + 2 A 2 q^
+2 B2(c o s 2«r qy + c o s 2;r ^ )̂ + 8A3 c o s 2;r q^ 
c o s ; r ^ y c o s i r + 8C3 cos;r ^ ,(c o s 2n: q y c o s n q ^  
+ cos«  qyCOs2n  q^^) ^  AA^icosTj t  q^^cosTn qy-¥ 
cos2jt 9j, cos2/t q ^ )  + 2 C ^ c o s 2 n  q y C O s 2 t c q ^  -H 
4A5(cos3;r qj ^cosn  qy ^ c o s 2 n  q^^cosn q^) + 
4C3(co8«  qj^cosJtv q y c o s n  q^^cos^n q^)'^ 
4D5(co8JT qy cos3jr q^ + c o s 3 n  qy c o s n  q^)}.

Z>(1.2): -1 *[4J?, sin;r^^ s \ n n q y  - k - ^ { s i n  2nqj^
M a s s "  ' ^

sin ;r  q y  cosxr -Hsin2;r sinTT q̂  ̂c o s n  +
8Z>3 c o s 2 j t  q^ S i n n q ^  S i n n  q y  + 4 B4 s in2 nq ^^  s i n  2 n  q y  

+4i?5(sin3;r sin^r -bsiriTr q ^ ^ s i n ^ n q y ) ^ .

Z>a3) = •1 [4B, s i n n q ^ ^ s i n n q ^  ’¥% B^{s in2n q^^
M a s s

sinTT q^ c o s n  +sin  2rr q ^ s i n n  q^ cos/r ^3,) +
8 D 3 c o s 2tt qy sinTT qĵ  sinTT 4-4 B 4 s in  2tt qy
sin2rr^2 ^ B ^ i s in d n q ^ ^  s i n n  q^ 4sinTT^, sinSrr^^)].

D  (2,1) = D (1,2)
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D{2,2) = 1
Mass [4A îcosnq,cosnq +cosnq

cosnq )̂ + 4 C , co&nq ĉosnq +̂2A2COs2rcqy
+ 2 ^ 2 ( 0 0 5 cos2nq+ iAj cosTnqy cosnq, 
cosnq̂  ̂ + 8C 3 C os;r qy(cos2nq^cosnq  ̂ + c o s ; r  q, 
cos2n q̂ ) + 4Â (cos2n q ĉos2n q̂  + c o s 2;r q̂  
cos2n q̂ ) + 2Ĉ  cos2nq  ̂cos2jlq̂  + 4Â (cos3n q̂  
co&n q̂  + c o s3 ff  q^cosn q.) +  4 C j(c o s ;r  q̂  
co s3 /r  q̂  + c o s f f  q̂ coŝ Jt q.) + 4D;(cosit q̂  
c o s 37T + c o s3 ;r  q̂  cosn q,)J.

D(2,3)= * l4B,sinnqySinn q^+8Bj(sin2xqy

s in f f  q̂ co&n ^ _ ,+ s in 2«  q ŝinn q^cosn q̂ ) + 
%DjCos2n <jr^sin;r qySinn q̂  + 4 5 4 s in 2 ; r  q̂  
s i n 2«:^j + 4 B j(s in 3 ;r9 j, s in / r ^ j  + s in ; r ^ y S in 3 » 9 j ) ] .

D ( 3 , l )  =  D (1 ,3).
D (3 ,2 ) =  D (2 .3).

D (3 ,3 )=  * -[4 i4| ( c o s ; r q i , c o s ; r 9 , + c o s f f o .Mass ^
CQsnq̂ ) + 4C , cosnqyCOsnqy+2A2Cos27tq  ̂
+ 2 J?2( c o s 2w q^+cos2st 9 ,,) + 8A3 C o s2;r q̂  
cosnq^cosnqy + 8C2COsn q̂ {co&27i qj ĉosn q̂  
+ c o s ;r  qj,co$2jtqy)-i-4Â {cos23t qyCos2nq^
+ cos2jtqyCOs2jtq )̂ +2Ĉ cos2ji q ĉo$2n qy 
+ 445COs3;r q (̂cosn q^+cosn qy) + 4 C j  

icosnq^cos3nq^+cosnq^cos3nqy) + 4D̂
(cosn q̂  co s3 ;r  qy + c o s3 ;r  q̂ ĉosn ^y )] .

Here, q̂ , qy, q̂  are the x, y, z components o f the wave 

vector and Mass is the average atomic mass of the 
system.




