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Diffusion of hydrogen and deuterium in NigsFey s alloy — effect of
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Abstract : The phonon dispersion in the substitutional fcc alloy NigsFeo s has been calculated theoretically by applying Born-von Karman
formalism including interaction upto fifth neighbours. The Mean Square Displacement (MSD) of surrounding host atoms with hydrogen and deuterium
mterstitials using Green’s function technique and scattering matrix formalism are investigated for the temperature range (500 K-1250 K) from
normal pressure to 2.5 GPa pressure. The MSD of atoms surrounding the interstitial are found to be smaller than those of host crystal. The diffusion
parameters for hydrogen and deuterium are calculated using reaction coordinate technique for the temperature and pressure ranges mentioned above.
It is found that the activation energy for hydrogen diffusion is less than that of deuterium diffusion and the diffusivity ratio Dy / D, approaches
the value of 1.75 at higher temperatures. The results are compared with the existing results and a good agreement is observed.
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1. Introduction

Hydrogen is the promising medium for both energy
transmission and storage. Hydrogen can be stored safely
inside certain metals and alloys. Attempts have been
made for selecting good energy storage media. With a
variety of experimental data on the nature of hydrogen
diffusion in metals from absorption/desorption, NMR,
Gorsky, Neutron scattering, etc., a wide range of values
for the diffusion parameters have emerged. Hence, a
theoretical study on this aspect is derived for the alloy
NigsFeos. The NigsFegs system forms substitutional face
centered cubic structure with a small mass disorder at
room temperature [1]. Each basis of the lattice is shared
by the average atomic mass of this alloy. The effects of
force constants and mass disorder are small for the alloy
considered here. Hence, a Born-von Karman formalism
using the average atomic mass and resulting in average
force constants, can be used for this disordered alloy to
compute the phonon dispersion [2]. When hydrogen is
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pumped into this alloy under high pressure, hydrogen
migrates through the host lattices by thermally activated
jumps to neighbouring empty interstitial sites. The
diffusion of hydrogen into this material is characterised
by the diffusion coefficient D = Dyexp(—E, /kgT) which
determines its storing capacity.

The objective of this paper is to study the effect of
pressure on the isotopic diffusion of hydrogen. The Mean
Square Displacement value of the surrounding atoms
with hydrogen and deuterium interstitials are evaluated
using Green’s function technique and scattering matrix
formalism. The diffusion parameters are calculated using
reaction coordinate technique in the ca-phase of the
Nig sFeo s system under the influence of pressure at various
temperatures (500 K to 1250 K).

2. Theory and method of calculation

The substitutional alloy NigsFeos has the lattice constant
aop= 3.5868 A at NTP [1]. In the adiabatic and harmonic
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approximation, the phonon frequencies of the normal
modes of vibration of a cubic crystal are calculated by
solving the secular equation

|D(9)-w?(g)1]=0, )

where 7 is the unit matrix and D is the dynamical matrix
which is given by

D & :I—_:T‘—Z d)aﬁ ’I(';
exp(ig.(R(1)-R(1))) 2)

Here, g is the wave vector, m, is the mass of the k-th
atom in the I-th unit cell, m; is the mass of the k-th atom

i
k Kk
constant, R(l) and R(l') are the position vectors. The

average atomic mass of the alloy A,B,., is determined
from the relation

in the [-th unit cell,d)aﬂ[ ] is the atomic force

M,p =xM +(1-x)M,. 3)

The dynamical matrix elements are evaluated according
to Born-von Karman formalism extending to fifth
neighbour interaction and is given in the Appendix. The
matrix diagonalization is carried out for 73 wave vector
points of the fcc lattice. The phonon frequency dispersion
is calculated by solving eq. (1) using the computed force
constant parameters given in Table 1.

The Green’s function matrix of the metal atoms is
calculated from the equation

ea (k|9.5)ep (k1q.4)
(020 -0} ()

exp[%i(q.r(kk'))], [C))

where N is the total number of cells in the unperturbed
crystal, e, (quj) is the a-th component of the eigen
vectors of phonon (gq,j),r defines the distance of the
k-th atom in the [-th cell from the k-th atom in the
zeroth cell and @ma« is the maximum angular frequency
of the host crystal. When the alloy is loaded with
hydrogen, it occupies the octahedral interstitial site [3].
With the interstitial atom in the (0 O 0)a, position,
there are six nearest neighbour metal atoms at the positions

(% Y 0) ag» (% 0 0) ay. (0 yz 0) ag.
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Figure 1. Computed force constant parameters of Nig s Feo s alloy at normaj
pressure. :

Position of atoms Force constant Force constant

(in ag units) parameters value (N/m)
11 Ay 16.4800
——0

(2 2 ) B, 18.7200
C ~1.2900
(100) Ay 0.4500
B, -0.0400
11 As .0.5700
l - -
( 2 2) By 0.3000
Cs 0.1500
D, 0.1900
Ag 0.4900
(110) B, 0.4700
(o -0.4100
31 As -0.3300
——0
(2 2 ) Bs -0.1400
Cs 0.0400
Dy 0.0800

(0 74 ©0)ap (0 0 }4)ao ana (0 0 14)a

The displacement of the six metal atoms in the defect
space are calculated using the relation

U, = {1 +g(81+aya” )[1 ~g(81+aya” )T}U,o.

&)
where the Green’s function matrix g and the change in
the dynamical matrix &! are of the order (18 x 18), the
metal-hydrogen interaction matrix a is of the order (18 x
3).

The interstitial Green’s function matrix y is of the
order (3 x 3) which is defined as

y(0?)=[m, (o} (a)-0})] 1. ®)

where m; is the mass of the interstitial atom, 7 is the unit
matrix and a is the vibrational frequency of the interstitial
in the otherwise frozen lattice. The matrix Ujo of order
(18 x 1) represents the displacement of the six host
crystal atoms in the normal lattice. The displacement of
the interstitial hydrogen atom is calculated using the
relation

g=—ya'U,. ™
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Since Ujo involves the inverse matrix which is complex
in nature and is of the order (18 x 18), more computer
time is needed. The defect space contains one interstitial
atom and six equidistant atoms and only first neighbour
interaction is considered. Therefore, even though the
system is disordered, as a small group, the defect space
is ordered one. Hence, the matrices g and &/ are block-
diagonalized using the symmetric coordinates for the O,
group [4] to reduce the computing time. The matrix a
consists of force constant parameters representing metal-
hydrogen interaction. The elements of a are fitted using
the potential ¢ [5] which is of the form

= —(%4 )+ (% ) . Parameters o and £ are fitted using

the localized modes wy = 1.001335 x 10!4 rad s-! and @, ,
0.708051 x 10'* rad s-! [3]. The mean square
displacement values are calculated using the relation
1jv(a.w) e
w

2 =
<U| (q.w)) 2) COlh[ZkBT

The diffusion coefficients of hydrogen in the alloy are
calculated by applying reaction coordinate approach
suggested by Flynn [6] in the limit of an elastic
continuum. When hydrogen jumps from one interstitial
position to the other, the neighbours exert a strong
repulsive force on jumping atoms. The jump will be
completed only if the fluctuations in the reaction
coordinate of diffusing atom is sufficiently strong to
force the moving atom past its neighbours towards the
vacant position. To implement this, the reaction coordinate
is derived as

x(q,f)=[¢,, -[;%)%Uj}.z

]dw . (8)
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with j=1,2,3

where £, is the displacement of diffusing atom and
U; vefers the displacement of the j-th atom of m’
neighbouring atoms obstructing the jump. Jump occurs
only when the coordinate exceeds a critical value z..
The jump frequency of hydrogen has been obtained from
Kac’p equation [7] given as

¥

i So(a)x(a)
{_ Tlx(a.5)’
(10)

Thefcritical value of the reaction coordinate %, is
conskdered as 30% of the atomic radius of the metal
ato

The diffusion coefficient at a given temperature 7 is
caicalated using the equation

-x

Slx(a. i)

D= D,exp| -

k,T an

where E, is the activation energy. The pre-exponential
factor D, is estimated from the relation

_ry?

D, 12)

where [, is the pre-exponential factor of the jump
frequency and [ is the jump distance. When the pressure
is increased, the lattice gets compressed. The new lattice
parameters are calculated using the compressibility relation.

3. Results and discussion

The evaluated phonon frequency dispersion for normal
pressure is shown in Figure 1 along with the inelastic

&)
slow neutron diffraction experimental data [2].
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Figure 1. Phonon dispersion in Nig Fe,, alloy.
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The theoretical result carried out in the frame work
of transition metal-model potential approach [8] and the
mean crystal model including a short range three body
interaction model [9] worked out by Okoye and Satya
Pal [10] is also shown in this figure. It is found that the
computed values agree well with the experimental values
whereas other theoretical values obtained [10] fall short
of the experimental data. Thus, a Born-von Karman
analysis using the average atomic mass and resulting
average force constants is justified for this alloy. At high
pressures, the lattice parameters are decrcased due to
reduction in volume. With the new lattice constant valucs,
phonon frequencies are determined and they are found to
be increased with pressure as expected.

From the evaluated Green’s function values, the MSD
of the defect space atoms are calculated at 500 K,
750 K, 1000 K, 1250 K temperatures. It is found that
the MSD of H/2H atoms are much larger than that of
surrounding metal atoms. Moreover, the MSD of defect
space atoms are found to be less than that of host
crystal. This is attributed to the coupled vibrational motion
of interstitial H with surrounding metal atoms in which
as the vibrational amplitude of H dominates, naturally
that of other one becomes smaller. The same trend has
been observed experimentally for the NbH, system [11-
13]. The variation of MSD values with temperature for
H and 2H interstitial under normal pressure are shown in
Figures 2 and 3 respectively.
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Figure 2. MSD of NigsFegs with hydrogen interstitial.

For both type of impurities, the MSD values increase
with temperature and decrease with pressure as expected.
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Figure 3. MSD of NigsFeos with deuterium interstitial.

The change in MSD with pressure is very small and the
percentage of variation of MSD goes on decreasing in
the higher pressure region. This is due to the shrinkage
of the lattice.
The diffusion constants obtained for normal pressure

is given below :
For H, D (cm?/s) = 7.6244 x 107

exp(—92.4827 meV/kg T).
For 2H, D (cm?/s) = 6.5800 x 10

exp(—137.1372 meV/kpT).
It is found that the activation energy for deuterium is
greater than that of for hydrogen. Arrhenius behaviour is
observed over the complete temperature range of study.
It is observed that the pre-exponential factor Dy is mass-

D¥ m;,

dependent and obeys the law within error

2
DyH my

bars. Previous result [14] states that below certain
temperature (773 K for Pd), fcc metals show the reverse
isotope dependence on the activation energy. But the
NigsFeos system shows the normal isotope effect i.e.
E,y <E, ., at the temperature range of study. The
diffusivity ratio Dy /D, is always greater than 1 and
approaches the value of 1.75 at higher temperature. This
is due to the high activation energy of deuterium.
Since neither experimental nor other theoretical results
are available to compare the results for this system
except the study of isotopic diffusion in Ni [15],
comparison has been made with the alloy FegsTigs [16,17].
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The results of FeosTios alloy are given below :
For H, D (cm?/s) = 1.064 x 103
exp (-503.3 meV / kg T) [Ref-16].

For H, D (cm?s) 1.01 x 103

it

exp (496 meV/kgT) [Ref-17].
For 2H, D (cm?/s) = 0.82 x 103
exp (512 meV/kgT) [Ref-17].

On comparison, it is observed that the activation
cnergy in NigsFeos is very much less than that in FeysTigs.
Also the variation of diffusion parameter with pressure in
NigsFeo.s at the temperature of 500 K shown in Figure 4
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Figure 4. Diffusivity of H and 2H in Nig sFeo s alloy as a function of pressure
at 500 K.

Appendix

Dynamical matrix elements of Ni, Fe,, alloy :

1

ass
cosx q,)+4C,cosx q,cos® q, +2A,cos2m q,

+2 B,(cos2r g, +cos2x q,)+8A;cos2x g,
coswg,cosmq, +8C;cosm q,(cos2m g, cosnq,

D@1 =

[4A,(cosm g, cosm g, +cosT g,

+cosmw g,cos2mwq,) +4A,(cos2wr g, cos2x q, +
cos2mw g,cos2m q,) +2C,cos2x g, cos2xq, +
4As(cos3m g, cosm g, +cos3x g, cosm q,) +
4Cs(cosm g, cos3m g, +cosm q,co83% q,) +
4Ds(cosm g, cos3m g, +cos3xw g, cosx q,)].
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indicates that the pressure does not influence much on
the diffusion of hydrogen isotopes in the system of study
at hand. Hence, the system of study seems to be very
good storage medium for hydrogen and deuterium.
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-1 . . .
D(1-2)=ml431 sinmtg,sinnqg,+8B,(sin2n g,
sinm q,COST g, +sin2x q,sinw g, cosw q,) +
8D, cos2m q,sinnq,sinntq, +4B,sin2mrq,sin2nq,
+4B;(sin3x g,sinw g, +sinx q,sin3mq )].

-1
ass
sinz q,cosw g, +sin2mw g,sinw g, cosm q, )+

D@,3) =

[4B,sinmq_ sinmwq, +8B,(sin2n q,

8 D;cos2m q,sinm q,sin® g, +4 B,sin2r q,
sin2z q, +4B(sin3m'q, sin® g, +sinzq,sin3wq,)].

D (21D=D 12
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D(2,2) = ——1——[4A,(cosn q,coSTq, +COSMq,
Mass ’ :

cosmq,) +4C,cosmq, cosmq, +2A,c082mq,
+2B,(cos2nq, +cos2nq,)+8A,cos2nqg, cosng,
cosmq, +8C;cosm g, (cos2mq, cosmq, +COST g,
cos2m q,)+4A,(cos2r g, cos2n q, +cos2n q,
cos2mq, )+2C,cos2mq, cos2n g, +4As(cos3nq,
cosm g, +cos3mw g, cosm gq,) + 4Cq(cosm q,
cos3m q, +cosm q,cos3r q,) + 4D;s(cosm q,

cos3m g, +cos3m g, cosm q.)].

-1 . . .
D(2,3) = Mass-MBl sinmg, sinz g, +8B,(sin2nq,

sinz q,cosm g, +sin2m q,sin%w q,cos® q,) +
8D,cos2m g, sinm q,sin7 g, +4B,sin2n g,

sin2nq, +4B,(sin3n g, sinnq, +sinmg, sin3nq,)].

D(@3,1) = D (1,3).
D@3,2) = D (2,3).

D@3,3) = l -[4A,(coan,coanl+coany
Mass

cosmq,) +4C,cosmg cosmg, +2A,c0s2nq,
+2B,(cos2n q, +cos2m q,)+8A;cos2m g,
cosmg,cosmq, +8C;cosmq,(cos2mg, cosnq,
+CosT g, cos2mq,)+4A,(cos2m g cos2ng,
+cos2mq,cos2mq,) +2C,cos2mq,cos2ngq,
+ 4Acos3m g, (cosm g, +cosm q,) +4C;
(cosmg,cos3mqg, +cosmq,cos3nq,) + 4D;

(cosm g,cos3m g, +cos3m g, cosm q,)].

Here, q., q,, g, are the x, y, z components of the wave
vector and Mass is the average atomic mass of the
system.





