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Self-focussing of a laser beam, incident normally on a plasma-free
space interface
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Abstract

:  The authors have analyzed the propagation of the transmitied pan of a laser beam with transver se Gaussian mtensnty profile incident

normally from free space onto a plane plasma surface, The moditicationof irradiance profile of the beam, caused by the nonlinear dielectric constant
of the plasma has been taken into account. It his been shown that 1n this case also there exist three regimes of propagation in the beam width-beam
power plane; the regions are characterized by steady divergence, oscillatory divergence and self-focussing ‘The dependence of beam width on
distance of propagation has been investigated for typical points in the three regions. It s seen that the transverse irtadhance profile, the three regions
n the beam power-beam width plane and the dependence of beam width parumeter on distance ot propagation get considerably modified by conswdering

cidence on plasma-free space intertace.
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1. Introduction

Self-focussing of laser beams in plasmas and other
nonlinear media. occupies a unique position in high field
sciecnce on account of the fact that it considerably
influences other nonlinear phenomena. The last forty
years or so have been a period of intense scientific
activity [1-17] in this field and an appreciation of the
progress in this field can be made from the reviews by
Sodha et al [18], Esarey at al [19], Umstadter [20] and
others.

High intensity electromagnetic (EM) waves, on entering
the plasma, accelerale the plasma electrons to quiver
speeds comparable to the speed of light in vacuum. This
produces a change in the plasma frequency and hence a
field-dependent dielectric constant. The effect is
instantaneous so that the laser light experiences refraction
in the plasma with a nonlinear dielectric constant cven if
the pulse length is short. For longer pulse lengths, other
nonlinearities namely, the ponderomotive and the thermal
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may be operative. The intensity profile of the laser beam
which is most often generated in the fundamental TEMgy
transverse  Gaussian
significant

intensity profile,
after
The
change can be analyszed according to the usual laws of

mode  viz. the
conscquently  gets modification

transmission  across  free space  plasma interface.
reflection and transmission on the interface between the
plasma and free space (or air), after allowance is made
the plasma. Most
theoretical studies, however, assumce the laser intensity
profiles to bc the one obtained from the source. A
solitary exception to this practicc seems (0 be a study by
Sodha er af |21}, at the
mnterface of the plasma and free space account.
However, this investigation was limited to obtaining the
critical power curve relating the initial beam power and
beam width of the laser light inside the plasma for
uniform wave guide propagation in the plasma and

evaluation of the dependence of thc beam width parameter

for nonlinear dielectric constant of

taking nonlinear refraction
into
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on the distance of propagation. The authors did point out
that for points above the critical curve, self-focussing
occurs but thecy did not explore the propagation
characteristics of the laser beam for the entire range of
beam power and becam width. This communication reports
results of detailed investigation of the problem following
Sharma er al |13} who considered the whole range of
beam power and beam width. For consistency. the
transmission coefficient has been cxpanded upto r? rather
than r2. It is seen that the positive quadrant of beam
width bcam power planc can be divided in three regions,
corresponding to different modes of beam propagation as
follows :
(i) Steady divergence the beam width incrcases
steadily.
(ii) Oscillatory divergence : the beam width oscillates
between the original value and a higher one.

Self-focussing : the beam width oscillates between
the original value and a lower one.

(iii)

The study shows that the transverse irradiance profile of
the beam and the dependence of the becam width on
distance of propagation, get considerably modified by
consideration of reflection by the interface; so are the
critical and divider curves, which separate the three
regions in the beam power-beam width plane, on account
of the reflection coefficient having an irradiance and
hence radial dependence of the dielectric constant.

2. Intensity profile of transmitted beam

A normally incident Gaussian lascr beam on a plane

plasma-frec space interface (z = () may be represented

as,

- —-r? .

E = JEw exp( 3 Iz I—;:- )
2y )\ ¢

where Ey is the amplitude of electric vector E, ry, the

width of the beam, w the wave frequency, ¢ the speed of

light in vacuum, j is a unit vector and a cylindrical

system of coordinates is used.

The intensity profile of the transmitted beam at the
interface (z = 0) is given by

E3(r) = E5 2/t + )Y expl-r?/r2). @
where 2/(n + 1) is the amplitude transmission coefficient,
and n = a(r) is the refractive index over the wave front
(z = 0), whose dependence on EJ can in general, be
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expressed as

n*=e=¢g, + P(EZ)

=€ +<b{(2/(n+l))2.E§n exp(—- rz/r(,2 )} (3)
Eq. (3) is a relationship between n and (r/ry)?. For given
numerical values of EJ ., the nature of function @ ang
other relevant parameters n(r = 0), {rozan/arz }r=() and
{,;,432;1/303 )2}r:" can be evaluated. In the paraxial
approximation, the amplitude of the transmission

cocfficient [2/(n + 1)] may be expanded in powers of

Thus,
{2/’(n+l)}=a+b(r2/r(,2) +c(r2/r(,2)2, )
where a = 2/{i+n(r = 0)}. (4a)
= —{(2/(1 +n)? ) (rnzan/’a(r2 »},g(, (4b)
B e s
-(2//(l+n)2)(r(,a n/a 2 2 }J (4¢)
r=()

Knowing n, (an(r)/a(rz/r(, and ( "(")/a ) ) at

r = 0, the parameters a, & and ¢ can bc evaluated.
Hence. the radial intensity profile of the transmitted
beam at 7 = O is given by

- .12 s AN

Ef(r):E& a+b’ - +c expl -—'_5 (5)

where E|, is equal to the field intensity at z = O and the
parameters a, b, ¢ can be determined for given values of
E; and other parameters with a knowledge of the
functional nature of @.

3. Self-focussing of transmitted beam

The field E, in the plasma may be obtained by solving
the wave equation,

V2E, +(w?/c?) e (n0)E, =0, 6)
consistent with eq. (5). It will be useful to point out here
that the wave equation contains second order derivatives
of the field variables while the dielectric constant enters
the equation as it is. Therefore, the paraxial approximation

used with the wave equation will require the expansion
of field variables in powers of r2 up to r* while the
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evaluation of the dielectric constant (corresponding to an
equal accuracy) requires expansion of field variable and
other quantities only up to the first power in 2. Thus for
\he determination of €(rz), one can write in the paraxial

approximation.

EE (rn)=F@-r’F) ©)
nd  €=€o+ DEE) =€, (2)-r’ e, (2). (8)
where € (2) =€o + d-‘v(E,E,' )r:.ﬁ.‘:F,m (8a)
awd €2 = (ddi/dE,E,‘ )E.E.'xl'.(z) < F2(2). (8b)

Eq. (6) can be solved, following Akhamanov et al |22}
and Sodha et al [23]. Thus, one considers the JWKB
solution of the one dimensional equation

(4B, /dz? )+ (w?/c?)e, (DE, =0

. ~1/4 . ¥
as E, o< (€ (2)) exp{(— iwfc)[ e, (z)dz} .
0

The above solution suggests a solution of eq. (6) of the
form

E\(r,2) = A(r.2)exp{ (- iw/c)

X[IJel(z)dz+ e, (2 (r,z)}}y )
[\]

where S is the eikonal. Substituting for E, from eq. (9)
m eq. (6), and considering slowly converging/diverging
fields, ncglecting the term (BzA/BZI) and equating the
real and imaginary parts on both sides of the resulting
equation, one obtains

2(08/9z)+ (as/ar)’ = (— rle, (2)/e, (z))

+(?/w? )y aN02A/0r? )+ @a/r3r) }. (10a)
(pa2/az)+ (as/0r)pa2/ar)
+ a2((a%s/ar?)+ @s/rdr))=0. (10b)

Considering the wavefront to be in general spherical, one
Mmay write

s=(2/2)B +o(2)

Where B(z) is obviously the curvature of the wave front.
Suhslituting for S from eq. (11) in eq. (10b) and writing

an

403

B =(f)" (df /az). (12)
one obtains (see Sodha er al [23] p.13-17)

A? = (Const/ £2 K (r/n 1) a3

where ¢ is a function of (r/ryf). Further, according to
eq. (9,
E.El = A?. (14)

For eq. (14) to match with EE; at z = 0 (eq. (5)), one
?\usl have

E\(n2)E] (r.) = Ela+blr? /i3 1?)

;
¢
!

+c(r4/r(;'f4))2 exp(—-rz,/r(,zf"’)- (15)
From eq. (15), one can immediately write

F(2)=a® Eg/ f*
and b ()= (- @b/a)a?Ede /i1 ). 16

With the solutions of S and A? (egs. (11) and (13),
respectively), eq. (10a) leads to a second order differential
equation for the beam width parameter f namely,

€, (f)
f
where N = (1+(16c/a)- (462 /a* )~ (4b/a)).

On transforming the z-coordinate and the initial beam
width ro to dimensionless parameters & and po,

2
——‘; L (N )€, @, amn
Z

E=czfwrd and py = nRw/c.

Eq. (17) reduces to

€, (f)%={(~/f3)“ﬂg’o2€2 Nf} (17a)

4. Specific nonlinearities

4.1. Ponderomotive nonlinearity :

In this case, @ (EE*) is given as [18]
o(EE* )= 0*{1 - expl- Bam/am)EE" )},

where a = (2M/6ksTom’w)-

e and m are respectively, the charge and rest mass of an
electron, M is the mass of the heavier particle (neutral or
ions), Ty the wmpcfature of plasma and ky the Boltzmann
constant.
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Eq. (3) can be expressed as
2
20,y =1-02 _3am 2
n“(rHN=1-2 exp{( M )(m)
« Ehenlr?/2)

This equation relates n(r) with r2/r# for chosen values
of £, the amplitude and other

constants; it can be used to obtain n(0), (an(r)/a(rz/ 3 ))0
2
and (32" (r)/a(rz/roz) J . These values can then be
0
used in egs. (4a), (4b) and (4c) to obtain the constants a,

b and c.
Thus from eqs. (8), (8a) and (8b) one obtains

€, () =€, (f) =1-2% exp((-3am/aM )F,(2))
=1-0? cxp((-—Sam/4M )(azEgo/fz))
and €, (2)=€, ()= Dz{exp((—wm/‘w )(azf(i)/fz))}

x (1-(26/a))(-30tm/4M )a*E%/ 12).
Denoting (3am/4M)(a2E020/f2) (a quantity proportional
to beam power) with p, one can express €, (z) and
€, (2) as

€, (f)=1-2%exp(- p)

and €, (f)=Q*(1-(2b/a))p.exp(-p)

Substituting for. €, from eq. (19) in eq. (17a) one
obtains the condition

p? =N exp(pc)/ 2% (1~ 2b/a))p. |
for d2fld£2? to vanish, where o denotes the beam width
Pof at z (or £ or f) and p,. represents a corresponding
critical power for which d2f/d&é2  vanishes.
At £=0 (z =0 or f = 1) eq. (20) reduces to

p8 =¥ exp(po,)/ @ (- (28/a))p.. |
If a beam enters the plasma with width o, and power p
equal to the critical power p,, it will have d?ld£? equal
to zero at £ = 0 ensuring dffdé and f to retain their
initial values (at & = 0) namely, df/df = 0 and f = 1
throughout the passage of the beam. This mode of
propagation is termed the uniform wave guide propagation.
A po versus p., graph (shown in Figure 1 by p.) is
known as the critical power (or simply critical) curve. In
case the point representing the initial beam width g, and

incident beam axial

s)

(19)

(20)

(20a)
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Figure 1. The critcal curve (p,) and divider curve (p,) in the dimensiones,
intial beam width (9, = row/c) versus dimensionless initial beam power
Po = (3aml4M)n’E,:, plane for ponderomotive nonlinearity. Dotted curve,
correspond to infinitely extended plasma. Regions 1, II and III have beey
illustrated. The curves correspond 1o £2° = 0.5. The points A (0.585.1),
(1.09,2), C (0.585.4) refer to typical points for which f-& variation has beep
given in Figure 2.

the initial power p of the beam does not fall on the
critical curve d>fld&?) s will not vanish. However, as the
beam propagates through the plasma, the beam width and
beam power change and in suitable situations, may rcach
values that satisfy eq. (20) and hence lead to d?/d&? o
vanish. This is a condition that corresponds to a point of
inflexion in the f versus & graph of the beam and hence
leads to an oscillatory convergence or divergence of the
beam according as the initial value of d%d&?);:. «
negative or positive. Thus, the requirement for oscillatory
convergence (self-focussing) or oscillatory divergence i
that the beam at some value of & acquires a widih
P = pPof and power p=(})0/f2) (where 0, and p,
correspond to & = 0) so that (p,.p) satisfies eq. (20)
Now from eq. (18), one obtains

cx;’;p:(.(‘?z/(l—el (f))). @l
Hence eq. (20) can be put in the form
p?p ={N/(1-(2b/a)) (1-€, (NH)}- @)

Expressing 02 and p in terms of their initial values one
gets

pipo = {N/(1-(2b/a)) (-, ()} (22
Eq. (22a) yields a real positive solution for &
(0<€,(H)<1) for all real values of the other paramelr
involved. However, eq. (18) puts a restriction on the
value of f as one gets

p=(po/1?)=1(@?/(-€, (1)) ®
according to which f can have a real solution only for

22 > (1 - &,(0). 24
Using (23) with (22a), one obtains the condition
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existence of a point of inflexion in the f~& graph at a
rcal value of f according to which the initial values of
peam poOwer and beam width satisfy the inequality

2o > N/ 21~ (26/a))}. 25)
If one replaces the inequality sign by an equality
pe = N/LQ’(: —(2b/a))p0], (25a)

one obtains a curve py as a o versus po graph which
separates the region of steady divergence I from that of
oscillatory divergence II. Points (po. ov) that fall above
the critical curve (region III) always lead to self-focussing.
It may be pointed out here that the transmitted beam to
pe Gaussian, one must have 2/(1 + n) = a, a constant.
In this case, b = ¢ = 0 and N =1 which reduces eq.
(20a) to the form valid for infinitely extending plasma.
The critical and divider curves p. and py for £2 = 0.5
and ponderomotive nonlinearity have been shown in
Figure 1. To obtain these curves, we start with choosing
a value for (3am/4M )Ed =a’' (say) over the range O to
2 at suitable intervals. For each value of «', we calculate
a. b, ¢ and hence N along the line prescribed earlier, py
is now obtained as po = a?a’. Substitution of py = pco in
eq. (20a), gives o such that (po, ™) lie on the critical
curve. Similarly, po for the divider curve can be obtained
for cach po from eq. (25a) for the curve p,. The curves
p. and ps can be clearly distinguished from the two
dotted curves which correspond to an infinitely extending
plasma and have been included in the diagram for
comparison. A comparison of the continuous and dotted
graphs shows that reflection at the interface increases the
area of the po — po corresponding space to steady
divergence.

The two graphs p. and p, divide the entire positive
quadrant of the (po, ©o) plane in regions 1, II and IIL

A(0.585,1)

B(1.09.2)

C(0.585.4)
0.5

10 20

Figure 2. Variation of beam width parameter f, with dimensioniess distance
of propagation & corresponding to initial points (Po, Oo) viz. A, B and C in
the three regions, as shown in Figure 1. The curves correspond to £27=0.5.
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The f versus & graphs have been obtained for typical
points A (0.585.1), B (1.09,2) and C (0.585,4) of Figure
1 and have been shown in Figure 2. The graphs show
steady divergence for the point A in region 1, oscillatory
divergence for the point B in region II and oscillatory
convergence (sclf-focussing) for the point C in region
1.

#.2. Collisional nonlinearity :

;For collisional plasma, (EE*) is given as [18]

D(EE*) = _(_)2{1 _ (l +(a/2)EE. )(.\‘/2)——[ } ‘

4

(26)

;
i

gs is a parameter characterizing the nature of collisions
gand «a is the same as defined in the ponderomotive case.
%Procecding exactly as in the ponderomotive case, one
‘obtains the equation for vanishing dfld&? as

2 N+ p )2

<

PP T U (2)a-@bra)@”

where
p=(a/2)a*E%/ F?)

and p, is its critical value ensuring d?fld£? to vanish. By

going to & = 0, one obtains the critical power curve as

N+ p.,) 2

pgp('ﬂ =

-/ -(25/a)2* @n
Similarly, the divider curve is obtained as
p2po = N/a=(5/2)) (1-(2b/a))2?}. (28)

For s = 1 (heavy particles being predominantly neutrals),
these cquations reduce to

PEPey =2NU+ p,,)>? [(1-(2b/a))2? (29)

and

pipoe = RN/(1-(2b/a))2? ).

These equations match with the equations for relativistic
nonlinearity with a different constant used in defining p.
The critical and the divider curves have been drawn for
£22= 0.5 selecting values for a'=aE} /2 in the range O
to 2 and proceeding as in the case of the ponderomotive
nonlinearity. The curves have been shown in Figure 3,
for s = 1 and divide the entire positive quadrant of po,
pPo plane in three regions 1, 11 and 1L

30
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The f versus & graphs for typical points in the three
regions are depicted in Figure 4. The parameters a, b
and ¢ vary continuously with ' and can be evaluated as
already explained. A sample of these calculated values
for selected values of a’ have been listed in Table 1.
These values can be and have been used as check values
in the computer calculations.

8.
6 — ]
‘C(1.1,5)
Po 4 -
2 ~
-A(0.13,2)
(o] Y T v
[} 1 2

Figure 3. The critical curve (p.) and divider curve (p,) in the
dimensionless initial beam width (Op.row/c) versus dimensionless initial
beam power Po = (a/z)a’E;, plane for collisional nonlinearity (s =
1). Regions 1, II and III have been illustrated. The curves correspond
to £22 = 0.5. The points A (0.13, 2), B (0.51, 3.5), C (1.1. 5) refer to
typical points for which f-£ variation has been given in Figure 4.

A(0.13,2)

B(0.51.3.5)

C(1.1,5)

10 20
g

Figure 4. Variation of beam width par /. with dimensionless distance
of propagation &, corresponding to initial points (po, Po) viz. A, B and C in
the three regions, as shown in Figure 3; the curves corresponds to £22=0.5.

Table 1. Values of the constants a, b, ¢ for selected values of a' for
@’ =0.5).

@ 0 0.5 1 1.5 2

a 117 1.084 1.045 1.025 1.014

‘g b 0 0.044 0.0296 0.152 0.0068
:‘3 ¢ 0 -0.0035 —0.0041 -0.0035 -0.0025
g _ a 1.17 113 1.108 1.09 1.08
3._3 L 0 0.027 0.033 0.03 0.032
o c 0 -0.031 -D044 -0.049 -0.05
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4.3. Relativistic nonlinearity :

As pointed out in the introduction, relativistic nonlincariyy
is dominant in the initial duration of a high irradianc;
laser beam propagation. In this case [13,19] for ,
circularly polarized beam,

D(EE*) = Q° {1 ~ 1+ 2/ miw2c? )EE*)—I/Z} SN CIT

Eq. (31) and eq. (26) are identical when s = ] jpq
af2=e[miwic?.

Hence, the results for collisional plasmas with s = | 3pq
af2 =e?/m2w?c? are applicable to the case of relativisy.
nonlinearity.

5. Conclusions

It is seen that after transmission through a nonlincar
plasma-free space interface the transverse irradiance profile
of an initially Gaussian beam gets significantly altercd. A
study of self-focussing of this beam in the JWKB -
parabolic equation approximation, predicts three regions
in the incident beam power — beam width plane, which
correspond to self-focussing, oscillatory divergence and
steady divergence. The dependence of beam width
parameter on distance of propagation has been studied
for typical points in the three regions. The critical and
divider curves, demarcating the three regions are
significantly different in the two cases and so are the f-
& curves, characterizing the self-focussing/defocussing.

The transverse irradiance profile of the beam. the
critical and divider curves and the dependence of bcam
width parameter on distance of propagation are
considerably different from the case, when the plasma is
of infinite extent and the source is located in the plasma,
as is commonly assumed in similar studies.
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