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A bstract : The authors have analyzed the propagation ot the ttansmiited pan ot a laser beam with iransvctse CJuussian intensity protlle incident 
normally from free space onto a plane plasma surface. The modil ication ot irradiance pi otile o f the beam, caused by the nonlinear dielectric constant 
of the plasma has been taken inui account. It has been shown that in this case also ihc*rc exist three regimes o f propagation in the beam width-beam  
power plane: the regions arc characterized by steady diveigcncc, t>scilIatory divergence and self-hx:ussing 'I hc dependence o f  beam width on 
distance o f  propagation has been investigated for typical points m the three regions. It is seen that the transverse irradumcc profile, the three regions 
m the beam power-beam width plane and the dependence ol beam width paruineier on distance ut propagaiiun get cunsulcrahly modified by considering 
incidence on plasm a-free space interface.
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1. Introduction
Sell-focussing o f  laser beam s in plasm as and other 
nonlinear m edia, occupies a unique position in high field 
science on account o f  the fact that it considerably 
influences o ther nonlinear phenom ena. The last forty 
years or so have been a period o f intense scientific 
activity 11-17] in this field and an appreciation o f the 
progress in this field can be m ade from the reviews by 
Sodha et a l [18], Esarey at al [19), U instadtcr |2()| and 
others.

High intensity electrom agnetic (EM ) waves, on entering 
the plasma, accelerate the plasm a electrons to quiver 
speeds com parable to the speed of light in vacuum. This 
produces a change in the plasm a Ircquency and hence a 
fie ld -d ep en d en t d ie le c tr ic  c o n s ta n t. T h e  e ffec t is 
instantaneous so that the laser light experiences refraction 
in the plasm a with a nonlinear dielectric constant even if 
the pulse length is short. For longer pulse lengths, other 
nonlinearities nam ely, the ponderom olive and the thermal
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may be operative. The intensity profile o f the laser beam  
which is most often generated in the fundam ental TEMrx) 
mode v/r. the transverse G aussian in tensity  profile , 
c o n se q u e n tly  g e ts  s ig n if ic a n t  m o d if ic a tio n  a f te r  
transmisMon across free space plasma interface. The 
change can be analyzed according to the usual laws o f  
reflection and transmission on the interface between the 
plasma and free space (or air), after allow ance is m ade 
for nonlinear dielectric constant of the plasm a. M ost 
theoretical studies, however, assume the laser intensity 
profiles to be the one obtained from the source. A 
solitary exception to this practice seem s to be a study by 
Sodha vt al [211, taking nonlinear refraction at the 
interface of tlie plasma and free space into account. 
However, this investigation was limited to obtaining the 
critical power curve relating the initial beam  pow er and 
beam width o f the laser light inside the plasm a for 
uniform wave guide propagation in the p lasm a and 
evaluation o f the dependence o f the beam width param eter
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on the distance o f  propagation. The authors did point out 
that for points above the critical curve, self-focussing 
o ccu rs  but th ey  d id  no t ex p lo re  the p ro p ag a tio n  
characteristics o f the laser beam  for the entire range o f 
beam  pow er and beam width. 7'his com m unication reports 
results o f detailed investigation o f the problem  follow ing 
Sharm a ct al 1131 who considered the whole range of 
beam  pow er and beam  w idth. For consistency, the 
transm ission coefficient has been expanded upto rather 
than r^. It is seen that the positive quadrant o f beam  
width beam pow er plane can be divided in three regions, 
corresponding to different m odes o f  beam propagation as 
follow s :

(i) Steady divergence : the beam  width increases 
steadily.

(ii) O scillatory divergence : the beam  width oscillates 
betw een the original value and a higher one.

(iii) Self-focussing : the beam width oscillates between 
the original value and a low er one.

The study show s that the transverse irradiance profile o f 
the beam  and the dependence o f the beam  width on 
distance o f  propagation, get considerably m odified by 
consideration o f  reflection by the interface; so are the 
critical and div ider curves, w hich separate the three 
regions in the beam  pow er-beam  width plane, on account 
o f the reflection coefficient having an irradiance and 
hence radial dependence o f the dielectric constant.

2. Intensity profile of transmitted beam

A norm ally incident G aussian laser beam  on a plane 
plasm a-free space interface iz  = 0) may be represented 
as.

= JEoo exp - r r2/*o ) ( 1)

w here Eoo is the am plitude o f  electric vector E , ro the 
w idth o f  the beam, (o the w ave frequency, c the speed o f 
light in vacuum , J  is a unit vector and a cylindrical 
system  o f coordinates is used.

The intensity profile o f  the transm itted beam  at the 
interface (z = 0) is given by

£ io (^ ) =  +1))^ e x p (-  r ^ / ), ( 2)

where 2/(n + 1) is the am plitude transm ission coefficient, 
and n =  n (r) is the refractive index over the wave front 
(z ss 0), w hose dependence on E j^can  in general, be

expressed as

= e = :e „  + </>(£,o)

= e,, +«p{(2/(n + I ) f  exp(- r V n f  )}• (3)

Eq. (3) is a relationship betw een n and (r/ro)^. For given 
num erical values o f  , the nature o f  function 0  and 
o ther relevant param eters /i(r = o ), {rQ̂  dn / a n d  

can be evaluated. In the paraxial 
a p p ro x im a tio n , the  a m p litu d e  o f  the  transm ission  
coefficient [2/(/i + 1)J may be expanded in powers of

Thus,

{2/(n + ! ) } = « +  b { r ^ /r f̂ ) + c{r^ / ) “ . 

w here a = 2/{l 4- n{r = O)},

b = -{(2 /(1  + n f  ). {r^dn/d{r^  ))}.„„

and ^

(4)

(4a)

(4b)

(4c)

I  (4 /(I + n f  )(/(,-a « /a  {r- ))-

K nowing «, (a«(/-)/a(/-^/ro^)) and ] at

r  = 0, the param eters a, b and c  can be evaluated. 
H ence, the radial intensity profile o f  the transmitted 
beam  at z = 0 is given by

ex p| (5)

w here Eu^ is equal to the field intensity at z = 0  and the 
param eters b, c  can be determ ined for given values of 
E iq and other param eters with a know ledge o f the 

functional nature o f  0

3. Self-focussing of transmitted beam
The field Ei in the plasm a may be obtained by solving 
the wave equation,

V ^ E ,+ (c o ^ /c ^ )e ( r .z )E ,  = 0 , (6)

consistent with eq. (5). It will be useful to  point out here 
that the w ave equation contains second order derivatives 
o f  the field variables w hile the d ielectric constant enters 
the equation as it is. Therefore, the paraxial approximation 
used w ith the w ave equation will require the expansion 
o f  field variables in pow ers o f  up to while the
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valuation of the dielectric constant (corresponding to an 
equal accuracy) requires expansion of field variable and /<(Z) = (/■)■' ( d /M ) .

ithef quantities only up to the first power in Thus for obtains (see Sodha et al [231 p .l3—17)
the determination o f e  (r.z), one can write in the paraxial
approximation.

f,£:,*(r,2) = F , ( z ) - r V 2 ( z )

= (C o n s t / /^ ) c ( r / r „ / ) ,

( 12)

(13)
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where ^  is a function of (r/rif). Further, according to
(7) cq. (O).

and e  = £o + <^(FiF,*) = 6 , ( z ) - r ^ e 2 (z) .

where (r.) =  ®o "*■ ® (F iF |

and “  {^<p/dEiEi ' ^2 ( 2 ) .

(8)

(8a)

E,£,’ = /\^  . (14)

l^or eq. (14) to match with E]E* at z = 0 (eq. (5)), one 
l|iusi have

i £, (r. z)E; (r, z) = £ ^ ( a  + &(r V 'O /  " )

Eq (6) can be solved, following Akhamanov et al 122] j ( ■> t i A
and Stxlha et al [23\. Thus, one considers the JWKB | + c [ r ' ' /n t f  )) e x p \ ,- r '/ ro / - j- 
solution of the one dimensional equation

( d = £ , /d z ^ ) + ^ V c " ) e , ( z ) £ ,= 0  

as £| ( 2)) ctcpj(“ icofc) J j  (z)dz

from  eq. (15), one can immediately write

£,(z) = a " £ ^ / 7 "
and

£2(=) = {\-{2 b la )){a ^E la /rS f* )-

(15)

(16)

With the solutions of 5 and (eqs. (11) and (13),
The above solution suggests a solution of eq. (6) of the respectively), eq. (lOa) leads to a second order dififerential

equation for the beam width parameter /  namely,

« , ,r ,z )= a ( . .O e x p { ( - to /< )  O ’ )

(Z)dz + .^G, (z)S(r,z)

/  dz^

where A = (l + ( l6 c /a ) - (4 6 ^ /a ^ )—(4fe/a)).

On transforming the 2;-coordinale and the initial beam 
where S is the eikonal. Substituting for E) from eq. (9) y^idih ro to dimensionless parameters ^  and po, 
in eq. (6), and considering slowly converging/diverging  ̂ ^
fields, neglecting the term [b '̂ a /B z^) and equating the i^ c z ja y r^  an -  W c  .
real and imaginary parts on both sides of the resulting Eq. (17) reduces to
equation, one obtains j 2 ^ r /  \  ̂ i

2 (35 /9z)+ (as/a r) ' = (-!■’ e ,  ( ; ) /6 |  (i>)

4.1. Ponderomotive nonlinearity :
(aAVdz)+ (35/ar){aA V d r)

(17a)

+ A ^ ( (a ^ s /a r2 )+ (a s / /a r ) )= o . o o b )

Considering the wavefront to be in general spherical, one 
may write

In this case, 0  (EE*) is given as [18] 

0(e £* )=  -e x p ( -  (3am /4A f )EE* ) | .

where a — jShgTotn^at -̂

e and m are respectively, the charge and rest mass o f an 
electron, M  is the mass o f the heavier particle (neutral cm- 

where 0(z) is obviously the curvature o f the wave front. ions). To the temperature o f plasma and ka the Boltzmann

S = (rV 2)/l(z) + 0 (z)

lere yS(j) is obviously ---------------- —  - -------  -
Substituting for S  from eq. (11) in eq. (10b) and writing constant.
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Eq. (3) can be expressed as

/i^ (r)  = l - £ ? ^ e x p {( 2 a m '\( 2
i [  4M  J[(l + n(r))

=  i/V expCpc ) / £ 2 ^  (l -  { 2 b ! a ) ) p .̂} (20)

for d'^ftd^^ to vanish, w here p  denotes the beam  width 
/3q/  at z (or ^  or f )  and p̂ . represents a corresponding 
c r i t ic a l  p o w e r  fo r  w h ic h  d '^ f /d ^ ^  v a n is h e s .  
A t ^  = 0  (^ = 0  or /  =  1) eq. (20) reduces to

= j /V e x p ( p „ ) /£ ? " ( l - ( 2 6 / a ) ) p ^ | (20a)

I f  a beam  enters the plasm a with w idth po  and pow er p  
equal to the ciitica! pow er /?«* it w ill have d^fld^^ equal 
to  zero at ^  =s 0  ensuring df/d^  and /  to  retain their 
initial values (at ^  — 0) nam ely, df/d^  = 0  and /  = I 
throughout the passage o f  the beam . This m ode o f  
propagation is temned the uniform  w ave guide propagation. 
A Po versus pco graph (show n in F igure 1 by p^) is 
know n as the critical pow er (or sim ply  critical) curve. In 
case the po in t represen ting  the initial beam  w idth Po and

X ^^oo^xp*

This equation relates n(r) with r^/rQ for chosen values 
o f  i2, the incident beam  axial am plitude and other

constants; it can be used to obtain /i(0), (d/i f r y a f r v - b ’ i

and (^ a ^ .( r ) /d ( rV ro ^ f  . These values can then be

used in eqs. (4a), (4b) and (4c) to obtain the constants a, 
b  and c.

Thus from  eqs. (8), (8a) and (8b) one obtains 

e ,  ( z ) = € ,  ( / )  =  l-£ ? ^ e x p ((-3 a /« /4 y W )F ,(z ))

=  1 c x p ( ( -3 o  m /4 M  ) ( a ^ £ ^ / / ^  ))

and S j  (z) =  e 2 ( / )  = i3 ^{ ex p ((-3 aw /4 A f ) ( a ^ £ , ^ / / “ ))}

X { \-{2 b /a )){ -3 (X m /A M ){a ^ E io /f" ^ )-

D enoting ( 3 « » i /4 A / ) ( a ^ £ ^ / / ^ )  (a quantity  proportional 
to beam  pow er) w ith p,  one can express e j  (z) and 
G j (z) as

e ,  ( / )  =  l - i 2 ^ e x p ( - p )  (18)

and G j ( / )  =  i2 ^ ( l- (2 6 /< 2 ))p .e x p (-p )  (19)

Substituting for €2 from  eq. (19) in eq. (17a) one 
obtains the condition

F igure 1. The critica] curve {p^) and divider curve in the dimensionles 
initial beam width «  r^wfe) versus dim ensionless initial beam power 
Pq -  (3<3rm/4A/)a^£’,Jj plane for pondcrom otive nonlinearity. Dotted curves 
correspond to infinitely extended plasma. R egions 1, II and III have been 
illustrated. The curves correspond to 0.5 . The points A (0.5K5.1),
(1 .09 ,2), C (0 .585 ,4) refer to typical points for which variation ha.s been 

given in Figure 2.

the initial pow er p  o f  the beam  does not fall on the 
critical curve d - f ld ^ ) ^ f ^  will not vanish. However, as the 
beam  propagates through the plasm a, the beam  width and 
beam  pow er change and in suitable situations, may reach 
values that sati.sfy eq. (20) and hence lead to d\f/d^^- lo 

vanish. This is a condition that corresponds to a point ot 
inflexion in the /  versus ^  graph o f the beam and hence 
leads to an oscillatory convergence or divergence o( the 
beam  according as the initial value o f dy7d^-)^^i, is 
negative or positive. Thus, the requirem ent for oscillatory 
convergence (self-focussing) o r oscillatory divergence is 
that the beam  at som e value o f  ^  acquires a width 
p  = p ( , /  and pow er p  - { p ^ f (w here /t2o and 
correspond to ^  = O) so that (p*,/?) satisfies eq. (20) 
N ow  from  eq. (18), one obtains

e x p p  =  ( i2 V O -€ i ( / ) ) ) •
H ence eq. (20) can be put in the form

P V  =  {(V/0 -  {2b/a)) ( 1 -G, ( / ) ) } .  (22)

Expressing and p  in terms of their initial values one 
gets

PoPo = { 2 V /0 - ( 2 * /a ) ) ( l - e ,  ( / ) ) } •  <22a

Eq. (22a) y ields a real positive  so lu tion  for 
( 0 < S \ ( f )< \ )  fo r all real values o f  the o ther parameter 

involved. H ow ever, eq. (18) puts a restriction on 
value o f  /  as one gets

P =  U / / ^ ) =  « n ^ V 0 - e ,  ( / ) ) )  ■
according to  w hich /  can have a  real solution only

£?* >  (1  -  G , ( / » .

Using (23) with (22a), one obtains the condition
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ex isten ce  of a point o f  inflexion in the graph at a 
real v a lu e  of /  according to which the initial values o f  

beam power and beam  w idth satisfy the inequality

If one replaces the inequality sign by an equality

p I  = - ( 2 h / « ) K l -  (25a)

one obtains a curve p^t ^ fh  versus po graph which 
separates the region o f  steady divergence I from  that o f 
oscillatory divergence II. Points (po. A)) that fall above 
the critical curve (region III) alw ays lead to self-focussing. 
It may be pointed out here that the transm itted beam to 
be Gaussian, one m ust have 2/(1 + /i) = a, a constant. 
Ir. this case, ^  = c = 0 and N  = 1 which reduces eq. 
(20a) to the form  valid for infinitely extending plasma. 
The critical and divider curves Pc and p^  for = 0.5 
and ponderom otive nonlinearity  have been shown in 
Figure 1. To obtain these curves, we start with choosing 
a value for (3 a m /4 M )E ^  = « '  (say) over the range 0 to 
2 at suitable intervals. For each value o f a \  we calculate 
a, c and hence N  along the line prescribed earlier, po 
is now obtained as po = o ^ a \  Substitution o f po = Pco in 
eq. (20a), gives Po such that (po. A )  Ihe critical
curve. Similarly, po  for the d iv ider curve can be obtained 
for each po from  eq. (25a) for the curve p,/. The curves 
p, and pd can be clearly  distinguished from the two 
dotted curves w hich correspond to an infinitely extending 
plasma and have been included in the diagram  for 
comparison. A com parison o f  the continuous and dotted 
graphs shows that reflection at the interface increases the 
area o f the po ~ po  co rresponding  space to steady 
divergence.

The tw o graphs pc and pd d ivide the entire positive 
quadrant o f the (po, po) plane in regions 1, II and 111.

0.5
10

4
20

The /  versus ^  graphs have been obtained for typical 
points A (0.585,1), B (1.09,2) and C (0.585,4) o f Figure 
1 and have been shown in Figure 2. The graphs show  
steady divergence for the point A in region 1, oscillatory 
divergence for the point B in region II and oscillatory 
convergence (self-focussing) for the point C in region
III.

4.2. Collisional nonlinearity :

jFor collisional plasma, £2{EE^) is given as [18]

! = + (26) 

Js is a parameter characterizing the nature o f collisions
i|and a  is the same as defined in the ponderom otive case, 
fproceeding exactly as in the ponderom otive case, one 
'obtains the equation for vanishing as

P Pc
(4-')/2

(l-(V 2 ))(l-(2 * /a ))0 = *

where

p  = { a l2 ) { p ^ E l , l f ^ )

and p, is its critical value ensuring d'^fld^^ to vanish. By 
going to ^  = 0, one obtains the critical pow er curve as

( l - (V 2 ) ) ( l - (2 * /a ) )0 ^  •

Similarly, the divider curve is obtained as

Po Po = W o -  (•^/2)) 0 -  (2 h /a ) ) 0 ^ }• (28)

For .V = 1 (heavy particles being predom inantly neutrals), 
these equations reduce to

p ‘ p,„ = 2 A^d + p ,„ -  {2b /a ))0^

and

PoPo = { 2 ^ /(^ -(2 * /‘>))«^}-

(29)

(30)

figure 2. Variation o f beam width param eter/, with dimensionless distance 
of propagation corresponding to initial points (po. P o) wz. A, B and C in 
ihc regions, as shown in Figure 1. The curves ciwrespond to X? *  0.5.

These equations match with the equations for relativistic 
nonlinearity with a different constant used in defining p .  
The critical and the divider curves have been draw n for 

0,5 selecting values for a - a E % ^ f2  in the range 0  
to 2 and proceeding as in the case o f the ponderom otive 
nonlinearity. The curves have been shown in F igure 3, 
for s -  I and 4ivide the entire positive quadrant o f  po* 
Po plane in three regions 1, II and III.



4 0 6

4,3. R elativistic  nonlinearity  :

A sh u to sh  Sharm a, M  P  Verma a n d  M  S  S o d h a

T he /  versus ^  graphs for typical points in the three 
regions are depicted in Figure 4. Tlie param eters a , b 
and c  vary continuously with a* and can be evaluated as 
already explained. A sam ple o f  these calculated values 
fo r selected values o f  a '  have been listed in Table 1. 
T hese values can be and have been used as check values 
in the com puter calculations.

F igure  3. The critical curve (p,0 and divider curve {pa) *n the 
dimensionless initial beam width (j^Q^raOj/c) versus dimensionless initial 
beam power = (« /2 )< i^ E ^  plane for collisional nonlinearity {s = 
1). Regions 1, II and III have been illustrated. The curves correspond 
to = 0.5. The points A (0.13, 2), B (0.51, 3.5), C (1.1. 5) refer to 
typical points for which variation has been given in Figure 4.

F ig u re  4. Variation o f beam width param eter/, with dimensionle.ss distance 
o f propagation corresponding to  initial points (po. po) viz. A, B and C in 
the three regions, as shown in Figure 3; the curves corresponds to 0.5.

T ab le  1. Values o f  the constants a , b , c  for selected  values o f  or' for 
(fi" = 0.5).

c t 0 0.5 1 1.5 2
a 1.17 1.084 1.045 1.025 1.014

1 b 0 0.044 0.0296 0.152 0.0068

1 c 0 -0 .0035 -0.0041 -0 .0035 -0 .0025

1 a 1.17 1.13 1.105 1.09 1.08

%
S h 0 0 0 2 7 0.033 0.03 0.032

u c 0 -0.031 -0 0 4 4 -0 .049 -0 .05

As pointed out in the introduction, relativistic nonlinearity 
is dom inant in the initial duration o f  a high irradiance 
laser beam  propagation . In this case [1 3 J9 J  for a 
circularly  polarized beam .

| l  -  (l+  )e E * )  j .
( 31)

Eq. (31) and eq. (26) are identical w hen s = l and
a /2  = ! m ^o y’c^  .

H ence, the results for collisional p lasm as with s = l and 
a /2  —e^jrn^aP'c^  are applicable to the case o f  relativisuo 
nonlinearity.

5, Conclusions
It is seen that after transm ission through a nonlinear 
plasm a-free space interface the transverse irradiance profile 
o f  an initially G aussian beam  gets significantly  altered. A 
study o f  self-focussing o f  this beam  in the JWKB - 
parabolic equation approxim ation, predicts three regions 
in the incident beam  pow er ~ beam  w idth plane, which 
correspond to self-focussing, oscillatory  divergence and 
steady  d ivergence . T he dep en d en ce  o f  beam  width 
param eter on distance o f  propagation  has been studied 
for typical points in the three regions. T he critical and 
d iv id e r  c u rv e s , d e m a rc a tin g  the  th ree  reg ions are 
significantly  d ifferent in the tw o cases and so are the /- 
^  curves, characterizing the self-focussing/defocussing.

T he transverse irradiance profile o f  the beam, the 
critical and d iv ider curves and the dependence of beam 
w id th  p a ra m e te r  on d is ta n c e  o f  p ro p a g a tio n  arc 
considerably d ifferent from  the case, w hen the plasma is 
o f  infinite extent and the source is located in the plasma, 
as is com m only assum ed in sim ilar studies.
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