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Abstract : The nonlinear propagation o f  a laser beam in the TEM lo mode, through a plasma, has been studied by expanding the eikonal around 
the axis and an intensity maximum. Three kinds o f nonlineamies viz ponderomoiive, collisional and relativistic, have been considered. It has been  
observed that uneven refraction o f  the beam in a- and y directions, rules out the possibility o f u uniform waveguide mode propagation (Le. without 
convergence or divergence). The beam width parameters characterising convergence/di vcrgence in x  and y directions respectively, have been obtained 
by numerically integrating the corresponding differential equations. In the axial region, the beam suffers steady divergence, enhanced by nonlinearity. 
Por regions close to irradiance maxima, two coupled differential equations for beam widths in x  and y directions have been obtained. These have been 
solved for a set o f  typical parameters and a discussion o f  the results is presented.
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1. In tro d u c tio n

The self-focussing o f laser beams in plasm as has been 
extensively investigated in the last three decades [1-12]. 
Most of these investigations consider beams with Gaussian 
distribution o f  intensity along the wavefront implying 
that the laser is operated in the TEMoo mode. However, 
there are situations where higher order modes (e,g. the 
TEMio mode) also becom e important. W hen lasers are 
operated with m irrors having annular output coupling 
apertures, the low est order m ode (TEMoo) is suppressed 
and higher order m odes, such as the TEMio mode are 
excited. Sodha e t al  [13] have studied the asymmetric 
focussing o f  this m ode in a dielectric with quadratic 
nonlinearity, for regions around the axis and around the 
maximum o f irradiance, the analysis was limited to the 
geometrical optics approxim ation. This treatm ent is valid 
for modest intensities as at higher intensities, the dielectric 
^ s ta n t  tends to  saturate. The saturating nonlinearity 
C<>rTesponding Author

modifies the nature o f .self-focussing of Gaussian beam s. 
One expects similar effects in the case o f non-Gaussian 
beams.

There are two regions o f the TEMio m ode laser 
beam, which are o f interest v/z. (i) around the axis jr = 0, 
y = 0 and (ii) around points o f m axim um  irradiance. 
Since a solution applicable to the whole wave front o f  
the beam is not obtainable, the authors have adopted an 
approach [13], similar to that adopted in the paraxial 
approximation [1-3]. In this approxim ation [1—3, 13], the 
nature o f intensity distribution o f the beam  rem ains 
unchanged and beam width param eters f\  and f i  define 
the intensity distribution. It is well known that the results 
of paraxial approximation are not valid for points far 
from the axis, since the expansion is made as a series in 

(jĉ  and y^). Hence, the intensity distributions for the 
paraxial (x = 0, y = 0) region and regions around the 
m ax im um  in te n s ity  a re  o f  d if fe re n t n a tu re ; th e
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m athem atical basis for this difference is the fact that the 
expansion is made in term s o f  and i.x—x\lf\jr ,
respectively. In the approxim ations used, the beam  retains 
TEM io m ode structure with different values o f  f \  and /2  
in the tw o regions o f interesl.

In this paper, we study the self-focussing o f  a laser 
beam  in the TEMu) mode propagating in plasm a. Three 
ty p es o f  n o n lin e a r itie s  have been co n s id e re d  viz. 
ponderom otive, collisional and relativistic, w hich conform  
to the saturating nature o f the dielectric constant & with 
increasing EE^. As expected, it is seen that the focussing 
o f  the beam  is asym m etric. Case (i) corresponds to 
steady divergence, because EE* —> 0 as .-v, y go to zero 
and consequently, the nonlinearity  is negligible. H ow ever 
for case (ii), depending on the initial values o f  the beam  
p o w e r  an d  b e a m  w id th , (a ) s te a d y  d iv e rg e n c e , 
(b) oscillatory divergence and (c) self-focussing in x  and 
y  d irections are predicted. This result is qualitatively 
sim ilar to  the results o f  the recent analysis, related to the 
G aussian (TEM(X)) m ode [12].

2. Self-focussing

C onsider the propagation o f  a TEM io m ode laser beam 
in a plasm a along the ^-direction,

£ (.x ,y ,z) = A (.r,y ,z )ex p (-/(< w /-/:z )) .

A t z = 0

AA*  = E ^ ix ^ /r o )e x p { - ( ^ ^  + r ^ )  (1)

w here Eo and ro are constants; the intensity m axim a in 
the z = 0 plane lie at (± 0). Follow ing Sharm a et al
[12] the d ielectric constan t ^  o f  the p lasm a can be 
expressed as

e{x. y. z) -  eo(z) + eiix,y,z). (2)
The JW K B  solution o f the one-dim ensional wave equation 
suggests that for a slow ly d iverging o r converging beam, 
one may w rite

E C x,y ,z)  = > '»^)exp

x i ^ c o t - j ' ^ J e ^ J ^ d z - ^ J e ^ T ^ S ( x . y , z ) ^ ,  (3)

w here the te rm ^ Q  (0 ) /^ o  included in A q and 5
is an eikonal. Substitu ting  for E  in to  the w ave equation 
and separating the real and im aginary parts o f  the resulting 
equation, one obtains

dA(y ds BÂ  ds 2

Bz dx dx dy By * (4}

and

2 d S j d S ^ ^  f d S
~dz V ax  J [ 3 V

I . , 1
(<.) A) Bx^ By^

Wc solve these equations in tw o different limits.

3, Axial beam propagation
For the portion o f  the beam  close to the z-axis.

(• . (5)

I y l« /"o , eq. (4) is satisfied by

S (x ,y .Z )  = ^ P i ( z ) x ■ v u )

and A ^ ( x ,y ,z )  =
f i f i  r^A‘

expl
r i f i

IX i.

( 6)

(7)

w here (p iz) is an arbitrary function o f z, w hich does not 
affect focussing, and

/^ i(z)  = 1
dz

P A z ) (8»i _  ^
f ,  dz  ̂ '  / 2 * dz  ‘

and f i 2iz)  represent the curvatures o f  the wavefroni 
in the respective d irections and vanish for a plane wave 
front.

The d ielectric constant can in general, be expressed 
as [2]

e = £ o  = E o + 0 (a J ) . (4| I

The functional forni o f 0  depends on the specific operative j 
nonlinearity. For ponderom otive nonlinearity  [2,3]

<!>(EE') = a ^ \ \ - e x p \  - ^ a ^ E E " ( 10)

w here i2  = cop/oj  ̂ cOp is the plasm a frequency corresponding 
to unm odified electron density  and electron rest maSwS m. 
M  is the ion m ass, and a  -  e^M f6m ^co^kffTQ , -e is the 
electron charge, ks  is the B oltzm ann constant and To 
the p lasm a tem perature.

Substitu ting  EE* from  eq. (7) in eq. (1̂ ’̂
expanding the function in pow ers o f  the coordinates i 
retaining term s upto squares o f  x  and y, one finally j 
obtains
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The dimensionless quantity 

_ 2  m Eq _  Po
^ " 4  A / / . / 2  / , /2 ( i l)

,s proportional to £ ^  and represents dimensionless beam 
power. Pit is the dimensionless beam power at z = 0. 
Thus,

e ( i, y, c) = (1
Q ^p

'b J\

The lowest order term in y  involves and is therefore 
neglected. Comparison with eq. (2) gives

and

r i p
Substituting for S, A q , ^o(z) and € i(a, y, z) in eq. (5) 
and equating the coefficients of and y^ separately to 
zero, one obtains

( i - o = )2W V 1 _ 1
ac / i

{i + £ ? V p } ( 12)

and (13)
\_

f i  '

where P -  Pof\  ̂ The param eters f  = rz/r(fa> and 
/!,) -  rQco/c represent dimensionless distance of propa­
gation and dim ensionless beam width at e = 0, 
respectively. The boundary conditions corresponding to a 
plane wave front at ^  = 0, are

^  = ^  = 0 and / ,  = / 2  = 1: ^  = 0. 
df d<f •' ^ ^

(14)

4. Propagation close to irradiance maxima
The propagation of the beam around the intensity maxima 
can be analyzed in a way similar to that in Section 3. 
One can use an approximation akin to the paraxial 
approximation by .substituting a = /o / i  + Ai and requiring 
1 X\ l« ro . Eqs. (4) and (5) remain unchanged except that 
^ d x  is replaced by d/dA,. The eikonal may be expressed 
a&

t 2 2

■■liicn A,-, satisfying eq. (4) can be written as

(15)

i J\J2
1 +

rof{

expl - |  1 +
rof{

expl -
ro /z"

where P'iU) = - 4 —
f(U )  dz '  n i z )  dz

(16)

(17)

The eikonal expansion may have a term linear in Ai. 
However, it does not contribute to the curvature of the 
wavefront and hence, self-focussing.

4.1, Fonderomotive nonlinearity (collisionless case) : 

The dielectric constant e(x,y,z) for the ponderomotive 
nonlinearity may be expressed up to terms in x f  and
as

€ (A ,y .2 )  =  GoU) +  €i(x ,y ,z\

where Gq (z) = 1 “-^2" exp(~ ;?.exp(~l)) 
andGi (A,y.z) = ~ i2^cxp(~ p .exp (-l))p

Since the terms on RHS of eqs. (12) and (13) are always 
positive / ,  and fz  keep on increasing with increasing ^  
implying steady divergence.

It is also instructive to visualize the physics behind 
the steady divergence. Since near a = 0, y = 0, the 
electric field increases with increasing a, the refractive 
index also increases with increasing a; this augments the 
diffraction divergence. For the case of collisional and 
t^lativistic nonlinearities, qualitatively similar results are 
obtained.

2a^
xexp(“ l)j -V775 

'o / i  ‘

( 18)

'b J2

Substituting for S{x, y  z \  A l( x ,y ,z ) ,  S q(z) and G i(A,y,z) 
in eq. (5) and equating the coefficients of x^ and y^ 
separately to zero, one obtains

1d ^ f { ^
e „  (z)/,'̂ 3

2Q^ p f  p .cxp{-\)  1 
exp(p.cxp(-l))

flfVz _____ l_  ̂ £ > V |p .ex p (-l)
eo  \ exp(p .exp(-l))

(19)

(20)
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w here p , =  P o /i ', P 2 = P 0/ 2 ' and the other sym bols are 
the sam e as in Section 3, At  ̂ = ()(^ = 0). one has 
/ r  — h*  — I and if in addition, the w avefront is plane, 

~ ‘ T h u s , th e  b o u n d a ry
c o n d itio n s  fo r in teg ra tin g  cqs. (19 ) and (20 ) are

/ , '  = / 2 =  1. ■?= 0.

•̂ ..2. CoUisinnal notilinearily :

In a collisional plasm a, ohm ic nonlinearity arises through 
the heating o f electrons and subsequent redistribution o f 
plasm a density. In this case, the dielectric constant can 
be written as

e = \ - a - \  1 + — EE* (21 )

w here a  and have the sam e m eaning as in collisionicss 
case, w hile s is a param eter characterizing the nature o f  
collisions. Proceeding as before, one obtains for the 
portion o f  the beam  around the intensity  m axim a, the 
split parts o f  the d ielectric constant as

and

e o { 2 )  = I - i 2 2 ( ,  + , , .e x p ( -D )

 ̂ )(l + p .e x p (- l) )^

(22)

2 * r
'bV,'^ 2 f  >2

'() J2
(23)

where p  represents the dim ensionless quantity ^  L fi f i   ̂
The differential equations for / , '  a n d c a n  then be 
obtained in the form :

5. D iscussion

The behaviour o f  the portion o f  the beam  close to the 
axis is governed by eqs. (12) and (13). Eq. (13) 
directly  integrated for initially  plane w ave front (df/dq~^ 
0 and /2  = 1 at = O) to get

/z  -  a/ )

Eq. (12) involves /2  and can be integrated numericallv 
after substituting this expression f o r / 2. The parameters/ 
and f 2 as functions o f  ^  have been graphically  repre.somcd 
in F igure 1 for su itable values o f  param eters 12, p„ and 
Piu (subscript zero indicates values at ^  = 0). The grapns 
are clearly as expected.

Figure 1. Beam width parameters / ,  a n d /2 corrc.spcmding to x and v axes 
respectively, as functions o f  ^ fo r  £2^ = 0 .2 , Po^  * (axial beam
propagation in co llision less plasma).

d ^ / :  I
d i^  e.)

d ^ f i2, ~ .
di'^  e o  (^)/2-

(2 -  s ) f i “/>,’ p .e x p (- l)  

(l + /j.e x p (- l) )^ " i

2(l + p .exp{-I))^  2

(24)

(2 - .y) Q  p .o xp {-D
" (25)

s  is equal to 1 or —3 corresponding to collisions with 
neutrals and ions respectively. T he expression for the 
relativistic nonlinearity  (as pointed out by Sharm a et a l 
f l2 ] )  can be obtained from  the expressions given above 
by putting  s  =  1 and  ~  f  .

From  eq. (19) (collisionless p lasm a), one observes 
that for d '^ f\!d ^ ^  = 0, to vanish at = 0, the initial 
beam  width /7o and initial beam  pow er po must satisfy

2 _  e x p (p o e x p (- l) )
” 2 £ ? ^ P (,e x p (-l)  ■

(26)

A correspond ing  relation for d '^ fy d ^ '^  to  vanish at 
^  = 0, is

2 _  e x p (p o e x p (- l) )  
" £ /^ p o e x p ( - l )

(27)

TTie tw o conditions are different and can  not simul' 
taneously be satisfied fo r any choice o f  initial beam



Self-focussing o f  TEM,o m ode laser beam s in p lasm as 397

v̂ idtti and beam power. Since the beam power p  is equal 
even if one started with cE f\/d ^^  = 0, / ',  will 

,t remain unchanged because / i  will be changing. One 
.̂̂ n̂clucles that a uniform wave guide mode of propagation 

,s just not possible for the TEMjo mode. Eqs. (26) and 
1̂ 7) represent relations between the initial beam width 

initial beam power shown by curves C (l)  and C(2) 
respectively in Figure 2. These curves are not like the

propagation. Obviously, if the point (/>o,/>o) lies in between 
the two curves or below C( 1) or much below C( I), the 
variation of /,' and yV will be very different. I ’hesc 
variations can be obtained by integrating eqs. (19) and
(20) numerically. J'hc two equations arc not independent 
and must be integrated simultaneously. This has been 
done choosing different pairs of initial values (/?(>,/>(>) and 
the corresponding plots of /,' and / '̂ as functions of ^ are 
given in Figures 3 to 6. Figure 3 corresponds to the 
pewnt {p(u/h)) lying above C(2) in Figure 2.

Figure 2. Initial beam width Po versus initial beam power near irradiance 
f!K!xima for (collisionless plasma) with = 0 2. iP j indicated by
i('( I j) and

critical power curve obtained for the Gaussian beam in 
so far as they are relevant only at ^  = 0; yet they are 
significant in as much as they determine the sign of 

and for any chosen initial values of
beam width po  and beam power po. thus d - f \ /d ^ -  at 
f = 0 will be positive, zero or negative according as the 
point (poiA)) ties on the same side of the curve C (l)  as 
the origin, on the curve and on the other side of the 
curve, respectively. Similar conclusion can be drawn for 

at ^  = 0. The signs o f these quantities indicate 
whether / /  a n d / 2 ' will initially decrease or increase; 
negative sign indicates decrease viz* self-focussing, while 
the positive sign indicates initial divergence.

If now, the initial point (po.Po) ties above the curve 
^(2) and hence also above C (l)  (see Figure 2), then 
both d ^ f\fd ^^  and d ^ fy d ^ ^  arc initially = 0) negative, 
^ is  implies that f ' and f y  both start falling below their 
initial values unity. In other words, the beam gets self- 
focussed in both directions in the early part of its

Figure 3. Beam width parameters / and f \  corresponding to a and y directions 
respectively, and their product /',./?  as functions o f dimensionless distance 
of propagation ^f(^r the point a(2, 5) ot Figure

Figure 4. Beam width parameters/' , a n d /;  corresponding to the x  and y  
directions respectively, function.? o f dimensionless distance o f  propagation
^for the point b(3, 3) o f  Figure 2.



398 A sh u to sh  Sharm a , M  P  Verma^ M  S  S o d h a  a n d  V  K  T ripa th i

F igure  5. Beam width parameters f \  and corresponding to the x  and v 
directions respectively, as functions o f  dimensionless distance o f propagation 
f  for the point c(4, 2.5) o f Figure 2.

Figure 6. Beam width parameters f \  and f '2 corresponding to the x  and y  
directions respectively, as functions of dimensionless distance of propagation 
f  for the point d(l, I) of Figure 2.

This figure also shows the variation of fifz^  its 
reciprocal determining the irradiance of the beam at 
Figure 4 corresponds to a point lying between the curves 
C(l) and C(2) and shows that f i '  experience's oscillatory

divergence w hile f \  undergoes an oscillatory  convergence 
in o ther w ords, gets self^focussed. F igure 5 depicts the 
results fo r a point (po,Po) lying below  the curve C (l) and 
Figure 6 plots f \  and f 2 for a point m uch below Q i)

Figure 5 corresponds to  oscillatory  divergence, while 
F igure 6 corresponds to  steady divergence o f the bean 
both in jc and y  d irections.

The above analysis and calculations can be conduciei 
for the collisional p lasm a (and relativistic plasm a) stanm< 
w ith eqs. (24) and (25). T he results so obtained an 
sim ilar to  those reported  fo r the co llisionless plasma 
discussed above.

6. Conclusions
N ear the axis (jc = 0, y = 0), the electric  field and hence 
the refractive index increases w ith increasing x\ thi 
augm ents the diffraction divergence o f  the beam. Ho 
finite values o f x  (near the axis), the field  decreases wu 
increasing y; thus the nonlinearity  tends to converge ili 
beam  in the y direction effectively reducing the diffraciio 
divergence. This is obvious from  the slow er rise of /;. i 
F igure 1 com pared to that o f  f \ .

For regions close to the irradiance m axim a, one obtain 
tw o coupled equations for beam  w idths f \  and in 
and y directions. T he critical curves for x  and y direction 
are d ifferent and so are the curves for the two bear 
w idth param eters /] ' and f 2 . Specific typies o f  nonlineariiie 
have been considered and dependence o f  f {  and j \ ’ n 
d istance o f  propagation, has been investigated  for typia 
values o f  the param eters.
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