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Self-focussing of TEM,;, mode laser beams in plasmas
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Abstract : The nonlinear propagation of a laser beam in the TEM j, mode, through a plasma, has been studied by expanding the eikonal around
the axis and an intensity maximum. Three kinds of nonlineanties viz ponderomouve, collisional and relauvistic, have been considered. It has been
observed that uneven refraction of the beam 1n x and y directions, rules out the possibility of a uniform waveguide mode propagation (i.e. without
convergence or divergence). The beam width parameters characterizing convergence/divergence in x and y directions respectively, have been obtained
by numerically integrating the corresponding differential equations. In the axial region, the beam suffers steady divergence, enhanced by nonlinearity.
kor regions close to rradiance maxima, two coupled differential equations for beam widths 1n x and y directions have been obtained. These have been
solved for a set of typical parameters and a discussion of the results is presented.
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1. Introduction

The self-focussing of laser beams in plasmas has been
extensively investigated in the last three decades [1-12].
Most of these investigations consider beams with Gaussian
distribution of intensity along the wavefront implying
that the laser is operated in the TEMy mode. However,
there are situations where higher order modes (e.g. the
TEM,, mode) also become important. When lasers are
operated with mirrors having annular output coupling
apertures, the lowest order mode (TEMy) is suppressed
and higher order modes, such as the TEM;, mode are
excited. Sodha et al [13] have studied the asymmetric
focussing of this mode in a dielectric with quadratic
nonlinearity, for regions around the axis and around the
maximum of irradiance, the analysis was limited to the
geometrical optics approximation. This treatment is valid
for modest intensities as at higher intensities, the dielectric
Constant tends to saturate. The saturating nonlinearity
.Cm‘wlding Author

modifies the nature of self-focussing of Gaussian beams.
One expects similar effects in the case of non-Gaussian
beams.

There are two regions of the TEM,, mode laser
beam, which are of interest viz. (i) around the axis x = O,
y = 0 and (ii) around points of maximum irradiance.
Since a solution applicable to the whole wave front of
the beam is not obtainable, the authors have adopted an
approach [13]), similar to that adopted in the paraxial
approximation [1-3]. In this approximation [1-3, 13], the
nature of intensity distribution of the beam remains
unchanged and beam width parameters f; and f> define
the intensity distribution. It is well known that the results
of paraxial approximation are not valid for points far
from the axis, since the expansion is made as a series in
P (x? and y?). Hence, the intensity distributions for the
paraxial (x = 0, y = 0) region and regions around the

maximum intensity are of different nature; the
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mathematical basis for this difference is the fact that the
expansion is made in terms of x2, y2, and (x—xi/fi)* »?
respectively. In the approximations used, the beam retains
TEM,, mode structure with different values of f; and f>
in the two regions of interest.

In this paper, we study the self-focussing of a laser
beam in the TEM,, mode propagating in plasma. Three
types of mnonlinearities have been considered viz.
ponderomotive, collisional and relativistic, which conform
to the saturating nature of the dielectric constant € with
increasing EE’. As expected, it is seen that the focussing
of the beam is asymmetric. Case (i) corresponds to
steady divergence, because EE” — 0 as x, v go to zero
and consequently, the nonlinearity is negligible. However
for case (ii), depending on the initial values of the beam
power and beam width, (a) steady divergencec,
(b) oscillatory divergence and (c) self-focussing in x and
y directions are predicted. This result is qualitatively
similar to the results of the recent analysis, related to the

Gaussian (TEM,,) mode {12].

2. Selif-focussing

Consider the propagation of a TEM,;, mode laser beam
in a plasma along the z-direction,

E(x,y.2) = A(x, y, ) exp(- i(w? — k2)) .
Atz =0

AA" = E&(xz/roz)exp(— (xz + y2)/r02) )
where Ey and ry are constants; the intensity maxima in
the z = O plane lie at ( r,, 0). Following Sharma et al
[12] the diclectric constant & of the plasma can be
expressed as

€x ¥ 2) = €(2) + €,(x)2). 2)
The JWKB solution of the one-dimensional wave equation
suggests that for a slowly diverging or converging beam,
one may write

E(x,y.2) = Ag(Xx. y,2).exp

xx(wt—f €0 (2) dz-—,/eo (2) S(x.y.z)] 3)

where the term (g, (0)/e, (z))’* is included in Apand S
is an eikonal. Substituting for E into the wave equation
and separating the real and imaginary parts of the resulting
equation, one obtains
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We solve these equations in two different limits.

3. Axial beam propagation

For the portion of the beam close to the z-axis. |x|
|y l<<ro, €q. (4) is satisfied by

1 2 1
S(x,.v-z)=5/>‘l(z)x’+-2-ﬁ:(z)y2+¢(z) (6
2 2
and Aj(x 3, 2) = expl —- = (7
flf" 6 f 8 F o P

where @ (z) is an arbitrary function of z, which does not
affect focussing, and
1 df 1 df,
Buz)=—.==, f(a)=—.—%. (8)
fi dz fr dz
Fi(z) and f>(z) represent the curvatures of the wavefront
in the respective directions and vanish for a plane wave
front.
The diclectric constant can in general, be expressed

as [2]

e=€, +¢(E-E") =€, +@(A]). (N

The functional form of ¢ depends on the specific operativ |
nonlinearity. For ponderomotive nonlinearity [2,3]

- _ 2 3 m . ,

P(EE™) = 9% |1-exp| -Za  EE (10)
where 2 = w,/a w,is the plasma frequency corresponding
to unmodified electron density and electron rest mass 7
M is the ion mass, and a=e?M/6m2w?kyT, -e is
electron charge, kg is the Boltzmann constant and To
the plasma temperature.

Substituting EE* =A} from eq. (7) in eq. (10
expanding the function in powers of the coordinatcs :
retaining terms upto squares of x and y, one ﬁ“a"Y';
obtains '
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02 3 m E() xz
4 M f|fa n fl

The dimensionless quantity

=(1-9%)+

_3am B Ei _ _po
P=4"M fifs £

s proportional to E& and represents dimensionless beam
power, Po is the dimensionless beam power at z = 0.

Thus,

(1

Q?
e (L =-QM+ =3 ’;
"o

The lowest order term in y involves x2y? and is therefore
neglected. Comparison with eq. (2) gives

€, (2)=1-2*
and
QL
€, (xy2)= 3 ’;
o i

Substituting for S, A}, €o(z) and €,(x. y 2) in eq. (5)
and equating the coefficients of x? and y? separately to
cro, onc obtains

oL -

1 2 2
e 3{1*9 p*p} (12)
h
N2y
and (l_g")_'__=—-—‘ 13
N f23 13)
where  p=pyf;. The parameters¢=cz/riw and
M =ryw/c represent dimensionless distance of propa-
gation and dimensionless beam width at z = 0,

respectively. The boundary conditions corresponding to a
plane wave front at & = 0, are

Lﬁ:.‘!fl:o and f (14)

¢ d¢ =f=liéi=0

Since the terms on RHS of egs. (12) and (13) are always
positive f, and f> keep on increasing with increasing &
implying steady divergence.

It is also instructive to visualize the physics behind
the steady divergence. Since near x = 0, y = 0, the
clectric field increases with increasing x, the refractive
index also increases with increasing x; this augments the
diffraction divergence. For the case of collisional and

relativistic nonlinearities, qualitatively similar results are
obtained,
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4. Propagation close to irradiance maxima

The propagation of the beam around the intensity maxima
can be analyzed in a way similar to that in Section 3.
One can use an approximation akin to the paraxial
approximation by substituting x = rof} + x; and requiring
[ x) |<<rn. Egs. (4) and (5) remain unchanged except that
d/0x is replaced by d/0x,. The eikonal may be expressed
as

[ S(x, vv\.)_—'ﬂl( )X| +-= ﬂ?( Wy +0'(2). (15)
[?\cn A{ satisfying eq. (4) can be written as
{ Az - Ey X
i O(X.'Y,Z)— ot +_;
§ hA nfi
expl | 1+ 7L exp - v I (16)
ofl 7'02 22 I
1 df| 1 dle
where Bi(2)=—-— -1, Ba(2)= -~ a7
T @ d TP £y
The eikonal cxpansion may have a term linear in x;,

However, it does not contribute to the curvature of the
wavefront and hence, self-focussing.

4.1. Ponderomotive nonlinearity (collisionless case) :
The dielectric constant €(x,y,z) for the ponderomotive
nonlinearity may be expressed up to terms in x,2 and )?,
as

e(xyz) = €¢(2) + €,(x,y2),

where €, (z) =1- 27 exp(~ p.exp(-1))

and€| (x,y,2) = ~Qz exp(- p.exp(=D)p
l 2 ’ (18)
xexp(=1) <5 2.
o f3

ofx

Substituting for S(x, y, 2), A%(X. »2), €¢(2) and €,(x,y.2)
in eq. (5) and equating the coefficients of x,2 and y?
separately to zero, one obtains

arff _ 1_“{ 20%pE p.exp(-1)|
de? ey (D f

exp(p.exp(—1)) 19)

d’f; 1 2% p3 p.exp(-1)
2 - — (20)

det o (0f | exp(p.exp(-1)
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where o, = pofi’. P2 = pPofs’ and the other symbols are
the same as in Section 3. At z = (& = 0), one has
£ = f2" =1 and if in addition, the wavefront is planc,
dfi/dE). o =dfi/dE),., =0. Thus. the
integrating c¢qs. (19) and (20) are
fi=1. &= 0.

boundary

conditions for

’ ’ ¥ LA
df /(I‘f):zl) =df;/dg );::() =0, fi =
4..2. Collisional nonlinearity :

In a collisional plasma, ohmic nonlinearity arises through

the heating of eclectrons and subsequent redistribution of

plasma density. In this casc, the dielectric constant can
be written as

-
e=1—g-’|1+-‘;—EE* 12 @21)

where a and £2 have the same meaning as in collisionless

case, while s is a parameter characterizing the nature of

collisions. Proceeding as before, one obtains for the
portion of the beam around the intensity maxima, the

split parts of the dielectric constant as

2o
€ (2)=1-2%(1+ p.exp(=])) 2 (22)
. e vl s 2° p.exp(~1)
and €, (x,y.2)=| 5! I(l+p.exp(-—l))2"‘/2 .
i 23)
o fi n f2 l

N . . X 2 pr o por
where p represents the dimensionless quantity 5 Eyifi Sy,

The differential equations for f{' and f5 can then be
obuined in the form :
drf) _ 1 (2-5)Q2%pi p.exp(~1)
S (24)
de €0 (0 (1+ pexp(-n) 3
azp 1 _(2~5) Q%p3 p.exp(-1)
- (25)

2 3 £77 P
4 €p (2).f2 201+ p.exp(=1))*"2
s is equal to 1 or -3 corresponding to collisions with
neutrals and ions respectively. The expression for the
relativistic nonlinearity (as pointed out by Sharma er al
[12]) can be obtained from the expressions given above

by putting s = 1 and %=e2/m2wzcz,
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S. Discussion

The behaviour of the portion of the beam closc the
axis is governed by eqs. (12) and (13). Eq. (13) can be
directly integrated for initially plane wave front (df/q
Oand /2 = 1 at z = 0) to get

fr=1+/a-2%) .

Eq. (12) involves f; and can be integrated numerically
after substituting this expression for f;. The parameter, /
and f; as functions of & have been graphically represenieg
in Figure | for suitable values of parameters Q ), ang
Po. (subscript zero indicates values at & = 0). The grapn,

£
(S

are clearly as expected.
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Figure 1. Beam width parameters f; and f, corresponding to 1 and v axe
respectively, as functions of & for £22 = 0.2, =10 and py = 1 (axial beam
propagation 1n collisionless plasma).

From eq. (19) (collisionless plasma), one observes
that for d2fi/d&? = 0, to vanish at & = 0, the inital
beam width o, and initial beam power p, must satisfy
o = exp(p, exp(-1)) 26)

202% pyexp(—1)
A corresponding relation for d2f3/d&? to vanish a
E=0, is
2 _ exP(PO cxp(—-l)) "
PO =5 7y -
Q% pp exp(-1)

The two conditions are different and can not simul
tancously be satisfied for any choice of initial bea™
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yidth and beam power. Since the beam power p is equal
o polf s €ven if one started with d?f\/d&? = 0, f; will

( remain unchanged because f2 will be changing. One
concludes that a uniform wave guide mode of propagation
s just not possible for the TEM,o, mode. Egs. (26) and
\27) represent relations between the initial beam width
d initial beam power shown by curves C(1) and C(2)
respectively in Figure 2. These curves are not like the

Po |

- oA

Figure 2. Imtial beam width g, versus initial bcam power p, near irradiance
maama for (collisionless plasma) with £2° = 0 2. &’ Jd&E™) ., indicated by
«Cch) and d*f YdEN gy

cntical power curve obtained for the Gaussian beam in
s ftar as they are relevant only at £ = 0: yet they are
significant in as much as they determine the sign of
EfildE?2 and d2f5/d&E? for any chosen initial values of
beam width p, and beam power po. thus d°fi/dE? at
¢ = 0 will be positive, zero or negative according as the
point (po,00) lies on the same side of the curve C(1) as
the origin, on the curve and on the other side of the
curve, respectively. Similar conclusion can be drawn for
*fidE? at £ = 0. The signs of these quantities indicate
whether f,' and f' will initially decrease or increasc:
negative sign indicates decrease viz. self-focussing, while
the positive sign indicates initial divergence.

If now, the initial point (po.00) lies above the curve
C(2) and hence also above C(1) (see Figure 2). then
both d2f1/dE? and d2fy/dE? are initially (& = 0) negative.
_This implies that £, and f;’ both start falling below their
initial values unity. In other words, the beam gets self-
focussed in both directions in the early part of its
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propagation. Obviously, if the point (py,00) lies in between
the two curves or betow C(1) or much below C(1). the
variation of f and f;' will be very different. These
variations can be obtaincd by integrating eqs. (19) and
(20) numerically. The two equations are not independent
and must be integrated simultaneously. This has bheen
done choosing different pairs of initial values (pg.00) and
the corresponding plots of f;" and f2' as functions of & are
given in Figures 3 to 6. Figure 3 corresponds to the
paint (po.g) lying above C(2) m Figure 2.

B D

6, 1,

M
£
>

Figure 3. Beam width parameters f | and [ corresponding to x and y directions
respectively, and their product /1 /5 as functions of dimensionless distance
of propagation & for the point a(2, 5) ot Figure 2.

v

13 x

Figure 4. Beam width parameters f and f corresponding to the x and y
directions respectively. as functions of dimensionless distance of propagation
£for the point b(3, 3) of Figure 2.
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'§ «©
Figure 5. Beam width parameters /| and f; corresponding to the x and y

directions respectively, as functions of dimensioniess distance of propagation
£ for the point c(4, 2.5) of Figure 2.

10

f1' f2

o v
g 15

Figure 6. Beam width parameters f} and f; corresponding to the x and y

directions respectively, as functions of dimensionless distance of propagation
£ for the point d(1, 1) of Figure 2.

This figure also shows the variation of fif?’, its
reciprocal determining the irradiance of the beam at &
Figure 4 corresponds to a point lying between the curves
C(1) and C(2) and shows that f>’' experiences oscillatory
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divergence while fi' undergoes an oscillatory co“"efgence’
in other words, gets self-focussed. Figure 5 depics the
results for a point (po,00) lying below the curve (1) and
Figure 6 plots fi’ and f3' for a point much below C(ly,

Figure 5 corresponds to oscillatory divergence, whjj,
Figure 6 corresponds to steady divergence of the bear
both in x and y directions.

The above analysis and calculations can be conduce,
for the collisional plasma (and relativistic plasma) staruy,
with egs. (24) and (25). The results so obtained a,;
similar to those reported for the collisionless plasmy
discussed above.

6. Conclusions

Near the axis (x = 0, y = 0), the electric field and hence
the refractive index increases with increasing x; th
augments the diffraction divergence of the beam. kg
finite values of x (near the axis), the field decreascs wi
increasing y; thus the nonlinearity tends to converge th
beam in the y direction effectively reducing the diffracuo
divergence. This is obvious from the slower rise of f, .
Figure 1 compared to that of fi.

For regions close to the irradiance maxima, one obtam
two coupled equations for beam widths f' and f' in
and y directions. The critical curves for x and y dircction
are different and so are the curves for the two bcar
width parameters fi' and f;' Specific types of nonlincaritic
have been considered and dependence of fi' and />’ o
distance of propagation, has been investigated for typic:
values of the parameters.
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