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\hstract

The effect of the parabolic confinement potential due to electrons on the binding encrgy of a donor impurnty centercd in a double-step
stential barrer quantum dot has been investigated within the effective mass approximation, as a function of the dot radius(R)

Calculations are

wiformed for several states using a numernical method both with and without the parabolic confinement potential The results show that as the dot
s increases, the effect of the parabohic potential depends very much on the state and 1s quite complex
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1. Introduction

Intccent years, there has been a great deal of interest in studying
the propertics of hydrogenic impurities in quantum dots. An
understanding of the physics of impurity states in semiconductor
quantum-dot structures is important for several device
applications. A number of investigations on the binding energy
ol hydrogenic impurities 1n spherical quantum dots have been
reported during the last few years [ 1-14]. Usually, the barrier

potenual 1s taken to be infinite beyond the radius of the quantum
dot

Recently, Betancur, Mikhailov and Oliveira [15] have
calculated energies of the ground and some excited states of
on-centre donors (D) in spherical quantum dots, within the
etfective mass approximation, as functions of the dot radius
and for different potential shapes. They used a trigonometric
Sweep method for a numerical solution of the radial Schrodinger

uation 1n a quantum dot with any arbitrary spherical potential.
One of the potential barriers considered by these authors is
imevant for a structure consisting of a GaAs quantum dot
furrounded by two concentric spherical layers of Ga, ; Al ;As
and Ga,, ssAly 4sAs. Such structures have been discussed to
blain a high optical nonlinearity for inter-band and inter-sub-
‘l and transitions [16). For such a structure, Betancur e al [15]

have represented the barrier potential by a double-step barrier
model which consists of a small rectangular potential inside a
large rectangular potential. These authors have calculated the
properties of the D° shallow donors in a quantum dot with such
a double-step potential barrier and two peaks in the binding
energy were found, which is quite interesting.

The question of the confining potential of electrons in a
quantum dot was considered by Kumar, Laux and Stern {17]
who self-consistently calculated the electron states in GaAs /
AlGaAs heterostructures with confinement in all three
dimensions and they found that the evolution of levels with
increasing magnetic field is similar to that found for a parabolic
potential. Thus, the confinement potential due to electrons could
be described by a simple one-parameter adjustable parabolic
potential. Peeters [18] pointed out that this is a consequence of
the generalized Kohn theorem which is valid for a harmonic
confinement potential.

It was of interest to examine the effect of the parabolic
confinement potential due to electrons on binding energies in a
structure like that of a GaAs quantum dot surrounded by two
concentric spherical layers of Ga, ,Al, ;As and Ga,, (4Alj 45As,
which has been considered by Betancureral |15] and for which
the double-step potential barrier model is valid.
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In the present paper, we first present results on the binding
energies of scveral states of an on-centre hydrogenic donor in
such a quantum dot structure as a function of the radius of the
dot, taking into account the Coulomb potential and the double-
step potential barricr. Next. we obtain results on the binding
energies taking into accoust the parabolic confining potential
due to electrons also. The differcence between the two binding
energies gives the contribution due to the parabolic potential.
The behaviour of this contribution is studicd as a function of
the radius of the dot.

2. Theory and calculations

We shall use atomic units such that the unit of length is the
reduced Bohr radius ¢, = ;,3,_-0/,,, * o7 and the unit of energy
is reduced Rydberg Ry = m* o [20° ) = &7 [2e4a, - Here, m*
is the effective mass and & is the dielectric constant of the
material of the quantum dot. In these units, the Hamiltonian can
be written as

H=-V"—Z4yr + H

where 7, =hw, /2 Ry, @, being the harmonic oscillator
frequency. ¥, is the double-step spherical rectangular barrier
potential used by Betancur ¢f a/ [15], which is as follows :

Vo =0 for r<03R
=40 Ry for 0.3R = r«<R
= 80 Ry forr = R. 2)
We have calculated the eigenenergies by numerical
integration of the Schrédinger equation using Numecrov's method
and the logarithmic mesh for the 1s, 25, 2p. 35 and 3p states of
the donor. To see the etfect of the confining potential due to
electrons, two sets of calculations were carried out: without the
yf, r? term and with it. The value of , is usually considered to
be less than 1. Here we have taken two values of 7, , namely

0.4 and 0.8. The y2 r? term was assumed to be zero for r > R.
Calculations were carried out for a large number of values
of R.

3. Results and discussion

The binding energy £, of the impurity is defined as the energy
of the system without the impurity present £, minus the energy
with the impurity (E) :

Ey(n, €) = Ey(n, 0)— E(n, (). 3)

First we consider the case when there is no confinement due
to electrons. In Figure 1, we show the binding energies for the
Is, 25 and 3s states, and in Figure 2 for the 2p and 3p states as a
function of R. Betancur er al [15] have obtained results for 1s,
2s and 2p states (their Figure 8). Our results for these states

fully confinn theirs except on one important point, The Curye
labelled 2p in their Figure 8 is actually for the 2s starc, ang
similarly the one labelled 2s is actually for the 2p state Our
Figure 1 shows two pcaks for the ls and 2s states, by the
behaviour of the 3s state is more complicated. There g yy,
close peaks, followed by a minimum and a peak and they y,,
binding energy continues to decrease. It will be noticeq 4
Figure 2 that 2p and 3p states show a similar behaviour. by,
having two pcaks.
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Figure 1. Binding encrgies for the s, 28 and 3 states as a function o!
radius R ‘The curve for the 24 state has been drawn with broken fne
the sake of clanty
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Figure 2. Binding cnergies for the 2p and 3p states as « function ot lf'ﬂ
radius R The curve for the 3p state has becn drawn with broken hines
the sake of clarity
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Next, we consider the effect of the parabolic confinement
pnxcmial due to electrons on the binding energy. We define the
pinding energy difference, AL, as follows:

AE = Epp(n, 0= Ep(n.0) )

where £y, (1,0) is the binding energy when the confining
pmcnual due to the electrons is included and E, (., 1) is the
pinding energy without it.

we show AE as a function of R in Figurc 3 for Is and 2
Jates for ¥, = 0.4, and in Figure 4 for the 2p state for y , = 0.4,
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Figure 3. Binding energy difference A for the 1s and 2s states as a
tunction of X for ¥, — 04 °‘The curve for the 24 state has been drawn
with broken hnes for the sake of clarity
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:igure 4. Binding energy difference AE for the 2p state as a tunction of
for Yp =04,
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It will be noticed from Figure 3 that s statc shows a small
maximum at R = | and then AE continues to increase with R. In
the case of 2s state, AL at first, shows a shallow minimum at

= 0.9 followed by a sharp peak and then it continues to
decrcase. Figure 4 shows that for 2p state, AE shows a sharp
and narrow minimum, followed by a sharp pcak at ® = 1.5 and
then it continues to increase. Thus, we see that the effect of the
parabolic potential depends very much on the state and is quite
complex. The results for y,, — 0.8 qualitatively show a very

. similar behaviour; quantitatively they are of course different.

4. Conclusions

We have investigated the ceffect of the parabolic confinement
potential duc to electrons on the binding encrgies of |5, 2 and
2p states of a donor impurity centered in a double-step potential
barrier quantum dot within the effective mass approximation, as

" a function of the dot radius. The results show that as the dot

radius increases, the effect of the parabolic potential depends
very much on the state and is quite complex
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