Einstein \boldsymbol{A}-coefficients for rotational transitions in the ground vibrational state of $\mathrm{St}_{2} \mathbf{C}$ molecule

Suresh Chandrt
School of Physical Sciences, S R T M University, Nanded-431 606, Maharashtra, India

E-mail : sch@iucaa.eract.in

Received 19 April 2000, accepted 5 June 2002

Abstract

We have calculated Einstein A-coefficients for rotational transitions in the ground vibrational state of the $\mathrm{Si}_{2} \mathrm{C}$ molecule between the rotational energy levels up to $21 \mathrm{~cm}^{-1}$. The coefficients are used to calculate the mean radiative lifetime of the levels. These A-coefficients may be used as input parameters for analyzing the spectra of $\mathrm{Si}_{2} \mathrm{C}$, as and when it would be observed in an astronomical object The transitions $7_{07} \rightarrow 6_{16}(5.34 \mathrm{GHz})$ and $8_{04} \rightarrow 7_{17}(14.74 \mathrm{GHz})$ may play important role for the search of the $\mathrm{Si}_{2} \mathrm{C}$ molecule in astronomical objects.

Keywords . $\mathrm{St}_{2} \mathrm{C}$ molecule, Einsteın A-coefficients
PACS Nos. : $33.20 . \mathrm{Bx}, 33.20 . \mathrm{Ea}, 3370$-w

1. Introduction

Two molecules, SiC and SiC_{2}, comprising silicon and carbon atoms have already been observed in astronomical objects [1-4]. SiC_{2} is an a-type asymmetric top molecule. Einstein A-coefficients for rotational transitions in the ground vibrational state, and in the vibrationally excited v_{3} state of SiC_{2} have been calculated by Chandra and Rashmi [5], and Chandra and Sahu [6], respectively. A number of lines in the observed spectra of astronomical sources are still unidentified. As per speculations $[7,8]$ some of these lines may come from $\mathrm{Si}_{2} \mathrm{C}, \mathrm{Si}_{2} \mathrm{C}_{3}, \mathrm{Si}_{3}$ or Si_{4} molecules. Very little information about these molecules is known. Theoretical studies of $\mathrm{Si}_{2} \mathrm{C}$ have, however, been carried out by a number of authors [9-12].

Since the temperature in astronomical objects, in general, is rather low, the probability of observation of $\mathrm{Si}_{2} \mathrm{C}$ through its rotational transitions is larger than that through its vibrotational ones. In the event of the observation of $\mathrm{Si}_{2} \mathrm{C}$ in an astronomical object, Einstein A-coefficients for rotational transitions in the ground vibrational state of the molecule would be one of the input parameters required for analyzing the spectra. Therefore, in the present investigation, we have
calculated Einstein A-coefficients for rotational transitions in the ground vibrational state of $\mathrm{Si}_{2} \mathrm{C}$ molecule.

2. The $\mathrm{Si}_{2} \mathbf{C}$ molecule -asymmetric rotor

Geometry of the $\mathrm{Si}_{2} \mathrm{C}$ molecule is shown in Figure 1 where the angle α is obtuse. The axis of symmetry for the molecule,

Figure 1. Geometry of the $\mathrm{Si}_{2} \mathrm{C}$ molecule.
lying in its plane, is denoted by 1 . Another axis, lying in the plane, perpendicular to the axis 1 and passing through the centre of mass is denoted by 2 . We have one more axis, denoted by 3 , perpendicular to the plane and passing through
the centre of mass. The moments of inertia about these three (principal inertial) axes are

$$
\begin{aligned}
& I_{1}=56 r^{2} \sin ^{2} \alpha / 2 \\
& I_{2}=\frac{168}{17} r^{2} \cos ^{2} \alpha / 2, \\
& I_{3}=56 r^{2}\left[1-\frac{14}{17} \cos ^{2} \alpha / 2\right] .
\end{aligned}
$$

Since α is an obtuse angle, therefore $I_{2}<I_{1}<I_{3}$. As per convention, the three principal inertial axes are named a, b and c in a manner such that the moments of inertia about them, I_{a}, I_{b} and I_{c} repectively, satisfy the condition $I_{a} \leq I_{b}$ $\leq I_{c}$. Thus, obviously, the electric dipole moment ($\mu=0.904$ Debye) of the $\mathrm{Si}_{2} \mathrm{C}$ is along the b-axis of inertia. Further, all the three moments of inertia are different, $I_{a} \neq I_{b} \neq I_{c}$. Hence, it is a b-type asymmetric top molecule. The molecular constants A, B and C are given by

$$
A=\frac{\hbar^{2}}{2 I_{a}}, \quad B=\frac{\hbar^{2}}{2 I_{b}} \text { and } C=\frac{\hbar^{2}}{2 I_{c}}
$$

Energy of a rigid rotor is given by

$$
\begin{align*}
E(A, B, C) & =\frac{P_{a}^{2}}{2 I_{a}}+\frac{P_{b}^{2}}{2 I_{b}}+\frac{P_{c}^{2}}{2 I_{c}} \\
& =\frac{A P_{a}^{2}+B P_{b}^{2}+C P_{c}^{2}}{\hbar^{2}} \tag{1}
\end{align*}
$$

where P_{a}, P_{b} and P_{c} are components of angular momentum, so that

$$
P^{2}=P_{a}^{2}+P_{b}^{2}+P_{c}^{2}=J(J+1) \hbar^{2}
$$

where J is rotational quantum number.
For a spherical top molecule, $A=B=C$, and the energy of a rotational level with quantum number J is given by

$$
E(J)=J(J+1) B .
$$

Here, rotational energy levels have $(2 J+1)$-fold degeneracy.
For a prolate symmetric top molecule $A \neq B=C$ (the axis of symmetry is the a-axis), and the energy of the rotational level, denoted by $J_{K_{a}}$, is given by

$$
E\left(J_{K_{o}}\right)=J(J+1) B+K_{a}^{2}(A-C)
$$

where K_{a} is the projection of J on the axis of symmetry a, and it can assume $(2 J+1)$ values. For a given J, the level with $K_{a}=0$ is the lowest one. Further, all the levels with K_{a} $\neq 0$ have a two-fold degeneracy as the energy does not depend on the sign of K_{a}.

For an oblate symmetric top molecule $A=B \neq C$ (the axis of symmetry is the c-axis), and the energy of the rotational level, denoted by $J_{K_{c}}$, is given by

$$
E\left(J_{K_{c}}\right)=J(J+1) B-K_{c}^{2}(A-C)
$$

where K_{c} is the projection of J on the axis of symmetry, c, and it can assume $(2 J+1)$ values. For a given J, the level with $K_{c}=0$ is the highest one. Further, all the levels with $K_{c} \neq 0$ have a two-fold degeneracy as the energy does not depend on the sign of $\boldsymbol{K}_{\boldsymbol{c}}$.

For asymmetric top molecule, unlike symmetric top molecules (prolate and oblate), there is no preferential axis, and the molecular intertial axes, a, b and c may be identified with the space-fixed axes, x, y and z in six ways (Table 1).

Table 1. The six representations of molecular fixed axes a, b and c identified with the space fixed axes x, y, and z and the parameters F, G. and H for the representations.

I^{r}	I^{\prime}	I^{r}	I^{\prime}	$I I I^{r}$	$I I^{\prime}$	
x	b	c	c	a	a	b
y	c	b	a	c	b	a
z	a	a	b	b	c	c
F	$(\kappa-1) / 2$	$(\kappa-1) / 2$	0	0	$(\kappa+1) / 2$	$(\kappa+1) / 2$
G	1	1	κ	κ	-1	-1
H	$-(\kappa+1) / 2$	$(\kappa+1) / 2$	1	-1	$(\kappa-1) / 2$	$-(\kappa-1) / 2$

For two scalars σ and ρ, eq. (1) gives

$$
\begin{equation*}
E(\sigma A+\rho, \sigma B+\rho, \sigma C+\rho)=\sigma E(A, B, C)+\rho J(J+1) \tag{2}
\end{equation*}
$$

Now, we choose

$$
\sigma=\frac{2}{A-C} \quad \text { and } \quad \rho=-\frac{A+C}{A-C}
$$

so that

$$
\sigma A+\rho=1, \quad \sigma B+\rho=\frac{2 B-A-C}{A-C}=\kappa,
$$

and $\quad \sigma C+\rho=-1$,
where κ is known as Ray asymmetry parameter, which is -1 for prolate top molecule, and +1 for oblate top molecule.

Energy levels for an asymmetric top molecule are denoted by $J_{K_{a}, K_{c}}$ or J_{n} where a pseudo quantum number τ, given by $\tau=K_{a}-K_{c}$, can assume $(2 J+1)$ values ranging from $-J$ to J. For a given J, the lowest level corresponds to $\tau=-J$. It shows that the level $J_{K_{a}, K_{c}}$ lies in between the prolate level $J_{K_{a}}$ and the oblate level $J_{\boldsymbol{K}_{\boldsymbol{c}}}$, depending on the value of κ. Thus, from eq. (2), we have

$$
\begin{aligned}
E(1, \kappa,-1) & =E(\kappa)=\frac{2}{A-C} E(A, B, C) \\
& -\frac{A+C}{A-C} J(J+1)
\end{aligned}
$$

and thus energy of an asymmetric rotor is given by

$$
\begin{aligned}
E(A, B, C) & =E\left(J_{\tau}\right)=\frac{A+C}{2} J(J+1) \\
& +\frac{A-C}{2} E(\kappa)
\end{aligned}
$$

For computation of $E(\kappa)$, the matrix elements may be written as [13,14]

$$
\begin{aligned}
E_{K K}= & F J(J+1)-(F-G) K^{2}, \\
E_{K K \pm 2} & =0.5 H[J(J+1)-K(K \pm 1)]^{1 / 2} \\
& \times[J(J+1)-(K \pm 1)(K \pm 2)]^{1 / 2},
\end{aligned}
$$

where K is projection of J on the molecular fixed axis of quantization. Values of the parameters F, G, and H, which depend on the representation, are given in Table 1.

3. Symmetry properties of wavefunctions of asymmetric rotor

The ellipsoid of inertia for an asymmetric rotor has a fourgroup $V(a, b, c)$ symmetry with character table for the species A, B_{a}, B_{h} and B_{c} given in Table 2. Wavefunctions for

Table 2. Character table of $V(a, b, c)$ group, and evenness (e) and oddness (o) of K_{a} and K_{c} for the symmetry species

Symmetry species	E	C_{2}^{a}	C_{2}^{b}	C_{2}^{c}	K_{u}	K_{c}
4	1	1	1	1	e	e
B_{a}	1	1	-1	-1	e	o
B_{b}	1	-1	1	-1	o	o
B_{1}	1	-1	-1	1	o	e

rotational energy levels of an asymmetric top molecule can be expressed as [13-15] :
where $\Psi_{J K M Y \gamma}=\frac{1}{\sqrt{2}}\left[\phi_{. J M M}+(-1)^{\gamma} \phi_{J-K M}\right], \quad$ for $K \neq 0$,

$$
=\phi_{J O M}
$$

for $K=0$,
where γ is 0 or 1 , $\phi_{I K M ' s ~ t h e ~ w a v e f u n c t i o n s ~ f o r ~ s y m m e t r i c ~}^{\text {s }}$ top molecule and $a_{K}^{J_{r}}$ are expansion coefficients.

The wavefunctions $\Psi_{J K M} \gamma$ have the following characteristics with respect to the four group $V(x, y, z)$:

$$
\begin{array}{ll}
E: & \psi_{J K M} \gamma \rightarrow \psi_{J K M} \gamma \\
C_{2}^{x}: & \psi_{J K M} \gamma \rightarrow(-1)^{J+K+\gamma} \psi_{J K M} \gamma, \\
C_{2}^{y}: & \psi_{J K M} \gamma \rightarrow(-1)^{J+\gamma} \psi_{J K M} \gamma, \\
C_{2}^{z}: & \psi_{J K M} \gamma \rightarrow(-1)^{K} \psi_{J K M} \gamma .
\end{array}
$$

These relations help in assigning the symmetry species of $l^{\prime}(x, y, z)$ for even and odd values of K and γ as given in Table 3. With the help of Tables 2 and 3, the energy levels and the energy matrix may be divided into four sub-matrices $E^{4}, E-O^{+}$and $O^{-} . E$ and O refer to the even and odd values of K, and the prefices + and - correspond to the even and odd (0 and 1) values of γ, respectively. The sub-matrices are given by [13-16]

Table 3. Assignment of space symmetry species with the sub-matrices.

$$
\begin{aligned}
& E^{-}(\kappa)=\left|\begin{array}{ccc}
E_{22} & E_{24} & \ldots \\
E_{24} & E_{44} & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right| \\
& O^{+}(\kappa)=\left|\begin{array}{cccc}
E_{11}+E_{-11} & E_{13} & 0 & \ldots \\
E_{13} & E_{33} & E_{35} & \ldots \\
0 & E_{35} & E_{55} & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right| \\
& O^{-}(\kappa)=\left|\begin{array}{cccc}
E_{11}-E_{-11} & E_{13} & 0 & \ldots \\
E_{13} & E_{33} & E_{35} & \ldots \\
0 & E_{35} & E_{55} & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right|
\end{aligned}
$$

and the division of the levels for J up to 3 , for example, are given in Table 4. Energy of a rigid asymmetric rotor does

Table 4. Division of energy levels into four sub-groups, E^{4}, E, O^{4}, and O for the six representations

J	K_{α}	K_{c}	τ	I^{+}	I^{\prime}	I^{+}	I^{+}	I^{+}	$I I^{\prime}$
0	0	0	0	E^{+}	E^{+}	E^{+}	E^{+}	E^{+}	E^{+}
1	0	1	-1	E^{+}	E^{+}	O^{-}	O^{+}	O^{+}	O^{-}
	1	1	0	O^{+}	O^{-}	E^{+}	E^{+}	O^{-}	O^{+}
	1	0	1	O^{-}	O^{+}	O^{+}	O	E^{+}	E^{+}
2	0	2	-2	E^{+}	E^{+}	E^{+}	E^{+}	E^{+}	E^{+}
	1	2	-1	O^{+}	O	O^{-}	O^{+}	E^{-}	E^{-}
	1	1	0	O^{-}	O^{+}	E^{-}	E^{-}	O^{+}	O^{-}
	2	1	1	E^{-}	E^{-}	O^{+}	O^{-}	O^{+}	O^{+}
	2	0	2	E^{+}	E^{+}	E^{+}	E^{+}	E^{+}	E^{+}
	0	3	-3	E^{+}	E^{+}	O^{-}	O^{+}	O^{+}	O^{+}
	1	3	-2	O^{+}	O^{-}	E^{+}	E^{+}	O^{-}	O^{+}
	1	2	-1	O^{-}	O^{+}	O^{+}	O^{-}	E^{+}	E^{+}
	2	2	0	E^{+}	E^{-}	E^{-}	E^{-}	E^{-}	E^{-}
	2	1	1	E^{+}	E^{+}	O^{-}	O^{+}	O^{+}	O^{-}
	3	1	2	O^{+}	O^{-}	E^{+}	E^{+}	O^{-}	O^{+}
	3	0	3	O	O^{+}	O^{+}	O^{-}	E^{+}	E^{+}

not depend on the representation. However, the wavefunctions (expansion coefficients) depend strongly on the representation. This division into sub-matrices helps in the way that for a given J we have not to find out eigenvalues and eigenfunctions of a square matrix of order $(2 J+1)$, but to solve four sub-matrices, E^{+}, E, O^{+}and O of orders given in Table 5.

Table 5. Order of submatrices

Submatrix	J even	J odd
E^{+}	$\frac{1}{2}(J+2)$	$\frac{1}{2}(J+1)$
E^{-}	$\frac{1}{2} J$	$\frac{1}{2}(J-1)$
O^{+}	$\frac{1}{2} J$	$\frac{1}{2}(J+1)$
O^{-}	$\frac{1}{2} J$	$\frac{1}{2}(J+1)$

4. Eigenvalues and eigenfunctions of energy sub-matrices

For a given J, eigenvalues and eigenfunctions (i.e., the coefficinets $a_{K}^{J \tau}$) of sub-matrices are calculated. For example, for $J=3$, there are $2,1,2$, and 2 levels belonging to E^{+}, E, O^{\prime}, and O sub-matrices, respectively. Thus, orders of sub-matrices E^{4}, E, O^{\prime}, and O for $J=3$ are $2,1,2$, and 2 , respectively. Sub-matrices of orders 1 and 2 can be solved analytically also. The eigenvalues do not depend on the representation, and their values for J up to 3 is given in Table 6.

Table 6. Eigenvalues for the level.

J	K_{a}	K_{c}	Eigenvalue
0	0	0	0
1	0	1	$\kappa-1$
	1	1	0
	1	0	$\kappa+1$
2	0	2	$2\left[\kappa-\left(\kappa^{2}+3\right)^{1 / 2}\right]$
	1	2	$\kappa-3$
	1	1	4κ
	2	1	$x+3$
	2	0	$2\left[\kappa+\left(\kappa^{2}+3\right)^{1 / 2}\right]$
	0	3	$5 \kappa-3-2\left[4 \kappa^{2}+6 \kappa+6\right]^{1 / 2}$
	1	3	$2\left[\kappa-\left(\kappa^{2}+15\right)^{1 / 2}\right]$
	1	2	$5 \kappa+3-2\left[4 \kappa^{2}-6 \kappa+6\right]^{1 / 2}$
	2	2	4κ
	2	1	$5 \kappa-3+2\left[4 \kappa^{2}+6 \kappa+6\right]^{1 / 2}$
	3	1	$2\left[\kappa+\left(\kappa^{2}+15\right)^{1 / 2}\right]$
	3	0	$5 x+3+2\left[4 \kappa^{2}-6 \kappa+6\right]^{1 / 2}$

Eigenfunctions depend on the representation and analytical expressions for the expenasion coefficients up to $J=3$ are given below [15] :

$$
\begin{aligned}
& J=0 E^{+} \quad a_{0}^{\lambda_{1}}=1 . \\
& J=1 E^{+} \quad a_{0}^{\lambda_{1}}=1, \\
& O^{+} \quad a_{1}^{\lambda_{1}}=1, \\
& J=2 \quad O^{-} \quad a_{1}^{\lambda_{1}}=1 . \\
& E^{-} \quad a_{0}^{\lambda_{1}}=1, \\
& O^{+} \quad a_{1}^{\lambda_{1}}=1, \\
& O^{-} \quad a_{1}^{\lambda_{1}}=1, \\
& E^{+} \quad a_{0}^{\lambda_{1}}= \frac{\left[\sqrt{(G-F)^{2}+3 H^{2}}+(G-F)\right]^{1 / 2}}{\sqrt{2}\left[(G-F)^{2}+3 H^{2}\right]^{1 / 4}}, \\
& a_{2}^{\lambda_{1}}=-\frac{|H|\left[\sqrt{(G-F)^{2}+3 H^{2}}-(G-F)\right]^{1 / 2}}{H \sqrt{2}\left[(G-F)^{2}+3 H^{2}\right]^{1 / 4}}, \\
& a_{0}^{\lambda_{2}}= \frac{\left[\sqrt{(G-F)^{2}+3 H^{2}}-(G-F)\right]^{1 / 2}}{\sqrt{2}\left[(G-F)^{2}+3 H^{2}\right]^{1 / 4}}, \\
& a_{2}^{\lambda_{2}}= \frac{|H|\left[\sqrt{(G-F)^{2}+3 H^{2}}+(G-F)\right]^{1 / 2}}{H \sqrt{2}\left[(G-F)^{2}+3 H^{2}\right]^{1 / 4}},
\end{aligned}
$$

$$
J=3
$$

$$
\begin{aligned}
E^{+} a_{0}^{\lambda_{1}} & =\frac{\left[\sqrt{(G-F)^{2}+15 H^{2}}+(G-F)\right]^{1 / 2}}{\sqrt{2}\left[(G-F)^{2}+15 H^{2}\right]^{1 / 4}}, \\
a_{2}^{\lambda_{1}} & =-\frac{|H|\left[\sqrt{(G-F)^{2}+15 H^{2}}-(G-F)\right]^{1 / 2}}{H \sqrt{2}\left[(G-F)^{2}+15 H^{2}\right]^{1 / 4}}, \\
a_{0}^{\lambda_{2}} & =\frac{\left[\sqrt{(G-F)^{2}+15 H^{2}}-(G-F)\right]^{1 / 2}}{\sqrt{2}\left[(G-F)^{2}+15 H^{2}\right]^{1 / 4}}, \\
a_{2}^{\lambda_{2}} & =\frac{|H|\left[\sqrt{(G-F)^{2}+15 H^{2}}+(G-F)\right]^{1 / 2}}{H \sqrt{2}\left[(G-F)^{2}+15 H^{2}\right]^{1 / 4}},
\end{aligned}
$$

$$
a_{1}^{\lambda_{1}}=\frac{\left[2 \sqrt{4(G-F)^{2}+6\left(H^{2}+F H-G H\right)}+(4 G-4 F-3 H)\right]^{1 / 2}}{2\left[4(G-F)^{2}+6\left(H^{2}+F H-G H\right)\right]^{1 / 4}}
$$

$$
a_{3}^{\lambda_{1}}=\frac{\mid H\left[\left[2 \sqrt{4(G-F)^{2}+6\left(H^{2}+F H-G H\right)}-(4 G-4 F-3 H)\right]^{1 / 2}\right.}{H 2\left[4(G-F)^{2}+6\left(H^{2}+F H-G H\right)\right]^{1 / 4}} .
$$

$$
\begin{aligned}
& a_{1}^{\lambda_{2}}= \\
& \frac{\left[2 \sqrt{4(G-F)^{2}+6\left(H^{2}+F H-G H\right)}-(4 G-4 F-3 H)\right]^{1 / 2}}{2\left[4(G-F)^{2}+6\left(H^{2}+F H-G H\right)\right]^{1 / 4}}, \\
& a_{3}^{\lambda_{2}}= \\
& |H|\left[2 \sqrt{4(G-F)^{2}+6\left(H^{2}+F H-G H\right)}+(4 G-4 F-3 H)\right]^{1 / 2} \\
& H 2\left[4(G-F)^{2}+6\left(H^{2}+F H-G H\right)\right] \\
& \frac{\left.2 \sqrt{4(G-F)^{2}+6\left(H^{2}-F H+G H\right)}+(4 G-4 F+3 H)\right]}{2\left[4(G-F)^{2}+6\left(H^{2}-F H+G H\right)\right]^{1 / 4}} \\
& \\
& \frac{\mid H\left[2 \sqrt{4(G-F)^{2}+6\left(H^{2}-F H+G H\right)}-(4 G-4 F+3 H)\right]}{H 2\left[4(G-F)^{2}+6\left(H^{2}-F H+G H\right)\right]^{1 / 4}} \\
& {\left[2 \sqrt{4(G-F)^{2}+6\left(H^{2}-F H+G H\right)}-(4 G-4 F+3 H)\right]^{1 / 2}} \\
& 2\left[4(G-F)^{2}+6\left(H^{2}-F H+G H\right)\right]^{1 / 4} \\
& a_{1}^{\lambda_{2}}= \\
& \frac{1 H \mid\left[2 \sqrt{4(G-F)^{2}+6\left(H^{2}-F H+G H\right)}+(4 G-4 F+3 H)\right]}{H 2\left[4(G-F)^{2}+6\left(H^{2}-F H+G H\right)\right]^{1 / 4}}
\end{aligned}
$$

Finally, the wavefunctions for asymmetric top molecules can be written as $[17,18]$

$$
A_{J, \tau, M}(\alpha, \beta, \gamma)=\sqrt{\frac{2 J+1}{8 \pi^{2}}} \sum_{K=-J}^{J} g_{\tau, K}^{J} D_{M K}^{J}(\alpha, \beta, \gamma),
$$

where α, β, γ are the Eulerian angles specifying the orientation of the molecule, $D_{M K}^{\prime}$ is the Wigner D-function and the expansion coefficients $g_{\tau, K}^{J}$ are given as

$$
\begin{aligned}
g_{\tau, K}^{J} & =\frac{1}{\sqrt{2}} a_{K}^{J \tau} & & \text { for } K>0, \\
& =(-1)^{\gamma} \frac{1}{\sqrt{2}} a_{K}^{J \tau} & & \text { for } K<0, \\
& =a_{K}^{J \tau} & & \text { for } K=0 .
\end{aligned}
$$

5. Distortional effects

Treatment of asymmetric top molecules discussed so far is for the rigid rotor case. However, owing to the rotational motion, the molecule is distorted and the energy levels are affected [19]. Energy of the level J_{τ} is therefore given by

$$
E_{J \tau}=E_{. / \tau}^{(0)}+E_{J \tau}^{(1)}+E_{J \tau}^{(2)}+E_{J \tau}^{(3)}+E_{J \tau}^{(4)},
$$

where $E_{J_{\tau}}^{(0)}$ is energy of the rigid molecule, and $E_{J_{\tau}}^{(1)}, E_{J_{\tau}}^{(2)}$, $E_{J_{\tau}}^{(3)}, E_{J_{\tau}}^{(4)}$ are various order corrections :

$$
\begin{aligned}
& E_{J \tau}^{(1)}=-\Delta_{I} J^{2}(J+1)^{2}-\Delta_{J K} J(J+1)\left\langle P_{z}^{2}\right\rangle-\Delta_{K}\left\langle P_{z}^{4}\right\rangle \\
& -2 \delta_{J} \sigma J(J+1)\left[W_{J \tau}-\left\langle P_{z}^{2}\right\rangle\right]-2 \delta_{K} \sigma\left[W_{I \tau}\left\langle P_{z}^{2}\right\rangle-\left\langle P_{z}^{4}\right\rangle\right], \\
& E_{J \tau}^{(2)} L_{J} J^{3}(J+1)^{3}+H_{J K} J^{2}(J+1)^{2}\left\langle P_{z}^{2}\right\rangle \\
& +H_{K . I} J(J+1)\left\langle P_{z}^{4}\right\rangle+H_{K}\left\langle P_{z}^{6}\right\rangle+2 h, \sigma^{\prime} J^{2}(J+1)^{2} \\
& *\left[W_{J \tau}-\left\langle P_{z}^{2}\right\rangle\right]+2 h_{J K} \sigma J(J+1)\left[W_{J \tau}\left\langle P_{z}^{2}\right\rangle-\left\langle P_{z}^{4}\right\rangle\right] \\
& +2 h_{K} \sigma\left[W_{J_{\tau}}\left\langle P_{z}^{4}\right\rangle-\left\langle P_{z}^{6}\right\rangle\right], \\
& E_{. / \tau}^{(3)}=L_{I K} J^{2}(J+1)^{2}\left\langle P_{z}^{4}\right\rangle+L_{K . I} J(J+1)\left\langle P_{z}^{6}\right\rangle \\
& +L_{K}\left\langle P_{z}^{8}\right\rangle+2 l_{K} \sigma\left[W_{J \tau}\left\langle P_{z}^{6}\right\rangle-\left\langle P_{z}^{8}\right\rangle\right], \\
& E_{J_{\tau}}^{(4)}=P_{K}\left\langle P_{z}^{10}\right\rangle+2 \sigma p_{K}\left[W_{J \tau}\left\langle P_{z}^{8}\right\rangle-\left\langle P_{z}^{10}\right\rangle\right],
\end{aligned}
$$

where $\sigma=\frac{2 A-B-C}{B-C} ; W_{/ \tau}=\frac{2 E_{J_{\tau}}^{(0)}-(B+C) J(J+1)}{2 A-B-C}$.

$$
\left\langle P_{z}^{r}\right\rangle=\sum_{K=-, I}^{. J}\left(g_{\tau, K}^{J}\right)^{2} K^{r}
$$

The distortional constants $\Delta_{J}, \Delta_{J K}, \Delta_{K}, \delta_{J}, \delta_{K}, H_{J}, H_{J K}$, $H_{K J}, H_{K}, h_{J}, h_{J K}, h_{K}, L_{J K}, L_{K J}, L_{K}, l_{K}, P_{K}$, and p_{K} are derived form the observed spectra of the molecule. Values of rotational and some distortional constants for $\mathrm{Si}_{2} \mathrm{C}$ molecule, received from Spielfiedel [20], are given in Table 7. (The distortional constants which are not given in the Table are zero.)

Table 7. Rotational and distortional constants of $\mathrm{St}_{2} \mathrm{C}$ in MHz .

Parameter	Value
A	61130.41277
B	4382.68308
C	4089.17195
Δ_{J}	000819
Δ_{K}	-0.62125
Δ_{K}	14.71947
δ_{J}	0.00128
δ_{K}	0.03239

6. Selection rules for radiative transitions and

 probabilities for the allowed transitionsFrom the symmetries discussed in Section 3, for b-type asymmetric top molecule (e.g., $\mathrm{Si}_{2} \mathrm{C}$ molecule), radiatively
allowed transitions are governed by the selection rules [17,18] :

$$
\begin{aligned}
& J: \Delta J=0, \pm 1, \\
& k_{a}, k_{c}: \text { even, odd } \leftrightarrow \text { odd, even } \quad \text { (ortho-transitions,) } \\
& \quad \text { even, even } \leftrightarrow \text { odd, odd } \quad \text { (para-transitions.) }
\end{aligned}
$$

Thus, the molecule is divided into two independent species, called ortho and para. For radiative transitions between the rotational levels given by $A_{J M M}$ and $A_{J^{\prime} M}$ the dipole moment matrix elements are

$$
\begin{aligned}
& \left\langle\mu_{x}\right\rangle=\int A_{J J^{\prime} M} \mu \theta_{x} A_{J ז M} d \Omega \\
& \left\langle\mu_{y}\right\rangle=\int A_{J^{\prime} \tau^{\prime} M} \mu \theta_{y} A_{J \tau M} d \Omega \\
& \left\langle\mu_{z}\right\rangle=\int A_{J^{\prime} \tau^{\prime} M} \mu \theta_{z} A_{J ז M} d \Omega
\end{aligned}
$$

where μ is the electric dipole moment of the molecule, and θ_{x}, θ_{y} and θ_{z} are direction cosines of the electric dipole moment.

In the first right (I^{r}) representation, where the axis of quantization is along the a-axis of inertia. For the transition $J_{\tau^{\prime}}^{\prime}-J_{\tau}$, the line strength $S\left(J_{\tau^{\prime}}^{\prime}-J_{\tau}\right)$ is given by

$$
\begin{aligned}
S\left(J_{\tau^{\prime}}^{\prime}-J_{\tau}\right) & =\left\langle\mu_{x}\right\rangle^{2}+\left\langle\mu_{y}\right\rangle^{2}+\left\langle\mu_{z}\right\rangle^{2}=\frac{\mu^{2}(2 J+1)}{2} \\
& \times\left[\sum_{K=-J}^{J} g_{\tau K}^{J}\left\{g_{\tau^{\prime} K+1}^{J} C_{J K 1,1}^{J K^{\prime}+1}+g_{\tau^{\prime} K-1}^{J} C_{J K 1,-1}^{J J^{\prime}-1}\right\}\right]^{2},
\end{aligned}
$$

where C 's are the Clebsch-Gordan coefficients [21]. Einstein A-coefficient for the transition $J_{\tau^{\prime}} \rightarrow J_{\tau}$ is given by

$$
A\left(J_{\tau^{\prime}}^{\prime} \rightarrow J_{\tau}\right)=\frac{64 \pi^{4} v^{3} S\left(J_{\tau^{\prime}}^{\prime}-J_{\tau}\right)}{3 h c^{3}\left(2 J^{\prime}+1\right)}
$$

where v is the frequency of the transition, h the Planck's constant, and c the speed of light.

7. Results for $\mathbf{S i}_{2} \mathbf{C}$ and discussion

The required values for the molecular constants and distortional constants for $\mathrm{Si}_{2} \mathrm{C}$ molecule have been provided by Spielfiedel [20] and are given in Table 7. The value of electric dipole moment $\mu=0.904$ Debye has been obtained from Spielfiedel [20].

The computed value of the Einstein A-coefficients for rotational transitions between the levels up to $21 \mathrm{~cm}^{-1}$ are give in Tables 8 and 9 for ortho and para species, respectively. The Einstein A-coefficients are used for computing the mean radiative lifetime of the level :

$$
\begin{equation*}
T_{J_{r^{\prime}}}=\frac{1}{\sum_{J_{r}} A\left(J_{\tau^{\prime}}^{\prime} \rightarrow J_{\tau}\right)} \tag{3}
\end{equation*}
$$

Table 8. Einstein A-coefficients for rotational transitions in ortho- $\mathrm{Si}_{2} \mathrm{C}$

J	\boldsymbol{t}	J	τ	$A\left(\mathrm{~s}^{-1}\right)$	$J '$	τ^{\prime}	J	τ	$A\left(\mathrm{~s}^{-1}\right)$
1	1	1	-1	9.95×10^{-7}	2	-1	1	-1	1.23×10^{-6}
2	1	1	1	2.08×10^{-3}	2	1	2	-1	8.91×10^{6}
2	-1	3	-3	7.29×10^{-8}	2	1	3	-1	1.32×10^{-6}
3	1	2	-1	1.88×10^{-5}	3	3	2	1	1.11×10^{-4}
3	-1	3	-3	6.26×10^{-7}	3	1	3	-1	1.28×10^{-9}
3	3	3	-3	1.11×10^{-9}	3	3	3	1	3.05×10^{-5}
3	1	4	-3	1.54×10^{-6}	3	3	4	-1	3.03×10^{-6}
4	-3	3	-3	2.03×10^{-6}	4	-1	3	-1	2.09×10^{-3}
4	1	3	-3	3.13×10^{-9}	4	1	3	1	980×10^{5}
4	-1	4	-3	1.22×10^{-9}	4	1	4	-1	4.28×10^{-5}
4	-3	5	-5	8.71×10^{-9}	4	-1	5	-3	1.52×10^{-6}
4	1	5	-5	1.62×10^{-9}	4	1	5	-1	5.13×10^{6}
5	-1	4	-3	1.90×10^{-5}	5	-3	5	-5	108×10^{-6}
5	-1	5	-3	1.23×10^{-9}	5	-1	6	-5	1.56×10^{-6}
6	-5	5	-5	3.07×10^{-6}	6	-3	5	-3	$1.77 \times 10^{\circ}$
6	-3	6	-5	1.17×10^{-5}	6	-3	7	-5	9.93×10^{-7}
7	-7	6	-5	3.03×10^{-10}	7	-3	6	-5	197×10^{9}
7	-5	7	-7	1.05×10^{-6}	7	-3	7	-5	1.12×10^{-1}
7	-3	8	-7	9.95×10^{-7}	8	-7	7	-7	441×10^{-6}
8	-5	7	-5	2.04×10^{-5}	8	-5	8	-7	$123 \times 10^{\circ}$
8	-5	9	-7	615×10^{-7}	9	-9	8	-7	306×10^{-4}
9	-5	8	-7	2.27×10^{-3}	9	-7	9	-9	117×10^{6}
9	-5	9	-7	1.13×10^{-5}	9	-5	10	-9	689×10^{-7}
10	-9	9	-9	6.25×10^{-6}	11	-11	10	-9	1.88×10^{-7}
11	-9	11	-11	1.33×10^{-6}					

Table 9. Einstein A-coefficients for rotational transitions in para- $\mathrm{Si}_{2} \mathrm{C}$

J'	τ^{\prime}	J	τ	$A\left(\mathrm{~s}^{-1}\right)$	J	τ	J	τ	$A\left(\mathrm{~s}^{-1}\right)$
1	0	0	0	9.73×10^{-7}	1	0	2	-2	1.21×10^{7}
2	2	1	0	2.09×10^{-5}	2	0	2	-2	1.01×10^{6}
2	2	2	0	8.84×10^{-6}	2	2	3	-2	1.13 $\times 10^{\prime \prime}$
3	-2	2	-2	1.59×10^{-6}	3	0	2	0	1.87×10^{-9}
3	2	2	-2	7.32×10^{-10}	3	2	2	2	1.11×10^{4}
3	0	3	-2	1.12×10^{-3}	3	2	3	0	3.05×10^{-9}
3	-2	4	-4	3.20×10^{-8}	3	0	4	-2	1.49×10^{-6}
3	2	4	-4	3.93×10^{-10}	3	2	4	0	3.03×10^{4}
4	0	3	-2	1.85×10^{-5}	4	2	3	0	9.80×10^{-4}
4	-2	4	-4	1.04×10^{-6}	4	0	4	-2	1.19×10^{-5}
4	2	4	-4	4.68×10^{-9}	4	2	4	0	4.28×10^{-5}
4	0	5	-4	1.62×10^{-6}	4	2	5	-2	5.13×10^{-6}
5	-4	4	-4	2.53×10^{-6}	5	-2	4.	-2	188×10^{-1}
5	-2	5	-4	1.28×10^{3}	5	-4	6	-6	2.90×10^{-1}
5	-2	6	-4	1.43×10^{-6}	6	-2	5	-4	$1.82 \times 10^{\text {¢ }}$
6	-4	6	-6	1.00×10^{-6}	6	-2	6	-4	$1.11 \times 10^{\prime}$
6	-2	7	-6	1.15×10^{-6}	7	-6	6	-6	3.65×10^{-6}
7	-4	6	-4	1.91 $\times 10^{-3}$	7	-4	7	-6	1.20×10^{-9}
7	-4	8	-6	8.01×10^{-7}	8	-8	7	-6	6.64×10^{-4}
8	-4	7	-6	2.11×10^{-5}	8	-6	8	-8	1.10×10^{-6}
8	-4	8	-6	1.12×10^{-3}	8	-4	9	-8	8.37×10^{-7}
9	-8	8	-8	5.28×10^{-6}	9	-6	8	-6	2.19×10^{-9}
9	-6	9	-8	1.26×10^{-3}	9	-6	10	-8	4.49×10^{-7}
10	-10	9	-8	8.64×10^{-4}	10	-8	10	-10	1.23×10^{-6}
11	-10	10	-10	7.32×10^{-6}					

The calculated values of the mean radiative lifetime of the levels are given in Table 10. It is interesting to note down
rable 10. Energy and mean radative lifetumes of the rotational levels

1	r^{\prime}	$E\left(\mathrm{~mm}^{-1}\right)$	$T(\mathrm{~s})$,	τ^{\prime}	$E\left(\mathrm{~cm}{ }^{1}\right)$	$T(\mathrm{~s})$
1	-1	028	-	0	0	0.00	-
\}	-3	1.68	-	2	-2	084	-
1	1	226	101×10^{60}	1	0	2.25	9.14×10^{5}
2	1	2.80	767×10^{5}	4	-4	2.80	-
;	-1	3.38	1.60×10^{6}	2	0	283	993×10^{9}
;	5	420	-	3	-2	363	616×10^{5}
4	-3	4.73	491×10^{9}	4	-2	482	958×10^{5}
5	-3	625	9.23×10^{9}	6	-6	593	-
6	-5	7.73	3.26×10^{9}	5	-4	610	3.95×10^{9}
7	7	791	330×10^{9}	6	-4	793	997×10^{7}
2	1	8.73	3.22×10^{4}	2	2	873	324×10^{4}
1	1	957	3.02×10^{4}	3	0	457	319×10^{4}
7	-5	9.95	9.54×10^{5}	7	-6	9.67	274×10^{9}
4	-1	1069	289×10^{4}	8	-8	1016	151×10^{8}
8	-7	11.89	227×10^{5}	4	0	1069	3.12×10^{4}
¢	-1	1209	304×10^{4}	5	-2	12.09	303×10^{4}
9	-9	12.70	3.27×10^{7}	8	-6	12.24	907×10^{9}
6	-3	1352	328×10^{4}	6	-2	1352	329×10^{4}
9	-7	1483	858×10^{5}	9	-8	1439	190×10^{5}
7	-3	1550	3.14×10^{4}	7	4	1550	313×10^{4}
11	-9	17.17	160×10^{5}	:0	-10	1552	116×10^{7}
8	-5	1776	300×10^{4}	10	8	1770	8.11×10^{4}
11	-11	18.62	531×10^{6}	8	-4	17.77	301×10^{4}
3	3	1940	691×10^{3}	3	2	19.40	691×10^{3}
4	-5	2032	289×10^{4}	11	-10	20.23	137×10^{9}
4	1	2052	086×10^{7}	9	-6	2030	286×10^{4}
11	-9	2086	7.54×10^{5}	4	2	2052	6.86×10^{3}

that there are no downward radiative transitions from the $2_{02}, 3_{03}, 4_{04}, 5_{05}$ and 6_{06} levels. Further, the lifetime of the levels $7_{07}, 8_{08}, 9_{09}, 10_{0,10}$ and $11_{0.11}$ is larger than that of the adjacent levels. The Einstein A-coefficients for rotational transitions $7_{07} \rightarrow 6_{16}(5.34 \mathrm{GHz})$ and $8087_{17}(14.74 . \mathrm{GHz})$ are $3.0 \times 10^{-10} \mathrm{~s}^{-1}$ and $6.6 \times 10^{-9} \mathrm{~s}^{-1}$, respectively. These two transitions, particularly in the low density regions, may play an important role for the search of the $\mathrm{Si}_{2} \mathrm{C}$ molecule in astronomical objects.

Acknowledgements

We are grateful to Professor J V Narlikar, IUCAA, Pune for encouragement. Thanks are due to Dr. A Spielfiedel for supplying the values of the molecular constants.

References

III P Thaddeus, S E Cummins and R A Lunke Astrophys. J 283 L45 (1984)
[21 L.E. Snyder, C Henkel, JM Hollis and F G L.ovas Astrophys J 290 L29 (1985)
[3] J Cernicharo, C Kahane, J Gomez-Gonzalez and M Guelın Astron Astrophys. $167 \mathrm{L9}$ (1986)
[4] J Cernicharo, $C A$ Gottleeh, M Guelin, P Thaddeus and $J M$ Vrilek Astrophys J 3411.25 (1989)
[5] S Chandra and Rashmı Astron Astrophys Suppl. 131137 (1998)
[6] S Chandra and A Sahu Astron. Astrophys 272700 (1993)
[7] W Weltner (Jr.) and L. Mcleod (Jr.) J Chem Phys 41235 (1964)
[8] G HF Dierckscen, NE Gruncr, J Oddershede and JR Sabin Chem Phys. Lett. 11729 (1985)
[9] R S Grev and HF Fchacer III J (Chem Phys 824126 (1985)
[10] JR Sabin, J Oddershede, G H F Diercksen and NE (irunce J. Chem Phys 84354 (1986)
[III C'M I. Rittby J ('hem Phys. 955609 (1991)
[12] A Spieffiedel, S Caeter, N Feautrier, G Chambaud and PRosmus J Phys Chem 10010055 (1996)
[13] HC Allen and PC Cross Molecular lib-rolors (New York • John Wilky) (1963)
[14] G W King, R M Hainer and PC Cross J Chem Phys 1127 (1943)
[15] S Chandra Astrophys Space Scl. 138221 (1987)
[16] W (iardy and R L Cook Microwave Molecular Spectra (New York Interscience) (1970)
[17] SChandra, D A Varshalovich and W H Kegel Astron Astrophys. Suppl. (France) 5551 (1984)
[18] S Chandra, D A Varshalovich and W H Kegel Pramäna 25557 (1985)
[19] J K G Watson J. Chem. Phys 461935 (1957)
[20] A Spielfiedel (private communication)
[21] A R Edmonds Angular Momentum in Quantum Mechanics (Princeton : Princeton Press) (1957)

