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Abstract

: In this communication we have discussed the synchronization of ghaos in Jerk dynamical system. We have in particular

applied three techniques for synchronization of chaos namely : (i) complete replacement (CR), (ii) feed back and (iii) adaptive control
techniques (ACA). The stability of the synchronization in all the aforesaid methods have been discussed in detail.
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1. Introduction

Synchronization of chaos has attracted considerable interest
among researchers during last decade due to its potential
application in communication [1-3]. There is no possibility
for two chaotic systems to behave in a synchronized way.
One of the main feature associated with the definition of
chaotic motion is its sensitive dependence on initial
conditions. Therefore synchronization is not feasible in
chaotic systems because it is not possible in real physical
systems to reproduce exactly identical initial conditions and
sysiem parameters of two similar systems. We can build
nearly identical systems but there is always a technology
mismatch and noise, impeding the exact reproduction of the
parameters and initial conditions. Thus an infinitesimal
 difference either in any one of the system parameters or in
nitial conditions of the trajectories will eventually result in
| the divergence of the trajectories.

Recently a number of algorithms have been suggested
v literature [4-8] for synchronization of chaos and have
' been successfully applied theoretically and experimentally
10 various chaotic systems like Rossler, Lorenz, Logistic

' tquation, Chua Circuit, double scroll oscillator and laser
Systems erc. )

In this paper we discuss the synchronization of newly
i developed chaotic systems [9,10] involving Jerk equation.

Jerk equation is an ordinary third order differential equation
in one real scalar dynamical variable. The functional form of
the jerk equation is ¥ = j(¥,%,x), here % is rate of change
of acceleration and is called jerk. We will consider here
following form of Jerk equation

X+ Ak +x=G(x), )]
where G(x) is a linear piecewise function. We will consider
G(x) = | x| — 2 throughout this paper. Other forms of G(x)
that exhibit chaotic motion are given in the reference [9].
Under certain restrictions jerky dynamics can be interpreted
as the direct extension of one-dimensional Newtonian
dynamics (X = F) of a particle of unit mass where the force
F is addition of (i) an instantaneous force that involves
frictional force (—Ax) and the motion in quadratic potential

t

and (ii) a non local force F,; = [ G(£)dl or memory term that

integrates over positional historqy of motion. We can simply
say that Jerk equation represents damped harmonic
oscillator driven by a non linear memory term involving
integral of G(x) i.e.

P4 At+x= jG(:)d:. @

We would also like to memion here that the six dimensional
solar wind driven magnetosphere ionosphere (WINDMI)
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model [11] can be reduced to eq. (1) by using reasonable
approximations and only difference would be in the form of
G(x). Sprott [9] has shown that equation (1) shows bifurcation
route to chaos in the parameter range 0.55 < 4 < 0.8. For
A = 0.6 chaotic attractor is shown in Figure 1a and maximum
Lyapunov spectrum for the range 0.55 < 4 < 0.8 in step of
0.001 is shown in Figure 1b. We present in Section 2, outline
of the synchronization methods, which we have used for
our present work. In Section 3, the results and the importance
of the present calculation for the Jerk dynamical system are
discussed.
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Figure 1. Chaotic behavior of the Jerk dynamical system {eq. (1)} :
Frame (a) shows chaotic attractor corresponding to control parameter
value 4 = 0.6 and Frame (b) the maximum Lyapunov exponent as a
function of control parameter A4 in the range 0.55 < 4 < 0.8.

2. Theory

-A number of methods have been suggested so far in literature

for synchronization of chaos like complete replacement,
feedback using one way and diffusive coupling, active
passive decomposition, adaptive control algorithm, addition
of external noise efc. We refer the reader for different methods
for synchronization of chaos to the following references [3-
8]. We discuss in this section in brief the basic concept and
stability criterion of complete replacement [4], feedback [5]
and adaptive control techniques [6] for synchronization.

2.1. Complete Replacement (CR) technique :

This method was suggested by Pecora and Carroll [4]. We
discuss the method in brief here by considering a nonlinear
dynamcial system having three variables x, y and z. The
evolution of the system is given in terms of flow functions
f gand has:

x=f(x,0,2); y = g(x,9,2); 2= h(x,,2). o
In case of complete replacement technique we start With twg
identical chaotic systems having same system Parameters
(but not exactly same initial conditions) and completel
replace one of the variables in one system by its counterpary
in the other system. We consider drive and response systems
which are given as :

X = f(x]’.y])zl)s Xy =X,
»=8xLya),  and 3 =g(x),y,,5), @
Z = h(x;,72)) i = h(x3,y;,z;).

We solve simultaneously drive and response systems given
by eq. (4), for t >  leads to | y; — ;| and | z; - 2;] 5 ¢
and we end up the constraint y, = y, and z, = z, Fy
understanding the stability of the above synchronization we
perform a transformation to a new set of coordinates

yi=y-y, and z; =z~ 2
=N + )y, and =z + 2,

in which three coordinates (x;, y;, z) are on the
synchronization manifold and (y., z,) on transverse manifold,
For a stable synchronization we need z; — O and y, - 0
as ¢t — oo. Thus the point (0,0) on the transverse manifold
must be a fixed point. We obtain on applying the
wransformations in equation (4) the relation,

j"J. _ Ya
(22)-r ()

here DF is Jacobian -g"— The solutions of the eq. (5)

convey us about the divérgence and convergence of two
initially nearby trajectories, so we treat response subsystem
(7, 22) as a separate system driven by x; and calculate the
Lyapunov exponents. These exponents depend on x; and
hence called conditional Lyapunov exponents (CLE's). If all
the solutions are negative then both trajectories converge
and synchronization is possible, hence negativity of all the
CLE's is a necessary condition for stable synchronization.

2.2. Feedback technique :

Feedback method has been used by many researchers (Singer
et al [12], Chen and Dong [13], Pyragas [14]) for control of
chaos. We can achieve synchronization by using combination
of Pecora and Carroll technique [4] and feedback method for
controlling chaos [S]. We choose a drive variable from the
drive system and feedback control is applied to the response
system. The feedback control is directly proportional to the
difference of a dynamical variable from drive and respons
gystems. We consider the three-dimensional dymimi"“l
system as given in eq. (3) and the corresponding‘ drive and
response systems are given as :
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o= GLynads ¥y = f(x,52,22) —c(x - x),
1= 83215215 and y, = g(x2,2,22), ©
i =h(x1,1521) 2 = h(x3,¥2,22),

here ¢ i coupling strength. We solve simultaneously drive
| response systems as given in eq. (6) and for ¢ — «
tojx1 —X2| and |y) — y2]| and |z) - z;] — 0. The
quation of stability for the above synchronized system is

gven by

& Si
é2 |= DF- ? : @
53 3

ere (£1,62,83) = (X1 — X2, —¥2,21-23) and DF is

OF,
acobian Z’Z:_ The solutions of the eq. (7) convey us

«cather the synchronization is possible or not. If all solutions
r negative then synchronization is stable. As coupling
enstant ¢ also occurs in the equation of stability so it
flects the stability of synchronization.

3 Adaptive control technique :

1 both techniques discussed so far we have considered the
lentical synchronization of two identical chaotic systems
wing same system parameter. A complicated situation
ses when the system parameters and initial conditions are
flerent for both the systems. In such a case synchronization
1 be achieved by using combination of feedback [12--14]
Wl adaptive control techniques {6,15,16]. We discuss the
ethod in brief by considering a nonlinear dynamical system
ith three variables x, y and = and a system parameter u. The
olution of the system in terms of flow function £, g and
are given as :

¥=f(x,p,2, ), y = g(x, 3.2, 1) 2= h(x,y,2,41) . (8)
this technique we start with two chaotic systems having
me functional form but initial conditions and system
fameters are different. In response system we apply an
ditional dynamics on the system parameter so as to

pively evolve as drive system. The drive and response
stems will be

fxiynzm), % = f(x,02,2,42) —c(x; = X)),
=8(xi,y1,zy,11), and j, = g(x3.32,22,12), ®
=h(xi, 1,2y, 45) 2 =h(x3,y2,22,142),

H2 ==0.(fy — 4y)
' solve simu!taneously dirve and response systems given
€9 (9), for t — oo leads to | x) — x2 |, |¥1 —y2 1 | 21 — 22|
Wit~ 1] — 0.
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The condition for stable synchronization is that the real

part of all eigenvalues of Jacobian matrix DF = oh should

. i
be negative, here (51, &, &5, &) = (v - x2, 1 = 32, 21 - 2

M — ).

3. Results fnd discussions

In thi 4 .

n this sectipn we present the results of our calculation of
identical sgnchronization using complete replacement,
feedback ad adaptive control techniques in the Jerk
equation {§q. (1)}. We are considering the chaotic case
correspondiig to the control parameter value 4 =0.6 and we
have taken here x =y and y = z.

In Fig \' 2 we have shown the results using complete
replaccment of x-variable. It may be seen from Figures 2a
and 2b thatas ¢ increases the difference between y-variables
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Figure 2. Identical synchronization of chaotic Jerk dynamical system
{eq.(1)} using complete replacement of x-variablc : We show in Frame
(a) time history of the y-variables of the drive and response systems
and in Frame (b) the difference between y-variables of the drive and
response systems as a function of time. In Frames (¢) and (d) we depict
the same features as in Frames (a) and (b) except that it is for z-
variables. Trajectories of the drive and response systems in xy-planc
are shown in Frame (¢) and in Axdy-plane in Frame (f).

of drive and response systems vanishes. Similar behaviour
is discussed in Figures 2c and 2d for z-variables. In Figure
2e we have shown the trajectories of the drive and response
systems in the xy-plane. We see that the drive and response
siart with different initial conditions but after some time
both converge to the same trajectory. A better view has
been shown in Figure 2f in which we have plotted the
trajectory in the Aydz-plane (i.e. difference plane) this is a
spiral ending at a fixed point (0,0).

When we use the complete replacement of y and z
variables the synchronization is not possible because of
stability conditions. In Table 31 we have shown the
conditional Lyapunov exponents (CLE’s) for different
combination of drive variables and response subsystems in
Jerk equation. It is clear from the Table 3.1 that
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synchronization is only possible with complete replacement
of x-variable.

Table 1. Conditional Lyapunov Exponents (CLE's) for different
combinations of drive variablcs and response subsystems.

X 4 A% + x =Gx) ;G =|x|~2,4=06

Drive variable Response subsystem Conditional 1.yapunov
cxponents
x ¥ -03, -0.3
y xz 08 x 10-%, 0.0
z Xy 00,00

In Figure 3 we have shown the results of identical
synchronization using feedback method and x as a drive
variable where coupling strength ¢ = 10. In Figure 3a we
have shown the time history of x-variables of drive and
response systems and in Figure 3b the difference in x-
variables of drive and response systems as a function of
time. Similarly Figures 3¢ and 3d for y-variables and Figures
3e and 3f for z-variables. We predict that synchronization is
only possible with ¢ > 0.799. By using y and z as a drive
variable for feedback, synchronization will not be stable as
the CLE’s become positive for these combinations.
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Figure 3, Identical synchronization of chaotic Jerk dynamical system
{eq. (1)) using fecdback technique (coupling strength ¢ = 10) with x as
a drive variable. We show in Frame (a) time history of the X-variables
of the drive and response systems and in Frame (b) the difference
between x-variables of the drive and response systems as a function of
time. In Frames (c) and (d) we depict the same features as in Frames (a)
and (b) except that it is for y-variables. In Frames (¢) and (f) we have
depicted the same features as in Frames (a) and (b) except that it is for
z-variables.

In Figure 4 we have presented the result of identical
synchronization using complete replacement (Figures 4a and
4b) and feed back technique (Figures 4c and 4d) when the
parameter for the drive and response systems differ by 5%
ie, Ay= 0.6 and A4, = 0.63. We observe that the system is
partially synchronized and response variables remain within
neighborhood of the drive variables. In Figure 5 we have

presented the result of the non-identical synchrop;

. . . 2ation,
using adaptive control algorithm and x as a drive variabln
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Figure 4. ldentical synchronization of chaotic Jerk dynamical sysier
{cq. (1))} when system parameter for- drive and response systems differ
by 5% ie. 4,= 06 and A, = 0.63. Frames (a) and (b) show the absolut
value of the differences between y and z-variables of drive and respons
systems by using complete replacement of x-variable, Frames (c) an
(d) are respectively same as Frames (a) and (b) except for use of feedbac!
technique and x as a drive variablc.
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Figure 8. Non-identical synchronization of chaotic Jerk dynam
system {eq. (1)} when drive and response systems have different Vi
of system parameter by using adaptive control algorithm and x 8!
drive variable (¢ = § and & =0.02) : Frame (a) shows the ditfcrf““
between x-variables of drive and response systems as a ﬁmctionnof ““““
Frames (b), (c) and (d) arc same as Frame (a) cxcept that it is )
variable, z-variable and systcm paramcter respectively.
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.- § and § = 0.02). We predict that for only certain range
;o and & values synchronization is possible.

|n the present analysis we have discussed numerically
¢ synchronization of chaotic Jerk dynamical systems using
qve Tesponse, feedback and adaptive control techniques.
k dmamical systems are very simple and it is very easy
, construct circuit representation of these systems using
qstors. diodes and operational amplifiers. These circuits
oduce chaotic signals for a certain range of control
mameter. This property makes these systems useful for
ylication of communication purpose as an information-
.aring message can be hidden within complicated structure
*the chaotic carrier. This chaotic carrier signal may be
constructed at the receiver using synchronization
chniques and subtracted from the transmitted signal (hidden
essage + chaotic carrier). Therefore we will be left with
ily our hidden signal. In this analysis we have
‘monstrated synchronization of the Jerk dvnamical system
; using simple techniques. However, it is very easy to
troduce noise for such type of circuits. Hence
nchronization of these systems subjected to common noise
ill also be an important issue for communication. We have
ken in the present study the same form of G(x) for both
e transmitter and receiver. However, there is a possibility
synchronization when the transmitter and receiver have
fferent forms of G(x). The investigation using different
mis of G(x) is in progress and will be reported elsewhere.
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