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Abstract

: Usually the renormalized Numerov (RN) algorithm is used to solve the set of coupled differential cquations of the few body

system The straight forward approach of this algorithm to the excited states faces some serious problems of convergence in binding energy. Here
we present an altemative elegant approach using multidimensional super-symmetric quantum mechanics (SSQM) where the problem of convergence
1s avoided by searching for the ground states of the partner potentials. Application of this formalism to the first excited 'S¢ state of He atom gives

excellent result, showing very fast convergence.
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I. Introduction

Hyperspherical harmonics expansion method (HHEM) is one
of the most elegant approaches [1-5] for solving few body
problems. Expanding the total wave function in the complete
set of hyperspherical harmonics, one gets a set of coupled
differential equations (CDEs). Usually the renormalized
Numerov (RN) algorithm [6] is used to solve the set of CDEs.
Convergence in the binding energy (BE) is achieved by
ncreasing the number of harmonics kept in the calculation.
tor the ground state, convergence is usually not a serious
yoblem. The main problem arises when one tries to solve
he set of CDEs for excited states. Due to increase in excitation,
he wave function extends in global dimensions, requiring
ligher order harmonics for a faithful representation. Hence
roper convergence in BE requires a large number of
larmonics, which in turn increases the dimension of the CDEs
ind creates a great computational difficulty. Here we propose
" alternative elegant approach using supersymmetric
lanturn mechanics, where we look always for the ground
tate solutions of each member of the hierarchy of
lamiltonians [7,8], which correspond to the excited states of
he original Hamiltonian. So the problem of convergence in
IE can easily be circumvented by this new formalism.

The paper is organised as follows. In Section 2, we briefly
review the HHEM method. In Section 3, we present the
multidimensional supersymmetry (SUSY) algebra. In Scction
4, we apply it to the Helium atom. In Section 5, we discuss
the numarical results and draw our conclusions.

2. Hyperspherical harmonics expansion method (HHEM)

A general (n + 1) body Schrdinger equation has the form

n+l h2 n+l
Z(-ETn_V: )"’ ZVtwo(’; “’/)+mey -E

i=1 ' f<j=2
X Wy eres Fay) = 0 )
where Vo — two\body interaction.
Vmany — three and higher body interactions.
r, — position vector of the i-th particie of mass m,.

Next one introdiices a set of Jacobi coordinates ¢, &3, ..., &,
through

§i=di(r;—r)

= _| mn tmn
ﬁ‘dz['b [ Py )]
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J
=1

§=4d; ra- (j=Ln) )
Then the centre of mass motion will be automatically
separated out and a relative motion is described by » Jacobi
coordinates as

2
“TEZV; +Vtot(§1,...,g”).. E }
=]

x'/’(gh'"sgn):O 3)
where V,,, represents the sum total of all interactions and
m is an effective mass expressed in term of m,’s and d’s.
One next introduces the set of 3n hyperspherical variables.
These are 2n polar angles {(3, @), i = 1, n} of the Jacobi
vectors &), ..., §, and the “hyperradius” (r) defined through

1
r=[2g?]2. 4)

iml

The remaining (n - 1) variables {#,, ¢, ..., ¢,} are introduced
through

$n =rcosg,
$rr1=rsing, cosg,,
$ra=rsing, sing,, cosd,,
' ®)
& = rsing, sing,;..singy cosg,
& =rsing, sing,.,..sing; sing,
(¢1=0)

which automatically satisfies eq. (4). The (3n - 1) angle
variables are collectively called “hyperangles” and denoted
by the abbreviated notation (2,,. The hyperradius () and the
set of (3n — 1) hyperangles (£2;,) together form the 3n
hyperspherical variables. In terms of’the hyperspherical
variables, the Schrdinger equation for the relative motion
becomes

2 o2
“‘3’;{;%";;('” ‘g;)' * D) Vit (n$23,)-E

x y(n23,) =0, (6)
where v = 3n — 1 and K2(423,) is the square of the
hyperangular momentum operator [9]. The wave function
w(r1£2,) is expanded in the complete basis of hyperspherical
harmonicg (HH) {Yi, (£3,)} :

vir )= Y 2By (0, )
Ka

G-
r 2

where ug,(r) is called a hyper partial wave and Yy, (£2;,)
is the eigenfunction of x2(£2,,) corresponding to the

eigenvalue K(K + 3n—2), where arepresents a set of (3. 1y

quantum numbers associated with (3n - 1) hyperangle,
_Gnzl) , ‘
The factor » 2 is included in €q.(7) to remove the firs;

derivative. Substitution of eq. (7) to eq. (6) and projectioy on
a particular HH leads to the following set of CDE; iy the
single variable r :

Rt d?  n? Ly(Lg+1)
[—'2—”;3;2-+5;‘L';r—-5 Uxq(r)

+ Y <KaVu(r, @m)|K'a’ > uge () =0,
K'a'

where Ly = K+-(-3—r:—3)—

> The coupling matrix element j

given by
(KaViou (r, 250)|K'e’)

= [ Y20 (@ Wi (', s i (3,20, 0

Actually the expansion basis in eq. (7) is an infinite set and
the resulting CDE is also in finite set. For practical calculation
one has to truncate the expansion basis which results in a
finite set of CDEs. If the maximum number of basis functions
chosen in the truncation be N then eq. (8) is replaced by

n? d? o _
[—5-’;1-9;—2—— E]u,‘ (r)+ ,‘Z_.JVM' (N (r)=0

k=1, N). (10)
where the effective coupling potential matrix element, ¥;-(r)
is given by

2 Ly(Lg +1
Vu,(r)=(k|v.m|k')+-7§;—-"—(~'§-—)5u, (1)

Here k is a single index combining the quantum numbers
(K, a). One generaily uses the renormalized Numerov
algorithm [6] or hyperspherical adiabatic approximation
[HAA] [10] to solve the set of CDE numerically.

3. Multidimensional supersymmetric quantum

mechanics

For a one dimensional Schrédinger equation with 2
potential ¥; (in the shifted energy scale where the ground
state energy of original potential ¥ is zero), one can dcfin¢
a superpotential as

- _Yo®) n _

P =y T ! 2
where wo(x) is the ground state wave function. Then
supersymmetric quantum mechanics (SSQM) [7] allows ©0
construct a partner potential ¥, corresponding to a partnéf
Hamiltonian H,, where H, will have the same eigenspectri™
as H; except the ground state of H, will be missing in Hy
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5o solving H2 for the ground state one can get the first
oxcited state of Hi. Although the method is quite
araightforward in one dimension, its generalization to a
nulndimensional bound state problem has only been proposed
ccently by us [8]. The problem arises in the definition of
the supcrpotential. In multi-dimension the effective potential,
o (11). beinga N x N matrix and the eigenfunction being
4 ¥ component column vector the usual definition of W,
given by ¢q.(12), is no longer valid. Here we circumvent the
problem by a mathematical trick as mentioned in the next
parﬂEmPh

The set of CDEs, eq. (10), can be written in matrix form
(with the choice of units according to eq. (12)) as :

d?
-:1.;5--E)[1]+[V(r)]}|u(r))=0’ (13)
where a symbol enclosed within a square bracket indicates
aN x N'square matrix and a symbol enclosed in a ket notation
represents a N component column vector. In shifted energy
«cale as in one dimension [7] we have for the ground state

a2 11+ | Y =9
U1+ |[u®), =0, (14)
The suffix 1 denotes the potential in the shifted energy scale.
Next we define superpotential as a real symmetric matrix
(Hir)] which will satisfy the matrix equation

IWH|u®), = ~[ut®),, (15)

where a prime denotes a differention with respect to the
argument. Note that we could not construct |W] from a
generahization of eq. (12), since both | #® > and | 2®" >,
are column vectors and their ratio is undefined. Then it is
casy to verify that

n]=[w?]-[w1. (16)
Define the matrix operators as :

[41=51+[w]

[4]=-L1]+[w]. a7

Then the many body Hamiltonian matrix [H;] can be
factorized as

[H]=[4"]141. (18)
The partner many body Hamiltonian
[t]=[4)[ ]
d?
= - 111+17), (19)
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corresponds to a partner potential matrix
[v)=[w?]+[w). (20)

Then following the treatment of the one dimensional case,
one can shpw that the eigenspectrum of [H,;] and [H,] are
related as .

by 2
E:(H)i =E,(, )

{I
EM=0

2n

n=0,1,2, ..

The derivations are quite straightforward and lcft for interested
readers.

So the main outcome of SUSY is that the partner potential
matrix [V>] has the same eigenspectrum as that of [ V4], only
the ground state of [ V1] is missing in [ V5]. The ground state
of ['2] corresponds to first excited state of [ V;]. Next starting
from [V;1 as a new potential and repeating the SUSY algebra,
one can construct a new partner [F3;] having same
cigenspectrum as of [}>] and the ground state of [ V3] will
correspond to second excited state of [V]. In this way one
can construct a hierarchy of Hamiltonians (Figure 1) until
all the bound states of [F] be exhausted. Now solving each
member of the hierarchy for ground state only, one can get
the full eigenspectrum of [H].

() £ 03) (4)
Eél) EI(Z) E(()3)
£ (2)
ESD
1) {Ha) [Hi] {Hy)

Figure 1. Energy level diagram of the hicrarchy of Hamiltonains and their
energy spectra.

The main advantage of this new formalism is to overcome
the problem of convergence in BE when one tries to solve
the CDEs by RN method. In the traditional methods [6], one
has to solve the CDEs for ground and excited states. The
accuracy in BE depends on the number of harmonics kept
in the calculation. In ground state the wavefunction has no
node and the wave function is fairly compact in the
hyperradius, so a small number of harmonics is sufficient to



