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Abstract : Firstly, we demonstrate that in an appropriate representation the apparent generalized oscillator strength (AGOS) manifests its 
general properties and that the zero scattering angle curve connects continuously the threshold energy E=o> and the high energy £  « oo, corresponding 
to the optical oscillator strength, without traversing the nonphysical region. Secondly, the recent generalized Lassettre expansion (GI.E) [Phys. 
Rev Lett. 81961 (1998)] with only asingle moving Rcgge pole is employed to establish the applicability o f the Lassettre limit theorem regardless 
of the electron impact energy and to generate the associated normalization curve for the measured relative electron dilTcrcntial cross sections 
(DCS’s). At forward scattering the GLE yields the unique and long-sought-after normalization curve to the optical oscillator strength of the 
measured relative DCS’s through the AGOS. Optically allowed transitions in H, He and Xe arc used to illustrate the normalization curve.
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I. Introduction
For optically allowed transitions in atoms, ions and molecules, 
the major contribution to the integral scattering cross sections 
(ICS’s) is considerably larger from the small angular region, 
particularly when the impact energy is large. However, in 
this angular region the measured electron DCS’s are generally 
riddled with uncertainties due mainly to the difficulties in 
carrying out these measurements. The difficulties of 
measuring reliably the electron DCS’s at the small scattering 
®gles, including zero, well documented in the literature, are 
still clearly manifest even in the most recent measurements 
for H [1] and Li [2]. For the former, measurements were 
obtained down to only 7“ at all the impact energies considered, 
while for the latter, data were obtained down to 6° at 2 1.8 eV. 
Similarly, the DCS’s for Mg 11, Zn II and Cd II were measured 
down to only 4®, 6® and 4®, respectively at 50 eV [3]. For 
molecular transitions the problem is exemplified by the 
''ibronic excitation bands ( v -  1- 4) of the 6 TI" electronic 
state of N2 [4]. Additionally, DCS measurements at the least 
physically attainable scattering angle, zero, are obtained at 
''aloes of the momentum transfer squared, iP  > 0 regardless

of impact energy, E. Hence, the behavior of the E)CS in the 
non-physical region, finite E, defined by the region between 
the values of A? at 6= 0® and K^~0, down to A? = 0 can not 
be achieved by experiment. Thus this behavior must be studied 
through theoretical representations.

The generalized oscillator strength (GOS) concept 
introduced by Bethe [5] manifests directly the atomic wave 
functions and the dynamics of atomic electrons. Important 
information about both the electron DCS’s and ICS’s can be 
obtained by investigating the behavior of the GOS as -> 0
[6], since the GOS converges to the optical oscillator strength
(OOS) for « I. Lassettre et al [7] established that this must 
be valid regardless o f E, viz. whether the first Born 
approximation is applicable or not. One of the major prob
lems encountered in extrapolating the measured GOS to the 
(X)S, employing the standard Lassettre series [8], apart from 
the problem of convergence, has been that the non-physical 
region of the GOS becomes extensive as E decreases toward 
threshold, thereby making the extr:q}oIation difficult and 
unreliable [9]. To remedy some of the problems, the Regge 
pole representation of the electron DCS was introduced [10].
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The approach analytically continues the measured data from 
the larger angular region, where they are generally measured 
more reliably, through to zero scattering angles, where 
measurements are difficult to obtain.

Problems of determining absolute values of the measured 
electron DCS’s using a GOS technique and contributions to 
the ICS’s from the small angular regime have been discussed 
by Ismail and Teubner fl 1], who measured the DCS’s for 
excitation of the resonance transition in Cu down to 0 -  T  at 
all their impact energies. Ihey also demonstrated that at 
20 eV and 100 eV 84% and 99%, respectively of the 
contributions to the ICS’s come from the approximate angular 
range 0 < 0 < \ 5°. This conclusion is consistent with the results 
found by Chen and Msezane [12) for optically allowed 
transitions in Xe and Na. Also, the contribution from 
the angular regime not covered by the measurement 
(0 ^ < 6°) to the ICS’s in the electron excitation of the
states 6.y[3/2]i,2 of Xe was found [9J to be between 1% and 
70% for E values between 15 eV and 100 eV, respectively.

Above we have demonstrated sufficiently that many 
measurements of the electron DCS's for optically allowed 
transitions in atoms obtain data only down to some small angle, 
0̂  near 0 - 0 °  and almost never at (9= 0°. (We note that the 
same applies to molecular transitions. The case of ionic 
transitions is even worse; there are very few measurements 
of DCS’s for them because of severe technical difficulties). 
However, these transitions receive the major contribution to 
the ICS’s mainly from the small angular range, particularly 
at high energies.

In this paper we first use the recently developed methods 
[10,13,14] to demonstrate the applicability of the Lassettre 
limit theorem over the entire electron impact energy, viz. from 
threshold, £  = ey to the optical oscillator strength (OOS), 
E -  00. Then, we show that at forward scattering the GLO 
represents the unique long-sought-after normalization curve 
to the OOS for the measured relative electron DCS’s.

2. Theory
2. /. The momentum dispersion method (MDM) :
The DCS and the GOS for atomic or molecular excitation by 
a fast electron are related through (atomic units are used 
throughout) [5,15]

where

£2 = 2£j^2-

' d a \
.da)> ( 1)

- x - 4 l - f c o s (?1 (2)

la, ki and kj are respectively, the excitation energy, the electron 
momenta before and after collision, K and dare the momentum 
transfer and scattering angle, and E is the impact energy.

We note that although eq. (1) is obtained within the 
applicability of the FBA, an apparent generalized osciliato 
strength (AGOS) can be defined so that the energy dependent 
eq. (1) is also applicable when the measured or calculated 
DCS’s are used [15]. The limit of the AGOS as 
(commonly known as the Lassettre limit theorem) is

/«  = lim /(£ ,/T 2)
A2->0 ( 3 )

Ester and Kessler [9] have found that for £  < 40 eV their 
measured absolute data for the electron excitation of Xe to 
the states 65[3/2]i,2 could not be extrapolated to the Lassettre 
limit, viz. the OOS, using the Lassettre formula [7,8] Alsu 
the problem associated with the normalization of the measured 

relative electron DCS’s through the standard Lassettre 

expansion, particularly when using relatively small impact 
energies, has been discussed. Haffad et al [10] discovered 

that the expansion coefficients in the Lassettre expansion 
increased dramatically with each new term, thereby limiting 

the utility of the expansion to only the generally more 
inaccurately measured small angular data. To circumvent this 
problem Haffad et al have used a dispersion relation 

representation of the DCS’s for dipole allowed transitions at 
small lO values. The Regge pole representation ofthe election 
DCS’s transforms eq. (1) to (10)

 ̂ 77—T l6‘[ ^ + 2rcos(f log(l + ) - (“ll(l+x2)<‘

where x = K/Y with Y = -J ll  + ,/2 ( / - ty ) ,  / and w being the 
ionization and excitation energies, respectively. The quantities 
R, r, E and ^ are yet to be determined. Eq. (4) is mapped 
through

z = log(l + x2) and F " (z )  = (1+ ), (5i

which reduce eq. (4) to

F*^(r) = Ofl+^i cos£2 + /»i s in e , (6)
where Oo = /?, 0 | = 2r cos (j), and b\ -  2r sin In the new system 
of variables the AGOS is expanded in a Fourier series of which 
we have retained only the first terms determined from eq. (6) 
and log(l +x^) is a natural variable. The OOS is then

f> = ao + a,.
The parameters ao,a[,bi and fare determined by minimizing 
F^{z) through the functional

/Y

/»! L

F r ^ - F ^ iZ i ) (S)

where is the number of experimental data points, 2;, F f and 
AF;^ are the mapped experimental values through the mappinS 
eq. (5) of the i-th point position, the AGOS value and error in 
the AGOS, respectively. The dependence of on r is 
irrelevant to the outcome of the parameters. This is a very
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fine and desirable feature of the method because the 
investigations of as a function of a new variable will not 
result in a new derivation, but only in a modification in the 
definition o f  both and z. We stress that the OOS’s are 
automatically extracted with the constants, bx and e in 
the m ethod . The correct OOS’s therefore provide self- 
consistency checks of the measurements.

Eq. (6) represents the expression for the MDM. In an 
appropriate representation the AGOS varies linearly with K? 
so that the difficult to measure smaller angular data can be 
obtained readily through analytical continuation. The MDM 
has been used extensively to obtain smaller angular data from 
larger angular measurements and to calculate ICS’s for 
transitions in Xe and N2 [16], Also, with some modification it 
has been used successfully to analyze optically forbidden 
transitions in atoms and molecules [17].

2 2 Forward scattering function (FSF) :
Avdonina et al [13] have introduced the dimensionless
variables

V cos(^), u = and t = (9)2m ‘ ’
0 transfonn to

( 10)
vhere 0 < r < 1, w ^ 0 and>  ̂is without restriction. The physical 
egion corresponds to |y | ^ 1 while |y| > 1 defines the 
lonphysical region. At fixed v  the energy parameter t has 
wo values. When w ~ 1 , they are

--4m/ ( 1 + and 2̂ = 2sin^ ^/(l + 1/)^. (11)

Stably, /, is independent of 9 and corresponds to the 
orward scattering (0=  0®) of the AGOS [13], see Figure 1.

I. Kinematics of the electron excitation process using dimensionless 
enables / and u. The curves, starting from the left, represent 0®, 10°,

'̂ 60®, 90®, 120® and 180®, respectively. Note that the curve connecting 
® ‘̂ 8xima is the envelope curve 113] and the 0 ® curve, the only fixed, 

curve, connects continuously threshold, t » 1 and t *= 0  and has its 
®̂ imum at / »= 0. AH other curves for which ^#0® avoid the limit point
"OandM«o.

The dependence of t2 on ^is weak at 0 - 90° On the envelope 
curve [13]/ = 2w/( 1 4- w) ic. K? - 2rusin 0(u = sin 9)̂  we have 
t\ tj. Figure 1 shows the variation of t with u for values 
of 0-180°, Also plotted is the envelope curve; it joins 
the^maxima of the curves. Interestingly, the maximum of the

0° curve is at m = 0. Clearly, the only curves that connect 
coitinuously E~ (o and £ -  00 ( the DOS limit) are the forward 
severing and the envelope curves. However, the forward 
severing curve is the only fixed angle curve that connects 
co|tinuously the two energy limits. We note that u ^ 0.5 for 
values of / up to about 0.9, implying that 1/ is a natural 
expansion variable even at fairly low electron impact energies. 
T l^  explains why sometimes first Bom approximation is 
applicable even when £  appears to be fairly low.

Eqs. (9) and (10) have been used to obtain the FSF [13]

f ' - — V -L *̂ max J ( 12)

where ^ 0.25 and /® is the OOS. Eq. (12) describes 
the locus of the AGOS points at various £  values, with 
î min -  2.5 ft), such that / = For any optically allowed
transition, 0(u) can be obtained from that of the H \s-2p 
transition (or any other accurately known transition) and 
the corresponding OOS’s. The FSF and the MOM have been 
used together to normalize measured relative electron DCS’s 
[18-21] and to identify spurious behavior in both measured 
and calculated DCS’s at and near ^ = 0 °  [22,23]. Recently, 
the FSF has been generalized [24] for use in the nomalization 
of the relative experimental excitation or ionization DCS’s o r. 
DDCS’s. The new normalization [24] is effected beyond the 
FBA and without erxtrapolation through the nonphysical 
region.

2.3. Generalized Lassettre expansion (GLE) :
At low electron impact energy, only a few partial waves are 
necessary to represent correctly a scattering process. When 
increasing the energy, more and more waves are contributing 
to the general process, and the partial wave expansion 
converges slower and slower. In particular, the presence of a 
square root singularity at = 0, prevents the partial wave 
expansion from converging there. Regge [25] has proposed 
to use complex angular momenta to produce a representation 
that converges for nonphysical transfer momenta. In this 
representation the amplitude is expanded into generalized 
partial waves. A full discussion on the application of the 
complex angular momentum to scattering problems is found 
in Connor [26]. Recently, a general method of calculating 
Regge poles for both singular and regular potentials has been 
developed and illustrated [27,28].

In the present case, where we analyze a K} region before 
the first minimum we can neglect the imaginary part of the
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leading Regge pole (tha t controls the oscilla tions in  the DCS) 
and w rite  the generalized Lassettre expansion (G LE ) (w ith  
on ly  one m oving Regge pole) [14 ]

OOS
(13)-^^^’^ ^ ) ~ ( l+ x 2 ) ‘ ■ ^^£ (l+ x2  )•'(*)’

where the CX)S, /** and A do not depend on energy and 
where

K £) = 6 +
(D O)

(14)

The constant C  can be computed d irectly from  the SchrOdinger 
equation through the general expressions g iven  in  Refs.
[27,28] w ith  the appropriate potentials used. Eqs. (13) and 
( 14 ) g ive a g lobal analysis o f the AGOS in  tenns o f on ly three 
energy independent parameters A, C  and/** (usually a known 
quantity determ ined independently).

The beauty o f eq. (13) is structural s im p lic ity ; it  manifests 
d ire c tly  the energy dependence o f the AGOS through the 
second term . W e re fe r to  th is second term  as the “ m oving 
Regge pole”  contribution to the AGOS. The whole expression 
is referred to  as the generalized Lassettre expansion [14 ] fo r 
obvious reasons. The G LE represented by eq. (13) d iffe rs from  
others [8 ,10]  through the presence o f the second term  w hich 
also contains the square roo t s in gu la rity  at /T 0 , whose 
im portance has been pointed ou t [29 ]. The G LE has been used 
to  extract the OOS w ith in  1% accuracy fo r the H \s -2 p  
transition  from  the accurate DCS’s o f B ray et a l [30] when 
the data at 19.58 eV S £  i  200 eV  were used.

3. Results
3. /. General properties o fthe apparent generalized oscillator 

strength :

In  an appropria te  representation, the physics s im p lifie s  
considerably. F igure 1 depicts the kinem atics o f the elecfron 
excita tion process using the dim ensionless variables t and u 
fo r values o f i9=  0-180°. The curves, starting from  the le ft, 
represent 0 = 0 °, 10°, 30°, 60°, 90°, 120° and 180°, 
respectively. N ote that the curve connecting the m axim a is 
the envelope curve [13 ], and the 0 curve, the on ly  fixed  
angle curve, continuously connects threshold, t  = 1 and / = 0 

and has its  m axim um  at /  == 0. A ll other curves fo r w hich
0 ° avoid die lim it po in t t  = 0 and w ■= 0 , corresponding to  

the optica l osc illa to r strength. For values o f t  up to  about 0.9, 
u £ 0.5 im p ly ing  th a t» is a natural expansiiui variable even at 
fa irly  low  electron im pact energies. C learly, the Lassettre lim it 
o f  the GOS »  u 0 ) can be reached on ly  by staying on the

0° curve, when starting from  any E  value.
The k inem atic representation o f F igure I perm its the 

dem onstration o f  the general properties o f the AGOS [31 ].

W e use the L i 2 s-2 p  tra n s itio n  to  e lucidate small-angie 
electron scattering because o f the ava ila b ility  of measurements 
[32 ,33 ] and theoretical calculations [3 4 ,3 5 ] over a wide rang? 
o f electron im pact energies and scattering angles. These data 
p rovide  a stringen t test o f ou r approach and vice versa 
Figure 2  shows the AGOS versus t  from  the data o f Bray 
et a l [35 ] at 0 ^  0°, 1°, 3°, 5°, 10° and 15°, starting with the 
top curve at 0  = 0 °, down to  the bottom  curve at ^  = 15'̂  
as t varies from  t  = 0.00185 (£  =  1000 eV ) to  t = 0.185 (£ •: 
10 eV ). The Bray et a l [35 ] data demonstrates excellently 
how  the AG O S’ s should approach the OOS lim it as 1 0

(£  ->  oo) and ^decreases from  15° down to 0°. This behavior 
is general and is useful fo r id e n tify in g  spuriously behaved 
data [31 ]. A lso included in F igure 2 at 3°, 5° and 10° 
(crosses, dashed crosses and pluses, respective ly) are the

U "’' - " .......... —
/  „ ........... . *:/ ....................... .............  ....... .

I nJk* .................... *

0.6

0.7
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Figure 2 . Apparent generalized oscillator strength A G O S  versus t for the 
transition Li 2s~2p  The data o f  B ray  e ta l  [3 5 ] at 0 ^  0®, 1®, 3®, 5®, 10® and 
15® arc represented by the dashed curves, from top 0®) to bottom 

15®), while the calculation of Madison et a l [3 4 ] is shown only al 
^==10® (triangles) .The measurements of Vuskovic et al [3 2 ] arc shown al 
^ = 3 ®  (crosses), 0 -  5° (dashed crosses) and at 10° (pluses); those oi 
Karaganov et al [3 3 ] arc shown at 0® (diamond), ^ - 1 0 °  (invertcc 
triangle) and at 12® (square).

measured data points o f V uskovic et a l [32 ]. The agreemeni 
w ith  the data o f B ray et a l [35 ] is excellent, except at t
0.185 (£  = 10 eV ), w hw e the measured data are above the 
zero curve fo r both 0 -  3° and 5°. We note that at 10 cV th< 
AG O S’s at 0 =  0°, 3° and 5° are close together; nevertheles! 
they are s till w ith in  the experim ental errors. Furthermore, i 
becomes d iffic u lt to  d istinguish between, fo r example th< 
AG O S’s belonging to  ^ = 0 °  and 5° fo r /  ->  1 and £  -+ ® 
A lso  shown in  the figu re  are the calculated values o f Madisoi 
et a l [3 4 ] at ^  = 0°, represented by the triang les and th( 
Karaganov et a l [33 ] data at 0 -  0° (d iam dnd),d= 10° (invertei 
triang le ) and 0= 12° (square). For th is  measurement, the zen 
degree data po in t appears inaccurate.

S ince expe rim en ts tend to  experience problems ii 
m easuring re lia b ly  the DCS’s at and near 0 =  0°, flie variatioi 
o f the AGOS w ith  t  fo r Li 2 s -2 p  can be used to  investig#*
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the behavior of the data of Vuskovic et al f32], Karaganov 
et al [33] Madison et al [34] at ^  = 0. In Figure 3 is 
contrasted the data from the DCS measurements [32,33] and

Figure 3. Comparison of the apparent generalized oscillator strength AGOS 
vmus t for Li 2 s-2 p  from the DCS measurements of Vuskovic et a l  [32] 
and ICaraganov et a l  [33] with the Madison e t a l  [34] calculation as well as 
the CCC calculation o f Bray e t a l  [35] at 0° for values of £  ranging
from 7 eV to 1000 eV. The dashed curves are from Ref [35] at 0® (top 
curve) and 0 -  3® (bottom curve). Note that the Vuskovic e/a/measurement 
ui 0 ^  0“ (crosses) simply requires normalization and al 3® (pluses) 
agrees very well with the calculation of Ref. [35].

the theoretical calculations [34,35] at 0 - 0 °  for values of E 
var>'ing from 7 to 1000 eV. Also included for comparison are 
the Bray et al [35] and Vuskovic et al [30] data at 9 - 3®. As 
already seen in Figure 2, the Bray et al [35] data represent the 
zero scattering excellently. We therefore conclude that the 
Madison et al [34] data behave spuriously, but only at zero 
scattering angles. The measurement of Karaganov et al at 
14 eV (diamonds) underestimates the zero degree data of 
Bray et al [35], while at 7 eV it agrees excellently with 
them. We note that near 1000 eV the 0=^0° and 0 ^ 3 °  data 
are well separated, while those near £  7 eV are almost
indistinguishable. Contrary to common belief, it is easier to 
separate in angle measured data at high E than at low £.

 ̂2 The Lassettre limit theorem :
fn this section we demonstrate the applicability of the Lassettre 
limit theorem, viz. lim^a^o ) = / ^ .  regardless ofthe
electron impact energy. In Figure 1 we demonstrated that the 
^^0° curve is the only fixed scattering angle trajectory that 
connects continuously £  = co{t = 1) and £  = oo(/ = 0), the 

limit, without involving the nonphysical region. No other 
Rectories at a fixed angle can lead to the OOS limit, although 

begin at / = 1. For example, the 10° curve clearly avpids 
ihe OOS limit as £  -*> oo. We note that although the second 
curve, called the envelope curve [13], also connects £  = (u 
and £ « GO continuously, but it does so not at a fixed angle, 
furthermore, we saw that as the angular dependence 
ufcq. (10) is eliminated; all the small angular curves merge 
''̂ ith the 0° curve as £  --► fi). Therefore, the small angle,

approximately 15° (the angular regime of interest of this 
paper), behavior can be approximated by that ofthe 0 -  0° 
curve ns E o ) .

In Figure 4 we show the AGOS versus E for the H ls -2 p  
transition at 9 -  0°, 5° and 10°. The solid curves arc calculated

Figure 4. Comparison of the apparent generalized oscillator strength G for 
1115-2/7 as a function of £  from the data of Bray, Konovalov and McCarthy 
[30] (♦♦ ) and the GLE (~) at 0®, 5® and 10®. Near £  *  (£  5 20 eVl.
approximately) the data corresponding to 0®, 5® and 10® become 
indistinguishable as required by the kinematics of Figure 1. Also included 
is the FSF(- ~).

using the values of the constants A and C obtained by 
Felfli etal [14], The dash-dot curve is the forward scattering 
function of Avdonina etal [13], while the asterisks represent 
data from Bray et al [30], The agreement betweejn the Bray et 
al [30] data and the GLE is excellent down to near threshold. 
Note that the 10° and 5° curves merge with the zero degree 
curves as £  -> fi), consistent with the Kinematics, Figure 1. 
As £  -► 200 eV, the separation among the various curves 
becomes larger in comparison with that near E to. That 
the AGOS curves other than that corresponding to ^  = 0° 
must vanish as £  -> oo, follows from eq. (13), As £  ~> qo, the 
second term becomes negligible and only the Bom term 
survives, viz.

(15)[ l+ 4 D £ ( l-c o s 0 ) f

where £) is a constant independent of E. When <9 = 0° in 
eq. (I5 ),/(£ , A^) = / “. TTierefore, the 0= 0° trajectory of the 
AGOS is the only fixed scattering angle curve for reaching 
the Lassettre limit when starting from any £-value and without 
involving the nonphysical region. This demonstrates clearly 
the single-pole dominance of the scattering process at forward
scattering. For any non-zero scattering aitg\e,/(E, fP) ~ (f-)* 
which approaches zero as £  Consequently, the (9= 5°
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and 10° (or any 9 *  0°) AGOS curves actually go to zero as 
leaving only the forward scattering curve to satisfy 

the Lassettre limit theorem, consistent with the Kinematics 
of Figure 1. Thus establishing the applicability of the Lasettre 
limit theorem regardless of the electron impact energy required 
an appropriate universal representation of the Kinematics and 
the AGOS.

Some immediate consequences of the Lassettre limit 
theorem are worth mentioning. From Figure 4 it is now clear 
that knowing the absolute values of the DOS’s at 0° as a 
function of E, the data can be used to determine the value of 
the OOS [9]: the accuracy being determined by that of the 
DCS’s. This, a superior approach because it avoids completely 
the extrapolation of the AGOS, particularly through the 
nonphysical region, should be contrasted with that used in 
Ref. [9]. Experimentally, it would be easier to separate the 
angular dependence of the AGOS’s as £  -> oo, rather than 
those near threshold. Most importantly, the GLE at = 0° 
defines the long-sought-after unique normalization curve of 
the AGOS’s to the OOS. This implies that for absolute data, 
the AGOS at any impact energy must lie on this curve; 
otherwise the data point at the given impact energy must be 
shifted up or down so that it is on the curve, interestingly, it 
would be difficult to separate in general spuriously behaved 
data points from improperly normalized data points. However, 
the self-consistency of the data as a function of angle or K} 
can be ascertained using the MDM as was demonstrated by 
Felfli and Msezane [18] and Marinkovic et al [19],

3.3. Normalization o f  differential cross sections :
Since at 9 - 0 °  the GLE coimects continuously the £  = ro and 
£  »  00 ( the OOS) limits, it therefore represents the long-sought- 
after normalization curve to the OOS, regardless of the impact 
energy and without involving the nonphysical region. In this 
section we extract the normalization curves appropriate to 
the optically allowed transitions in H, He and Xe to 
demonstrate correctly normalized data and/or spuriously 
behaved data at or near 0°. To analyze these transitions 
using the GLE we need the values of A and C in eq. (13) of 
the GLE. As pointed out by Felfli et al [14], C can be 
determined directly by solving the SchrOdinger equation, a 
laborious process, or from the measured data. However, for 
the present purpose A and C will be extracted in a simple 
way. At *  0° the GLE and FSF, including its generalized 
version [24], are matched at two arbitrary impact energies, 
one high, £ j and the other low, £ |. Table 1 shows the results 
of such a determination. The constants are not too sensitive 
to the choice of £] and Ej as long as they are reasonably 
separated. We note that, while the FSF can be used only at

0°, the GLE can also be employed for ^9^0° as shown in 
Figure 4. The curves at “  0°, 5°, 10° were obtained using

the same constants from Felfli et al [14], given in Table | 
Also, the GLE can be used to determine DOS’s [14]
measured absolute DCS’s.

Tabic 1. GLE constants for the systems of interest. values 
Felfli c / a / (141.

Irop,

System A C £i(eV) fjfeV) /"
H l5~2p -3.340 14.565 25.5 152.0

1 2 .2 0 0 "

He VS~VP^ - 1.217 0 370 24.0 84.0 «27«

Xep/2] -1.827 5 262 17.0 64.0 0 2,10

Unlike for the H I s - 2/7 transition, there are man\ 
measurements and calculations of the DCS’s for the He 
1 'S -2  transition at and near 9= 0°, the angular region of 
our interest. Since in this paper we want to demonstrate the 
applicability of the GLE, we have selected the measuremenu 
[36-39] and calculations [39-41]. Combined, they cover the 
electron impact energy range 23.2 ^  E <, 1500 eV and the 
angular regime 0° S 180°. Because of the availabilit)' of 
the measured data at and near 9= 0°, the four measurements 
are suitable for demonstrating the normalization capabiliu 
of the GLE. Define the energy Z = E/m.

In Figure 5 various selected calculations [39-41] and 
measurements [36-39] of the AGOS’s at 9 = 0“, for He

Figure S. The apparent generalized oscillator strength G  for He 1 'S -2  'P 

from the GLE ( - )  and FSF (— ) are compared to those from various 
measurements [36-39] and calculations [39-41]. The variable Z  -■ //o’ ’’ 
used for the horizontal axis.

1 'S -2  are compared with the OLE and FSF curves for j
23.2 <: £  £ 1500 eV. The results demonstrate that the GLE 
can be employed to normalize relative measurements to 
OOS at any £  and/or assess the reliability of measured or 
calculated electron DCS’s at 9 -  0°, even very close to 
threshold. We obtained the AGOS’s at =* 0° for £  = 100 
and 1500 eV for the measured data [37,38] using the MDM
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[because the last measurements were at 1.2'  ̂ and 2°, 
respectively. Although the data point of X u et al appears 
significantly lower than the F S F  and G L E  curves, it is, 
nevertheless within the experimental errors. Also, the 
measurement [37] appears to be increasing away from the 
(X)S Innit as E increases from 600 eV to 800 eV. This behavior 
,j; incorrect, but is still within the experimental errors. Just 
lilce for the H \s -2 p  transition, the G L E  represents very well 
the measured He 1 ^S-2 data over a wide range of £-values.

Suzuki et al [42] have measured the electron excitation 
DCS’s for the Xe [3/2, 1/2] 6s states from ground state at 
iOO, 400 and 500 eV, down to scattering angles ft = 2.45°, 
I 4̂" and 1.5°, respectively. Ester and Kessler [9] have 
measured absolute DCS’s for the same transitions at £ -values 
betw een  15 and 100 eV, but only down to ft. =- 6°. Both 
experiments also determined OOS’s. Ester and Kessler also 
demonstrated that their data at 100 and 80 eV were compatible 
with Lassettre’s limit theorem, while those for £  ^ 40 eV 
were not. To apply the GLE to both measurements, we must 
first obtain data at 0° from the respective data sets using 
the MDM. Within the experimental errors, the data points 
at 0--- 0° must lie on the corresponding GLE curve as in 
figure 4. Figure 6 compares the Suzuki et al [42] data w ith 
that of Lster and Kessler for the Xe [2l2]6s state. The GLE 
and FSF curves are also included, and are in good agreement

iRurt 6 . Comparison o f the apparent generalized oscillator strength G as a 
unction of Z for the excitation of the Xe [3 /2 1 6 5  state from the OLE (-) and 
lie FSF (— ) with data from the measurements of Suzuki et a l [42] and
ster and Kessler [9].

''ith the measurements within their errors. We note that 
^akoo et at [\] also measured the DCS’s for the features 1 

2 of Xe for 0° ^  180° at 15,20 and 30 eV. However,
beir data for feature 2 arc ill-behaved near at 15 and 20 eV; 
be rest of their data behave excellently.

Conclusion
n this paper we have demonstrated, in an appropriate 
^presentation, the general properties of the AGOS, thus

providing a stringent test of small angle electron scattering 
measurements and calculations. The recent generalized 
Lassettre expansion, employing a single moving Regge pole, 
has be<m used to establish the applicability of the Lassettre 
limit thoeorem, regardless of the electron impact energy and 
without tlie involvement of the nonphysical region of the 
AGOS. Furthermore, at forward scattering the GLE provides 
the lonj-soughl-afrer normalization curve to the OOS of the 
measuifed relative electron DCS’s through the AGOS. 
lllustrafve examples for optically allowed transitions come 
from He, Li and Xe; others can be found in Felfli et al
[44], influding for a molecular transition. The work presented 
here represents a component of a more extensive international 
collaboration inve.stigating correlation effects in atomic 
transitions. Deb et al [45], photoionization processes, Haque 
et al [46] and Gorezyea et al [47] as well as in generalized 
oscillator strengths of dipole, monopole and quadrupole 
transitions, Amusia et al [48].
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