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Abstract

. Firstly, we demonstrate that in an appropriate representation the apparent generalized oscillator strength (AGOS) manifests its

general properties and that the zero scattering angle curve connects continuously the threshold energy £ = wand the high encrgy £ = oo, corresponding
to the optical oscillator strength, without traversing the nonphysical region. Secondly. the recent gencralized Lassettre expansion (GLE) [Phys.
Rev Leut. 81 961 (1998)] with only a single moving Regge pole is employed to establish the applicability of the Lassettre limit theorem regardless
of the electron impact energy and to gencrate the associated normalization curve for the measured relative electron differential cross sections
(DCS’s). At forward scattering the GLE yields the unique and long-sought-after normalization curve to the optical oscillator strength of the
measured relative DCS’s through the AGOS. Optically allowed transitions in H, He and Xe are used to illustrate the normalization curve.
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1. Introduction

For optically allowed transitions in atoms, ions and molecules,
the major contribution to the integral scattering cross sections
(ICS’s) is considerably larger from the small angular region,
particularly when the impact energy is large. However, in
this angular region the measured electron DCS’s are generally
riddled with uncertainties due mainly to the difficulties in
carrying out these measurements. The difficulties of
measuring reliably the electron DCS’s at the small scattering
angles, including zero, well documented in the literature, are
still clearly manifest even in the most recent measurements
for H [1] and Li [2]. For the former, measurements were
obtained down to only 7° at all the impact energies considered,
while for the latter, data were obtained down to 6° at 21.8 eV.
Similarly, the DCS's for Mg I1, Zn Il and Cd Il were measured
down to only 4°, 6° and 4°, respectively at 50 eV [3]. For
moleculu transitions the problem is exemplified by the
Vibronic excitation bands (v = 1- 4) of the 4 'TI electronic
state of N, [4]. Additionally, DCS measurements at the least
Physically attainable scattering angle, zero, are obtained at
Values of the momentum transfer squared, K> > 0 regardless

of impact energy, E. Hence, the behavior of the DCS in the
non-physical region, finite £, defined by the region between
the values of K2 at 8= 0° and K* = 0, down to K2 = 0 can not
be achieved by experiment. Thus this behavior must be studied
through theoretical representations.

The generalized oscillator strength (GOS) concept
introduced by Bethe [5] manifests directly the atomic wave
functions and the dynamics of atomic electrons. Important
information about both the electron DCS’s and ICS’s can be
obtained by investigating the behavior of the GOS as K* - 0
[6] , since the GOS converges to the optical oscillator strength
(O0S) for K2 « 1. Lassettre ef al [ 7] established that this must
be valid regardless of E, viz. whether the first Born
approximation is applicable or not. One of the major prob-
lems encountered in extrapolating the measured GOS to the
00S, employing the standard Lassettre series [8], apart from
the problem of convergence, has been that the non-physical
region of the GOS becomes extensive as E decreasestoward
threshold, thereby making the extrapolation difficult and
unreliable [9]. To remedy some of the problems, the Regge
pole representation of the electron DCS was introduced [10].
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The approach analytically continues the measured data from
the larger angular region, where they are gencrally measured
more reliably, through to zero scattering angles, where
measurements are difficult to obtain.

Problems of determining absolute values of the measured
electron DCS’s using a GOS technique and contributions to
the ICS’s from the small angular regime have been discussed
by Ismail and Teubner [11], who measured the DCS’s for
excitation of the resonance transition in Cu down to 8= 2° at
all their impact energies. They also demonstrated that at
20 eV and 100 eV 84% and 99%, respectively of the
contributions to the ICS’s come from the approximate angular
range 0 < 0< 15°. This conclusion is consistent with the results
found by Chen and Msczane [12] for optically allowed
transitions in Xe and Na. Also, the contribution from
the angular regime not covered by the measurement
(0 £ 0< 6°) to the ICS’s in the electron excitation of the
states 6s{3/2], , of Xe was found [9] to be between 1% and
70% for E valucs between 15 eV and 100 eV, respectively.

Above we have demonstrated sufficiently that many
measurements of the electron DCS’s for optically allowed
transitions in atoms obtain data only down to some small angle,
0, near 0= 0° and almost never at #= 0°. (We notc that the
same applics to molecular transitions. The case of ionic
transitions is even worse; there are very few measurements
of DCS’s for them because of severe technical difficulties).
However, these transitions receive the major contribution to
the ICS’s mainly from the small angular range, particularly
at high energies.

In this paper we first use the recently developed methods
[10,13,14] to demonstrate the applicability of the Lassettre
limit theorem over the entire electron impact energy, viz. from
threshold, £ = w to the optical oscillator strength (OOS),
E = oo, Then, we show that at forward scattering the GLE
represents the unique long-sought-after normalization curve
to the OOS for the measured relative electron DCS’s.

2. Theory
2.1. The momentum dispersion method (MDM) :
The DCS and the GOS for atomic or molecular excitation by

a fast electron are related through (atomic units are used
throughout) [5,15]

”2 ,__9__1‘_’_ 2 ig.
S(E,K?)= 5 ij (dg), M
where
K2 =2E[2—%-2 l—%cdsO], )

o, k, and k, are respectively, the excitation energy, the electron
momenta before and after collision, K and fare the momentum
transfer and scattering angle, and E is the impact energy.

We note that although eq. (1) is obtained withjy, the
applicability of the FBA, an apparent generalized 0scillaggy
strength (AGOS) can be defined so that the energy dependep
eq. (1) is also applicable when the measured or calculateq
DCS’s are used [15]. The limit of the AGOS as 42 5
(commonly known as the Lassettre limit theorem) is

0. | 2
10 = lim f(EK?), o

Ester and Kessler [9] have found that for £ < 40 ev theyr
measured absolute data for the electron excitation of X o
the states 6s{3/2], ; could not be extrapolated to the Lassety,
limit, viz. the OOS, using the Lassettre formula [7.8] Als,
the problem associated with the normalization of the measyreq
relative electron DCS’s through the standard Lassetye
expansion, particularly when using relatively small impaq
energies, has been discussed. Haffad er a/ [10] discovered
that the expansion coefficients in the Lassettre expansion
increased dramatically with each new term, thereby limitig
the utility of the expansion to only the generally more
inaccurately measured small angular data. To circumvent thiy
problem Haffad er a/ have used a dispersion relation
representation of the DCS’s for dipole allowed transition- a
small K? values. The Regge pole representation of the election
DCS’s transforms eq. (1) to (10)

F(x2 )=a~::72—);[R+2rcos(elog(] sa)-4)
where x = K/Y with Y = 2T + J2(T- w). ! and w being the
ionization and excitation energies, respectively. The quantities
R r, £and ¢ are yet to be determined. Eq. (4) is mapped
through

z=log(1+x?) and FM(z)=(+x2)0 F(x?2), (8
which reduce eq. (4) to

FM(z) = ay +a, cos & + by sin &, (6
where ay = R, a, =2r cos ¢, and b, = 2r sin ¢. In the new system
of variables the AGOS is expanded in a Fourier series of which

we have retained only the first terms determined from eg. (6)
and log (1 + x?) is a natural variable. The OOS is then

j“=ao+a,. (7)

The parameters ao, a;, b, and care determined by minimizing
FM(z) through the functional

N ex| 2
F P~ FM(z;) 8
r 3| ], y

where N is the number of experimental data points, z;, £/ and
AFM are the mapped experimental values through the mappi!fg
eq. (5) of the i-th point position, the AGOS value and error
the AGOS, respectively. The dependence of F* on z 18
irrelevant to the outcome of the parameters. This is a Very
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fime and desirable feature of the method because the
nvestigations of F* as a function of a new variable will not
result in @ NEW derivation, but only in a modification in the
Jefinition of both FM and z. We stress that the OOS’s are
qutomatically extracted with the constants, a.a,, b, and £ in
she method. The correct OOS’s therefore provide self-
consistency checks of the measurements.

Eq. (6) represents the expression for the MDM. In an
appropriate representation the AGOS varies linearly with X?
so that the difficult to measure smaller angular data can be
obtained readily through analytical continuation. The MDM
has been used extensively to obtain smaller angular data from
larger angular measurements and to calculate ICS’s for
wansitions in Xe and N; [16]. Also, with some modification it
nas been used successfully to analyze optically forbidden
ransitions in atoms and molecules [17].

12 Forward scattering function (FSF) :
Avdonina er al [13] have introduced the dimensionless
variables

K? )
y=cos(8), u=5—andt =%, ®

o transform K2 to

ut=2-1-2JT-1y, (10)
vhere 0 <r< 1, u 20 and y is without restriction. The physical
egion corresponds to |y| < 1 while |y| > 1 defines the
ionphysical region. At fixed y the energy parameter ¢ has
wo values. When u ~ 1, they are

4 ~4uf(1+u)? and ¢, =2sin2@/(1+u)2. (11)

lotably, ¢, is independent of @ and corresponds to the
orward scattering (0= 0°) of the AGOS [13], see Figure 1.

12

iE"lrt 1. Kinematics of the electron excitation process using dimensionless
;:lables t and u. The curves, starting from the lef}, represent 8= 0°, 10°,
+60°,90°, 120° and 180°, respectively. Note that the curve connecting

¢ Maxima is the envelope curve [13] and the 8= 0° curve, the only fixed

'8le curve, connects continuously threshold, ¢ = 1 and ¢ = 0 and has its

a’g"lum at r = 0. All other curves for which 8 0° avoid the limit point
Vandu =,
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The dependence of 1, on @is weak at 6~ 90°. On the envelope
curve [13]4=2u/(1 + u)i.e. K2 = 2wsin 8(u = sin 6), we have
t; = t,. Figure 1 shows the variation of 7 with u for values
of 6= 0-180°. Also plotted is the envelope curve; it joins
thgmaxima of the curves. Interestingly, the maximum of the
0=0° curve is at u = 0. Clearly, the only curves that connect
comtinuously £ = wand E = o ( the OOS limit) are the forward
scagtering and the envelope curves. However, the forward
sca#tering curve is the only fixed angle curve that connects
coétinuously the two energy limits. We note that ¥ < 0.5 for
values of r up to about 0.9, implying that u is a natural
expansion variable even at fairly low electron impact energies.
This explains why sometimes first Born approximation is
applicable even when E appcars to be fairly low.

Eqs. (9) and (10) have been used to obtain the FSF [13]

d(u) = ﬂ[l -;L] e/t Y

max

(12)

where uy,, = 0.25 and f° is the OOS. Eq. (12) describes
the locus of the AGOS points at various £ values, with
Enin = 2.5 w, such that ¢ = (I:::)Z . For any optically allowed
transition, @(u) can be obtained from that of the H 1s-2p
transition (or any other accurately known transition) and
the corresponding OOS’s. The FSF and the MOM have been
used together to normalize measured relative electron DCS’s
[18-21] and to identify spurious behavior in both measured
and calculated DCS’s at and near € = 0° [22,23]. Recently,
the FSF has been generalized [24] for use in the nomalization
of the relative experimental excitation or ionization DCS’s or .
DDCS’s. The new normalization [24] is effected beyond the
FBA and without e:xtrapolation through the nonphysical

region.

2.3. Generalized Lassettre expansion (GLE) :

At low electron impact energy, only a few partial waves are
necessary to represent correctly a scattering process. When
increasing the energy, more and more waves are contributing
to the general process, and the partial wave expansion
converges slower and slower. In particular, the presence of a
square root singularity at K? = 0, prevents the partial wave
expansion from converging there. Regge [25] has proposed
to use complex angular momenta to produce a representation
that converges for nonphysical transfer momenta. In this
representation the amplitude is expanded into generalized
partial waves. A full discussion on the application of the
complex angular momentum to scattering problems is found
in Connor {26]. Recently, a general method of calculating
Regge poles for both singular and regular potentials has been
developed and illustrated [27,28].

In the present case, where we analyze a K? region before
the first minimum we can neglect the imaginary part of the
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leading Regge pole (that controls the oscillations in the DCS)
and write the generalized Lassettre expansion (GLE) (with
only one moving Regge pole) [14]

00S
FEK = aw ey (19

where the OOS, f° and A4 do not depend on energy and
where

(14)

The constant C can be computed directly from the Schrédinger
equation through the general expressions given in Refs.
[27,28] with the appropriate potentials used. Eqgs. (13) and
(14) give a global analysis of the AGOS in tenns of only three
energy independent parameters A, C and /° (usually a known
quantity determined independently).

The beauty of eq. (13) is structural simplicity; it manifests
directly the energy dependence of the AGOS through the
second term. We refer to this second term as the “moving
Regge pole” contribution to the AGOS. The whole expression
is referred to as the generalized Lassettre expansion [14] for
obvious reasons. The GLE represented by eq. (13) differs from
others [8,10] through the presence of the second term which
also contains the square root singularity at K = 0, whose
importance has been pointed out [29]. The GLE has been used
to extract the OOS within 1% accuracy for the H 1s—2p
transition from the accurate DCS’s of Bray et al [30] when
the data at 19.58 eV < E <200 eV were used.

3. Results
3.1. General properties of the apparent generalized oscillator
strength :

In an appropriate representation, the physics simplifies
considerably. Figure 1 depicts the kinematics of the electron
excitation process using the dimensionless variables 7 and u
for values of 8= 0-180°. The curves, starting from the left,
represent € = 0°, 10°, 30°, 60°, 90°, 120° and 180°,
respectively. Note that the curve connecting the maxima is
the envelope curve [13], and the &= 0 curve, the only fixed
angle curve, continuously connects threshold, t=1and¢=0
and has its maximum at ¢ = 0. All other curves for which
= 0° avoid the limit point ¢t = 0 and # = 0, corresponding to
the optical oscillator strength. For values of ¢ up to about 0.9,
#$0.5 implying that u is a natural expansion variable even at
fairly low electron impact energies. Clearly, the Lassettre limit
of the GOS (¢ = u = 0) can be reached only by staying on the
0= 0° curve, when starting from any E value.

The kinematic representation of Figure 1 permits the
demonstration of the general properties of the AGOS [31].

We use the Li 25-2p transition to elucidate small-ang|,
electron scattering because of the availability of measuremenys
[32, 33] and theoretical calculations [34, 35] over a wide range
of electron impact energies and scattering angles. These daty
provide a stringent test of our approach and vice veyy,
Figure 2 shows the AGOS versus ¢ from the data of Bray
etal [35] at 8= 0%, 1°, 3°, 5°, 10° and 15°, starting with p,
top curve at 6 = 0°, down to the bottom curve at ¢ = |5
as ¢ varies from 7= 0.00185 (£ = 1000 eV) to £ = 0.185 (¢ -
10 eV). The Bray et al [35] data demonstrates excellently
how the AGOS’s should approach the OOS limit as ¢ — ¢
(E — «) and fdecreases from 15° down to 0°. This behayior
is general and is usefu) for identifying spuriously behavey
data [31]. Also included in Figure 2 at & = 3°, 5° and 1(¢
(crosses, dashed crosses and pluses, respectively) are the
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Figure 2. Apparcnt generalized oscillator strength AGOS versus ¢ for the
transition Li 2s-2p The data of Bray et al [35] at 0= 0°, 1°, 3°, 5°, 10° and
15° are represented by the dashed curves, from top (6 = 0°) to bottom
(8 = 15°), while the calculation of Madison et al [34] is shown only &
6= 10° (triangles) .The measurements of Vuskovic ez al [32] are shown al
6 = 3° (crosses), 0= 5° (dashed crosses) and at 8= 10° (pluses); those ol
Karaganov er al [33] arc shown at § = 0° (diamond), & = 10° (invertec
triangle) and at 0= 12° (square).

measured data points of Vuskovic et al [32]. The agreemen!
with the data of Bray et al [35] is excellent, except at ¢ -
0.185 (E = 10 eV), where the measured data are above tht
zero curve for both &= 3° and 5°. We note that at 10 eV tht
AGOS's at 8= 0°, 3° and 5° are close together; nevertheles'
they are still within the experimental errors. Furthermore, i
becomes difficult to distinguish between, for example tht
AGOS’s belonging to =0°and 5°fort— 1and E 2>
Also shown in the figure are the calculated values of Madiso!
et al [34] at 6 = 0°, represented by the triangles and tht
Karaganov et al [33] data at 8= 0° (diamond), 9= 10° (inverte(
triangle) and #= 12° (square). For this measurement, the zer!
degree data point appears inaccurate.

Since experiments tend to experience problems i
measuring reliably the DCS’s at and near 6= 0°, the variatio
of the AGOS with ¢ for Li 2s—2p can be used to investiga!
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the behavior of the data of Vuskovic et a/ [32], Karaganov
ot al [33] and Madison ef al [34] at 8 = 0. In Figure 3 is
contrasted the data from the DCS measurements [32,33] and
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Figure 3. Comparison of the apparent gencralized oscillator strength AGOS
versus ¢ for Li 2s-2p from the DCS measurements of Vuskovic ef al [32]
and Karaganov et al [33] with the Madison et af [34] calculation as well as
the CCC calculation of Bray er al [35] at 6= 0° for values of E ranging
from 7 ¢V to 1000 eV. The dashed curves are from Ref. [35] at 0= 0° (top
curve) and 8= 3° (bottom curve). Note that the Vuskovic ef a/ measurement
a 0= 0° (crosses) simply requires normalization and at 6 = 3° (pluses)
agrees very well with the calculation of Ref. [35]).

the theoretical calculations [34,35] at 8= 0° for values of E
varying from 7 to 1000 eV. Also included for comparison are
the Bray et al [35] and Vuskovic et al [30] data at 8= 3°. As
already seen in Figure 2, the Bray er al [35] data represent the
zero scattering exceliently. We therefore conclude that the
Madison ef al [34] data behave spuriously, but only at zero
scattering angles. The measurement of Karaganov et al at
14 eV (diamonds) underestimates the zero degree data of
Bray et al [35], while at 7 eV it agrees excellently with
them. We note that near 1000 eV the 8= 0° and 8= 3° data
are well separated, while those near £ = 7 eV are almost
indistinguishable. Contrary to common belief, it is easier to
separate in angle measured data at high E than at low E.

32 The Lassettre limit theorem :

Inthis section we demonstrate the applicability of the Lassettre
limit theorem, viz. lim 2_,, f(E,K?) = f°, regardless of the
electron impact energy. In Figure 1 we demonstrated that the
9=0° curve is the only fixed scattering angle trajectory that
tonnects continuously £ = w(¢ = 1) and E = «o (¢ = 0), the
008 limit, without involving the nonphysical region. No other
rajectories at a fixed angle can lead to the OOS limit, although
allbegin at ¢ = 1. For example, the 10° curve clearly avoids
the OOS limit as £ — . We note that although the second
turve, called the envelope curve [13), also connects E = @
and E = oo continuously, but it does so not at a fixed angle.
F urthermore, we saw that as £ — o, the angular dependence
°f.°Q- (10) is eliminated; all the small angular curves merge
With the #= 0° curve as £ —» . Therefore, the small angle,
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approximately #< 15° (the angular regime of interest of this
paper), behavior can be approximated by that of the 8= 0°
curve s £ > o.

In Figure 4 we show the AGOS versus E for the H 1s—2p
transition at 8= 0°, 5° and 10°. The solid curves are calculated

|

I R N I )

E (eV)
Figure 4. Comparison of the apparent generalized oscillator strength G for
H 1s-2p as a function of £ from the data of Bray, Konovalov and McCarthy
[30] ( ** ) and the GLE (-) at 8= 0°, 5° and 10°. Near E = @ (E < 20 eVi,
approximately) the data corresponding to 8 = 0°, 5° and 10° become
indistinguishable as required by the kinematics of Figure 1. Also included
is the FSF (- --).

using the values of the constants 4 and C obtained by
Felfli et al[14). The dash-dot curve is the forward scattering
function of Avdonina et al [13], while the asterisks represent
data from Bray et a/ [30). The agreement between the Bray er
al [30] data and the GLE is excellent down to near threshold.
Note that the 10° and 5° curves merge with the zero degree
curves as E = o, consistent with the Kinematics, Figure 1.
As E — 200 eV, the scparation among the various curves
becomes larger in comparison with that near E — o. That
the AGOS curves other than that corresponding to 8 = 0°
must vanish as E — o, follows from eq. (13). As E — o, the
second term becomes negligible and only the Born term
survives, viz.
fo
(1+x2)5
fO
" [1+4DE(1 - cos8)]®

N(E,K?)=

(15)

where D is a constant independent of E. When 6 = 0° in
eq. (15), f(E, K?) = f°. Therefore, the 8= 0° trajectory of the
AGOS is the only fixed scattering angle curve for reaching
the Lassettre limit when starting from any E-value and without
involving the nonphysical region. This demonstrates clearly
the single-pole dominance of the scattering process at forward

scattering. For any non-zero scattering angle, fE, K?) ~ (%)‘
which approaches zero as E — . Consequently, the 8= 5°
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and 10° (or any &= 0°) AGOS curves actually go to zero as
E — o, leaving only the forward scattering curve to satisfy
the Lassettre limit theorem, consistent with the Kinematics
of Figure 1. Thus establishing the applicability of the Lasettre
limit theorem regardless of the electron impact energy required
an appropriate universal representation of the Kinematics and
the AGOS.

Some immediate consequences of the Lassettre limit
theorem are worth mentioning. From Figure 4 it is now clear
that knowing the absolute values of the DCS’s at & = 0° as a
function of £, the data can be used to determine the value of
the OOS [9]: the accuracy being determined by that of the
DCS’s. This, a superior approach because it avoids completely
the extrapolation of the AGOS, particularly through the
nonphysical region, should be contrasted with that used in
Ref. [9]. Experimentally, it would be easier to separate the
angular dependence of the AGOS’s as E — o, rather than
those near threshold. Most importantly, the GLE at = 0°
defines the long-sought-after unique normalization curve of
the AGOS’s to the OOS. This implies that for absolute data,
the AGOS at any impact energy must lie on this curve;
otherwise the data point at the given impact energy must be
shifted up or down so that it is on the curve. Interestingly, it
would be difficult to separate in general spuriously behaved
data points from improperly normalized data points. However,
the self-consistency of the data as a function of angle or K2
can be ascertained using the MDM as was demonstrated by
Felfli and Msezane [18] and Marinkovic er al [19].

3.3. Normalization of differential cross sections :

Since at 8= 0° the GLE connects continuously the £ = wand
E=wo(the OOS) limits, it therefore represents the long-sought-
after normalization curve to the OOS, regardless of the impact
energy and without involving the nonphysical region. In this
section we extract the normalization curves appropriate to
the optically allowed transitions in H, He and Xe to
demonstrate correctly normalized data and/or spuriously
behaved data at or near 8= 0°. To analyze these transitions
using the GLE we need the values of 4 and C in eq. (13) of
the GLE. As pointed out by Felfli er a/ [14], C can be
determined directly by solving the Schrédinger equation, a
laborious process, or from the measured data. However, for
the present purpose A and C will be extracted in a simple
way. At 8= 0° the GLE and FSF, including its generalized
version [24], are matched at two arbitrary impact energies,
one high, E, and the other low, E,. Table 1 shows the results
of such a determination. The constants are not too sensitive
to the choice of E, and E; as long as they are reasonably
separated. We note that, while the FSF can be used only at
8= 0°, the GLE can also be employed for & =0° as shown in
Figure 4. The curves at 8= 0°, 5°, 10° were obtained using

the same constants from Felfli et al [14], given in Tay, |
Also, the GLE can be used to determine O0S’s [14] frop,
measured absolute DCS’s.

Table 1. GLE constants for the systems of interest. 12 valye are {rop,
{
Felfli et al (14].

System A C Ei(eV) Ez(ch‘?T
—
Hls-2p -3.340 14.565 25.5 152.0 0445
-2.9807 12.2004
He '§-2'P° - 1.217 0370 24.0 4.0 0278
Xe[3/2] -1.827 5262 17.0 64.0

0230

Unlike for the H 1s5-2p transition, there are man,
measurements and calculations of the DCS’s for the He
1'S-2 'P® transition at and near 8= 0°, the angular region of
our interest. Since in this paper we want to demonstrate the
applicability of the GLE, we have selected the measurement
[36-39] and calculations {39-41]. Combined, they cover the
electron impact energy range 23.2 < E < 1500 eV and the
angular regime 0° < 6 < 180°. Because of the availability of
the measured data at and near @= 0°, the four measurements
are suitable for demonstrating the normalization capability
of the GLE. Define the energy Z = E/w.

In Figure S various selected calculations [39-41] and
measurements [36-39] of the AGOS’s at € = 0°, for Il

T

+

GLE

FOF
Cubric ot &l (1009)
Cartwright et sl (Theo )
Manaky and Plarnery
Xuetal
Carmwright ot @ (Expt)

Fon el #1{1963)
Sunvkietsl A

4 0o +« = Qo e

Z

Figure 8. The apparent generalized oscillator strength G for He 1'5-2'7
from the GLE (-) and FSF (---) are compared to those from vnriol{S
measurements [36-39) and calculations [39-41]. The variable Z = E/08
used for the horizontal axis.

1!S-21P° are compared with the OLE and FSF curves o {
23.2 < E < 1500 eV. The results demonstrate that the GLE
can be employed to normalize relative measurements t0 the
OOS at any E and/or assess the reliability of measured o
calculated electron DCS’s at 8 = 0°, even very close ©°
threshold. We obtained the AGOS’s at = 0° for E=100¢V
and 1500 eV for the measured data [37,38] using the MDM
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pecause the last measurements were at 1.2° and 2°,
espectively. Although the data point of Xu et a/ appears
S,gniﬁcantly lower than the FSF and GLE curves, it is,
nevertheless within the experimental errors. Also, the
measurement [37] appears to be increasing away from the
00S limit as & increases from 600 eV to 800 eV. This behavior
« mcorrect, but is still within the experimental errors. Just
jike for the H 1s—2p transition, the GLE represents very well
measured He 1'S—2 PP data over a wide range of E-values.

suzuki et al [42] have measured the electron excitation
pCs's for the Xe [3/2, 1/2] 6s states from ground state at
100, 400 and 500 eV, down to scattering angles 0, = 2.45°,
) 4° and 1.5°, respectively. Ester and Kessler [9] have
measured absolute DCS’s for the same transitions at E-values
petween 15 and 100 eV, but only down to 4, = 6°. Both
experiments also determined OOS’s. Ester and Kessler also
Jemonstrated that their data at 100 and 80 eV were compatible
with Lassettre’s limit theorem, while those for £ < 40 eV
were not. To apply the GLE to both measurements, we must
first obtain data at &= 0° from the respective data sets using
the MDM. Within the experimental errors, the data points
at = 0° must lie on the corresponding GLE curve as in
Figure 4. Figure 6 compares the Suzuki ef al [42] data with
that of Ester and Kessler for the Xe [3/2]6s state. The GLE
and FSF curves are also included, and are in good agreement

the

ve + T v v v T ~
A
. A
oz a 4
GLE -~
015 FOF — A
v
8 Ester and Keasler  *
L]
< Sunbietal O
o
008
[y . . s
o 10 0 0 0 80 0 70 L]
Z

‘igure 6. Comparison of the apparent generalized oscillator strength G as a
unction of Z for the excitation of the Xe [3/2]6s state from the GLE (-) and
he FSF (-- -) with data from the measurements of Suzuki ef al [42] and
‘ster and Kessler [9). _

vith the measurements within their errors. We note that
‘hakoo er al [1] also measured the DCS’s for the features 1
tnd_ 2 of Xe for 0° < @< 180° at 15, 20 and 30 eV. However,
heir data for feature 2 are ill-behaved near at 15 and 20 eV,
he rest of their data behave excellently.

" Conclusion

U this paper we have demonstrated, in an appropriate
tPresentation, the general properties of the AGOS, thus
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providing a stringent test of small angle electron scattering
measurements and calculations. The recent generalized
Lassettre expansion, employing a single moving Regge pole,
has been used to establish the applicability of the Lassettre
limit theorem, regardless of the electron impact energy and
without the involvement of the nonphysical region of the
AGOS Furthermore, at forward scattering the GLE provides
the long-sought-afler normalization curve to the OOS of the
measused relative electron DCS’s through the AGOS.
lllustra:ve examples for optically allowed transitions come
from H§ He, Li and Xe; others can be found in Felfli et al
[44]. inéluding for a molecular transition. The work presented
here represents a component of a more extensive international
collabaration investigating correlation effects in atomic
transitipns, Deb er ol [45], photoionization processes, Haque
et al [46] and Gorczyca et al [47] as well as in generalized
oscillator strengths of dipole, monopole and quadrupole
transitions, Amusia et al [48].
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