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Abstract • The terms ‘quasiatom’ and ‘superatom’ arc inUoduced A qilasi-atom. for example contains two ions of opposite charge, which 
behave like an atom, forming Rydberg states. A superatom also contaiits many atoms, but behaves in a simple way, and can be modelled within 
the ccnual field approximation. Both are examples of many-body systems which emulate quasi-particle properties Their behaviour is the opposite 
lit quasi-particic breakdown in isolated atoms. Howcvci. it also probes tltc boundary between simple and complex behaviour, for species larger 
than atoms. Examples arc given, ranging from shallow donor impurities in semiconductors, through ion-pair molecules, confined and endohcdral 
atoms, to metallic clusters
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I. Introduction
Since the late 70’s, there has been interest in the non-Rydberg 
spectroscopy of atoms [1], in which the approximate 
regularities of the independent particle model arc replaced 
by very complex manifestations of many-body forces, 
(complex spectra of ‘simple’ atoms (2]) or even by coherent, 
collective oscillations (the ‘giant resonances’f3]). Rydberg 
series in many-electron atoms can occasionally suffer 
explosions o f complexity ( ‘quantum chaos’ [4]) or, 
conversely, disappear completely from view, giving up all of 
their available oscillator strength to but a few isolated 
resonances. Both aspects of non-Rydberg behaviour are 
regarded as manifestations of many-body forces [5], I lowever, 
non-Rydberg behaviour in isolated atoms is comparatively 
unusual. Mostly, even complex atoms choose to follow the 
predictions of the independent electron, central field 
upproximation. In this light, we can interpret Rydberg 
behaviour as the self-organisation of many-electron atoms, 
or as a manifestation of quasi-particle behaviour in a many- 
body system.

Indeed, there is a remarkable tendency of complex systems 
to conceal their many-body nature, by forming quasi-particles 
(vacancies, or holes) whose behaviour is quite close to that of 
the real particles [6], For example, in X-ray spectra, a nearly-

complete shell with one electron missing appears as a vacancy, 
whose properties are analogous to those of a single particle. 
This tendency poses an intriguing question of scale size; how 
large can a quantum system be and still continue to exhibit 
this property ?

Recently, a variety of systems have been uncovered 
which are not atoms, being composed of several, or of many 
atoms, but which nonetheless self-organise in a manner 
similar to complex atoms, and possess properties not 
normally associated with multi-atomic objects. We shall refer 
to them as quasi-atoms and super-atoms, depending on their 
size and complexity. A quasi-atom is a system larger than an 
atom (for example: a metallic cluster) which can be modeled 
theoretically as a single quasi-atomic object, within a 
theoretical scheme which is adapted from atomic physics. A 
super-atom, on the other hand, is a group of particles (for 
example : a pair of ions of opposite charge), which together 
form bound states analogous to (but different from) the 
Rydberg states of a free atom.

The properties of interest in both cases are precisely those 
which tend to persist in many complex atoms as dieir size 
increases, and which underpin atomic physics, in particular 
the central field approximation.
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The approach in studying quasi-atoms and super-atoms is 
exactly the opposite of the search for many-body effects in 
atomic spectra. In non-Rydberg spectroscopy, one seeks to 
uncover many-body effects due to the breakdown of the 
independent particle approximation for complex atoms. When 
dealing with quasi-atoms or super-atoms, on the other hand, 
one is looking for the persistence of regular atomic or quasi- 
atomic behaviour in systems much larger still than many- 
electron atoms.

Both approaches are ways of probing a frontier, where 
die fundamental simplicity characteristic of small multiparticle 
quantum systems eventually gives way to the complexity 
characteristic of large systems. The fact that this happens 
differently in different situations, and the role of symmetry in 
determining such behaviour are the subject of the present 
Comment. Many of the systems involved possess an enhanced 
degree of spherical symmetry, which combines with the Pauli 
principle to simplify the many-body problem. In the classical 
limit, a many-body system can become chaotic, and so the 
fundamental role of both spherical symmetry and the Pauli 
principle as inhibitors of chaos stands out rather clearly in the 
quantum case. These emerge as the two main features which 
help to make the many-body problem tractable in quantum 
mechanics.

2. Rydberg states in a solid : shallow donor impurities 
When an impurity atom is inserted into a solid, it is possible 
for new bound states to appear. At first sight, it might seem 
that Rydberg excitations would arise, involving only very few 
low members, small enough to fit within the interstices of the 
lattice. Indeed it might appear impossible to associate any 
genuine Rydberg character with condensed matter, because 
so few states would appear.

There are, however, Rydberg excitations in solids of quite 
a different kind, for which the value of the Rydberg constant 
(and of the effective mass of the electron) are totally different 
from those of free atoms.

If an electron is ejected fiom the valence band directly 
into die conduction band of a solid, it leaves behind it a hole, 
which behaves exactly like a particle except that its charge 
and momentum are both equal and opposite to that of the 
electron. Thus, overall neutrality is preserved and the total 
momentum is zero. Electron and hole then move apart from 
one another, usually rather rapidly.

If the process takes place in excited states near the band 
edge (see Figure 1), then the momentum of the particle and 
of die hole are almost zero, and they experience a mutual 
Coulomb attraction. The problem is essentially the same as 
the H atom, or die energy levels of positronium: the electron 
and hole possess discrete energy levels with binding energies 
given by the Rydberg formula E„ * -{mdm)RJrP-, where n is

the principal quantum number, m is the mass of a free 
electron, and ntr is the reduced mass, obtained from the 
equation : m, = »!„«*/(«», + m*), where m, and are the 
effective masses of the electron and the hole in the solid fr 
practice, these are rather different from those for free particle‘s 
and so the apparent Rydberg constant (ntr/m) R is ver\ 
different from that for atoms (instead of an energy scale ir 
eV as for atoms, one finds energy scales in tens of meV)

conduction

Exciton
levels

Figure 1. Schematic representation, showing the energy level structure tot 
the excitation of a shallow donor impurity in a semiconductor matcritil

Such aggregates, involving two or more charged panicles, 
which arc effective mass particles {e.g. electrons in the 
conduction band or holes in the valence band) are referred to 
generically as ‘effcctive-mass-particle complexes’. The bound 
electron-hole system is of course an exciton. It can be thought 
of as a ‘quasi-atom’, formed from the particle and the hole, 
with the two objects rotating about a common centre of mass, 
the angular momentum being quantised. Just as, in atomic 
physics, one generalises by considering die electron in a many- 
electron atom as a quasiparticle, we can now replace the 
positive centre of charge by a hole. This system is often 
regarded as the solid state analogue of positronium. In general, 
there are two kinds of exciton : when the electron and bole 
are fully delocalised from'any specific atomic site and form 
bound states, one has a Wannier-Mott exciton. When both 
die electron md hole are localised on or near a specific atomic 
site in the solid, so that the exciton is formed from atomic or 
molecular states perturbed by the ciystalline environment, one 
has a Frenkel-Peierls exciton.

This electron-hole ‘pseudoatom’ or ‘pseudohydrogen’ 
corresponds to such a large spatial separation diat the Coulomb 
attraction is almost negligible, which is consistent with 
excitation to the base of the conduction band, as shown in the 
energy-level diagram of Figure 1. Such states are created when 
an impurity atom acts as a donor, i.e. when an atom with a 
low ionisation potential is substituted for one of the atoms in
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a semiconductor host. The ionisation energy of an electron 
bound to the donor impurity can be much smaller than the 
energ> gap of the semiconductor. One then refers to a shallow 
donor impurity [7].

An exam ple of the ‘Rydberg’ series arising by excitation 
of these shallow excitonic bound states is shown in Figure 2,

Figure 2. Example of a Rydberg scries whose energy splittings arc 
detenmned by solid state effects ; the absorption spectrum of /* as a donor 
impurity in silicon (see reference [7] for further details).

»hich corresponds to the situation of Figure i. In fact, the 
cxcitonic states are identified by the presence of a Rydberg- 
like spectrum in some semiconductors with large enough 
energy gaps. Because of the much smaller value of the 
effective Rydberg constant in the solid, the highest n states 
are actually much larger than atomic Rydberg states of th^ 
same n. They can possess radii of 100 nm or more. Such giant 
Rydberg states allow one to explore an otherwise inaccessible 
regime of atomic physics, as will be explained below. Another 
interesting point is the presence of displaced lines in the 
spectrum, which do not fit the main Rydberg series. These 
can be attributed to a departure from sphericity : in the solid: 
the effective mass is not a scalar but a tensor quantity, and the 
symmetry is ellipsoidal. Thus, the resonances are split into 
tsvo modes along the axes of symmetry. A similar kind of 
splitting arises for plasmon resonances in metallic clusters 
[81-

There even exist problems of atomic physics which cannot 
explored in the laboratory by using atoms, but only by 

using ‘pseudoatoms’. One such is that of the atom in such a 
^ong magnetic field that it exceeds the internal fields of the 
Worn (superstrong magnetic fields). This requires field 
strengths in excess of the atomic unit of magnetic field, i.e. 
greater than 2.35x 10* T, which is unattainable, except in the 
Jbnospheres of white dwarf or neutron stars [9,10]. However, 
'f one replaces a normal atom by a pseudoatom, consisting of 
s shallow donor impurity in a semiconductor such as InP, 
âAs or InP, then giant quasihydrogenic orbits are produced, 

even the ground state is very wide. Taking GaAs as our

example, the effective mass m, of the electron is 0.065 m, so 
the orbits are some 200 times wider than for the atom.

As a result, with an external magnetic field of about 6.5 T 
(rendiiy achieved in the laboratory), the superstrong magnetic 
field condition can be reached [II]. This system has been 
investigated experimentally in fields as high as 14 ~T [12], 
an4 can be accounted for within a simple theoretical model. 
In |his unique situation (known as the Landau limit) the term 
quadratic in the magnetic field strength B dominates the 
Hwiltonian, while the Coulomb field becomes a small 
peqhirbation.I'

{Under these conditions, the spectrum becomes a series of 
eqtally spaced Landau levels, to each one of which a Rydberg 
series converges. Above the lowest Landau limit, a continuum 
occurs, and therefore, even in hydrogen, excited states above 
this limit experience autoionisation in the superstrong field 
condition [13]. While the autoionisation rate for hydrogen 
has been calculated theoretically, there is no way of 
performing controlled experiments in the laboratory to test 
the theory for a real atom. The test has been carried out by 
making use of pseudohydrogenic states in GaAs, and scaling 
the results [14], This provides a beautiful example of the unity 
of physics in the study of very unusual highly-excited atomic 
states.

3. Rydberg states of ion pairs

Another good example of quasi-atom ic behaviour involving 
quasi-particles rather than particles is the formation of 
Rydberg states of ion pairs [ 15]. Consider the dissociation of 
a diatomic molecule. If the fragments are neutral, then the 
potential at large radius r describing the attraction between 
the fragments has the form of an inverse power law 1 /r *, where 
A: is a positive non-zero integer, equal to 4 for ion-neutral 
interactions, 6 for van der Waais forces, etc. However, if t. e 
fragments are charged, then the force between them at large r  
will be Coulombic 1/r. A long range Coulombic potential 
supports an infinite number of bound states, whereas forces 
which vary as 1/r* do not. Thus, one finds, for this particular 
kind of dissociation, vibrational stales which obey the 
Rydberg formula, except that the Rydberg constant is 
scaled by the effective masses of the ionic fragments. 
However, since the energy density of such states is very high, 
ordinary spectroscopic means are not appropriate to detect 
these ‘new kinds of Rydberg atom’ [16].

Instead, what has been developed is a new kind of zero 
kinetic energy threshold spectroscopy. The method known 
as ZEKE is well established for the observation of very high 
Rydberg states of both atoms and molecules [17]. It consists 
in applying a pulsed electric field with a time delay after the
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initial photoexcitation. During this time, all the electrons with 
kinetic energy have time to escape from the interaction region. 
When the weak ionisation pulse is applied, only the ‘zero’ 
kinetic energy states are detected, i.e. the highly>excited 
Rydberg states. For molecules, a similar principle can be 
exploited, Le. a pulsed field can be :q>plied to dissociate highly 
vibrationally-excited ion pair states, after a time delay which 
allows the prompt ion-pair fragments to escape detection. In 
practice, this is a little more diftlcult than discriminating 
against prompt electrons [18]. A DC field has to be applied 
during the waiting period, and so the technique also allows a 
mass analysis of the ion fragments to be performed. For this 
reason, it is called MATI (Mass Analysed Threshold Ionisation 
Spectroscopy). The difficulty with MATI, as opposed to the 
ZEKE technique for electrons, is that the DC electric field 
applied during the waiting period does not allow very high 
Rydberg levels to be reached. However, the principle that 
Rydberg states are formed by such complex objects as ion 
pairs is now well established [19].

4. Confined atoms, and atoms under pressure
Whenever atoms are confined, which happens in a variety 
of situations, the atomic model must be altered in some way. 
An obvious example is the construction of a solid from 
individual identical atoms, in which case an atomic model is 
appropriate close to the nucleus, but the asymptotic behaviour 
of the potential must be modified, to take account of 
confinement within the Wigner-Seitz cell. Of course, a quasi- 
atomic model alone does not describe most of the properties 
of the solid, but there are some specific ones for which it 
provides the most appropriate starting point, and examples of 
that will be given.

Recently, many other situations (some of them, quite 
unexpected) have also been uncovered to which simple ‘quasi- 
atomic’ models can be applied, and turn out to contain the 
essentially relevant physics. Some examples are : atoms 
confined in high-pressure bubbles, atoms confined in zeolite 
tr^ s , atoms under pressure, super-dense matter, atoms in 
clusters, atoms trapped endohedraliy in fullerene cages, etc. 
Of all these examples, perhaps the last one is receiving most 
attention, as it seems likely that metallofiillerenes will soon 
be available in large enough quantity [20] for spectral studies 
of their electronic excitations in the ultraviolet and vacuum 
ultraviolet ranges to be undertaken.

5. Confined hydrogen
The simplest tiieoretical example of a confined atom was 
introduced by Sommerfeld and Welker [21], in a very 
remarkable birthday offering to Wolfgang Pauli. This was 
not actually the first paper on the subject. Michels et al [22] 
had already presented some arguments on this theme in 
another paper, similarly dedicated to van der Waals. Indeed,

it is quite remarkable how early the study of confined atoms 
began, and how soon after the birtii of quantum mechanics It 
is also very inspiring that Sommerfeld, <me of the great masters 
of the subject, was one of the originators of the subject.

Indeed, Sommerfeld provided a most elegant solution to 
the simplest problem : it is the case of hydrogen confined at 
the centre of an impenetrable sphere. Unfortunately, although 
this problem can be solved exactly, an atom placed inside an 
impenetrable sphere is unobservable. It is not the only situation 
of this kind in Quantum Mechanics. We all h^pily  solve for 
particles in infinitely deep potential wells, and we regard the 
solutions as teaching us something about the subject, although 
such systems are similarly impossible to observe and thus (m 
the sense of Dirac’s famous remark) pertain to philosophy 
rather than physics. Another example is the perfect black body, 
which can be solved exactly, but does not truly ‘exist’ for 
precisely the same reason. So, we should not be too worried 
by this aspect of the impenetrable sphere.

The approach used by Sommerfeld was the most direct 
one. Since, for free hydrogen, the wavefunctions have nodes 
at well-known radii, one can place an infinitely high wall at 
any one of these nodes, and the solutions for excited stales of 
the free atom then provide suitable ground state solutions for 
confined hydrogen at certain cavity radii. By considering the 
properties of such solutions, Sommerfeld and Welker [21] 
worked out a general formula for the energy of hydrogen 
epnfined inside a sphere of any radius. They showed that the 
energy rises (binding energy decreases) as the atom is 
squeezed inwards by the sphere.

6. Delocalisation
By using this approach, Sommerfeld and Welker [21] 
established a few very useful facts. For example, they showed 
that the electron, when the cavity is made small enough, can 
delocalise. This means that it no longer remains bound to the 
atom, but is only confined by the walls of the cavity. They 
concluded that this is similar to the formation of the conduction 
band in a solid, since, in the latter case, the electron is only 
confined by the lattice, and is fiw  to transfer from one atom 
to another.

The energy at which this occurs is quite simply the energy 
at which the ground state of the confined atom rises above 
the ionisation potential of free hydrogen. This occurs for sinsll 
confinement radii, just a little larger titan the size of the atoms, 
which is exactly the situation in a solid. We may note that 
tiiere are certain atoms ftH- which a localisation-delocalisation 
(first order Mott) transition occurs in the solid, namely the 
transition metals and rare-earths as a resuh of an effect known 
as orbital collapse, and this already suggests tiiat confinement 
of such atoms might provide a route to alter tiicff chemical 
properties [22].
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I Where is the atom ?
t is of course not obvious (and in general not true) that the 
tom will stay in the centre of a sphere. This depends on the 
ature of the confining potential. An obvious case, as pointed 
ut by Pupyshev [23], is that repulsive spherical walls tend to 
ush the atom to the centre. However, walls are not necessarily 
.puisive, and, indeed, in some of the important examples we 
/ill discuss, the walls are attractive. It is then not true that the 
tom will stay at the centre of the sphere, which is one of the 
mitations of the simplest theoretical model. Within a similar 
jproach, departures from sphericity may easily be tackled, 

only for confined atoms which are not at the centre of the 
)here, but also for confining surfaces which become distorted 
om sphericity. Of course, the spherical solution is the starting 
)int, even for thinking about the more complex situations.

The revival

any years after the early papers [20,21 ], interest in confined 
oms has suddenly revived. We will not trace all the stages 
the revival, beyond noting that there is currently a rush of 
cent papers about confined hydrogen (for example Varshni 
51, Connerade et al [26], Huang et al [27], Shi et al [28]). 
lis comes after a long period of comparative neglect, during 
iiich this problem was not at all in the limelight. Now, 
ddenly, even as abstruse a situation as hydrogen inside a 
here has become a relevant and topical subject. This, as I 
li argue, is because confined atoms are now about to become 
jdily available in the laboratory. Many experiments are just 
und the comer, and so there is a great chance for theorists 
get in quickly and make some relevant predictions for these 
w systems.

Other atoms
/drogen is far from the most interesting example of 
nfinement. In fact, it is a rather poor atom to consider. With 
ly one wave function present, there is not much chance for 
ried and interesting behaviour. For example, the ‘atomic 
ing* mechanism, in which the self consistent field 
>rganises the atom in response to external forces [22] 
luires many electrons to be present. Once this happens, there 
potentially a choice between quite different configurations 
ving the same energy, because some of this energy can be 

as angular momentum, and some as electrostatic 
lential energy. Thus, the angular momenta of the electrons 
^be different from each other in different configurations 
nearly the same energy.

Not only may we find different combinations of electronic 
lii for a given energy, but they will respond differently to 
'Nfinement, leading to avoided crossings and interactions 

kinds. The question whether electron-electron

correlations are enhanced or inhibited by confinement arises, 
and standard tools of atomic theory for free atoms (such as 
the RPAE) are available, which can be adapted and applied 
to the problem [29]. In fact, the most interesting features of 
confined species relate to a rather unusual new concept : 
atonUc compressibility Of course, hydrogen has only one 
optiem to reorganise itself under compression because the one 
e lec^ n  can only become unbound. With several electrons 
preset, the options are much more varied, and one finds that 
atonfs are more or less readily deformable when confined, 
owii^ to differences in their electronic shell structure.

rather nice example of this is the reorganisation of the 
Cs aiom. which leads to a discontinuity in its compressibility 
at high pressures. Atoms confined within more or less 
penestrablc spheres or shells (both attractive and repulsive) 
are similarly a new kind of quantum object. Their properties 
can be computed from first principles by solving the 
Schrbdinger equation with confining boundary conditions. 
One can treat several problems in this way, from metalo- 
fullerenes to atoms under pressure.

10. Fullerenes
A simple way of approaching confinement within the Coo 
fullerene is to first model it as a spherical shell. A shell is 
appropriate, because it is known that the fullerene is hollow 
(for example, it exhibits a surface, but no volume plasmon). 
Of course no fullerene is strictly spherical, even if all the atoms 
lie on a sphere as in the case of Coo, since, in quantum 
mechanics, a perfect sphere is unable to rotate. Thus, in 
principle, one would need to model the full Platonic solid to 
represent the system properly. Very fortunately, however, 
there are different energy ranges corresponding to different 
phenomena in metal lofullcrene spectra. For some parts of 
the spectrum, the spherical approximation is not only 
satisfactory, but actually gives the clearest indication of what 
is happening. Indeed, it allows the results of much more 
complex computer modelling (multicentre expansions) to be 
understood.

An indication of how to proceed comes from electron 
scattering experiments on fullerenes [35], which have been 
interpreted by using a very simple model, involving an 
attractive ‘square well’ shell. Thus, characteristic quantum 
scattering resonances can be attributed to standing waves in 
the shell. It may seem surprising at first sight tliat the well 
should be attractive. However, experiment tells us tliat the 
fullerenes form  negative ions, and their electron affinities are 
even determined experimentally [36]. It is therefore possible 
to adjust the binding strength of the attractive shell in a 
spherical model until the experimental value for the affinity 
of the negative ion is recovered.
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11. Modelling metaliofullerenes
By using this spherical shell, it also becomes possible to model 
the properties of metallofullerenes, if we make the simple 
approximation of placing a confined intruder atom at the centre 
of the shell. Such a system is called ‘endohedraP, to emphasise 
that the atom is inside the fullerene cage. We write, for 
example, Ca@C(,o> for calcium inside a buckyball. Within the 
centred spherical approximation, several interesting features 
have emerged from theory so far. F’or example, the resonances 
of metallofullerenes have been classified [37] as belonging 
to one of three general types, namely :

1. Atomic resonances : these are already present in the 
atom before confinement, and are merely modified by 
the presence of the confining cage.

2. Confinement resonances : these are characteristic of 
the cage, although they appear in the spectrum of the 
confined atom (usually, they lie in the pholoionisation 
continuum [38], and appear as a result of interferences 
involving the wavefunction of the escaping electron).

3. Molecular resonances : these are due to breakdown of 
the angular momentum characterisation of the 
electrons, as a result of which new channels open which 
are not allowed in the free atom.

Resonances of types I and 2 are realistically modelled in 
the spherical shell approximation, within which the angular 
momentum about the centre of the system is conserved. On 
the other hand, molecular resonances will not appear in the 
spherical models, and this is actually a useful way of 
distinguishing them from the others. To represent molecular 
resonances requires the fullerene shell to be represented in a 
much more complex way, as a multiccntre expansion [38]. 
Fortunately, they turn out to occur at lower energies than 1 
and 2.

There has been a great deal of theoretical work on the 
properties of metallofullerenes, and on the basic principles of 
the simple models we have described. What may be concluded 
from these zero-order models is that the atomic spectrum, in 
general, becomes ‘dressed’ by the spectral response of the 
confining cage [34]. In some cases, enhancements of spectral 
features [29] and avoided crossings [26] can occur. It is also 
possible for atomic orbital collapse effects to be modified by 
the presence of die cage, leading to a redistribution of oscillator 
strengths [29], which can be dramatic in critical cases.

Apart from the molecular effects alluded to above, the 
main effects which are neglected in the model calculations 
are (a) exchange between the electrons of the metal and of 
the fullerene, (b) departures from central symmetry.

An interesting advantage of the spherical shell model is 
that it does allow electron correlations to be handled. Thus, 
the RPAE method has been implemented for a confined atom

[39], and has revealed interactions between atomic and ca 
resonances which are not present otherwise. Interest 
questions arise concerning the behaviour of correlations for 
confined systems. One may ask whether they should increase 
or decrease with increasing confinement. The answer seem* 
to be that this depends on their nature. Some correlations grov̂* 
when different configurations become degenerate as the atom 
is confined, while others diminish, when the configuration 
become separated in energy. It thus appears that there is no 
simple general rule.

12. A tom s u nd e r pressure
The metallofullerenes are an example of confinement withm 
an attractive shell. However, it is also possible to confine atoms 
within a cavity with repulsive walls. This is closer to the 
original idea of Sommerfeld and Welker [20], and is the 
situation encountered when an atom is put under exircmel} 
high pressure. In fact, as long as the cavity is external to the 
atom, confinement within an attractive shell leads to dilation, 
while the repulsive step leads to compression.

The idea that atoms are compressible may seem 
strange. Normally, one thinks of atoms as incompressible 
For example, in the kinetic theory of gases, atoms arc 
treated as point masses. Even when this idea is extended b\ 
allowing them to occupy a finite volume, as in the correction̂ , 
to the ideal gas law introduced by van der Waals, their 
compressibility is still not envisaged in Thermodynamics.

Despite this, however, atoms are compressible at the 
quantum level, and the atomic compressibility is a true 
quantum-mechanical observable. Because a many-electron 
atom is capable of reorganising itself under pressure, its shell 
structure can change, and the Periodic Table for atoms under 
pressure is not the same as for free atoms [39]. This has many 
implications for the chemistry of atoms under pressure

12, /. Introducing the pressure :
To introduce the pressure [40], just consider the standard 
relation :

d E ^T d S  + PdV (!)
For individual atoms, there can be no change in entropy, so 
dS = 0, and the temperature disappears from the problem 
However, one still has :

p  = dE/dV,
which we can regard as defming the Hellmann-Feynman 
pressure for Hartree-Fock atoms. Since both E  and V 
observables, whose expectation values are fully defined, 
changes in both of these quantities are measurable, and the 
pressure F is a meaningful quantity. Both stress and stram 
can be defined, so the compressibility o f the atom n 
observable. However, it turns out to be strongly non-linear, 
as we will emphasise below.



Quashatoms, super-atoms and quantum confinement 365

122. Building so lid s :
If a cluster or solid is built up from atoms, then there are two 
possibilities. Either the lattice is open, with wide spacing 
between the atoms, in which case atomic compressibility plays 
10 role, or else the lattice is very closely packed, in which 
ase external pressure translates into a microscopic pressure 

ipplicd to each one of the individual atoms. In the latter 
nstancc, quantum compressibility becomes important.

n 3 practical motivation: an ideal b a tte ry :

[he Li ion battery is the ideal ‘rocking chair’ or rechargeable 
lattery. It has the best electro-chemical properties and 
lower-to-weight ratio, and its manufacture is non-polluting, 
n contrast to that of lead-acid accumulators. However, the 
iroblem of making large and efficient, reasonably inexpensive 
lectrodes must be solved before it can be used for heavy- 
luty applications, such as to power town cars of the future.

Thus, an example of a practical application is the insertion 
if lithium ions into solids. This is a very important process in 
ie design of electrodes for lithium ion batteries: lithium metal 
lakes a poor electrode, as batteries using Li metal could 
ventually explode. Safely rechargeable Li ion batteries are 
ased on ion insertion in solids, which avoids deposition of 
le metal.

A simple approach to model reversible insertion is to 
escribe it by introducing a pseudo-pressure exerted by the 
ms on the lattice. This works because reversibility implies 
le absence of phase transitions, i.e. that there should be 
0 recrystallisation on insertion and the effects are then due 
) the radial part of the SchrOdinger equation. Atomic 
ompressibility is thus an ideal driving mechanism, 
xperience confirm s that host m aterials involving 
impressible atoms actually do work best. This key 
servation is a strong pointer towards the importance of 
isi-atomic effects. It leads to the notion of a new kind of 

oft chemistry’ involving only radial atomic changes [22]/ 
approach which helps to explain a number of features of 
ersible lithiation [41].

Experience also shows that the softest atoms are those 
hose wave-ftmetions are subject to the ‘orbital collapse’ 

enon [42-44]. This provides a powerlul motivation 
study confined atoms of the transition periods and rare- 

sequences. It is known experimentally that atomic 
‘tal collapse can be driven by ionisation [45]. Since we 

'ow that ionisation produces effects similar to compression, 
•s also suggests that orbital collapse can be controlled 
compression, and thus studied theoretically by using 

c confined-atom model. For example, it has been
‘̂ onstrated in ftiis way that lanftianum is a particularly ‘soft’ 
om [46].

13. R e la tiv istic  co n fin em en t

There are several reasons for which the relativistic problem 
is especially important:

1. Without it, one cannot treat the confinement of heavy 
atoms;

2. One cannot tackle orbital collapse properly without it;
3f; The boundary conditions for confinement are not the

same as for the non-relativislic case [47] (in part,
I because of Klein’s Paradox [48]).

'l|he question of relativistic confinement has also been 
raised in a quite different context from the one considered 
here; Because spin is intrinsically quantum-mechanical, with 
no obvious classical analogue, the classical correspondence 
of the Dirac equation is not fully resolved. One approach to 
this problem is to confine Dirac particles in cavities whose 
dimensions and geometry can then be varied [49]. Such 
studies, of course, concern large cavities, whereas our interest 
here is in the opposite situation, viz. the quantum limit.

A great deal of effort is now devoted to the relativistic 
extension of confined atom modelling. Because of the need 
for a single consistent approach, within which the properties 
of all atoms can be systematically intercompared.

14. Generalisation of the quantum pressure
As we have seen, when the atom is allowed to change its 
volume, the existence of an external pressure is implied. An 
increasing number of papers ([39] and refs therein) have either 
introduced explicitly an atomic pressure [22,40,50,511 or 
implied the existence of the quantum compressibility as a 
quantity enabling some rather special properties of matter to 
be described [25,52,53], In our work, we consider the concepts 
of pressure and compressibility at the atomic level, and the 
manner in which their variation can be described for many- 
electron atoms. In particular, we consider the ‘hardest’ and 
‘softest’ atoms, and the criteria which allow them to be 

' recognised as such. We now show that atomic compressibility 
consists of two factors : a static scaling term, which depends 
only on the properties of the free atom, and a dynamical factor, 
which IS strongly nonlinear and can, for some atoms, exhibit 
discontinuities analogous to a phase transition.

We introduce a dimensionless representation which 
allows the compressibilities of atoms to be systematically 
intercompared. ITiere are two factors. One is a scaling, which 
depends on free-atom properties and varies from atom to atom 
by a factor of up to 2000, and the other is a dimensionless, 
nonlinear ratio, which can be plotted for all atoms onto a single 
graph.

Our discussion refers to the most fundamental atomic 
model, viz. the self-consistent field atom. Single configuration
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calculations demonstrate the basic principles involved. 
However, the scaling rules can readily be used in conjunction 
with any atomic model as required. In order to extend our 
discussion to heavy atoms, which can exhibit exceptionally 
interesting variations of compressibility, we adopt a fully 
relativistic Dirac-Fock approach. However, all the effects we 
describe have also been investigated and found to occur in a 
qualitatively similar way for a non-relativistic Hartree-Fock 
model.

Atomic pressure, as an explicit observable, deduced by 
solving the SchrOdinger equation, was introduced above. 
Let the free atom binding energy ~ -  £/ where £{ is
the total energy of the free ion ground state, and £{  is the 
total energy of the free atom ground state. The analogous 
quantities for the atom under pressure are Efi ^ -  Ef and
we can define a dimensionless or reduced binding energy € 
where

e ^ E ^ /E i .  (3)
The dimensionless quantity e  can then be calculated under 
any kind of external perturbation of the atom. For example, 
it can be computed under progressive increase of the effective 
nuclear charge Z  through non-integral values, or indeed under 
any other kind of spherical perturbation, such as confinement 
in a cavity o f arbitrary radius and spherical potential. 
In practice, when using ah initio theory to determine e, it is 
simpler and gives more consistent results to replace the Ej, 
and Eff by the Koopmans removal energies of the appropriate 
Dirac-Fock orbitals, which is convenient for our discussion.

A confined atom is subjected to a quantum pressure which 
differs in nature from the kinetic pressure alluded to above. 
As noted in the Introduction, Numerous examples of quantum 
confinement exist, for instance endohedral atoms in 
metalofiillerenes [54-56], atoms confined in zeolites [57], 
atoms in solids treated through the Watson sphere [58,59], 
atoms in bubbles [60], in quantum dots [61], in clusters [62], 
in superdense or compressed matter [63], in the reversible 
lithiation of solids [64], etc. etc. From a purely formal point 
of view, we can also consider a fictitious atom of non-integral 
nuclear charge as an example of spherical compression [65].

Indeed, for the purposes of our argument, we regard 
confinement of the atom within an impenetrable sphere and 
the introduction of a fictitious non-integral nuclear charge as 
the two hypothetical limiting cases which represent, 
respectively, totally external and totally internal spherical 
perturbations.

Let the mean volume occupied by the free atom Vf ̂  4tr 
<r ’>/3, where <r*> is the expectation value of /^, calculated 
from the outermost wavefunction of the atom. Then, the 
ewresponding quantity can again be defined for the atom 
under a pressure P, arising from any kind of spherical

potentia l, as explained above. W e in troduce the dimensionie i 
shrinkage param ete r:

From  the d e fin itio n s , w e can deduce th a t the quamun, 
pressure :

P = A£/AK= ( E ^ l ^  ( ( e -  l ) / (^ -  1)}
-~{EllVf)p

= W  (5)
where /? is a reduced pressure. What our definitions of £ and 
^ achieve is to scale all the variables systematically bv the 
appropriate factor for each atom, yielding a reduced 
compressibility, 7'he important point, as we now show, is that 
most of the variation of compressibility from atom to atom is 
removed by this method of scaling. For all atoms, the acraal 
variation in /: as a function of ^ turns out to be almost the 
same. Some indication o f how this occurs comes from 
m agnitudes obtained for free atoms. From multi- 
configurational Dirac-Fock calculations, we find, for caesium

7/cs = 3/4 = 1-3591 X 10’'' a.u. ((ii

while, for helium :

tin. = 3/4 £ , , /<  /i, > ' = 0.27491 a.u.-^ (',

which implies that Cs (one of the largest atoms in the Periodic 
Table) is roughly 2000 times more compressible than He 
(the smallest atom), provided ^and ^exhibit variations similar 
to each other for both cases.

Since both £:and i^are dimensionless, we caq now plot the; 
reduced compressibility, or (/:, ^  curves for all atoms onto a 
single graph, as shown in Figure 2, obtained by fully 
relativistic Dirac-Fock calculations for the extreme case<̂oi 
Cs (the typical soft atom) and He (the typical hard atomi 
Again, a relativistic approach is necessary, to make the' 
comparison, because we are treating very light and ratherj 
heavy atoms within the same theoretical scheme. Wc 
therefore used the GRASP code [66] with modifications [6 
to treat spherical confinement, as previously described.

From the data used to plot the confined atom curves, 
can also deduce the reduced quantum pressure p  by usu 
equation (5). This can be plotted against the volume ratio 
The interesting feature of such a plot is that, again, there is 
marked similarity between the curves, despite an enorm
difference of hardness between the two atoms. Will
appropriate scaling, even the functional variations turn out 

be nearly the same over a wide range.
We now enumerate some general features of (£; ^  curv̂
(i) As the spherical perturbation tends to zero (for exam] 

the height of the confining step V tends to 0, o 
nuclear charge tends to that of the neutral atom) 
both e = 1 and ^ -  1, so that all the (e, & curves
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(ii)

through a universal p o in t ( 1,1), w h ich  has the practica l 
advantage tha t it  lies  near the centre o f the graph. This 
point is com m on to  a ll the (e, ^ -c u rv e s , despite the 
fact that they are in  p rin c ip le  d iffe re n t from  each other, 
not only from  atom  to  atom , bu t also according to  the 
nature o f the spherical perturbation.
Since a free neutra l atom  exists o n ly  at zero pressure 
and, since zero pressure corresponds to  ds/d<^ =  0 , it 
follows that the slope o f the (e, ^  curve fo r the neutral 
atom confined by  a sphere tends to  zero as (e, ^  tend 
to ( i, l) .  In te resting ly , th is  ru le  does no t app ly to  the 
curve obtained by  va ria tio n  o f the nuclear charge 
because, i f  nuclear charge were a llow ed to  vary free ly, 
there could be no equ ilib riu m  o r zero-pressure energy, 

iii) For atoms compressed by an im penetrable repulsive 
sphere, there is a co n fin in g  radius w ith in  w h ich E ^\ 
and therefore also e, changes sign, i.e. the ( f ,  ^ -c u rv e  
crosses the f  =  0 abscissa. F o rm a lly , th is  resembles 
ionisation, but actua lly it  corresponds to  delocalisation,
I e the outerm ost electron is no longer confined by 
the atom ic po ten tia l, bu t o n ly  by the im penetrable 
sphere.

IV) For atoms compressed by an increase in  nuclear charge, 
the ionisation po tentia l increases w ith  charge, i.e. as 
the atom becomes sm aller, its  b in d in g  energy also 
increases, so the (e. 4) curves veer upwards rather than 
downwards, and can never cross the £■ = 0  abscissa,
I.e., in this case, de loca lisa tion cannot occur as it does 
when the c o n fin in g  sphere becomes sm aller. Th is 
d is tingu ishes  be tw een  th e  tw o  m echan ism s o f  
compression (exte rna l and in te rna l).

[v) Atoms can be d ila ted  as w e ll as com pressed by a 
spherical perturbation, e ithe r by a reduction o f nuclear 
charge, o r by an a ttractive  spherical shell o r step. In  
this case, the b ind in g  energy is alw ays reduced, u n til 
eventually io n is a tio n  occurs. S ince, w hatever the 
mechanism, an increase in  ion isa tion  po tentia l never 
occurs on d ila tio n , there is a forb idden region fo r ^  > 
I, > 1 in  the ( f ,  I )  plane. W ith in  the D irac-Fock 
method as im plem ented in  the GRASP code, we were 
unable to  obta in  convergence fo r an a ttractive  outer 
sphere. Thus, the  d ila tio n  branches o f  the curves 
corresponding to  confinem ent by a spherical cav ity  
are absent from  ou r ca lcu la tions and from  F igure 2. 
However, it  is easy to  deduce w hat th e ir properties 
should be. F irs t, they m ust be continuous w ith  the 
corresponding com pression branch, w h ich  means that 
del6^  tends to  0  as the po in t ( 1, 1) is approached from  
fight to le ft in  the figu re . Second, e lectron detachm ent 
or ion isation m ust occur in  a s u ffic ie n tly  a ttractive  
external w e ll, so the curves m ust veer dow n again as ^  
increases, e v e n tu a lly  c ross ing  the abscissa at an 
ionisation po in t. T h is also im p lies that there m ust be a

(v i)

second crossing po in t between the curves fo r d ila tio n  
by a spherical cav ity  and the curves fo r decreasing 
nuclear charge.
The real physical pressure is g iven by :

, p = 7 7 ( f - i y ( ^ - i ) .  (8)
i As noted above, the firs t facto r undergoes a very large 
1 varia tion  from  atom to  atom , from  the sm allest atom 
I in  the Periodic Table w ith  the highest b ind in g  energy,
I which is He, to  the largest atom  w ith  the ta lle s t  
’ b ind ing energy, i.e. a heavy a lk a li (Cs o r F r), w h ich 
‘ thus define the hardest and softest atoms respective ly.

(v ii)  The d ifference between the scaled {e, ^ -cu rve s  fo r 
d iffe re n t atoms can be represented by a s lig h t ro ta tion 
about the (1 ,1 ) po in t as a p ivo t. This s lig h t ro ta tion  is 
su ffic ie n t to  encompass the behaviour o f nearly a ll the 
elem ents in  the P eriod ic Table, whose hardness is 
genera lly interm ediate between that o f He and tha t o f 
Cs. The ro ta tio n  is  a n tic lo c k w is e  fo r in crea s ing  
hardness.

( v iii)  The non linear va ria tion  o f  com pressib ility  is en tire ly  
contained in  the (s, ^ -cu rve s , and even its  functiona l 
fo rm  is not grossly d iffe re n t fo r d iffe re n t atoms. A  
d iscon tinu ity  in  the curve fo r confined caesium has 
a lre a d y  been no ted  and e xp la in e d  in  an e a rlie r 
paper [51 ]. It corresponds to  an observed e ffe c t in  the 
so lid , nam ely o rb ita l collapse induced by external 
com pression. I t  m igh t be thought that atom ic physics 
could do little  to  m odel such phenomena in  solids. 
However, it  is becom ing clear that, once an o rb ita l 
collapses in to  the inner reaches o f  the atom , it  is 
screened from  the fie lds  o f the so lid , and its  a tom ic ity  
is d ram atica lly  enhanced, w h ich  is w hy essentia lly 
atom ic calculations are successful in describ ing a w ide 
range o f o rb ita l collapse phenom ena in  so lids and 
com pounds [22,40,50,52,68].

Figure 3. Showing the generalised coordinates or reduced pressure plot 
described in the text.
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15. C onclus ion
W e have presented a general in troduction  to  the subject o f 
con fined  atom s, quasi>atoms and superatoms, w h ich  together 
con s titu te  a new  strand o f  a tom ic physics extend ing  its  
a p p lica b ility  to  la rger systems. In  addition, we have introduced 
a new param etrisation based on quantum  confinem ent, w h ich  
a llow s the com press ib ilities  o f d iffe re n t atoms to  be in te r- 
co m p a re d  and a g e n e ra l d e s c rip tio n  o f  qua n tu m  
com pressib ility to  be attempted fo r a ll the atoms in  the Periodic 
Table. I t  is hoped that ou r m ethod w ill fin d  app lica tion to  a 
w ide range o f  phenom ena, extending in to  so lid  state physics, 
clusters physics, reversib le  lith ia tio n , and m atter under very 
h igh  pressures.

A n add itiona l problem  w h ich is very interesting to  consider 
is  the nature o f  the confinem ent cond itions fo r the fu lly  
re la tiv is tic  s itua tion . W hen the D irac equation is solved, a 
tw o -co m p o n e n t w a v e fu n c tio n  is  in tro d u ce d . The la rge  
com ponent is no rm a lly  regarded as the m ore ‘ physica l’ s im ply 
because it  turns in to  the o rd ina ry w avefunction in  the non- 
re la tiv is tic  lim it, whereas the sm all com ponent then tends to  
zero. H ow ever, in  a re la tiv is tic  situation, both m ust be treated 
as equa lly  im portan t. I t  then becomes d iffic u lt to  decide what 
the correct confinem ent cond ition  is. U ltim a te ly , there is a 
p rob lem  due to  b y  K le in ’ s paradox i f  the cond itions are 
inconsistent w ith  re la tiv ity  o r are w ro n g ly  applied.

We have investigated how  th is  problem  can be addressed 
along the same lines as in  the M .I.T . bag m odel o f N uclear 
Physics. R e la tiv is tic  confinem ent turns out to  be a specific 
and d iffe re n t problem  from  the n on re la tiv is tic  case, because 
the appropriate boundary cond ition  depends on the conditions 
im posed on the D ira c current by charge conservation.
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