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Abstract

* The terms ‘quasiatom’ and ‘superatom’ are introduced A quasi-atom, for example containg two ions of opposite charge, which

behave like an atom, forming Rydberg states. A superatom also contains many atoms, but behaves in a simple way, and can be modetled within
the central field approximation. Both are examples of many-body systems which emulate quasi-particle properties Their behaviour is the opposite
of quasi-particlc breakdown in isolated atoms. However, 1t also probes the boundary between simple and complex behaviour, for species larger
than atoms. Examples are given, ranging from shallow donor impuritics in semiconductors, through ion-pair molecules, confined and endohedral

atoms, to metallic clusters
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I. Introduction
Since the late 70°s, there has been interest in the non-Rydberg
spectroscopy of atoms [1], in which the approximate
regularities of the independent particle model are replaced
by very complex manifestations of many-body forces,
{complex spectra of ‘simple’ atoms |2]) or even by coherent,
collective oscillations (the ‘giant resonances’[3]). Rydberg
sertes in many-electron atoms can occasionally suffer
explosions of complexity (‘quantum chaos’ [4]) or,
conversely, disappear completely from view, giving up all of
their available oscillator strength to but a few isolated
resonances. Both aspects of non-Rydberg behaviour are
regarded as manifestations of many-body forces [5]. However,
non-Rydberg behaviour in isolated atoms is comparatively
unusual. Mostly, even complex atoms choose to follow the
predictions of the independent electron, central field
approximation. In this light, we can interpret Rydberg
behaviour as the self-organisation of many-electron atoms,
Oras a manifestation of quasi-particle behaviour in a many-
body system.

Indeed, there is a remarkable tendency of complex systems
o conceal their many-body nature, by forming quasi-particles
(vacancies, or holes) whose behaviour is quite close to that of
the real particles [6]. For example, in X-ray spectra, a nearly-

complete shell with one electron missing appears as a vacancy,
whose properties are analogous to those of a single particle.
This tendency poses an intriguing question of scale size : how
large can a quantum system be and still continue to exhibit
this property ?

Recently, a variety of systems have been uncovered
which are not atoms, being composed of several, or of many
atoms, but which nonetheless self-organise in a manner
similar to complex atoms, and possess properties not
normally associated with multi-atomic objects. We shall refer
to them as quasi-atoms and super-atoms, depending on their
size and complexity. A quasi-atom is a system larger than an
atom (for example : a metallic cluster) which can be modeled
theoretically as a single quasi-atomic object, within a
theoretical scheme which is adapted from atomic physics. A
super-atom, on the other hand, is a group of particles (for
example : a pair of ions of opposite charge), which together
form bound states analogous to (but different from) the
Rydberg states of a free atom. '

The properties of interest in both cases are precisely those
which tend to persist in many complex atoms as their size
increases, and which underpin atomic physics, in particular
the central field approximation.

© 2002 IACS


https://core.ac.uk/display/159339895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

360 J-P Connerade

The approach in studying quasi-atoms and super-atoms is
exactly the opposite of the search for many-body effects in
atomic spectra. In non-Rydberg spectroscopy, one seeks to
uncover many-body effects duec to the breakdown of the
independent particle approximation for complex atoms. When
dealing with quasi-atoms or super-atoms, on the other hand,
one is looking for the persistence of regular atomic or quasi-
atomic behaviour in systems much larger still than many-
electron atoms.

Bath approaches are ways of probing a frontier, where
the fundamental simplicity characteristic of small multiparticle
quantum systems eventually gives way to the complexity
characteristic of Iérge systems. The fact that this happens
differently in different situations, and the role of symmetry in
determining such behaviour are the subject of the present
Comment. Many of the systems involved possess an enhanced
degree of spherical symmetry, which combines with the Pauli
principle to simplify the many-body problem. In the classical
limit, a many-body system can become chaotic, and so the
fundamental role of both spherical symmetry and the Pauli
principle as inhibitors of chaos stands out rather clearly in the
quantum case. These emerge as the two main features which
help to make the many-body problem tractable in quantum
mechanics.

2. Rydberg states in a solid : shallow donor impurities

When an impurity atom is inserted into a solid, it is possible
for new bound states to appear. At first sight, it might seem
that Rydberg excitations would arise, involving only very few
low members, small enough to fit within the interstices of the
lattice. Indeed it might appear impossible to associate any
genuine Rydberg character with condensed matter, because
so few states would appear.

There are, however, Rydberg excitations in solids of quite
a different kind, for which the value of the Rydberg constant
(and of the effective mass of the electron) are totally different
from those of free atoms.

If an electron is ejected from the valence band directly
into the conduction band of a solid, it leaves behind it a hole,
which behaves exactly like a particle except that its charge
and momentum are both equal and opposite to that of the
electron. Thus, overall neutrality is preserved and the total
momentum is zero. Electron and hole then move apart from
one another, usually rather rapidly.

If the process takes place in excited states near the band
edge (see Figure 1), then the momentum of the particle and
of the hole are almost zero, and they experience a mutual
Coulomb attraction. The problem is essentially the same as
the H atom, or the energy levels of positronium : the electron
and hole possess discrete energy levels with binding energies
given by the Rydberg formula E, = —(m,/m) R/n?, where n is

the principal quantum number, m is the mass of 5 free
electron, and m, is the reduced mass, obtained from the
equation : m, = mm,/(m, + my), where m, and m, are y,
effective masses of the electron and the hole in the solid, Iy
practice, these are rather different from those for free particje,
and so the apparent Rydberg constant (m,/m) R i very
different from that for atoms (instead of an energy scale ,,
eV as for atoms, one finds energy scales in tens of meV )

conduction
band
__1_" :3 Exciton
levels
e 17 = |
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Figure 1. Schematic representation, showing the cnergy level structure tor
the excitation of a shallow donor impurity in a semiconductor material

Such aggregates, involving two or more charged particles.
which are effective mass particles (e.g. electrons in tht
conduction band or holes in the valence band) are referred to
generically as ‘effective-mass-particle complexes’. The bovnd
electron-hole system is of course an excifon. It can be though
of as a ‘quasi-atom’, formed from the particle and the hole.
with the two objects rotating about a common centre of mass,
the angular momentum being quantised. Just as, in atomic
physics, one generalises by considering the electron in a many-
electron atom as a quasiparticle, we can now replace the
positive centre of charge by a hole. This system is often
regarded as the solid state analogue of positronium. In general.
there are two kinds of exciton : when the electron and hole
are fully delocalised from any specific atomic site and form
bound states, one has a Wannier-Mott exciton. When both
the electron and hole are localised on or near a specific atomic
site in the solid, so that the exciton is formed from atomic of
molecular states perturbed by the crystalline environment, oné
has a Frenkel-Peierls exciton.

This electron-hole ‘pseudoatom’ or ‘pseudohydrogen’
corresponds to such a large spatial separation that the Coulomb
attraction is almost negligible, which is consistent with
excitation to the base of the conduction band, as shown in the
energy-level diagram of Figure 1. Such states are created when
an impurity atom acts as a donor, /.e. when an atom with'a
low ionisation potential is substituted for one of the atoms it
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3 semiconductor host. The ionisation energy of an electron
pound to the donor impurity can be much smaller than the
energ} gap of the sem iconductor. One then refers to a shallow
donor impurity [7].
An example of the ‘Rydberg’ series arising by excitation
of these shallow excitonic bound states is shown in Figure 2,

2
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Figure 2. Example of a Rydberg scrics whosc energy sphitings are
detenmined by solid state effects : the absorption spectrum of P as a donor
impurity in silicon (see reference [7] for further details).
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which corresponds to the situation of Figure i. In fact, the
excitonic states are identified by the presence of a Rydberg-
Iike spectrum in some semiconductors with large enough
energy gaps. Because of the much smaller value of the
effective Rydberg constant in the solid, the highest » states
are actually much larger than atomic Rydberg states of the
same n. They can possess radii of 100 nm or more. Such giant
Rydberg states allow one to explore an otherwise inaccessible
regime of atomic physics, as will be explained below. Another
interesting point is the presence of displaced lines in the
spectrum, which do not fit the main Rydberg series. These
can be attributed to a departure from sphericity : in the solid :
the effective mass is not a scalar but a tensor quantity, and the
symmetry is ellipsoidal. Thus, the resonances are split into
two modes along the axes of symmetry. A similar kind of
spliting arises for plasmon resonances in metallic clusters
(8].

There even exist problems of atomic physics which cannot
be explored in the laboratory by using atoms, but only by
using ‘pseudoatoms’. One such is that of the atom in such a
rong magnetic field that it exceeds the internal fields of the
llom (superstrong magnetic fields). This requires field
trengths in excess of the atomic unit of magnetic field, i.e.
greater than 2.35x10% T, which is unattainable, except in the
_“m‘)Spheres of white dwarf or neutron stars {9,10]. However,
'fone replaces a normal atom by a pseudoatom, consisting of
3 shallow donor impurity in a semiconductor such as InP,
GaAs or [np , then giant quasihydrogenic orbits are produced,
nd even the ground state is very wide. Taking GaAs as our
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example, the effective mass m, of the electron is 0.065 m, so
the orbits are some 200 times wider than for the atom.

As aresult, with an external magnetic field of about 6.5 T
(re;dlly achieved in the laboratory), the superstrong magnetic
field condition can be reached [11]). This system has been
investigated experimentally in fields as high as 14~T [12],
and can be accounted for within a simple theoretical model.
In this unique situation (known as the Landau limit) the term
qugdratic in the magnetic field strength B dominates the
Hapmiltonian, while the Coulomb field becomes a small
ped rbation.

iUnder these conditions, the spectrum becomes a series of
equally spaced L.andau levels, to each one of which a Rydberg
series converges. Above the lowest Landau limit, a continuum
oceurs, and therefore, even in hydrogen, excited states above
this limit experience autoionisation in the superstrong field
condition [13]. While the autoionisation rate for hydrogen
has bcen calculated theoretically, there is no way of
performing controlled experiments in the laboratory to test
the theory for a real atom. The test has been carried out by
making use of pseudohydrogenic states in GaAs, and scaling
the results [14]. This provides a beautiful example of the unity
of physics in the study of very unusual highly-excited atomic
states.

3. Rydberg states of ion pairs

Another good example of quasi-atomic behaviour involving
quasi-particles rather than particles is the formation of
Rydberg states of ion pairs [15]. Consider the dissociation of
a diatomic molecule. If the fragments are neutral, then the
potential at large radius r describing the attraction between
the fragments has the form of an inverse power law 1/r%, where
k is a positive non-zero integer, equal to 4 for ion-neutral
interactions, 6 for van der Waals forces, etc. However, ift. ¢
fragments are charged, then the force between them at large r
will be Coulombic 1/r. A long range Coulombic potential
supports an infinite number of bound states, whereas forces
which vary as 1/r* do not. Thus, one finds, for this particular
kind of dissociation, vibrational states which obey the
Rydberg formula, except that the Rydberg constant is
scaled by the effective masses of the ionic fragments.
However, since the energy density of such states is very high,
ordinary spectroscopic means are not appropriate to detect
these ‘new kinds of Rydberg atom’ [16].

Instead, what has been developed is a new kind of zero
kinetic energy threshold spectroscopy. The method known
as ZEKE is well established for the observation of very high
Rydberg states of both atoms and molecules [17]. It consists
in applying a pulsed electric field with a time delay after the
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initial photoexcitation. During this time, all the electrons with
kinetic energy have time to escape from the interaction region.
When the weak ionisation pulse is applied, only the ‘zero’
kinetic energy states are detected, i.e. the highly-excited
Rydberg states. For molecules, a similar principle can be
exploited, i.e. a pulsed field can be applied to dissociate highly
vibrationally-excited ion pair states, after a time delay which
allows the prompt ion-pair fragments to escape detection. In
practice, this is a little more difficult than discriminating
against prompt electrons [18]. A DC field has to be applied
during the waiting period, and so the technique also allows a
mass analysis of the ion fragments to be performed. For this
reason, it is called MATI (Mass Analysed Threshold lonisation
Spectroscopy). The difficulty with MATI, as opposed to the
ZEKE technique for electrons, is that the DC electric field
applied during the waiting period does not allow very high
Rydberg levels to be reached. However, the principle that
Rydberg states are formed by such complex objects as ion
pairs is now well established [19].

4. Confined atoms, and atoms under pressure

Whenever atoms are confined, which happens in a variety
of situations, the atomic model must be altered in some way.
An obvious example is the construction of a solid from
individual identical atoms, in which case an atomic model is
appropriate close to the nucleus, but the asymptotic behaviour
of the potential must be modified, to take account of
confinement within the Wigner-Seitz cell. Of course, a quasi-
atomic model alone does not describe most of the properties
of the solid, but there are some specific ones for which it
provides the most appropriate starting point, and examples of
that will be given.

Recently, many other situations (some of them, quite
unexpected) have also been uncovered to which simple ‘quasi-
atomic’ models can be applied, and turn out to contain the
essentially relevant physics. Some examples are : atoms
confined in high-pressure bubbles, atoms confined in zeolite
traps, atoms under pressure, super-dense matter, atoms in
clusters, atoms trapped endohedrally in fullerene cages, efc.
Of all these examples, perhaps the last one is receiving most
attention, as it seems likely that metallofullerenes will soon
be available in large enough quantity [20] for spectral studies
of their electronic excitations in the ultraviolet and vacuum
ultraviolet ranges to be undertaken.

5. Confined hydrogen

The simplest theoretical example of a confined atom was
introduced by Sommerfeld and Welker {21], in a very
remarkable birthday offering to Wolfgang Pauli. This was
not actually the first paper on the subject. Michels et af [22]
had already presented some arguments on this theme in
another paper, similarly dedicated to van der Waals. Indeed,

it is quite remarkable how early the study of confmeq atoms
began, and how soon after the birth of quantum mechanics |,
is also very inspiring that Sommerfeld, one of the great Masters
of the subject, was one of the originators of the subject,

Indeed, Sommerfeld provided a most elegant solution %
the simplest problem : it is the case of hydrogen confineq 5
the centre of an impenetrable sphere. Unfortunately, althoug
this problem can be solved exactly, an atom placed inside ap
impenetrable sphere is unobservable. It is not the only situatop
of this kind in Quantum Mechanics. We all happily solve fo
particles in infinitely deep potential wells, and we regard the
solutions as teaching us something about the subject, although
such systems are similarly impossible to observe and thus (in
the-sense of Dirac’s famous remark) pertain to philosophy
rather than physics. Another example is the perfect black body,
which can be solved exactly, but does not truly ‘exist’ for
precisely the same reason. So, we should not be too worried
by this aspect of the impenetrable sphere.

The approach used by Sommerfeld was the most direct
one. Since, for free hydrogen, the wavefunctions have nodes
at well-known radii, one can place an infinitely high wall at
any one of these nodes, and the solutions for excited states of
the free atom then provide suitable ground state solutions for
confined hydrogen at certain cavity radii. By considering the
properties of such solutions, Sommerfeld and Welker [21)
worked out a general formula for the energy of hydrogen
confined inside a sphere of any radius. They showed that the
energy rises (binding energy decreases) as the atom is
squeezed inwards by the sphere.

6. Delocalisation

By using this approach, Somrnerfeld and Welker [21]
established a few very useful facts. For example, they showed
that the electron, when the cavity is made small enough, can
delocalise. This means that it no longer remains bound to the
atom, but is only confined by the walls of the cavity. They
concluded that this is similar to the formation of the conduction
band in a solid, since, in the latter case, the electron is only
confined by the lattice, and is free to transfer from one atom
to another.

The energy at which this occurs is quite simply the energy
at which the ground state of the confmed atom rises above
the ionisation potential of free hydrogen. This occurs for small
confinement radii, just a little larger than the size of the atoms,
which is exactly the situation in a solid. We may note that
there are certain atoms for which a localisation-delocalisation
(first order Mott) transition occurs in the solid, namely the
transition metals and rare-earths as a resuh of an effect know?
as orbital collapse, and this already suggests that confinemen!
of such atoms might provide a route to alter their chemical
properties [22].
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| Where is the atom ?

tis of course not obvious {and in general not true) that the
(om will stay in the centre of a sphere. This depends on the
aure of the confining potential. An obvious case, as pointed
utby Pupyshev [23], is that repulsive spherical walls tend to
ush the atom to the centre. However, walls are not necessarily
spulsive, and, indeed, in some of the important examples we
il discuss, the walls are attractive. It is then not true that the
lom will stay at the centre of the sphere, which is one of the
mitations of the simplest theoretical model. Within a similar
yproach, departures from sphericity may easily be tackled,
1 only for confined atoms which are not at the centre of the
there, but also for confining surfaces which become distorted
om sphericity. Of course, the spherical solution is the starting
yint, even for thinking about the more complex situations.

The revival

any years after the early papers [20,21], interest in confined
oms has suddenly revived. We will not trace all the stages
the revival, beyond noting that there is currently a rush of
cent papers about confined hydrogen (for example Varshni
5], Connerade et al [26], Huang et al [27], Shi et al [28)).
1is comes after a long period of comparative neglect, during
nich this problem was not at all in the limelight. Now,
ddenly, even as abstruse a situation as hydrogen inside a
here has become a relevant and topical subject. This, as |
llargue, is because confined atoms are now about to become
uily available in the laboratory. Many experiments are just
und the corner, and so there is a great chance for theorists
getin quickly and make some relevant predictions for these
W systems.

Other atoms

/drogen is far from the most interesting example of
nfinement. In fact, it is a rather poor atom to consider. With
ly one wave function present, there is not much chance for
ried and interesting behaviour. For example, the ‘atomic
'ing’ mechanism, in which the self consistent field
rganises the atom in response to external forces [22]
juires many electrons to be present. Once this happens, there
potentially a choice between quite different configurations
ving the same energy, because some of this energy can be
red as angular momentum, and some as electrostatic
tential energy. Thus, the angular momenta of the electrons
*be different from each other in different configurations
nearly the same energy.

Not only may we fid different combinations of electronic
lii for a given energy, but they will respond differently to
"finement, leading to avoided crossings and interactions
all kinds. The question whether electron-electron
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correlations are enhanced or inhibited by confinement arises,
and standard tools of atomic theory for free atoms (such as
the RPAE) are available, which can be adapted and applied
to the problem [29]. In fact, the most interesting features of
confined species relate to a rather unusual new concept :
atomic compressibility Of course, hydrogen has only one
optian to reorganise itself under compression because the one
electé'on can only become unbound. With several electrons
pres&n, the options are much more varied, and one finds that
atomk are more or less readily deformable when confined,
owir& to differences in their electronic shell structure.

A rather nice example of this is the reorganisation of the
Cs afom. which leads to a discontinuity in its compressibility
at high pressures. Atoms confined within more or less
penetrable spheres or shells (both attractive and repulsive)
are similarly a new kind of quantum object. Their properties
can be computed from first principles by solving the
Schrddinger equation with confining boundary conditions.
One can trcat several problems in this way, from metalo-
fullerenes to atoms under pressure.

10. Fullerenes

A simple way of approaching confinement within the Cyo
fullerene is to first model it as a spherical shell. A shell is
appropriate, because it is known that the fullerene is hollow
(for example, it exhibits a surface, but no volume plasmon).
Of course no fullerene is strictly spherical, even if all the atoms
lie on a sphere as in the case of Cg, since, in quantum
mechanics, a perfect sphere is unable to rotate. Thus, in
principle, one would need to model the full Platonic solid to
represent the system properly. Very fortunately, however,
there are different energy ranges corresponding to different
phenomena in metallofullerene spectra. For some parts of
the spectrum, the spherical approximation is not only
satisfactory, but actually gives the clearest indication of what
is happening. Indeed, it allows the results of much more
complex computer modelling (multicentre expansions) to be
understood.

An indication of how to proceed comes from electron
scattering experiments on fullerenes [35], which have been
interpreted by using a very simple model, involving an
attractive ‘square well’ shell. Thus, characteristic quantum
scattering resonances can be attributed to standing waves in
the shell. It may seem surprising at first sight that the well
should be attractive. However, experiment tells us that the
fullerenes form negative ions, and their electron affinities are
even determined experimentally [36]. It is therefore possible
to adjust the binding strength of the attractive shell in a
spherical model until the experimental value for the affinity
of the negative ion is recovered.
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11. Modelling metallofullerenes

By using this spherical shell, it also becomes possible to model
the properties of metallofullerenes, if we make the simple
approximation of placing a confined intruder atom at the centre
of the shell. Such a system is called ‘endohedral’, to emphasise
that the atom is inside the fullerene cage. We write, for
example, Ca@C,,, for calcium inside a buckyball. Within the
centred spherical approximation, several interesting features
have emerged from theory so far. For example, the resonances
of metallofullerenes have been classified [37] as belonging
to one of three general types, namely :

1. Atomic resonances : these are already present in the
atom before confinement, and are merely modified by
the presence of the confining cage.

2. Confinement resonances : these are characteristic of
the cage, although they appear in the spectrum of the
confined atom (usually, they lie in the photoionisation
continuum [38], and appear as a result of interferences
involving the wavefunction of the escaping electron).

3. Molecular resonances : these are due to breakdown of
the angular momentum characterisation of the
electrons, as a result of which new channels open which
are not allowed in the free atom.

Resonances of types 1 and 2 are realistically modelled in
the spherical shell approximation, within which the angular
momentum about the centre of the system is conserved. On
the other hand, molecular resonances will not appear in the
spherical models, and this is actually a useful way of
distinguishing them from the others. To represent molecular
resonances requires the fullerene shell to be represented in a
much more complex way, as a multicentre expansion [38].
Fortunately, they turn out to occur at lower energies than 1
and 2.

There has been a great deal of theoretical work on the
properties of metallofullerenes, and on the basic principles of
the simple models we have described. What may be concluded
from these zero-order models is that the atomic spectrum, in
general, becomes ‘dressed’ by the spectral response of the
confining cage [34]. In some cases, enhancements of spectral
features [29] and avoided crossings [26] can occur. It is also
possible for atomic orbital collapse effects to be modified by
the presence of the cage, leading to a redistribution of oscillator
strengths [29], which can be dramatic in critical cases.

Apart from the molecular effects alluded to above, the
main effects which are neglected in the model calculations
are (a) exchange between the electrons of the metal and of
the fullerene, (b) departures from central symmetry .

An interesting advantage of the spherical shell model is

that it does allow electron correlations to be handled. Thus,
the RPAE method has been implemented for a confined atom

[39], and has revealed interactions between atomic anq caviy
resonances which are not present otherwise. Interegyp,
questions arise concerning the behaviour of correlationg fog,
confined systems. One may ask whether they shoyld MCregy,
or decrease with increasing confinement. The answer seem;
to be that this depends on their nature. Some correlationg grow
when different configurations become degenerate as the mo,,;
is confined, while others diminish, when the configuratiop,
become separated in energy. It thus appears that there 1o
simple general rule.

12. Atoms under pressure

The metallofullerenes are an example of confinement withy,
an attractive shell. However, it is also possible to confine atom,
within a cavity with repulsive walls. This is closer to the
original idea of Sommerfeld and Welker [20], and is the
situation encountered when an atom is put under extremely
high pressure. In fact, as long as the cavity is external to the
atom, confinement within an attractive shell leads to dilation,
while the repulsive step leads to compression.

The idea that atoms are compressible may seem
strange. Normally, one thinks of atoms as incompressible
For example, in the kinetic theory of gases, atoms are
treated as point masses. Even when this idea is extended by
allowing them to occupy a finite volume, as in the correction:
to the ideal gas law introduced by van der Waals. ther
compressibility is still not envisaged in Thermodynamics.

Despite this, however, atoms are compressible at the
quantum level, and the atomic compressibility is a true
quantum-mechanical observable. Because a many-electron
atom is capable of reorganising itself under pressure, its shell
structure can change, and the Periodic Table for atoms under
pressure is not the same as for free atoms [39]. This has many
implications for the chemistry of atoms under pressurc

12.1. Introducing the pressure :

To introduce the pressure [40], just consider the standard
relation :

dE =TdS + PdV {1
For individual atoms, there can be no change in entropy, $°

dS = 0, and the temperature disappears from the problem
However, one still has :

p=dE/dV, @

which we can regard as defming the Hellmann-Feynma"
pressure for Hartree-Fock atoms. Since both E and V ar
observables, whose expectation values are fully defined.
changes in both of these quantities are measurable, and "fe
pressure P is a meaningful quantity. Both stress and stral'n
can be defined, so the compressibility of the atom B
observable. However, it tums out to be strongly non-linea:
as we will emphasise below.
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122. Building solids :
[fa cluster or solid is built up from atoms, then there are two
ssibilities. Either the lattice is open, with wide spacing
etween the atoms, in which case atomic compressibility plays
10 role, or else the lattice is very closely packed, in which
us¢ external pressure translates into a microscopic pressure
pplied to each one of the individual atoms. In the latter
nstance, quantum compressibility becomes important.

123 Practical motivation: an ideal battery :

'he Li ion battery is the ideal ‘rocking chair’ or rechargeable
attery. It has the best electro-chemical properties and
ower-to-weight ratio, and its manufacture is non-polluting,
n contrast to that of lead-acid accumulators. However, the
roblem of making large and efficient, reasonably inexpensive
lectrodes must be solved before it can be used for heavy-
uty applications, such as to power town cars of the future.

Thus, an example of a practical application is the insertion
flithium ions into solids. This is a very important process in
1 design of electrodes for lithium ion batteries : lithium metal
nkes a poor electrode, as batteries using Li metal could
ventually explode. Safely rechargeable Li ion batteries are
ased on ion insertion in solids, which avoids deposition of
1 metal.

A simple approach to model reversible insertion is to
escribe it by introducing a pseudo-pressure exerted by the
s on the lattice. This works because reversibility implies
¢ absence of phase transitions. i.e. that there should be
o recrystallisation on insertion and the effects are then due
y the radial part of the Schrédinger equation. Atomic
ompressibility is thus an ideal driving mechanism.
xperience confirms that host materials involving
ompressible atoms actually do work best. This key
servation is a strong pointer towards the importance of

si-atomic effects. It leads to the notion of a new kind of
oft chemistry’ involving only radial atomic changes [22]/

approach which helps to explain a number of features of

ersible lithiation [41].

Experience also shows that the softest atoms are those
hose wave-functions are subject to the ‘orbital collapse’

enon [42-44]. This provides a powerful motivation
study confined atoms of the transition periods and rare-
sequences. It is known experimentally that atomic
ital collapse can be driven by ionisation [45). Since we
10W that ionisation produces effects similar to compression,
1s also suggests that orbital collapse can be controlled

Compression, and thus studied theoretically by using
¢ confined- atom model. For example, it has been

‘Monstrated in this way that lanthanum is a particularly ‘soft’
om [46).
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13. Relativistic confinement

There are several reasons for which the relativistic problem
is especially important :
1. Without it, one cannot treat the confinement of heavy
atoms;

One cannot tackle orbital collapse properly without it;

The boundary conditions for confinement are not the
same as for the non-relativistic case [47] (in part,

; because of Klein’s Paradox [48]).

’ﬁme question of relativistic confinement has also been
raised in a quite different context from the one considered
here; Because spin is intrinsically quantum-mechanical, with
no obvious classical analogue, the classical correspondence
of the Dirac equation is not fully resolved. One approach to
this problem is to confine Dirac particles in cavities whose
dimensions and geometry can then be varied [49]. Such
studies, of course, concern large cavities, whereas our interest
here is in the opposite situation, viz. the quantum limit.

i
¢
i

A great deal of effort is now devoted to the relativistic
extension of confined atom modelling. Because of the need
for a single consistent approach, within which the properties
of all atoms can be systematically intercompared.

14. Generalisation of the quantum pressure

As we have seen, when the atom is allowed to change its
volume, the existence of an external pressure is implied. An
increasing number of papers ([39] and refs therein) have either
introduced explicitly an atomic pressure [22,40,50,51] or
implied the existence of the quantum compressibility as a
quantity enabling some rather special properties of matter to
be described [25,52,53]. In our work, we consider the concepts
of pressure and compressibility at the atomic lcvel, and the
manner in which their variation can be described for many-
electron atoms. In particular, we consider the ‘hardest’ and
‘softest’ atoms, and the criteria which allow them to be
recognised as such. We now show that atomic compressibility
consists of two factors : a static scaling term, which depends
only on the properties of the free atom, and a dynamical factor,
which 1s strongly nonlinear and can, for some atoms, exhibit
discontinuities analogous to a phase transition.

We introduce a dimensionless representation which
allows the compressibilities of atoms to be systematically
intercompared. There are two factors. One is a scaling, which
depends on free-atom properties and varies from atom to atom
by a factor of up to 2000, and the other is a dimensionless,
nonlinear ratio, which can be plotted for all atoms onto a single
graph.

Our discussion refers to the most fundamental atomic
model, viz. the self-consistent field atom. Single configuration
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calculations demonstrate the basic principles involved.
However, the scaling rules can readily be used in conjunction
with any atomic model as required. In order to extend our
discussion to heavy atoms, which can exhibit exceptionally
interesting variations of compressibility, we adopt a fully
relativistic Dirac-Fock approach. However, all the effects we
describe have also been investigated and found to occur in a
qualitatively similar way for a non-relativistic Hartree-Fock
model.

Atomic pressure, as an explicit observable, deduced by
solving the Schrédinger equation, was introduced above.
Let the free atom binding energy £} = Ef — E/ where E/ is
the total energy of the free ion ground state, and EJ is the
total energy of the free atom ground state. The analogous
quantities for the atom under pressure are Ef = EJ — EJ and
we can define a dimensionless or reduced binding energy £
where

e=E[/E]. (3)
The dimensionless quantity £ can then be calculated under
any kind of external perturbation of the atom. For example,
it can be computed under progressive increase of the effective
nuclear charge Z through non-integral values, or indeed under
any other kind of spherical perturbation, such as confinement
in a cavity of arbitrary radius and spherical potential.
In practice, when using ab initio theory to determine ¢, it is
simpler and gives more consistent results to replace the E}
and EJ by the Koopmans removal energies of the appropriate
Dirac-Fock orbitals, which is convenient for our discussion.

A confined atom is subjected to a quantum pressure which
differs in nature from the kinetic pressure alluded to above.
As noted in the Introduction, Numerous examples of quantum
confinement exist, for instance endohedral atoms in
metalofullerenes [54--56], atoms confined in zeolites [57],
atoms in solids treated through the Watson sphere [58,59],
atoms in bubbles [60], in quantum dots [61], in clusters [62],
in superdense or compressed matter [63], in the reversible
lithiation of solids [64], efc. etc. From a purely formal point
of view, we can also consider a fictitious atom of non-integral
nuclear charge as an example of spherical compression [65].

Indeed, for the purposes of our argument, we regard
confinement of the atom within an impenetrable sphere and
the introduction of a fictitious non-integral nuclear charge as
the two hypothetical limiting cases which represent,
respectively, totally external -and totally internal spherical
perturbations .

Let the mean volume occupied by the free atom V/ = 4
<r¥>/3, where <> is the expectation value of 2, calculated
from the outermost wavefunction of the atom. Then, the
corresponding quantity V7 can again be defined for the atom
under a pressure P, arising from any kind of spherical

potential, as explained above. We introduce the dimengj,,
shrinkage parameter :

E=VIIVL, |

11

From the definitions, we can deduce that the Quanyyy,
pressure : )

P = AEIAV = (EYVH) {(e- D&~ 1))
= (E{Vp

= p, 4
where p is a reduced pressure. What our definitions of £and
¢ achieve is to scale all the variables systematically by
appropriate factor for each atom, yielding a redyy
compressibility. The important point, as we now show, s thy
most of the variation of compressibility from atom to atom
removed by this method of scaling. For all atoms, the acty
variation in ¢ as a function of & turns out to be almost i
same. Some indication of how this occurs comes fron
magnitudes obtained for free atoms. From muly.
configurational Dirac-Fock calculations, we find, for caesium

Nes = 3[4 Eg[<rs, > =13591x10%au. % ()
while. for helium :

Mhe =34 Eyy[<n, > =0274912.0.2, )

nlessi

which implies that Cs (one of the largest atoms in the Perodc
Table) is roughly 2000 times more compressiblc than
(the smallest atom), provided £and £ exhibit variations sumla
to each other for both cases.

Since both £and & are dimensionless, we can now plot the
reduced compressibility, or (&, &) curves for all atoms ontos
single graph, as shown in Figure 2, obtained by fully
relativistic Dirac-Fock calculations for the extreme case.d
Cs (the typical soft atom) and He (the typical hard aton!
Again, a relativistic approach is necessary, to make thel
comparison, because we are treating very light and rather!i'
heavy atoms within the same theoretical scheme. We
therefore used the GRASP code [66] with modifications [f
to treat spherical confinement, as previously described.

From the data used to plot the confined atom curves.
can also deduce the reduced quantum pressure p by ush
equation (5). This can be plotted against the volume rati0
The interesting feature of such a plot is that, again, there
marked similarity between the curves, despite an enorm
difference of hardness between the two atoms. wi
appropriate scaling, even the functional variations turn out
be nearly the same over a wide range.

We now enumerate some general features of (&, §) curves

(i) As the spherical perturbation tends to zero (for exam!

the height of the confining step ¥ tends to 0.0

nuclear charge tends to that of the neutral atom)
both £=1 and & = 1, so that all the (g, §) curv®
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through a universal point (1,1), which has the practical
advantage that it lies near the centre of the graph. This
point is common to all the (&, &)-curves, despite the
fact that they are in principle different from each other,
not only from atom to atom, but also according to the
nature of the spherical perturbation.

(ii) Since & free neutral atom exists only at zero pressure

and, since zero pressure corresponds to deldé =0, it
follows that the slope of the (&, £) curve for the neutral
atom confined by a sphere tends to zero as (¢, &) tend
to (1,1). Interestingly, this rule does not apply to the
curve obtained by variation of the nuclear charge
because, if nuclear charge were allowed to vary freely,
there could be no equilibrium or zero-pressure energy.

yii) For atoms compressed by an impenetrable repulsive

v

~

sphere, there is a confining radius within which Eq,
and therefore also &, changes sign, i.e. the (& &)-curve
crosses the £ = 0 abscissa. Formally, this resembles
ionisation, but actually it corresponds to delocalisation,
¢ the outermost electron is no longer confined by
the atomic potential, but only by the impenetrable
sphere.

For atoms compressed by an increase in nuclear charge,
the ionisation potential increases with charge, i.e. as
the atom becomes smaller, its binding energy also
increases, so the (&, &) curves veer upwards rather than
downwards, and can never cross the £ = 0 abscissa,
re., in this case, delocalisation cannot occur as it does
when the confining sphere becomes smaller. This
distinguishes between the two mechanisms of
compression (external and internal).

(v) Atoms can be dilated as well as compressed by a

spherical perturbation, either by a reduction of nuclear
charge, or by an attractive spherical shell or step. In
this case, the binding energy is always reduced, until
eventually ionisation occurs. Since, whatever the
mechanism, an increase in ionisation potential never
occurs on dilation, there is a forbidden region for £>
I, €> 1 in the (& & plane. Within the Dirac-Fock
method as implemented in the GRASP code, we were
unable to obtain convergence for an attractive outer
sphere. Thus, the dilation branches of the curves
corresponding to confinement by a spherical cavity
are absent from our calculations and from Figure 2.
However, it is easy to deduce what their properties
should be. First, they must be continuous with the
corresponding compression branch, which means that
de/8¢ tends to 0 as the point (1,1) is approached from
right to left in the figure. Second, electron detachment
or ionisation must occur in a sufficiently attractive
external well, so the curves must veer down again as &
!ncreases, eventually crossing the abscissa at an
lonisation point. This also implies that there must be a

second crossing point between the curves for dilation
by a spherical cavity and the curves for decreasing
nuclear charge.

(vi)' The real physical pressure is given by :

- PEre-DAE-D). t)
; As noted above, the first factor undergoes a very large
:variation from atom to atom, from the smallest atom
iin the Periodic Table with the highest binding energy,
%which is He, to the largest atom with the smallest
ibinding energy, i.e. a heavy alkali (Cs or Fr), which
“thus define the hardest and softest atoms respectively.

(vii) The difference between the scaled (g &)-curves for
different atoms can be represented by a slight rotation
about the (1,1) point as a pivot. This slight rotation is
sufficient to encompass the behaviour of nearly all the
elements in the Periodic Table, whose hardness is
generally intermediate between that of He and that of
Cs. The rotation is anticlockwise for increasing
hardness.

(viii) The nonlinear variation of compressibility is entirely
contained in the (&, &)-curves, and even its functional
form is not grossly different for different atoms. A
discontinuity in the curve for confined caesium has
already been noted and explained in an earlier
paper [51]. It corresponds to an observed effect in the
solid, namely orbital collapse induced by external
compression. It might be thought that atomic physics
could do little to model such phenomena in solids.
However, it is becoming clear that, once an orbital
collapses into the inner reaches of the atom, it is
screened from the fields of the solid, and its atomicity
is dramatically enhanced, which is why essentially
atomic calculations are successful in describing a wide
range of orbital collapse phenomena in solids and
compounds [22,40,50,52,68].

e Comumn

04 -

o}

Figure 3. Showing the generalised coordinates or reduced pressure plot
described in the text. :
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15. Conclusion

We have presented a general introduction to the subject of
confined atoms, quasi-atoms and superatoms, which together
constitute a new strand of atomic physics extending its
applicability to larger systems. In addition, we have introduced
anew parametrisation based on quantum confinement, which
allows the compressibilities of different atoms to be inter-
compared and a general description of quantum
compressibility to be attempted for all the atoms in the Periodic
Table. It is hoped that our method will find application to a
wide range of phenomena, extending into solid state physics,
clusters physics, reversible lithiation, and matter under very
high pressures.

An additional problem which is very interesting to consider
is the nature of the confinement conditions for the fully
relativistic situation. When the Dirac equation is solved, a
two-component wavefunction is introduced. The large
component is normally regarded as the more ‘physical’ simply
because it turns into the ordinary wavefunction in the non-
relativistic limit, whereas the small component then tends to
zero. However, in a relativistic situation, both must be treated
as equally important. It then becomes difficult to decide what
the correct confinement condition is. Ultimately, there is a
problem due to by Klein’s paradox if the conditions are
inconsistent with relativity or are wrongly applied.

We have investigated how this problem can be addressed
along the same lines as in the M.1.T. bag model of Nuclear
Physics. Relativistic confinement turns out to be a specific
and different problem from the nonrelativistic case, because
the appropriate boundary condition depends on the conditions
imposed on the Dirac current by charge conservation.
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