Normal coordinate analysis of depterated benzonitriles

A Pavan Kumar, K Sriramulu and G Ramana Rao*
Department of Physics, Kakatiya University, Vidyaranyapuri, Warangal-506 009. Andhra Pradesh. India

Abstract : A zero-order normal coordinate analysis of both in-plane and out-of-plane vibrations was made for benzonitrile, benzonitrilep -d. henzonitrile-o-d and benzonitrile-d, by transferring the force constants from our carler work The observed and calculated frequencies agree with an average error of $104 \mathrm{~cm}{ }^{\prime}$ On the basis of calculated potental energy distributions and eigen vectors, several assignments uggested by earlier workers have been revised
heywords Normal coordinate analysis, potential energy distribution

PACS No. • 33.20.-t

1. Introduction

We have been investigating the vibrational spectra of substituted benzenes by recording their IR and Raman upectra and subjecting them to normal coordinate analysis. We have already reported the vibrational spectra and results of normal coordinate analysis of monohalogenated benzonitriles [1]. The transferability of force constants obtained above have been demonstrated to some substituted benzonitriles [2-4]. In continuation of this work, now, we made a normal coordinate analysis of benzonitrile (BN), benzonitrile-p-d (BN-p-d), benzonitrile-md (BN-m-d), benzonitrile-o-d (BN-o-d) and benzonitrile- d_{5} ($\mathrm{BN}-\mathrm{d}_{5}$), whose vibrational frequencies were reported by Varsanyi [5].

2. Zero-order calculations and results

The molecules under investigation possess different point group symmetries. The symmetry of $\mathrm{BN}, \mathrm{BN}-\mathrm{p}-\mathrm{d}$ and $\mathrm{BN}-\mathrm{d}_{5}$ is $C_{2 v}$ point group and that of $\mathrm{BN}-\mathrm{m}-\mathrm{d}$ and $\mathrm{BN}-\mathrm{o}-\mathrm{d}$ is C_{s}. In the $C_{2 v}$ structure, the 33 fundamentals are distributed as $12 a_{1}+3 a_{2}+7 b_{1}+11 b_{2}$, whereas in the C_{s} structure the 33 fundamentals fall into 23 vibrations of a^{\prime} species and 10 vibrations of $a^{\prime \prime}$ species. All the modes belonging to
a_{1}, b_{1} and b_{2} species of the $C_{2 v}$ point group are allowed in IR and Raman spectra, whereas the a_{2} modes are allowed in the Raman but forbidden in the IR spectra. Similarly, all the modes belonging to a^{\prime} and $a^{\prime \prime}$ species of the C_{3} point group are active both in IR and Raman spectra.

A zero-order vibrational analysis of both in-plane and out-of-plane vibrations was made for $\mathrm{BN}, \mathrm{BN}-\mathrm{p}-\mathrm{d}$, $\mathrm{BN}-\mathrm{m}-\mathrm{d}, \mathrm{BN}-\mathrm{o}-\mathrm{d}$ and $\mathrm{BN}-\mathrm{d}_{5}$ using the molecular parameters, internal coordinates and symmetry coordinates employed in our earlier work [1]. All the zero-order force constants were transferred from monohalogenated benzonitriles [1]. The average error between the observed and calculated frequencies is $12.7,6.3,9,9$ and $13 \mathrm{~cm}^{-1}$ for $\mathrm{BN}, \mathrm{BN}-\mathrm{p}-\mathrm{d}$, $\mathrm{BN}-\mathrm{m}-\mathrm{d}$ and $\mathrm{BN}-\mathrm{o}-\mathrm{d}$ and $\mathrm{BN}-\mathrm{d}_{5}$, respectively. These should be considered as good since the force constants are not refined in the zero-order calculation. This demonstrates the transferability of force constants presented in reference 1 . The observed and calculated frequencies, potential energy distributions (PED) and vibrational assignments of these molecules are summarised in Table 1. Potential energy distributions below 10% are not shown.

[^0]© 2002 IACS

Table 1. Observed and calculated frequencies (in cm^{-1}) and vibrational assignments of benzonitrile and its deuterated species.

Mode	BN		BN-p-d		BN-m-d		BN-o-d		BN-ds		Vibrational assignments ${ }^{\text {a }}$
	Obs. Freq	Cal Fireq	Obs. Freq	Cal. Freq.	$\begin{aligned} & \text { Obs } \\ & \text { Freq } \end{aligned}$	Cal. Freq.	Obs. Freq	Cal. Freq.	Obs.	Cal.	
$v(C H / C D) 2$	3027	3038	-	3043	-	3047	-	3051	--	2258	102(2)
$v(\mathrm{CH} / \mathrm{CD}) 7 a$	3042	3078	2285	2285	-	3075	-	3086	2283	2283	100(7a)
$v(\mathrm{CH} / \mathrm{CD}) 7 \boldsymbol{b}$	3039	3071	-	3071	2270	2285	-	3077	-	2275	100(7b)
$v(\mathrm{C}-\mathrm{CN}) 13$	1192	1193	1190	1193	1196	1187	1192	1187	1123	1133	$34(13)+21(18 a)+21(12)+181$
$v(\mathrm{CH} / \mathrm{CD}) 20 a^{\prime}$	3071	3100	3080	3093	3095	3093	2280	2285	2286	2300	98(20a)
$v(\mathrm{Cl} / \mathrm{CD}) 20 b$	3080	3115	-	3115	-	3107	3100	3109	2305	2311	97(20b)
$v(C C) 1$	769	772	755	766	757	757	756	767	718	729	$41(6 a)+20(1)+19(13)+10118$
$v(C C) 8 a$	1599	1600	1595	1597	1592	1597	1593	1592	1568	1570	76(8a)+25(9a)
$v(C C) 8 b$	1584	1574	1564	1567	1573	1568	1573	1569	-	1542	$83(8 b)+21(9 b)$
$\nu(\mathrm{CC}) 14$	1289	1272	1284	1263	1277	1260	1271	1271	1289	1258	$75(14)+25(9 b)$
$v(C C) 19 a$	1492	1487	1482	1478	1474	1470	1472	1472	1378	1384	$58(18 a)+42(19 a)$
$v(\mathrm{CC}) 19 b$	1448	1443	1408	1412	1421	1422	1442	1432	1330	1325	$57(18 b)+41(19 h)$
$\widehat{\beta(\widehat{\mathrm{CCC}}) 6 a}$	461	459	456	456	449	459	457	457	452	451	$42(6 a)+26(13)$
$\beta(\widehat{\mathrm{CCC}}) 6 b$	629	639	--	638	617	632	-	633	599	616	$72(6 b)+17(9 b)$
$\beta(\widehat{\mathrm{CCC}}) 12$	1001	995	980	976	999	997	985	982	954	950	$60(1)+30(12)$
$\beta(C H / C D) 3$	1337	1330	1305	1310	1328	1317	1297	1280	1040	1038	93(3)
$\beta(\mathrm{CH} / \mathrm{CD}) 9 a$	1178	1164	1178	1163	840	859	1163	1170	838	837	$80(9 a)+20(8 a)$
$\beta(\mathrm{CH} / \mathrm{CD}) 9 b$	1163	1172	862	852	1174	1168	1115	1111	845	843	$68(9 b)+32(14)$
$\beta(\mathrm{C}-\mathrm{CN}) 15$	172	187	-	186	-	186	-	185	170	180	$48 \beta(\mathrm{C}=\mathrm{N})+48(15)$
$\beta(\mathrm{CH} / \mathrm{CD}) 18 a$	1027	1020	1023	1019	1037	1035	1042	1032	830	818	$41(19 a)+29(18 a)+25(12)$
$\beta(\mathrm{CH} / \mathrm{CD}) 18 \mathrm{~b}$	1071	1065	1105	1116	1102	1079	863	851	823	808	$45(19 b)+43(18 b)$
$v(\mathrm{Cm})$	2232	2232	2230	2232	2230	2232	2230	2232	2226	2232	$86 v(\mathrm{C}+\mathrm{N})+14(13)$
$\beta(\mathrm{CmN})$	551	539	-	537	-	537	--	535	552	528	$50 \beta(\mathrm{C} \equiv \mathrm{N})+39(15)$
π (CH/CD) 5	987	982	970	964	--	975	958	981	871	866	86(5)
$\pi(\mathrm{CH} / \mathrm{CD}) 10 a$	848	829	840	837	670	653	627	616	695	645	99(10a)
$\pi(\mathrm{C}-\mathrm{CN}) 10 b$	162	149	-	146	-	149	-	148	160	142	$65(10 b)+23(16 b)+15 \omega(\mathrm{CsN})$
$\pi(\mathrm{CH} / \mathrm{CD}) 11$	758	740	613	620	810	797	778	775	572	531	103(11)
$\pi(\mathrm{CH} / \mathrm{CD}) 17 a$	978	964	-	829	913	924	-	862	780	793	98(17a)
$\pi(\mathrm{CH} / \mathrm{CD}) 17 b$	925	889	-	953	876	888	906	945	769	734	103(17b)
\boldsymbol{r} (CCCC) 4	686	694	727	719	688	695	746	732	638	621	76(4)+14(5)
$\overparen{\tau(\mathrm{CCCC})} 16 a$	401	411	-	411	-	383	-	381	357	354	110(16a)
$\tau(\widehat{C C C C}) 16 b$	381	393	-	378	-	399	-	400	382	363	$75(16 b)+28 \omega\left(\mathrm{C} \mathrm{F}^{(1)}\right.$
$\omega(\mathrm{Cm} \mathrm{N})$	548	558	545	543	529	538	540	558	488	507	$48 \omega(\mathrm{C}=\mathrm{N})+35(4)+25(10 b)$

-, not observe

${ }^{a}$ Results in this column correspond to BN. The number before the parentheses is \% PED and that inside the parentheses is mode notation as given by Wilson [6]. Results of other molecules can be obtained from the authors.

3. Vibrational assignments

The vibrational assignments presented in Table 1 are selfexplanatory. Hence the discussion is confined to certain important modes only. The following points of disagreement with Varsanyi [5] are note-worthy.

1. In BN , the frequencies now attributed to modes 2 , $20 a, 7 b, 20 b, 14,3,15,10 b, 16 b$ and $\omega(\mathrm{C} \equiv \mathrm{N})$ were thought to be $7 b, 2,20 b, 20 a, 3,14,10 b, \gamma(\mathrm{C} \equiv \mathrm{N}) 15$ and 16b, respectively, by Varsanyi [5].
2. In $\mathrm{BN}-\mathrm{p}-\mathrm{d}$, the bands now ascribed to the vibrations $14,3,9 b$ and $\omega(\mathrm{C} \equiv \mathrm{N})$ were considered to be arising from 3, 14, $17 b$ and $16 b$, respectively, by Varsanyi [5].
3. In $\mathrm{BN}-\mathrm{m}-\mathrm{d}$, the bands now identified as $7 b, 14,3,9 a$, $11,17 a, 17 b, 10 a$ and $\omega(\mathrm{C} \equiv \mathrm{N})$ were expected to be $7 a$, $3,14,10 a, 17 b, 5,9 a, 11$ and $16 b$, respectively, by Varsanyi [5].
4. In $\mathrm{BN}-\mathrm{o}-\mathrm{d}$, the fundamentals now attributed to 20b, $7 a, 14,3,18 b, 9 b, 11,17 b, 10 a$ and $\omega(\mathrm{C} \equiv \mathrm{N})$ were expected to be $2,20 a, 3,14,9 b, 18 b, 17 b, 17 a, 11$ and $16 b$, respectively, by Varsanyi [5].
5. In $\mathrm{BN}-\mathrm{d}_{5}$, the observed frequencies now identified as $7 a, 20 a, 9 a, 18 a, 20 b, 9 b, 15,5,10 b, 16 b, \omega(\mathrm{C} \equiv \mathrm{N})$ and $16 a$ were expected to be $20 b, 2,9 b, 5,20 a, 18 a$, $10 h, 9 a, \gamma(\mathrm{C} \equiv \mathrm{N}), 16 a, 16 b$ and 15 , respectively, by Varsanyi [5].

31. ('- C' Stretching vibrations:

Vibrations $8 a$ and $8 b$ are expected around $1600 \mathrm{~cm}^{-1}$ in the molecules investigated. The higher frequency has a large amount of C-C stretching character ranging from 76 to 86% in the five molecules studied. It mixes with $\mathrm{C}-\mathrm{H}$ in-plane bending modes. In the lower frequency $\mathrm{C}-\mathrm{C}$ stretching character ranges from 83 to 94%. This also mixes with C-H in-plane bending modes. The present calculations establish that mode $8 a$ is greater in frequency than $8 b$.

Modes $19 a$ and $19 b$ are expected in the range 1400-1500 cm^{-1}. The higher frequency is a $\mathrm{C}-\mathrm{C}$ stretching mode to the extent of $41-60 \%$, whereas the lower frequency is a $\mathrm{C}-\mathrm{C}$ stretching vibration to the extent of $38-63 \%$. They mix with $\mathrm{C}-\mathrm{H}$ in-plane bending modes. Present computations establish that the frequency of $19 a$ is greater than that of $19 b$.

Mode 14, which is known as the kekule mode can be assigned to the fundamentals near 1289, 1284, 1277, 1271 and $1289 \mathrm{~cm}^{1}$ in BN, BN-p-d, BN-m-d, BN-o-d and BN-ds, respectively, on the basis of calculations.

3.2. Ring vibrations :

The four ring vibrations $1,6 a, 6 b$ and 12 were identified and assigied from careful consideration of their characteristics eigen vector distributions.

Let us consider the modes $6 a$ and $6 b$ corresponding to the benzene band at $606 \mathrm{~cm}{ }^{\prime}$. According to normal coordinate treatment the bands at $461,456,449,457$ and 452 cm^{1} are attributed to mode $6 a$, whereas those at 629,638 (calculated value), 617, 633 (calculated value) and 599 cm^{-1} are ascribed to the vibration $6 b$ in $\mathrm{BN}, \mathrm{BN}-\mathrm{p}-\mathrm{d}, \mathrm{BN}-\mathrm{m}-$ $\mathrm{d}, \mathrm{BN}-\mathrm{o}-\mathrm{d}$ and $\mathrm{BN}-\mathrm{d}_{5}$, respectively.

The mode 12 comes near $1010 \mathrm{~cm}^{-1}$ in benzene. According to normal coordinate analysis it should appear around 1001 , $980,999,985$ and $959 \mathrm{~cm}^{\prime}$ in $\mathrm{BN}, \mathrm{BN}-\mathrm{p}-\mathrm{d}, \mathrm{BN}-\mathrm{m}-\mathrm{d}, \mathrm{BN}-\mathrm{o}-\mathrm{d}$, $\mathrm{BN}-\mathrm{d}_{5}$, respectively. A large contribution of PED from mode 1 to this vibration is note-worthy.

In benzene mode 1 is a pure $\mathrm{C}-\mathrm{C}$ stretching vibration as it is totally symmetric and separated from C-H stretching vibrations by a large extent. As these restrictions are removed in substituted benzenes, mode 1 mixes with several other vibrations. On the basis of the calculations mode 1 is ascribed to the fundamental at $769,755,757,756$ and $718 \mathrm{~cm}^{-1}$ in $\mathrm{BN}, \mathrm{BN}-\mathrm{p}-\mathrm{d}, \mathrm{BN}-\mathrm{m}-\mathrm{d}, \mathrm{BN}-\mathrm{o}-\mathrm{d}$ and $\mathrm{BN}-\mathrm{d}_{5}$, respectively.

References

[1] A Pavan Kumar and G Ramana Rao Spectrochim. Acta A53 2023 (1997)
[2] A Pavan Kumar and G Ramana Rao Spectrochim Acta A53 2033 (1997)
[3] A Pavan Kumar and G Ramana Rao Spectrochim. Acta A53 2041 (1997)
14] A Pavan Kumar and G Ramana Rao Spectrochim. Acta A53 2049 (1997)
15] G Varsanyi Assignments for V'ibrational Spectra of Seven Hundred Benzene Derivatives Vol. 1 (London : Adam Hilger) pp 73, 74 and 75 (1974)
16] E B Wilson Phys. Rev. 45706 (1934)

[^0]: Present Address : University P G College, Godavarikhani-505 209, Karimnagar,
 Andhra Pradesh, India

