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Abstract

The inlluence of an aligned magnetic ficld on the Rayleigh-Taylor instability in a thin layer of finite electrically conducting and

fughly viscous fluid has been investigated using the hincar theory i the creeping flow limat It is for the first time that the cffect of an aligned field
an the Rayleigh-Taylor instability in a layer of fimte clectrically conducting and highly viscous fluid 1s studied The growth rate of the instability
1 found to be controlled by the ratio of surface tension to the stress gradient, thickness of the fluid layer and the Chandrashckhar number which
1 a function of magnetic ficld It is also noted that an aligned magnetic ficld prevent the growth of finger instabilitics which otherwise exist for

thicker films
heywords

PACS Nos. 52.35Py, 47 65 +a

1. Introduction

The Rayleigh-Taylor (RT) instability is an instability of
mterface between two fluids of different densities, which
occurs when the light fluid is pushing the heavy fluid [1].
The study of RT instabilities have been a subject of
considerable interest due to their applications in the areas of
mertial fusion target design, astrophysics, plasma physics
and physics of fluids [2-6]. The instabilities are usually
considered in a viscous creeping flow situations. The
mathematical models of the instabilitics are widely used in
the areas of failure of metallic glasses [7,8], grain boundary
falure in metals [7], non-cross linked polymers [9] and
cracking of cross linked polymers [10]. Brown [11]
theoretically investigated RT instability in a finite thickness
layer of viscous fluid making creeping flow approximation.
The RT like instabilities in the presence of magnetic field
arise in many astrophysical and geophysical situations,
however, a particular area of intcrest is the inertial fusion
where the application of magnetic field is used to control the
growth of the instabilities. Davalos-Orozco [12] studied the
¢flect of horizontal magnetic field on RT instability of a two
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- Rayleigh-Taylor instability. finite conducting fluid, ahgned magnetic field

fluid layer for an unstable density stratification and concluded
that in the case of an adverse density stratification, the
horizontal magnetic field gives stability and propagate the
perturbation as traveling waves. Sharma and Chhajlani [13]
and Chandrasekhar [14] have carried out the instabiiity
studies on ideal plasma in the presence of magnetic field. The
aim of this Brief Communication is to examine the stability
of the interface of a fluid layer of finite thickness. The
particular concerns are the effects of the thickness of the
layer and the strength of the magnetic field on the growth
rates of instability.

2. Theory

We shall consider a situation where an electrically finite
conducting lighter fluid (layer of finite thickness) accelerates
towards a heavier fluid causing the interface between the
fluids to be unstable (Figure 1). The other interface of the
lighter fluid is assumed to be bounded by a rigid material.
The fluid is considered to be highly viscous, so the inertial
terms can be ignored. The flow is taken to be steady and two
dimensional. The relevant parameters are the fluid viscosity,
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Hy, magnetic permeability, 4, electrical conductivity, o, fluid
layer thickness, A, surface tension, y, stress gradient, &, and
the applicd magnetic field, H,.

Interface

Heavier flund

h Lighter fluid

—> I,

Figure 1. The geometry of the perturbation

The basic system can bc defined as
u=w=0,H =H,H =0. )

The basic equations of motion of the system in the absence
of body force are given by
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where P = Py + (uH?12) is the total pressure, P is the
hydrostatic pressure, (1, w) are the velocity components in
x and y directions respectively, H(H,, H,) is a time independent
magnetic field, p is the fluid density, v(= u/p ) is the
kinematic viscosity and v,(= 1/u0) is the magnetic viscosity.

We superimpose on the basic state given in eq. (1) a small
symmetric disturbance of the form

u=u,w=w,P=P,Hy=H +h,Hy=h, (8)
where the primes indicate the perturbed quantities, H,, and
H,, are the total fields (sum of applied and induced fields)
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and A, and h, are the induced magnetic fields in the x ang
y directions respectively.

Substituting eq. (8) into the eqs. (2-7) and linearizing,
we get after omitting the primes for simplicity, the requireq
linearized equations :
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The boundary conditions and the interface conditions shown
in Figure 1 are

w=Dw=0; h, =
where D refers to d/dy.

Dh,=0aty =0, (15)

The free surface is at y = A and we shall consider
the development of small perturbations in this interface.
The actual deviation of the interface from y = A is given
by 7. The continuity of tangential stress at the interface is
given by

w  Ou
— e —— = t =n. 16
s Y 0,aty=nh (16)
The continuity of normal stress at the interface gives
7 ow
p=_5.n-y—ax§’+y,—~ﬁy,aty=h. (17

The kinematic condition with y = h — 1 as the interface, after
the linearization gives

w=-§7——,aty=h. (18)
The continuity of magnetic tangential stress at y = h is
given by

hy

i 298 19

g (19)
The continuity of normal magnetic stress is given by

H2, & oh,
£—2—=‘-7 ax;]+#Hax-gy¥', aty = h. (20

By eliminating the pressure gradient from tl_'ne eqs. (9) and
(10) and using (11-14) we get
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Assuming the variations of u, w, P and 7 in the x-direction
to be of the form

u u(y)
Y= :((;))) exp(iox +nt)_ (22)
nl Ln)

where n is the growth rate of the RT instability and a is the
wave number.

By using egs. (9), (11) and (22) in (21) we get

D'w-2alD*w+a‘(l+a})w=0, (23)
where a} = (uH2 [ pvvna?).
The general solution of eq. (23) can be written as
w = exp(aq, y)[A sin(aa,y) + Beos(aa, y)]
+exp(-aa y)[Csin(aaz y) + Ecos(aa, Y )], (24)

e <[+ 2] nten-[( -3 ]

By imposing the boundary conditions given in egs. (15)
and (16) on the solution given in eq. (24), we obtain the
constants B, C and E to be

B=A(1 - R)(aa/2a;), C=- AR and E = A(] - R)(ax2ay),
where
exp( M)[(ag +3ala; - a))cos(N)+2ay(1+af )sin(N)]

- cxp(-M)[(ai‘ -afay ~a; )cos(N) - 2a} sin(N)]

R=
exp( M )[(a% - alay - aj)cos(N)+2alay sin(N )]

+exp(~M)|(a} +3ala; - ay)cos(N) - 2a (a} + l)sin(M)]
(25)
M= aajh and N = aah.
On substituting H? = (H,, + he)? + A in the total pressure
P and using eq. (8), we get
16p Su  J*u)
paxt 3;2"*‘@'2‘) =0.
Making use of egs. (10), (17), (18), (22) and (26), the
dispersion relation is obtained to be

(26)
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On making this equation dimensionless using the relations

C= () JG8), 2 =71, @ = (ak), B = (WA
and D* = Dh and for simplicity neglecting the asterisks,
become

aty = h. @7

ne-a)aw
Qh2a2Dw - D3w)"

(28)

In the eq. (24), the quantity ay in the dimensionless form is
|

given as a, =[Q/(h?a?)]?, with Chandrashekhar number,

Q = (uHh)(pvvin).

3. Discussion and conclusion

The eq, (28) is a function of the dimensionless wave
numberia, the ratio of surface tension to the stress gradient
A, the ﬁlm thickness 4 and the Chandrashekhar number
© which is a function of an applied horizontal magnetic
field H§ The growth rate n is numerically computed for

differeng values of kA and Q and, plotted in Figures 2-5.
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Figure 2. A plot of growth rate n versus wave number o at different
Chandrashekhar number, Q. for film thickness, A = 0.1.
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Figure 3. A plot of growth rate n versus wave number @ at different
Chandrashekhar number, Q, for film thickness, A = 1.
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These plots reveal that the size scale of the RT instabilities
of the fluid of finite layer thickness is controlled by 4, A and
Q. Further, it can be seen that the increase in the film
thickness h, produce a finger type of instability but the effect

h=10

0

Figure 4. A plot of growth rate n versus wave number a at different
Chandrashekhar number Q, for film thickness 4 = 10.

60}
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Figure 5. A plot of growth rate # versus wave number « at different
Chandrashekhar number Q, for film thickness & = 20.

of an aligned magnetic field is to suppress the growth rage
When Q is made zero in the dispersion relation (28),
hydrodynamic results of Brown [11] are recovered. This ¢y
be easily realized by substituting the value of applied fielc
to be zero in eq. (23). These results may be of great use j;
inertial control of fusion (ICF). The RT instabilities grow j;
imploding ICF targets when the heavy fluid is accelerate
by a lighter fluid. All the ICF targets undergo such a
instability at some time or the other during the implosion
The outer ablating surface may be stabilized in the presence
of an aligned magnetic field.

It is for the first time that the RT instability in a finit
thickness layer of highly viscous, electrically finit
conducting fluid has been studied in the presence of ar
aligned magnetic field under the approximation of creeping
flow limit. It is found that the growth rate of the R1
instabilities is controlled by the ratio of surface tension 1
the stress gradient, fluid layer thickness and th
Chandrashekhar number. The magnetic field is also found
to prevent the finger instabilities which otherwise exist fo
thick films. The results tend to hydrodynamic domain in the
absence of an applied field.
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