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\bslract The inlUicnee of an aligned magnetic field on the Raylcigh-Taylor instability in a thin layer of finite electrically conducting and 
liiglilt VISCOUS fluid has been investigated using tlic linear theory m the creeping flow limit It is for the first time that the cfrect of an aligned field 
on the Raylcigh-Taylor instability in a layer of finite electrically conducting and highly viscous fluid is studied The growth rate of the instability 
IS found to be controlled by the ratio of surface tension to the stress gradient, thickness of the fluid layer and the Chandrashekhar number which 
IS a function of magnetic field It is also noted that an aligned magnetic field prevent the growth of finger instabilities which otherwise exist for 
thicker films
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I. Introduction
liie Rayleigh-Taylor (RT) instability is an instability of 
iiiierfacc between two fluids of different densities, which 
occurs when the light fluid is pushing the heavy fluid [1], 
Ihc study of RT in.stabilities have been a subject of 
considerable interest due to their applications in the areas of 
menial fusion target design, astrophysics, plasma physics 
and physics of fluids [2-6], The instabilities are usually 
considered in a viscous creeping flow situations. The 
mathematical models of the instabilities are widely used in 
the areas of failure of metallic glasses [7,8], grain boundary 
failure in metals [7], non-cross linked polymers [9] and 
cracking of cross linked polymers [10]. Brown [11] 
theoretically investigated RT instability in a finite thickness 
layer of viscous fluid making creeping flow approximation. 
The RT like instabilities in the presence of magnetic field 
arise in many astrophysical and geophysical situations, 
however, a particular area of interest is the inertial fusion 
"'here the application of magnetic field is used to control the 
growth of the instabilities. Davalos-Orozco [12] studied the 
effect of horizontal magnetic field on RT instability of a two

fluid layer for an unstable density stratification and concluded 
that in the case of an adverse density stratification, the 
horizontal magnetic field gives stability and propagate the 
perturbation as traveling waves. Sharma and Chhajlani [13] 
and Chandrasekhar [14] have carried out the instability 
studies on ideal plasma in the presence of magnetic field. The 
aim of this Brief Communication is to examine the stability 
of the interface of a fluid layer of finite thickness. The 
particular concerns arc the effects of the thickness of the 
layer and the strength of the magnetic field on the growth 
rates of instability.

2. Theory

We shall consider a situation where an electrically finite 
conducting lighter fluid (layer of finite thickness) accelerates 
towards a heavier fluid causing the interface between the 
fluids to be unstable (Figure 1). The other interface of the 
lighter fluid is assumed to be bounded by a rigid material. 
The fluid Is considered to be highly viscous, so the inertial 
terms can be ignored. The flow is taken to be steady and two 
dimensional. The relevant parameters are the fluid viscosity,
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///, magnetic permeability, //, electrical conductivity, a, fluid 
layer thickness, A, surface tension, y, stress gradient, <5, and 
the applied magnetic field, Hx-
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and hx and hy are the induced magnetic fields In the x and 
y  directions respectively.

Substituting eq. (8) Into the eqs. (2-7) and linearizing, 
we get after omitting the primes for simplicity, the required 
linearized equations :

i ^ + £ «
p P x  p ^ ' “ Px

dh^

Figure 1. The geometry of the perturbation

The basic system can be defined as
u -  - 0, H, -  IIx. Hy -  0. ( 1)

The basic equations of motion of the system in the absence 
of body force are given by
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The boundary conditions and the interface conditions shown 
in Figure 1 are

Vi; = /)vv -  0; By -  Dhy = 0 at y = 0, (15)
where D refers to d/dy.

The free surface is at y = A and we shall consider 
the development of small perturbations in this interface. 
The actual deviation of the interface from y  -  h is given 
by rj. The continuity of tangential stress at the interface is 
given by

dx dy
(5) The continuity of normal stress at the interface gives

d^t] dw
n i y ^ h . (17)

The kinematic condition with>> = A -  7 as the interface, after 
the linearization gives

Pt] . ,w = a t y - h . (18)

where P = Po + (pW (̂2) is the total pressure, Po is the 
hydrostatic pressure, (m, w) are the velocity components in 
X andy directions respectively, H{H„ Hy) is a time independent 
magnetic field, p  is the fluid density, v(= pf/p ) is the 
kinematic viscosity and v„(= \/pd) is the magnetic viscosity.

We superimpose on the basic state given in eq. ( I) a small 
symmetric disturbance of the form

u ^  u', w ^  w*, P ~ P*, Hox ^  Hx hx. Hoy ~ hy, (8) 
where the primes indicate the perturbed quantities, H ^  and 
Hoy are the total fields (sum of applied and induced fields)

The continuity of magnetic tangential stress at y = A is 
given by

Phv Phv 
Px Py

h. (19)

The continuity of normal magnetic stress is given by

~ 2 ----- “ T ' - ^  + p T /o r -^ ,  a ty  “ /i. (20)

By eliminating the pressure gradient from the eqs. (9) and 
(10) and using (11-14) we get

p H ^  Pw  ̂ p^u  ̂ p^u P ^w ______
p w „  P x  p x ^ p y  P y^ Px^ P y ^ P x

= 0 . (21)
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Assuming the variations of u, w, P and rj in the x-direction 
to be of the form

‘u iyYu
w

p

w(y)

p(y)
.^Cv)]

exp(/ajr + «r)^ (22)

where n is the growth rate of the RT instability and a  is the 
wave number.

By using eqs. (9), (11) and (22) in (21) we get 

D'*w-2 a^D^w+a^{ l  + a l ) w ^ 0 ,  (23)

where a^ = { j u f f l f p w „ a ^ ) .
The general solution of eq. (23) can be written as

w = exp(aaiy)[y4 sin(fl5a2y) + Rcos(afl2>’)]

+exp(-QW|>’)[Csin(Qa2y) + £ 005(002^̂ )]. (24)

where «i - ( l+ a g )V 2 and «2 = w 0 V2

By imposing the boundary conditions given in eqs. (15) 
and (16) on the solution given in eq. (24), we obtain the
constants B, C and E to be

R)(a2/2 ax\ C -  -- v4/? and £  -  /i( 1 -  R){ail2ax\
where
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(25)
M =  aa\h  and h  = aoih.

On substituting HP- = {Hox + hxY + h f  in the total pressure 
P and using eq. (8), we get

1
p  dx (26)^ dy^

Making use of eqs. (10), (17), (18), (22) and (26), the 
dispersion relation is obtained to be

„ = _ ( £ r « W ! ^ a t y  = /i.
P f{ 2 a^ D w- D^ w)

(27)

On making this equation dimensionless using the relations

=(”/ ^ / V V ^ .  « ’ = («^*X A* = (^^*)
and D'  = Dh and for simplicity neglecting the asterisks,
become

( Ih ^ a ’̂ D w-D ^w) ' (2 8 )

In the eq. (24), tlie quantity oo in the dimensionless form is
i

given as ~[0/(/?^or^)]2, with Chandrashekhar number, 

3. Discfission and conclusion

The eq̂  (28) is a function of the dimensionless wave 
number!42, the ratio of surface tension to the stress gradient 
A, the |5lm thickness h and the Chandrashekhar number 
Q whiefc is a function of an applied horizontal magnetic 
field The growth rate n is numerically computed for 
difTercnl values of h and Q and, plotted in Figures 2-5.

Figure 2. A plot of growth rate n versus wave number a  at diiTcrent 
Chandrashekhar number, Q, for film thickness, h « O.I.

Figure 3. A plot of growth rate n versus wave number a  at different 
Chandrashekhar number, Q, for ftlm thickness, h \.



196 T Sankarappa, S Basavaraja and R D Mathad

These plots reveal that the size scale of the RT instabilities 
of the fluid of finite layer thickness is controlled by A, h and 
Q. Further, it can be seen that the increase in the film 
thickness h, produce a finger type of instability but the effect

Figure 4. A plot of growth rate n versus wave number a  at different 
Chandrashckhar number Q, for film thickness h =  \0.

Figure 5. A plot o f growth rate n versus wave number a  at diflerent 
Chandrashekhar number Q, for film thickness h "  20.

of an aligned magnetic field is to suppress the growth rates 
When Q  is made zero in the dispersion relation (28), thi 
hydrodynamic results of Brown [11] are recovered. This cat 
be easily realized by substituting the value of appiTed fieli 
to be zero in eq. (23). These results may be of great use it 
inertial control of fiision (ICF). The RT instabilities grow it 
imploding ICF targets when the heavy fluid is acceleratec 
by a lighter fluid. All the ICF targets undergo such at 
instability at some time or the other during the implosion 
The outer ablating surface may be stabilized in the presence 
of an aligned magnetic field.

It is for the first time that the RT instability in a finite 
thickness layer of highly viscous, electrically finite 
conducting fluid has been studied in the presence of ar 
aligned magnetic field under the approximation of creeping 
flow limit. It is found that the growth rate of the RI 
instabilities is controlled by the ratio of surface tension tc 
the stress gradient, fluid layer thickness and the 
Chandrashekhar number. The magnetic field is also found 
to prevent the finger instabilities which otherwise exist foi 
thick films. The results tend to hydrodynamic domain in the 
absence of an applied field.
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