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Abstract

. A diatomic molecule within the framework of Born-Oppenheimer approximation is a two body problem just like hydrogen atom,

and may be treated on similar basis by assuming a suitable form of central potential

Inspite of difficulties associated with detcrmining accurate inter-atomic potential, a simple potential expressed as power scrics of
1 /r reproduce energy levels and dissociation constants with a reasonable accuracy. The new equation of energy is consistent with isotopic shift
and may be expressed in conventional form for low vibrational and rotational levels. The vibrational and rotational constants originate from a

cingle formula, and are therefore, related to each other.
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1. Introduction

It has become an established convention in molecular
spectroscopy to consider the vibration and rotation of a
diatomic molecule as two independent modes. The classical
frequency of vibration also does not have any correlation
with that of the rotational motion, and vibrational and
rotational constants of a diatomic molecule are therefore,
independent of each other.

In the conventional method, the interatomic potential is
expanded in terms of displacement from the equilibrium
Inter-atomic position. The expansion brings about drastic
changes in anharmonic oscillator and a non-rigid rotator
irrespective of the original form of the interactomic potential.
The vibrational and rotational wave functions are decoupled
except for minor perturbation of one by the other.

Though, different forms of the molecular potential have
been suggested by a number of investigators, all of them are
confined to the conventional picture of diatomic molecules
(1-6]. The methqgs for constructing experimental potential
curve from vibrational and rotational levels of a diatomic
Tlecule are also based upon such convention [7-10].
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However, the vibrational and rotational motions of a diatomic
molecule are closcly linked with each other and may be
considered as manifestation of a complex motion of
constituent atoms about the centre of mass.

Within the framework of Born-Oppenheimer
approximation however, a diatomic molecule is a two-body
problem just like hydrogen atom. As such, it may be treated
on similar basis without expressing the motion in terms of
vibration and rotation. The wave functions and energy levels
would be different for each diatomic molecule depending

‘upon the nature of the interatomic potential, and we expect

a better understanding of the system.

Unfortunately, the interatomic potential is not known
a priori. 1t is expected to be very complicated even in the
case of simple molecules. From general consideration, it is
understood that the potential is electromagnetic in nature and
tends monotonously to zero as r tends to infinity and tends
to large values as r equals zero. Therefore, we suggest a
tentative potential for a diatomic molecule as,

V(r)=a/r+b/r2 +’:‘/r3+d/r4+..._ )
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The following discussion should be considered tentative
due to the arbitrary nature of eq. (1). Besides, the Schroedinger
equation does not have the exact solution, and one has to use
perturbation technique to determine the contribution of last
two terms in the potential. Inspite of such limitations, the
energy equation is consistent with the requirement of isotopic
shift, and can be expressed in conventional form of vibrational
and rotational energy levels. Vibrational and rotational
constants originate from the same equation, and are therefore
related to each other. A number of such relations have been
derived.

2. Calculations

(i) Wave equation :

The potential of a diatomic molecule does not contain any
angular term, and therefore, angular part of the wave
function is given by spherical harmonics. The radial
component of wave function for a diatomic molecule with
a central potential eq. (1) will be

(1/p?)d/dp(p*dR/dp)+[A/p-1/4~1"U* +1)/p?|R
=0, @)
where p = ar, is a dimensionless variable,
A=2aulhla,
A +1)=00+1)+2ub/h?.
2 u|E|/a?n? =1/4 (since E <0 for bound states, we have

E = -|E|), and g is the reduced mass of the molecule. We
have assumed that the terms c/r3 and d/r4... are small and
may be treated as perturbation. Eq. (2) can be referred as
unperturbed Schroedinger equation and thus has an exact
solution. The solution is hydrogenic in nature with effective
atomic number z = a/e? and effective angular momentum /.
Solution of (2) may be put as

R(p)= F(p)e*'?, 3)

where F(p)=)_ Cpp™"

m=0

and the recursion relation is
((+m+1-2)C,

Cnet = (a2 s m ) @

where (/' +m+1)=24.
As the series breaks off after finite number of terms (let
p" = p"), we have after replacing m by »n' and 4 by n,

E, = "IEn 2nint’ (6)

where n=(n'+I"+1) is a positive integer and may be
termed as total quantum number.
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Using perturbation method [11], the first order correcteg
energy level takes the final form.

E= W+ +1)2 (4L 1) " (n' + 1" +7 (0

Here A4, B, C....., are functions of g, b, c.... While deriving
eq. (7), we have considered /* partly as a constant term. Ty,
eq. (7) may be expressed in power series of (n’ + 1/2) ang
I(1 +1); n' and / may be renamed as vibrational and rotationy)
quantum number respectively. If the vibrational and rotationy|
quantum numbers are small, only a few terms of the
expansion will be sufficient for reasonable accuracy. On the
other hand for higher vibrational and rotational levels, it wi|
be advisable to use eq. (7) in its original forms.

The term 2ub/h is quite large even for light molecules,
of the order of 346991.14 for N; in the ground state (X'Y")
and therefore /* changes slowly with /, generating closely
packed energy levels. The energy levels are arranged as (1y,
2p, 3d, 4f......), (25, 3p, 4d, 5f,.....), (3s, 4p, 5d......). Levels
within a bracket are closely related to each other generating
closely packed rotation energy levels and each bracketted
set of levels is separated from that of the other bracketted
set like vibrational levels in the conventional sensc of
speaking.

The conventional picture of diatomic molecules is quite
parametric, and the energy of vibration tends to (-) or (+)
infinite values as vibration quantum number is increased. For
example, the vibrational levels of nitrogen molecule in the
ground state (X'3%) are given by the equation :

G(em™) = 2358.027 (n+1/2) — 14.1351 (n+1/2)°
~0.01751 (n+1/2)° + 0.0001144 (n+1/2)". ()

Eq. (8) is quartic in vibration quantum number, and in
general, there will be four vibrational quantum numbers for
a given energy level. For instance, vibrational levels for
n=11 (at 25223.31 cm'), for n = 155 (at 25932.75 cm™'),
and for n = 343 (at 25160.17 cm™!) are close to each other.
Out of these, levels » = 155 and n = 343 are treated 2
unphysical, even though these levels are allowed by
equation. By convention, AG = 0 decides the upper limit
of the vibrational quantum number. Eq. (8) therefort,
does not carry full meaning of a mathematical equation.
Moreover, equation gives 20 percent higher dissociation
energy. No doubt, the error can be minimized by introducing
large number of terms in equation of energy in rathef
empirical manner. As a matter of fact, as we approach th¢
dissociation limit of diatomic molecule, we have to add mor¢
terms in the eq. (8) for correct desctiption of vibrationa
levels.

We have similar problems with rotational energy levels
expressed as power series of /(I + 1). As the rotations!
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quantum number is increased, one has to add extra terms in
the energy cxpression. Besides, rotational and vibrational
constants vary with energy levels. They are not constants in
the real sense. Jt may be pointed out that the dissociation
enerey of a diatomic molecule as anharmonic oscillator may
pe accounted for by eq. (8) if a large number of parameters
are included. In comparison, only a few constants of eq. (7)
are expected to reproduce energy and dissociation levels of
the diatomic molecule with better accuracy.

For low vibrational and rotational quantum numbers,
we can expand eq. (8) in power series of ("' + 1/2) and
il + 1) to obtain the following molecular constants in the
conventional sense.

E, = A + 8 + C + o
€T (x+0.5)?  (x+0.5)  (x+0.5)*
Chew, = - 24 - 3B - 4C 4 eeny
T T(x+05)7 (x+0.5)7 (x+05)
Chw. x, = 34 + 68 + 10C s
Xe T X 505)" (x+0.5)°  (x+0.5)8
44 108 20C
h )= - - - vy
Cheye = = 10705)5  (x+05)  (x+0.3)
. 54 158 35C
h - ey
ChoeZe == 050 T3 05y T (x+0.5¢
) A 3B 2C
(.hB‘, = ‘:YT-—?-.-:;S—-—;? sy
o 34 3B 5C
ChD. = 4x6 2x7 ' 28
Cha, =34,88,10C ©)
X" X X

where x2 = 2ub/h?, A = -ua?/2h?,
and F, the electronic energy levels with »', / = 0. On

retaining only the first term in the set of egs. (9), we can write
the following approximate relations :
w.Xx, =3B, and w,y, ~4/3a,.

Table 1 gives the values of w.x./B, for light molecules.
Average value of this ratio for molecules as shown in Table 1
is 3.1, with standard deviation 0.3. Even such a limited
success is rather encouraging in view of the fact that only
one term of eq. (9) has been used for such calculation and
we have selected a simple potential for a diatomic molecule.
(ii) Isotopic shift :

We do not have experimental energy levels of a molecule
in the form of eq. (7), hence it is impossible to verify the
1sotopic mass shift of energy levels directly. However, it can
be shown that this equation is consistent with the requirement

of isotopic shift, if we expand it in the conventional form
of energy.
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Table 1. Ratio of w.x./B, for some molecules, values are in cm-!.
Molecules Electronic states WeX, B. weXe/ B,
'H, B' 'S} (3pa) 83 406 26705 31
K'y: 30 108 28
1 3, 106 0 36 29
ot 3% 910 35 26
3, E 'S} (250) 48 105 16369 29
B' 'Y (3pc) 45 679 13605 3.3
17, (3dr) 3942 14739 26
B" '3} (4po) 35416 13685 26
e 3%} 3po) 34.51 13.856 25
I, ES} (2sa) 30.52 109306 28
"y B2Y¥} (3do) 5247 1530 34
C2r, 2pn) 6454 1.899 34
2H; B3} (3do) 262 0766 34
C2r, pr) 314 0950 33
iy LB 1582 04975 32
LizH X'y 2320 75131 31
il xlg 12935 42394 3.1
BNO A%y 0.3576 0.11078 3.2
9Be!ll X3zt 36 31 10.3164 3.5
9Be’H X2zt 2071 56872 3.6
9Be?H* Xty 219 5985 37
K, c'n, 0.133 0.04404 32

The values of molecular constants derived from eq. (7),
depends upon the reduced mass of the molecule in accordance
with the requirement of isotopic shift. The following relations
may be obtained easily if we retain only the first dominent
term in eq. (9).

@e ocl/ﬁ, @exe <1, @y, <1/,

w.Z, <l/p?, B, <lfu, a, <1f 2. (10)
The electronic energy of a molecule also depends upon

reduced mass as
ah

s , 1
Ee=-35+ 2730 na an

In eq. (11), higher terms have been neglected. The
electronic energy therefore, depends slightly on the
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reduced mass of a molecule. If we consider three isotopic
molecules of reduced masses u;, 4 and w3 with energies
E\, E; and Ej respectively, eq. (11) leads to the following
relation :

£y~ By _ Hs (2 = i)
BB S (Jus =)

Table 2 gives the values of (E; ~ E})/(Ex — E;) for three
isotopic molecules of H; in different electronic states [9].

(12)

Table 2. Electronic energy levels of isotopic molecules of hydrogen
cnergy levels are in cm-!

Electronic states  'a(E)) 2Hy(£3) SHyEs) (Ea—EV)(EL-EY)
Blxr@2pe) 9170000 916972 916963 0.76
Cl'z,(2pr) 1000898  100097.2 100099 7 0.74
E'T}(2s0) 1000823 1001281 100136.7 0.84
FITh@2pa) 1009110 1009312 1009359 0.81
adyi(2so) 959361 959580  95965.4 0.74
e 332 3po) 1077747 1077740 1077708 0.18
d3m,GBpr) 1127003 1127298  112736.0 0.83
S8 4pe) 1167050 116640 116653 1.25
k37, (4px) 1183662  118396.7 1184032 0.82
ndm,(Spzr) 1209529 1209769 120984 077

Reduced masses of 'H,, 2H; and 3H, are 0.50391261, 1.00705111 and
1 50802486 in A.U respectively.

The average value for all electronic states except for
e 3%} (3po) which is perturbed, is 0.8 against the theoretical
value of 0.7. The new equation for energy is therefore,
consistent with isotopic shift. It will be futile to expect very
accurate results for such simple potential form, with only
three terms. For such potential, there will be infinite number
of vibrational energy levels and the graph of AG vs.
vibrational quantum number will approach zero
asymptotically. In the majority of the diatomic molecules,
only a few vibrational levels are determined experimentally
and it is not possible to have any definite conclusion about
variation of AG for high vibrational levels, especially in the
neighbourbood of dissociation limit. In ionic molecules, AG
definitely approaches zero asymptotically [12], but we do
not have an extended graph of the other non-ionic molecules.
Indeed, if we include higher terms in the expression of
potential, AG may be tailored to fit the experimental graph
of any diatomic molecule. A number of other approximate
relations for a diatomic molecule may also be derived from
such equation.
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(iii) Isoelectronic molecules :

Several attempts have been made to understand the variatig,
of molecular constants for similar molecules or same molecyj,
in different electronic states, using a number of empiricy
rules [12]. One such rule is that 7@, should be constant fy,
different electronic states of the same molecule [12]. Tpe
present picture of a diatomic molecule may help in framing
approximate relations of molecular constants for simily
molecules. Assuming that the potential energy fo
isoelectronic molecules or isotopic molecules are comparable,
one can obtain a number of relations of molecular constan
for isoelectronic molecules. According to the eq. (9), we
have the following relation :
ChBe. = a*h?/8b%.u,

or  Beyu= a*h?8h.C. (13)

Value of Be.  will be constant for isoelectronic molecules
with same potential energy. Table 3 gives the value of Be

for isoelectronic molecules N; and Co, which is approximately
constant in a given electronic state.

Table 3. B.u for N2 and Co isoclectronic diatomic molecules.

N Co
Electronic states Bop(em™! x A U.) Boyem! ¥ AL

xish 13.9907 132413
a3y} 10.1844 9.2189
b3m, 11.4647 11.5955
Almg, 11.3208 11.0488
wlA, 10.4883 8.6183
E3TE 13.4941 13.6164
clsy 13.7314 13.4464
0y 'z, 12.1400 13.5554

(iv) Vibrational and rotational analysis :
We have fitted vibrational and rotational energy levels.
eq. (7) to H, and H; molecules as for three states X('Z})
B(*x}) and C('7,), and have been analysed according t0
our approach as below
Hf (X 252)
E(n', I') = —-1.6951 R/d? + 4.1264 R/d?
-2.0854 R/d%,
where d = (n'/31.1207 + [1°/31.1207)
I+ D) =10+ 1)+ 1470.0218.

Hy (X'Z) :
E(n', I") = -3.0204 R/d® + 6.7899 R/d?
-3.2596 R/d*,

and
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where d = ('131.1207 + I'/31.1207)
P+ 1) = I+ 1) + 12227234,

Hy(B'L) *
E(n', ") = -0.2877 R/d? + 07265 R/d?
-4.6542 R/d*,
where d = (n'/31.1207 + r'/31.1207)
ad [+ 1D =1I1+1)+11754141
Hy(C'my)
E(n', I') = =2.1374 R/d? + 5.0265 R/d?
-2.5461 R/d*,
where d = (n'/31.1207 + '/31.1207)
and P+ 1) =1Ill+1)+ 1505.4396.
R is the Rydberg constant. (14)

These equations have been fitted with 100% accuracy of
the disociation energy values.

and

3. Concluding remarks

The present discussion is based upon potential form expressed
in inverse power series of » which is a simplifiying assumption
for the problem of a diatomic molecule. We expect that each
molecule rather each electronic state of a molecule would
have different potential form and as such, we may have a
better scope for understanding molecular spectroscopy. With
these limitations, we have interpreted the vibrational and
rotational energy levels of some simple molecules H; and
H,. They have been interpreted in accordance with the theory
developed in the present discussion. Only one equation with
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four constants represents both vibrational and rotational
levels of these diatomic molecules with good accuracy. The
equation also gives the disociation energy with hundered
percent accuracy. In these calculations, we have used only
four terms in the expression for diatomic potential. In
conventipnal picture, we require eight to ten parameters for
accurate yepresentation of vibrational and rotational levels of
a diatomjc molecule and even then, the error in dissociation
energy issmore than 20 percent. It can be concluded that with
increasirﬁ number of terms and hence a more suitable
potenial form, the proposed method has a better scope of
yieldingj proved and more accurate results for diatomic
moleculas.
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