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Abstract
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1. Introduction

The statistical theory of fluids provides means for accurately
predicting the thermophysical properties of fluids from a few
well-defined characteristics of constituent molecules. These
characteristics typically include the geometrical structure of
the individual molecules, the nature of the intermolecular
potential acting among different molecules and the nature of
the intramolecular potential acting among sites on individual
molecules. The thermophysical properties include the
thermodynamic properties, transport properties and phasc
equilibrium behaviour. Thus, these properties may be referred
either to equilibrium or non-equilibrium situation. These are
important and active area of current research. The
development in molecular theory of fluids are very important,
as the molecular-based study of fluids has been motivated
not only by scientific demands for improving the existing
knowledge, but also by practical demands from increasingly
sophisticated industry [1].

Most of the fluids found in the nature can be treated
classically, because the molecular thermal de Broglie
wavelength A associated with a molecule is much smaller
than the mean intermolecular spacing a = (6/7p)!’3,
(where p = N/V is the fluid number density). Here A is
defined as

A =(27h2/mkT)"?, (1.1)

where m is the molecular mass, £ is the Boltzmann constant,
T absolute temperature and k= h/2x (h being Plank’s
constant). However, there are some fluids like Hy, HD, D»,
H,O for which deviations from classical behaviour are
observed at low temperatures. When A is of the order of
magnitude of a, there are two types of quantum effects—(i)
diffraction effects, which are linked with the wave nature of
molecules in the fluid and (ii) exchange (or symmetry)
effects due to the Bose-Einstein or Fermi Dirac statistics
obeyed by the molecules. The exchange or symmetry effects
are important, when the de Broglie wavelength of the
molecules is of the order of magnitude of the average
distance between molecules in the fluid and therefore are
very small for all fluids except for liquid helium below
5° K [2,3]. On the other hand, the diffraction effects are
appreciable even at moderately high temperature. For
rigid molecules, one expects three types of the diffraction
effects : (i) translational diffraction effect, (ii) rotational
potential energy effects and (iii) rotational kinetic energy
effects. The quantum deviation due to the translational
contributions is measured by A° introduced by de Boer and
Michels [4] and that due to the rotational contributions is
measured by &° [5]. These dimensionless quantum parameters
are defined as [4,5]

A =hlof(me),
-
6" =h/\Te), (12)

where / is the moment of inertia (with respect to the centre
of mass) and eand o are, respectively, measures of the
strength and range of the interaction potential. Some typica)
values are listed in Table 1 for 4, A/a, A*, O,/k and §°, where
0, = h2/2 1k is the characteristic rotation temperature. The
values of A4 and A/a are found at the triple point 7} which
is also reported in the Table 1. From Table 1, we see tha
the quantum effects can be significant for some molecular
fluids at low temperatures.

Table 1. Values of quantities for estimating the importance of quantum
effects i fluids at ther triple pont temperature 7.

Fluids T (K) A(A) Ala 0.(K) A s
He ~0 -~ ~ - 2.67

Ne 245  0.780  0.209 - 0593

Ar 846 0300 0967 - 0186 -
1, 1405 3300 0782 854  1.729  134yy;
HD 1660 2466 643 1414 117138
D, 1872 2.008 430 1223 9 5792
N 633 0415 0089 288 0226 14880
0, 548 0417 0098 207 0201 1 1658
co 682 0398 0084 227 0220 14774
HC! 159.05 0286 15.02  0.144 18138
CHy 907 0460 0097 75 0239 20783
CCly 25028 0096 00823 0033 0115t

The present article aims to review the equilibrium
properties of molecular fluids of non-spherical moleculcs in
the semiclassical limit. The theory described here is applicable
mainly to simple molecular fluids ie. fluids of the
homogeneous diatomic molecules. Its extension to complex
molecular fluids is not attempted here.

In recent years, a considerable progress has been made
in the theory for predicting the equilibrium properties of
fluids composed of cither spherical or non-spherical
molecules. This progress is confined mostly to the classical
fluids [6,7]. However, when dealing with molecular fluids
in which the deviation takes place at a microscopic level
from the classical law, our theorctical understanding is not
satisfactory. In recent years, some theoretical methods have
been developed to deal with such fluids. The present article
is devoted to review these methods. In the present work, we
consider the diffraction effects only and confine ourselves
to the density and temperature regions where the quantum
effects are small and can be treated as a correction to the
classical system. The fluid is treated semiclassically under
these conditions. The task of a semiclassical theory of fluids



Advances in semiclassical statistical mechanical theory of molecular fluids 141

with which we are concerned in this work is two fold : one
s to determine the thermodynamic and transport properties
of molecular fluids at moderately high temperature, where
the quantum effects are small and another is to ascertain the
density and temperature range in which the fluid can be
wreated semiclassically. Apart from direct application of such
study to real systems, they may help in framing a theory for
quantum fluids.

The earlier review articles by de Boer and Bird [8] and
gmha [9] contain many useful informations about the
equilibrium theory of the molecular fluids in the semiclassical
umit. The present article is concerned mainly with
development of methods of computing the thermodynamic
properties of semiclassical molecular fluids in the past
25 years, although some reference is made to earlier
papers.

In case of molecular fluids composed of the rigid
molecules, the intermolecular potentials depend on the
separation as well as orientation of the molecules. This
orientation leads to quantitatively new features in fluid
properties, when compared to atomic fluids. The
intermolecular interaction potentials are discussed in
Section 2

The quantity of central importance for constructing the
theory of quantum and semiclassical fluids is the Slater sum,
used to develop theory of atomic fluids [3,10,11]. This
method was extended to develop theory for molecular fluids.
We give a brief account of the Slater sum in Section 3.
Particle distribution functions and thermodynamic quantities
are defined in terms of the Slater sum in both the canonical
and the grand canonical ensembles.

At high temperatures, where the quantum effects are
small and treated as a correction to the classical behaviour,
usual method is to expand the Slater sum in powers of /2
(for analytic potential) or in powers of A (for non analytic
potential). This is discussed in Section 4 and used in
following sections.

We use the expansion of the Slater sum for obtaining
¢xpressions of the quantum corrections to the pair distribution
function and thermodynamic properties of molecular fluids
in Section 5 in terms of classical distribution functions. The
vinal cocfficients and thermodynamic properties of
semiclassical molecular fluids are discussed in Sections 6
and 7, respectively.

Effective pair potential method is discussed in Section 8.
Itis used to evaluate the virial coefficients and thermodynamic
properties of the semiclassical molecular fluids. In Section
9, we give a brief outline of the theory of corresponding state
f)f the molecular fluids. Some concluding remarks are given
in Section 10.

2. Molecular interactions

We consider a fluid consisting of N molecules which are in
their ground electronic and ground vibrational states. The
total potential energy of such system can be written as

KX\, Xa,..,X5) = Zu(x,,x,)+ Z V(x,.x,.x;)
1<) 1<y<k
2.0

where u‘x,, X)) is the pair interaction potential between
moleculey i and j and V'(x,, x,,x;) is the three body non
additive ?teraction. Here, x, = (r,, @) is the vector describing
both the position r, of the centre of mass and the orientation
w, of nu$:culcs i

It is gupposed [12] that the successive terms of @ in
¢€q. (2.1)’decrease in magnitude

Zu(x,x,)>ZV(x,,x,,xk)>.... 22

The three- and higher-body interactions whose contributions
arc expected to be small [12] are not considered in the
present study and the total potential is assumed to be pair-
wise additive.

Many potential models were used for statistical mechanical
calculations for fluids. We bricfly discuss some of the
models in this section.

2.1. Central potential model :

The simplest potential model is the hard sphere (HS)
potential defined as
uys(r) = forr <o,

=0 forr> g, 2.3)

where o is the hard sphere diameter. This model, frequently
used due to its simplicity, gives a crude representation of the
strong, short-range repulsive forces.

For non-polar molecules, a commonly used inter-
molecular potential is the Lennard-Jones (1.J) (12-6) potential
defined as

u s (r) =4 €[(o/r)? —(a/r)*],
where € and o are the well-depth and diameter, respectively
and r=|n —r|-o is the value of r at which u(r) = 0
and € is the depth of the potential well which occurs at
rmm = 2V¢ 0. This potential function gives a fairly simple and
realistic representation for spherical non-polar molecules,
such as He, Ne, Ar erc.

24

2.2. Generalised Stockmayer model :

This potential model is assumed to consist of a spherically
symmetric potential and a contribution due to the non-
sphericity of the molecular charge distribution. That is

u(n,a),,a)z)=uo('r)+u,,(r|,a)|,a)2), (25)

where up(r) is the central potential between molecules 1
and 2, and u/r), @, @), arising from the tensor forces
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contains all of the angle dependence of the pair interactions.
For the central potential, we use either HS or LJ(12-6)
potential. For the tensor interaction between two molecules,
we write

(2.6)

where upem is the interaction between permanent multipole
moment of molecules, u;, is the interaction of the induced
multipole moment in one molecule with the permanent
moment in the other molecule, uy,s is the interaction between
anisotropic dispersion forces of the molecules and ughgpe is
the interaction between anisotropic overlap forces of
molecules. These interaction potentials can be expressed as
an expansion in spherical harmonics [6,13,14]. For numerical
calculation, however, we use the explicit angle-dependent
form of interaction [15~19]

"pcnn =(,ll2 /I‘3 )¢y;l(a)lm2)+(3/‘Q/2"4 )¢,,Q(0)1¢D2)
+(30%/4r%)ppo(@@;) 2.7

Ug = Uperm t Uin T Udis + Ushape,

with  ¢,,(w,0,)=sind,sind, cosg +2cosf, cosb,,
(2.8a)
Bu0(w ;) = cos6;(3cos? G, ~1)
-25sin 0, sin @, cos O, cos @, (2.8b)

Poo(w1@;) = 1-5(cos? 6, +cos? 6,)

~15co0s? @, cos? @, +2(sin O, sin#, cos¢

- 4cos 6, cos b, )2, (2.8¢c)
= ~(0p? [4r8)g o (@, @7)
—(9aQ? [8r8)¢ o (0107) 2.9)
with @, (0 1@;)=2+3cos? ) +3cos? §,, (2.10a)
Pup(w107) = sin? 8, +sin? 6, + 4 cos? 6,
+4cos? 8,, (2.10b)
Uas = 4 €(0/r) prx (01007) (2.11)

with  gxx (w1@3) = K~(3/2)K(1-K)(cos? 6, +cos? 8,)

-(3/2)K2(sin 8, sinf, cos ¢

-2¢0s 8, cos 6, )? (2.12)
and  Ugpape =4 €(0/ )2 @, (0,0;) (2.13)
with g (@,@7)=3cos? 8, +3cos26, -2, (2.14)

where 6, 6, and ¢ = ¢ - ¢, are the Euler angles, which
determine the orientation of the molecules with respect to the
line joining the centres of the molecules, # and Q are,
respectively, the dipole and quadrupole moment of the
molecule, & is the mean polarizability, X is the anisotropy
in the polarizability and D is the dimensionless shape
parameter of molecule. For linear or symmetric top molecules,

with z chosen as the mean symmetric axes, @ and K gy,
defined as [6]

a=(ay+2a,)/3

K=(ay-a,)/3a,

where @ = @z, @ = ax = ayy. The potential parameters ¢
and o are characteristic of the LJ (12-6) model representing
the central potential. This potential model has been used 1o
simple molecular fluids (e.g. N2, Oz, HCI and H,), where the
non-sphericity is small. In case of CH4 and CCly, both dipole
and qudrupole moments are zero, one considers octopole ang
hexapole moments only. The force parameters of some
systems of present interest are reported in Table 2.

and

Table 2. Force parameters of some fluids of interest.

System o(4) e/kK) a/10-24 /1018 Q/102% K D
(cm?) (e.s.u—cm) (e.8.u—cm?)

Hey 255 1022 0206

Ne 2749 3560 0.396

Ar 3405 11980 1.642

H, 2928 3700 0806 0.650 0.125 0o

HD 2928 37.00 585%10 0.642

D, 2928 37.00 0.795 0.649 0.115 010

N, 3620 100.15 1.730 ~1.400 0.176 008

0, 3.388 12244 1.600 ~0390 0239 012

HCI 3.305 360.00 2630 103 3800 0.034 015

3. Density matrix and the Slater sum

In statistical mechanics, the state of the quantum ensemble
is described by the density operator (or statistical operator)
p. Any matrix representing this operator is called a density
matrix. Nature of the density operator P depends on the
choice of ensemble.

3.1. Canonical ensemble :

We consider a quantum mechanical system of N identical
molecules, each of mass m in their ground electronic and
ground vibration state. The Hamiltonian of the system is

PN N
HN = ‘(hzlzm)zvlz +¢(x],X2,...,XN)’

=1

3.1

where V2 is the generalised Laplacian operator in a s
dimensional space and @ is the total interaction potential
which is assumed to be pair-wise additive i.e.

@ =3 u(x,,x,) (32
<y

where u(x,, x,) is the pair potential between molecules i and

J and the vector x; = (r,, @,) represents both the position

of the centre of mass and orientation of the molecules /.

(For linear molecules, @, = §,¢, and for non-linear molecules

w, = 0,¢, ).
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For a closed system, the density operator P is defined
as
p=exp[-BAn][Ox, 33)

where 8= (KT)™! (k being the Boltzmann constant and T the
absolute temperature) and Qy is the normalization factor,
known as the quantum mechanical canonical partition
function. Since

Tr ;" = ly

where ‘7" indicates the trace, which is the sum of the
diagonal elements,

w = Tr(expl-pHy)).

If { ¥} represents a complete set of (properly symmetrized)
orthonormal wave function of the system, then

On = ZIY’;(JQ, ...,xN)exp[-ﬂle]

(3.4)

x 'Px(xn,u-,x)v)q dx, 3.5)
I=
where dx, = 2''drdo, (3.6)
and 2 = 47 (for linear molecules),
= 8% (for non-linear molecules). 3.7

Now we introduce a quantity known as the Slater sum, which
1s defined in this case as

WN(xlsx2v-"st)= N!’ISNq;NZYI;(xh'":xN)

x exp[—,BI:!N]Y’, (x15..0xn) (3.8)

where the summation in eq. (3.8) extends over all states.
Here A is the thermal wavelength and g, is the single-
molccule rotational partition function. The classical counter-
part of the Slater sum is the Boltzmann factor

Wl\(;(xth!""xN):exp[’ﬂ¢(xh"'9xlv)]' (3'9)

The rotational partition function for a single rigid molecule
of arbitrary shape is defined as [6]

gr = Tr(exp[-fK,)), (3.10)
where K, is the rotational kinetic energy of a single molecule

K, =aJ} +bJ2 +cJ2, @3.11)

% Jy, J; are the body-fixed principal axes components of
Jand a = 1121, etc. For a linear molecule, the term cJ? is
absent (i.e. K, = a2 = J2/2]). For a non-linear molecule, we
have three cases (i) spherical top (a = b = ¢), (ii) symmetric
1op (a = b # ¢) (jii) asymmetric top (a # b # c). Hence for
cxample the single molecule rotational partition function for
2 linear molecule is given by [6]

9r = X(2J +exp[-RI(J +1)?/21] 3.12)

and for spherical top molecule

gr =22+ exp[-AI+DR2[20] (33

In terms of the Slater-sum, the canonical partition function
is written'as
»
QNF=ZN/(N!13Nq;N), (3.14)

where ZN;is the configurational integral which is defined in
this case s

% o
Zh%"_[---‘[WN(xl»xz,---st)rIdxr. (3.15)

The l-paxﬁticle distribution function is dcfined as

Ay (%13%2,0,51) = [(n= 1)1 B¥g; ¥ Oy ]

N
xHWn(xn-xz,---,xu)Hldx,. (3.16)

=1+
All thermodynamic properties of the system can be obtained
from a knowledge of the partition function. Thus, the
Helmholtz free energy is

PA = —InQy, (3.17)
the pressure

P=(p*/N)(04/dp), (3.18)
and the internal energy

U =38(84)]38. (3.19)

3.2. Grand canonical ensemble :

The canonical ensemble is approximate to an equilibrium
system having a fixed number of molecules N. For an open
system, the density operator © commute with the Hamiltonian
operator H as well as the number operator N, whose eigen
values are 0, 1, 2, .... The density operator b in this case
is defined as . '

p=exp|[-B(H - ul)] /=,

where == {exp[-ﬂ(fl - ,uﬁ )]}
is the grand canonical partition function and u the chemical

potential. In terms of the Slater sum, eq. (3.21) can be
expressed as

o N
== Z(zN/N‘)II WN(x,,xz,...,xN)I—!dx, , (322)
N=0 i=

(3.20)

(3.21)

where z = 1-3q, exp{Au] (3.23)

is the fugacity of the system. The link with thermodynamics

is given by the relation
pP = }T‘; y-1 IDE’ (3.24)

where P is the pressure of the system,
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In the grand canonical ensemble, the 1-particle distribution
function is written as

n(x), %3, x)= EVY (2N (N-1)Y)
nel

N
x [ WnCxrxa,oxn) [Tdx, . (3.25)

=1+
The pair distribution function n(x,, x;), which is frequently
used, gives the probability of finding a molecule at x; = ria
and another at x; = r,w;.

Instead of using n(x), x3, ..., x;), we often find it convenient
to use related function known as the correlation function
defined by the equation

g(x,x2,...,x,) =(82/ pY (x|, x3,...,X1),
where p = N/V is the number density.

The most important distribution function is the pair
distribution function (PDF) g(r, w;ay) which is a function
of r = |r, — ry| as well as the function of @, and w,. For a
simple uniform fluid, g(#) depends only on  and is called
the radial distribution function (RDF).

Thus the quantity of central importance for constructing

the theory of quantum and semiclassical fluids is the Slater
sum.

(3.26)

4. Expansion of rotational partition function and the
Slater sum

4.1. Expanston of rotation partition function :

At moderately high temperature, when the quantum effects
are small, the single-molecule rotational partition function g,
for a linear molecule (moment of inertia 7, = /, = I) is given

by [6]
qr = gs[1+Q/6)BR2 [ 1)), @.n
where gf =(21/ph?) 4.2)
and for a symmetric top molecule (with I} = I, # I3) is
q, = gs[1+(/12)(Bh2 21, )4 - 1 /1)), @3)
where gf = 7V2(21,/ ph2)(21,/ pr?)"? (4.4)

and I, I, and /3 are the principal moment of inertia of a
molecule. For a spherical top molecule (/; = I, = 1),

Eq. (4.3) reduces to
g- =g [1+(18)(Br? /1),

172

(4.5)

where g¢ = 7V2(21/ pn?) (4.6)

4.2. Expansion of the Slater sum in powers of h :
4.2.1. Cluster expansion

The cluster expansion method originally developed for the
atomic fluid [20,21], can be employed for the molecular

fluid. At moderately high temperatures, when the deviati,
from the classical behaviour is small, we can write [3)
Wy = WiWR, G
where Wy is the Boltzmann factor (eq. 3.9) and Wy 5,
function, which measures the deviation from the classicy
behaviour. When the pair potential has a hard core, both i,
and W} vanish for molecular configuration in which harg

cores overlap. In this case, W can also be taken as zery

Now we express W, in terms of the 'modified' Urse||

function U. Thus,

W (x)=UM"(x)=1, (4.8)
W (xyx2) = 1+ UJ (x1x3), (4.8b)
W (x)xpx3) = 1+ UF (x1x2) + UT (x1x3)
+ U (x32x3)+ U (x1x2x3), (4.8¢)
W,{,"(x,,xz,...,x,v)=1+2U:',”(x,x,)
+ ZU;_"(x,xjxk)+.... (4.84)

1<) <k
Eq. (4.8d) is obtained by taking all posible partitions of
the N molecules in groups, making the corresponding
product of U functions and summing over all partitions
The above equations can be solved successively for U/
vy, ... . Thus,

U (xix2)= W (x1x2) -1, (4.92)
U (xyx3x3) = W (x1x2x3) = Wi (xx2)
=Wy (xyx3) = Wy (x)x3) + 2. (4.95)

From egs. (4.7) and (4.8d), we obtain the expression for Wy
WN(x,,xz,...,xN)z Wﬁ(xl,...,xN)[l +ZU£"(X,X,)
+2U7 (x,x, %, )+...]. 4.10)

The function U{" appearing in eq. (4.10) can, in principlc.
be found from the solution of the quantum mechanical I-
body problem. Unfortunately, the actual calculation is too
involved to be feasible. It is only for hard sphere systems

that U have been evaluated as [22]

ur(ry=¢o+é+...r>o, 4.11)
where @y = —exp[-X?], (4.12a)
¢ =(1/v2)(1/0) X? erfe(X) (4.12b)

Here X = (2/m)'2((rlo) ~ 1)(Ao)

and  erfo(X) = (2/7:)‘/2Jexp(—tz )dt
P 4
is the complimentary error function.



Advances in semiclassical statistical mechanical theory of molecular fluids

For potentials, which have an attractive tail, the solution
of even a two-body problem becomes difficult. However, for
quch a potential a different type of expansion known as
perturbation expansion can be adopted. We describe this
method in Section 4.2.2,

42.2. Perturbation expansion

In this section, we discuss the expansion of the Slater sum
in powers of h using a method known as perturbation
cxpansion. With a suitable choice of the reference system,
this method can be applied to any potential.

(1) Hard sphere basis function

We treat the attractive interaction as a perturbation on
the hard sphere system and write the Hamiltonian ﬁN of
eq (3.1) in the form

fiy = Y + @, (4.13)

where Y = HY o+ HY o (4.14)

with

) N
”?]," = (-—’12/2171)ZV% + wys(l'l,rg,...,f}v), (4153)

=1

l‘{?/,lol = (~h2/2 I)Z Vg), (4.15b)
1=

and @, = u,(xx,) (4.16)

1<y
1s the total angle dependent potential treated as a
perturbation. We choose the basis functions, which are
the cigen function of the reference hard sphere Hamiltonian.
Let %" be the eigen function for the Hamiltonian 19,?,
Thus,
‘lﬁo(x,,xz,...,x,v)c(D‘,{-(r,,rz,...,rN)X,,,(a),,...,wN)
forr,> o

=0 @.17)
where @ is the eigen function of the translatory hard-
sphere Hamiltonian and X, is the eigen function of the
rotational kinetic energy. In terms of the hard sphere wave
function, the Slater sum can be written as

Wy(xi, ..., xy)= NIBNg N 3 90°

for r; < o,

x exp[-ﬂf{}’, + ¢*a]¥’£. (4.18)

Following the method of Friedmann [23], we obtain the
¢xpansion of Wy [24]
Wy=Wi+Wy+Wi+..,
where

Wi (31, xy) = exp[- @, | WIS (n,....1n),

(4.19)

(4.20)
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Wi (x1,..., xv) = exp[- B0, ] [(#25 [2m)
x ((12DV2 0, - (113)8(V, @,)"
+ (’I/Z)V,, @, -V, \WHS +(n2p2 21)
< Z (17273, @0 - (1)B(Va,2.)’)

x Wik, @.21)

Wil 50) = expl-50, ] {(125° m)
x T [(/3)V3 g, )

1/ 9B(, (x,x,)) B, )
(2 21) S[0/33, 1, x)

Vo)) | W @22)

and  WS(n, )= NV S O
K

x exp|~ B3 o | @% (4.23)

is the hard sphere Slater sum. In deriving eq. (4.22), we have
used the superposition approximation [3] for Wy. In the
semiclassical limit, WA’,’# can be expressed in the form of
eq. (4.10) when U is the l-particle ‘modified’ Ursell
function for a hard sphere system. Explicit expression for
U¥ (r) for hare sphere is given by eq. (4.11).

(B) Free particle basis function :

When the potential energy & is treated as a perturbation
over the kinetic energy, we chose the free particle basis
functions, which are the eigen function of the reference
Hamiltonian. Then the expansion of the Slater sum Wy can
be written as

Wy = exp[-po)[1 - {822 [12m)

« $(V2o-(/2)8(7,0) ) +(882 121,)
=1

N 2
«3(v3,0-0/28(v3,9)' ) + 0], 420
1=1

For the spherical top molecules I} = I, = I;, whereas in the
case of the rigid linear molecules /; = I, = I and @ does not
depend on ¥,

5. Expansion formalism for semiclassical molecular
fluids '

In the semiclassical limit (i.e. at high temperature), when the

quantum effects are small and can be treated as a correction



146 Suresh K Sinha

to the classical system, the usual way of studying the
properties of the system is to expand them in a series of
Plank’s constant h. The first term of the series is the
classical values and other terms arise due to the quantum
effects.

3.1. Density independent pair distribution function :
It was shown by deBoer [25] that the pair distribution
function n(x,x;) can be expanded in terms of the number
density p

n(xy,x2) = p2W(x,x3) +0(p*), (.1

where W,(x},x;) is the two-particle Slater sum. In the low
density limit, pair distribution function (PDF) g%x,x,) for
a molecular fluid of rigid linear molecules is defined as

g (x1,x3) = Wa(xy,x3)
=2128¢72 3 W, (x),x2)

x exp| -ty | ¥ (31,%2), 5:2)

where ¥, (x),x,) is a set of orthonornal two particle wave
functions and f{2 the two-particle Hamiltonian. Using the
centre of mass and relative coordinates R and r(=|n - r,|),
we can write eq. (5.2) as

8(rm\w;) =232 2¢;2 Y ¥ (ranyw;)
a

x exp[—ﬂf{,e,] ¥, (raow;), (5.3)

where Hyy = ~(h?[m)V2 -(h2[21)(V3, +V3, )
+u(royw;)
is the relative Hamiltonian of two molecules.

(4) Hard sphere basis function

When the potential has a hard core plus attractive tail, such
as polar hard sphere potential, we choose hard-sphere basis
function which are eigen function of the hard sphere
Hamiltonian. As discussed in the previous section, eq. (5.3)
can be expressed in the form [24]

g (rm\@;) = exp[-fu(re@,))

x[1+ U (ronyo,)] (5.4)
with Up =Up, +Up,, (5.5)
where Uy (ray@2) =yo(r)+yi(roi@;), r>o  (5.6)
with  70(r) = go(r), (5.78)
71(ranw;) = go(r)~(h2 42 [6m)
x[V2u, = (1/2)8(d4, | 5r):
+3(d4y /1) (r- o)) (5.7b)

Uf o (ronye3) = ~(1262 [121)

x [)’f V2,1, - (1/2)B(V., ua)z]- (5:)

1=1
Here, ¢ and ¢ are given by eq. (4.12) and
(8/0r)[gls(r)] = 8(r~ o)+ (4] ),
where & is the Dirac &function.

(B) Free particle basis function

When the pair potential is analytic, eq. (5.3) can be expanded
in the form

g°(rm\@;) = exp[-u(ra 02))(1-{(n2 2 /6m)
x [VEu=(1/2)B(V u)? ]+ (h2 2 121)

x ‘2 [(vai u- (1/2),3(V?,,, u)z }J +0(n2 ))

=1

(5.9)
This equation can be expressed in an alternative form as

g (rmyw;) = exp[- fu(ro o, )][1 - {(h2ﬂ2 /12m)
x Viu+ (B2 /121)V2, u}]
+[(n252 12m)V2 + (W22 /12192, |

x exp[-Bu(reyw, ). (5.10)

Egs. (5.4) and (5.9) are valid for polar as well as non-polar
fluids.

5.2. Pair distribution function for dense fluids :

In order to obtain a simple expression for the first order
quantum correction to the PDF, eq. (4.24) of the Slater sum
for the linear molecular fluid can be expressed in the form

Wy = exp[—ﬂd)][l - {(/ﬂrﬂ /24m);vf,¢

+(pzn2/241)zvs,,,¢}]+{(m2/z4m)z(v:

+(2j24Nx 2, }exp[-ﬂd’]- (5.11)
! J
Substituting eq. (5.11) in eq. (3.25), we get
g(xl’x2)=gc(xl)x2)+(mz/m)gtlr(xl,xZ)
+(8n? [Dgly (x1,x,), (5.12)

where g¢(x;,x;) is the PDF of the classical molecular
fluid, gi(x),x;)and gl (x,x;) are the first order
quantum corrections to the PDF due to the translation and
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rotational contribution, respectively. They are expressed

as

gl (x1,%2) = (V12)[ - BV2, uCxy, x2) + V2, g (xy,x5)
- (Bp/6)f (g” (x122x3)V7 u(xx3 )>m‘ dry
- (Bo? [28)[ (& (x1,...r x4 )~ 85 (11,77)

x g°(xyxs)] V2, u(xsxa)), | drsdg

Wy

+ (K< [24)(8) )| p2g* (x1,x2))]

x [(@1 )& axe)]V3uCasxy)),, , dra,
(5.13)

where K¢ =(I/p)(5p/(9P“)ﬂ. (5.14)

Here, K¢ and g¢(xy, ..., x1) are, respectively, the isothermal
compressibility and 1-particle distribution function of the
classical system. In eq. (5.13), ‘x” stands for ‘tr’ and ‘rot’
and @, represents r, and @, which are associated with the
translational and rotational contribution, respectively. This
equation contains classical distribution functions only up to
four molecule one.

There have been no calculation of the effect of quantum
corrections in the PDF of molecular fluids. '

53 Thermodynamic properties of molecular fluids :

When quantum corrections are small, as is expected for
most fluids except He and H, (which one can see from
Table 1), the quantum effects on the thermodynamic
properties can be treated as a correction in powers of A (for

non-analytic potentials) or in powers of A2 (for analytic
potentials).

(4) Non-analytic potential

Substituting eq. (4.19) in eq. (3.14) and integrating by parts,
we obtain an expression for the free energy of the molecular
fluid of linear molecules

PAIN = (BA[N)+ Ay + Ay + ...,

where 4, = ~(1/2)p[ dr, Ups(na) (8° (31%2)), 5 s (5:16)

(5.15)

4y = AF +A5°'-—(h2ﬂ/61) (5.17)
with
A = =(Y2)pfdny(g° (xix2) USp (x1x2)),
= (/60 [ drydry(g° (yx0%5 ) Ul (i),

- (I/S)PJIdhdtgdn ([gc (x|x2x3x4)

=8 (0ix2)g (x3%)])  Ulg(nz)Ugis (4 )(5.18)

.04
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and A = ~(1/2)p[ dry (g (x122)Uffy (x12))
where (5.19)

Ulu(n1x2) = Ufjs(na) + [1+Uns(na UK (x1x2).

‘ (5.20a)

Ui (nixax3) = Ulis(r,raum ) + [+ Ulis (0, 1y, 1))

& x Ul (x1x2%3) (5.20b)
and  § o (x1%2) = UP'(x1x2). (5.20c)
Here, U and U™ are the ‘modified’ Ursell functions due
to the granslational and rotational contributions of the

angle-dépendem potential u,, respectively. They are given
by ’
Ul (31x,) = (H2 B2 /2m)[ V2, 1, (x1x2)

- (5B Aua(1132)/ 9z )} |+ 0(84), (5.212)
Ul (x1%2%3) = =(02 2 [12m)[ V0, (317).
Vr\uu(xlx3)+ Vrz u,(x1x2)- Vr) u,(x2x3)

+ V4, (31%3)- V1, (x253)] + 0(R%)
(5.21b)

and U (xix2) = (1242 [241)| V2, uy(x1x2)

+ V2, 1, (x1x2)]+ 0(1). (5.21c)

Here, A€ and g*(x;...x) are, respectively, the free energy and
the 1-particle distribution function for a classical molecular
fluid and p is the number density. Here <(-)>,, o is
defined as

(N, 0, =@ (. )dw,...do,.

It is clear from the above discussion that the first quantum
correction of order 4 comes only from the translational
contribution while the second quantum correction contains
three terms-the first two of eq. (5.17) arise from the
translational and rotational potential energy effects,
respectively, and the last term arises from the rotational
kinetic energy.

Eq. (5.15) is given by Singh et a/ [24] and valid for non-
analytic potential with a hard-core.

(5.22)

(B) Analytic potential
For analytic potential, using eq. (4.24) in eq. (3.14), we
obtain an expression for the free energy of the molecular
fluid, correct to the first.order of %2 [16]

PAIN =(pAc [N)+(Bh? [m)( 4L [N)

+ (02 1,)( ALy [N) = V! Ay +0(1*), (5.23)
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for a linear molecule,
= pn2 /81  for a spherical top molecule,
= ph? 81, ((4/3)-(1/3)(1/13)) (5.249)

for a symmetric top molecule

where 44, = ph? /6]

and I, = I for linear and spherical top molecules while
1,= I for a symmetric top molecule. In eq. (5.23), 4/, and 4L,
are the first order quantumn correction to the free energy due
to translational and rotational contributions, respectively.
They are given by

ALIN = (pB/28)[ (g° (ro ;)

x V2 u(r,a),wz))m,wz dr, (5.25)
AL N = (pB/24)[ (g (r@@,)
x V2 u(ro o, )) dr, (5.26)

0w

where r = r| ~ r). Here A° and g<(ra» o) are, respectively,
the free energy and PDF for the classical molecular fluid.

Eq. (5.23) is the usual expression for the Helmholtz free
energy for the semiclassical molecular fluids. It is given by
Dey and Sinha [26]. Singh and Sinha [27,28] have derived
similar expression for linear molecules. Powles and Rickayzen
[29] gave an alternative expression for the Helmholtz free
energy in terms of <F2> and <7*>, where <F2> and <7*> are
the classical mean square force and mean square torque of
a molecule. For example, an expression for the Helmholtz
free energy for the molecular fluid of linear and spherical
top molecules is given by

BA|N = A< [N +(h?[24(KT)*)
x [(< F25/m)—(<12 >/I)]
— V1 A +0(R%), (5.27)

where V/A4,, is given by eq. (5.24). On comparison, we
find that

< F? > =kTp[(g* (rm\w,)Viu(r,m,0,) v, A1 (5.28)

)

<12 >=kTp| (g“(ra),a)z )V}o' u(r,w,w;) o dr.(5.29)

@)y

Other thermodynamic properties can be obtained
from eq. (5.23) (or eq. (5.27)). Thus, the expression for

pressure is
BP[p=BP<[p+(Bn? [m)(R{)+(Pn? 1, )(Pix ), (5:30)
where B! = (f/24)(3/2p)p| (g° (rana;)

x Viu(r,m 0, ))w:w: dr, (5.31)
Pl =(pB/24)(8/D)p| (g (ra@;)
V2 u(r,0\@;))  dr. (5.32)

LY

Since the quantum corrections are small, it is sufficien
to use an expansion of the free energy in powers of h. Thjg
method was introduced by Wigner [30] and Kirkwood 31)
for atomic fluid. Exchange corrections are exponentially
vanishing [32] due to the repulsive core interactions fy
atoms and molecules. Eqs. (5.23) and (5.30) are for rigiq
molecules.

6. Virial equation of state for dilute molecular fluids

In the low density limit, the equation of state can be
expressed in the virial form

PPlp=A+(BIV)+(C/V?)+..., (6.1)
where 4 = 1, B and C are the second and third virial
coefficient, respectively.

In this section, we obtain expressions for virial co-
efficients. In general g°(x;, x;) may be expanded in powers
of p [33]

g° (x1, %) = exp| - fu(x,,x;)]
x| 1+ X prag (x1,%;) (62)
n=1

where the coefficient aS(x,,x;) is the cluster integral of the
classical molecular fluid, involving n field point and two
base points. For example

af (x1,x2) = [ (£ (x1.%3) (2, %3)),, drs,

where f°(x,,x,)= exp[~ﬁu(x,,xj )]—- 1

is the Mayer function.

(6.3)

(64)

6.1. Analytic potentials :
When eq. (6.2) is substituted in eq. (5.30), we obtain

expressions of B and C for molecular fluid of linear
molecules as

B= Be +(pn2 /m)(BL)+(pn? /1)(BLy), 6.5)
C=Cc+(pn? Im)(CL)+ (B2 /1)(CLy), (6.6)

where B¢ and C* are the classical second and third virial
coefficients, B, Bi, and CL, Cl, are the first order
quantum corrections due to the translational and rotational
contributions to the second and third virial coefficients.
They are given as

B =~/ NJ{f<(x1,:)),  dis, (672
(BE) = (BI24)N [ (exp[~Bu(x1,x,)]
x VZu(xy,x; »w.mz dn, (6.70)
(Bhx) = (B/24) N (exp[- Au(x1, x2)]
x V2, u(xy,x; )) 0,0 dry. (6.7¢)
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Cc == IN[{£e(x1, %) f€ (x1,%3)
x f€(x3,%3 ))m,m;wg drydr;,

(Ch) = (BI12)N? [ {exp[-fu(x),x2)]af (x1,%2)

(6.8b)

(6.8a)

xV?“(Xl » X2 .))m,w; er ’
(Chy) = (B112)N [ {exp[~fu(x,,x2)]af (x1,x7)

xV2, U(x1.%2) o0, dFs. (6.8¢)

These cquations are valid for both polar and non-polar
potentials. Wang Chang [34] obtained an expression for the
quntum corrections to the second virial coefficient of
molecular fluid. Calculations of B¢ and ¢ have been
reviewed by Hirschfelder et al [15], Rowlinson [35}], Kihara
{36]. Mason and Spurling [37], Dymond and Smith [38] and
Bwher and Hendcrson [39].

611 Second virial coefficient
I'sing eq. (2.5) in eq. (6.4), we get

S (x.x0) = fE (o )+eXP[“ﬂuo(’iz)]

x é(*/fuu(xn,xz )" (6.9)

Substituting eq. (6.9) in eq. (6.5) and using the reduced
quantities r* = r/o, T* = kT/e, u’ = u/e and B' = B/by, where
he - 2aNo'/3, we can write the reduced second virial
coctficient B* of the semiclassical molecular fluid in terms
ot the reduced quantum parameters 4* and &

B= B +(A")2(BL) +(6°)2(BL)

= B +(A°)2(B') (6.10)
with
(B') =(BLY +(I')"V(BL,)", (6.11)
where (84) = (16227°2)" Jexp[-u3¢*)/ "]
0
x((1-/ TYul(rrow;)+..]
x V2" (r'©,02)) w0, F2dr", (6.12)
(B, )' = (16nzr'2)"]°exp [~us (r*)/T°)
0
1=/ T (P oywy) + . ]
x V2 u" (" ©010;))wyw, 7 2dr* (6.13)

ad I' = I/ mo?. Here B is the second virial coefficient
of the classical molecular fluid. When eq. (2.6) is used, B<*
Is given by

B = gLy +[Be ] +[Bs] +[B] (6.14)
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where Be*(LJ) = -3 dr"r'2gh! (") (6.15)
]
(&) =17) far g )
«(ua(rr o), | (6.16)
(8] =07 [
‘~ 2
§ x <u2(r'wnwz ))2>(W, (6.17)
[85] =~(1/27) Jar'r2gb ")
<"‘:("“"“’2))3>a,,m, (6.18)

Here, g§(r*)=exp[~Bui;(r*)]. Be*(L)) is the reduced
second virial coefficient of classical LJ(12-6) fluid and
[B:] is the n-th order perturbation term due to the angle-
dependent interaction potential u,. The angle integral involved
in egs. (6.16)-(6.18) have been evaluated analytically [40],
when eq. (2.6) is used.

The contribution to the second virial coefficient beyond
[B$] is calculated using the Pade’ approximant [41]

ge = B L+ 5| +[8s] /(1-[85] /BT ) 6.19)

In eq. (6.19), the term [Bf]" is the contribution due to the
potential u;, only, while the term [B§]’ is the contribution
due to the potential upem, only. The term [B5]° vanishes for
dipole-dipole (dd) potential, so that eq. (6.19) reduces to the
second order series for this case. However, [ B§]* contributes
for quadrupolar gas.

Substituting eq. (2.6) in egs. (6.12) and (6.13), the first
order quantum correction to the second virial coefficient due
to the translational and rotational contributions are given by
Singh and Datta [5] and Singh er a/ [24]. Singh and Datta
considered the quadrupole-qudrupole (QQ) potential.

We first consider B* for dipolar fluid, where uy is the
LJ(12-6) and u, is the dipole-dipole (dd) interaction. From
eq. (6.11), it is clear that the first order quantum correction
to the second virial coefficient is the sum of the translational
and rotational parts. Singh e al [24] have calculated the
quantum corrections for /* = 0.001 and 0.007. The values
of (Bl)* /I'(BL)" are shown in Table 3. When /"= 0.001,
the rotational quantum -correction dominates, while for
I* = 0.07, the translational quantum correction is dominating.
Further, the quantum correction increases with increase
of u*?.
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Table 2. Values of (BL,)* /1" (B],)" for the dipolar fluid (Taken from
Ref [24])

T* 1" = 0.001 I° =007
10 1.0 14.56 0.21
20 4025 057
3.0 59.79 0.85
30 10 1110 0.06
20 14.72 021
3.0 28.23 040
50 1.0 1.68 0.02
20 6.50 009
30 13 36 019

Earlier, egs. (6.7b) and (6.7c) are employed for estimating
the 0(#) quantum correction to the second virial coefficient
for H, and HCI [34,42]). However, these calculations are
based on the intermolecular potential models :

Hy :u(raoyw,)=—(a/r8)+(b/r'?)

+(c/r'?)(cos? 6, +cos? 8,),  (6.20)

HCL: u(ra @) = 3, ULh(rg) + ty +Uyg +1gp, (6.21)
ap

where a, b, c, are adjustable constants [15], u5} is the site-
site LJ(12-6) potential for a two-site model, and u,,,,, u,p and
ugo are the dipole-dipole, dipole-qudrupole and quadrupole-
qudrupole terms. The results are reported in Table 4 for
H; [15] and HCI [42]. Recently Singh er al [24] have used
egs. (2.4) and (2.6) in eqs. (6.12) and (6.13) to estimate the
influence of quantum effects on the second virial coefficient
of H; and HCl whose force and quantum parameters are
given in Tables 1 and 2. These calculated results are also
shown in Table 4 and compared with the experimental
data [38]. For H,, the agreement is found to be excellent.

Table 4. The second virial coefficient B = (22N6%/3)B* (in unit of cm?-
mol!') for H, and HCI gases.

Ges Tk B4 Bn[24]  Bnf1542]  Bgy[39]
Hy 123 27 294 217 2.56
173 5.63 8.70 8.72 9.16
223 9.58 11.60 11.53 12.10
323 13.30 14.48 14 43 15.17
423 1492 15.72 15.94 15.71
HCl 190  -71962  -700.60 45260  ~456.00
250  -38576  -280.94 -22690  -221.00
330 -22024 21839 -12180 -216.00

When compared with the classical values, the quantum
effects are appreciable even at high temperature (7= 423 K)
and large below 300 K. The second order quantum correction
is appreciable at lower temperature [15]. Thus for H,.

O(h?) expansion breaks down at lower temperature (j,
below T = 123K). For very low temperature, full quantyp,
calculation may be used. In case of HC), the results obtaineg
by Murad [42] are relatively better. This is probably due ¢,
the potential model taken in the calculation. In this case t,
quantum effects are small but not negligible. From Table §
it is seen that for H, the translational quantum correction j;
dominant one, whereas for HCIl, the rotational quantum
correction dominates.

Table 5. Quantum corrections to the second virial coefficient for H, ang
HCI gases (Taken from Ref. [24]).

I y* /e
Gas T(k) 8Ly (8L %‘%,)—)-{i—
tr
Ha 123 0 04200 0.00030 0.435
173 0.02539 0.00012 0.288
223 001782 0.00006 0.205
323 0.01088 0.00003 0.168
423 000771 0.0000! 0019
HCI 190 223878 0.08016 5681
250 0.98422 0.02601 4193
330 0.47972 0.00930 307

Similar results are given for other molecules by Singh
and Dutta [5], McCarty and Babu [43]. Pompe and Spurling
[44] and Macrury and Steele [45].

6.1.2. Third virial coefficient

Substituting eq. (6.9) in eq. (6.6), the reduced third virial
coefficient C* = C/b] of the semiclassical molecular fluid,
correct to the first order quantum correction, is written as

C* =C +(AR(CL) +87(Cly)s (622
where

(Ch) = (3/162°T )TeXp[_u;, (r*)/T* Ja, (")
0
x ([l - TYu,(r' w0, )]Vf.u'(r'w,wz ))
X raZ dr',

(CL, ). =(3/1623T" )T exp[-u5 (r*)/T* ] af, (")
0

anw;

623

X ([l - (I/T' )u; (r'wlwz )]Via,u. (r.wlwz ))m,wz
<l 629

Here, af;(r*) is the value of ay for the LJ(12-6) fluid,
and C° is the reduced third virial coefficient of th
classical molecular fluid. Using eq. (2.6) in eq. (6.82)

is given by

C =CE (L)+[CT +[C5T +[CsT, (62
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where C(LJ) is the reduced third virial coefficient of
the classical LJ(12-6) fluid and [C{]® is the n-th order
penurbation term due to the angle-dependent potential. The
contribution to the third virial coefficient of the permanent
interactions beyond [C3 (perm)] is calculated using the ,
pade approximant [41].

Substituting eq. (2.6) in egs. (6.23) and (6.24), the first
order quantum cotrection to the third virial coefficient
due to the translational and rotational contribution can be
obtained.

However, no calculation has been made to estimate
the quantum corrections to the third virial coefficient of
the molecular fluids. Earlier, Singh and Singh [46] calculated
the third virial coefficient of classical molecular fluids in
the presence of three body non-additive interaction
potential.

6.2 Hard-core plus attractive tail potential :
We consider the virial coefficient for a molecular fluid of
hard sphere plus angle dependent potential. In this case, the
pair potential is given by
(6.26)
where u15(r) is the hard sphere potential and u,(ra) @) is the
angle-dependent potential, which is regarded as a perturbation
of the hard sphere potential.

Substituting eq. (6.2) in eq. (5.15) and using eq. (3.18),
we obtain expressions of B and C for molecular fluid of
hard-core molecules.

uronwy) = ups(r) + u, (royw,),

B= B¢ + By, (6.27)
C=Cc+(C9e, (6.28)

where B« and C* are the classical values of B and C,
respectively and given by eqs. (6.7a) and (6.8a), B and

(* are the quantum correction values, which are expressed
as

Bac = _.(I/Z)Nj(exp[—ﬂu(x, 2 X2 )]

x UF (x1,%2)),,,, 4P, (6.29)
Coe = N2 [ (exp[ - fu(x;.x2)] af (x1,%2)
x U7 (x1,%; ))W,,2 dr,

~ N2 [{exp[~ AluCx1, x;) +u(xz,x3)+u(x1,3)]]

x Ui"(xlxzxs))mmws drdr;, (6.30)
Where U = U + Ul 6.31)

Singh er af [24] have evaluated the quantum corrections
0 the second virial coefficient for the hard sphere dipolar
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fluid. Using eq. (6.9) in eq. (6.7a), one can evaluate B<. The
contribution of the perturbation terms with odd powers of
Uy are zero. The result is written as [47]

B = By [1-(/3)(u?)” -(1/75)(2)*

- (29/55125)(u"?)° - ] (6.32)

where ,u‘zi'= /kTo® and Byjg= 272No?/3 is the second virial
coefficie} for the classical hard sphezre fluid. This is
monotonigally decreasing function of 4.

We c&x employ the Pade’ approximant {41] using the
third and {l’ourth terms of the series to obtain the results for
B¢. Thus,’

B = Bg[1-(1/3)(12)? ~(1/75)(u"2)’

x (1-(29/735)(u™ )2)-'].

(6.33)
Using eq. (6.31), eq. (6.29) can be written as
B =(B%) +(B*) ., (6.34)
where (B%) =-2aN J (exp[«-ﬂu(ra),a)z)]
[4]
x U{f"(ra),a)z»mm ridr, (6.35)
(B%), = ——27rNJ'<cxp[-—,Bu(rw|wz)]
0
X Ufiu(ro@y)), | r2dr. (6.36)

In order to evaluate eq. (6.35), we make use of a Taylor
expansion of uz{raw,) about o, that is

Uy (royw,) = ugy(cw\w;y)+(r- o g (ocwywy) +...
6.37)
uyy (0w w;) = [Ou(re\@,)/Jr),_, . Substituting egs. (5.6)
and (6.37) in eq. (6.35), we obtain an expression for (BY),
for a hard sphere dipolar fluid [24]

(B%)y = Bis[(3/2v2)(B" )u (4/0)

+(/7)BN) (A 0)? + ..}, (6.38)
where (B )y = 1+(1/3)(u2)" +(1/25)(12)"
+(29/11025)(°2)° +..., (6.392)
(B) =1-(1/60)('2)" - (17/550)("2)°
~ (29/11900)(2)° + ... (6.39b)

Similarly, substituting eq. (5.21c) in eq. (4.36), we
get [24]

(B%) e = Bis[(3/ 71" X B ) (A/0)? +..},  (6.40)
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where (B")m = (1/12)]@/3)u"2)" +(4/75)(u)’

+ (SB18375) () +..| (6.41)
Finally, eq. (6.27) can be written in the form
B= B + Biys[(3/2V2)B! (4] o)
+(YmBIT(A)a)? + .., (6.42)
where B! =(B'),, (6.43a)
Bl = (B")y + (1) (B )y (6.43b)

Thus, the first order quantum correction arises from the
translational part only, whereas the second order quantum
correction is due to both the translational and rotational

parts.
When u,y = 0, we have
B! =(B'), =1, (6.44a)
B! =(B"), =1, (6.44b)

which is correct for pure hard sphere fluid [3].

7. Thermodynamics of dense molecular fluids

Singh and Sinha [27,28] have calculated the first quantum
correction to the thermodynamic properties of the molecular
fluids of rigid linear molecules interacting via the pair
potential of the type given by eq. (2.5). Dey and Sinha [26]
have extended the theory for rigid non-linear molecule. Its
extension to the fluid mixtures is straight forward [48].
However, it is not considered in this article. Clancy and
Gubbins [49] have estimated the first quantum corrections
for Hy using a different approach.

Powles and Richayzen [29] obtained expression for the
first order quantum correction in terms of <f2> and <>,
From eq. (5.27), the expression for the Helmholtz free
energy for the rigid linear molecules can be written as

(A- A)/(NR?[2d4mc?) = (1/T*?)
x[< F2>+<t25/1"]-4/T", (7.1)
where F*? = F2/(e/0)?, "2 =12/e? and I' = I/mo?.
Eq. (7.1) can be rewritten in the form
B-BF = (AP () +@ER(fh)
-(6°)2[(24n2T"), (7.2)
where f© = A</N is the free energy per particle of the
classical molecular fluid, and (£/)" and (f;)* are the first
order quantum correction to the free energy due to the

translational and rotational contribution, respectively.
They are given as

(A1) =(4L)" [N =(p" 1962T"?) [ (g° (r* ;)

x V' (r'oyw,))  dr’, (7.3)

o

(fih) = (k) [N =(p" 1962°T"2)[ (g (r* w10y
x VL u'(r';yw, )>m|a); ar*. (74)
Here, p* = po3, T* =kT/e and u” = ufe.

7.1. Classical molecular fluids :

In order to calculate the properties of classical molecyly
fluid, we employ the perturbation theory, where the centry|
LJ(12-6) potential uo is treated as the reference and the ang|e
dependent potential u, as the perturbation.

Using the perturbation theory, the PDF g“(x;,x;) of the
classical molecular fluid can be expanded as

gC(x,x2) = g (n2)+gf (x),x3), (1.5

where gi(r\,) is the PDF of the classical reference fluid ang
g1(x),x2) is the first order correction to it. Thus [6]

&5 (x1,x2) = = Bu, (x1,%2)g8 (n2) — Bo{ua (x),x3)

+1ua(X3.%3)),, &6 (nrar), (76

where gg(ry,r2.r4) is the three body distribution function for
the classical reference system. For multipole--like potential,
U1, X3) P, T <Ug(X2X3)>0, = 0 and eq. (7.5) can be
simplified as [6]

g (x1,x2) = g (r2 )1 - Buy(x).x,)] (7

The corresponding perturbation expansion for the
free energy per particle of the classical molecular fluid 1
given by

fe=fE+ e, (7.8)
where fy is the free encrgy per particle of the classical
L.J(12-6) reference fluid and £ is the frec energy per particle
due to the angle dependent potential. Thus,

_’:1- _.__.‘/ic'_*_‘f; +j‘:‘¢"
where f; is the n-th order perturbation correction to the free

energy. When eq. (2.6) is used, we have the explicit
expressions for f;

S = fE(in),
5 = ff (perm)+ ff (anis - dis) + f5 (shape)
+ f5 (perm - dis) + f; (dis — in) + f5 (shape — in)

(1.9)

(7.10)

+ f¥ (shape - dis) (7.10
¥ = f{ (perm) = f3, (perm) + f5; (perm) (7.12)
where
Bfe(in)= - Qrp*a’IT*)[2u" s +3Q"2 0] (7.13)
Bfy (perm) = - (22/3)(p*/T*?)[ (1" )1
+3uM0"2 0 +2USKQ"?)2 L] (7.149)
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f3f; (anis ~ dis) = - (327/5)(p*/T"?) K2(1+19K%)1,,,
i (7.14b)

/s (shape) =~ (1284/5)(p* DT ) 1,4, (7.14¢)
j/: (perm ~ dis) = (2887/S)(p* K2Q"2/T"2) Iy, (7.14d)
fif; (dis—in) = ~(4x/5)(p*a"2/T*)

x [H"2(5-9K2) 11, +(48/ Q2K I4].

(7.14¢)
B4 (shape — in) = (327/5)(p*a’ DIT*?)

x [ g +(12T)Q" 1y ], (7.14f)
fifs (shape - dis) = (1282/5)(p* KD/T*? ) 4. (7.14g)
14 (perm) = (87/5)(p*1T*)[(u™ ) 0*21),

44t (O 13+ (184902 s ). (7.15)

f5(perm) = (A72BY P 2T (1'2)} Ly,
+3(p"2 PG 14,0
# 3(u")BOAY Lo +(30°4) Logg ),

(7.16)
whete 1,(p",T") = j ge(r ) rt ) 2 drt, (7.17)
l-ump = JII Afnmpg(L)("I'Zer.B»"l‘!)(’.l.’l )”Hl
x(ry3) "Ry )P Yy (7,18)
with l”nmp = (4”)4-[(1)"((‘)!‘02 )(pm ((02603)
x @ (oyw3)dwdwydo;. (7.19)

tHere, A denotes integration over 1y, = n,/o, ryy = ry3/o and
N~ =ny/o forming a triangle, and n, m, p denote u and Q.
In the above expressions, we have used the reduced variable
defined as

o =aod, u'? = ptlec? and O = Qe 0.

The contribution of the permanent moment interaction to
the free energy beyond 7 (perm) is calculated using the
Pade’ approximant [41]

Bfs (perm) = Bf; (Perm)
x[1 = Bff (perm)/Bfx (perm)] !, (7.20)
The integral /, at density o' and temperature T* can be
¢valuated following the empirical equation of Ananth [50]

Inl,(p*,T*)=A,p"*InT* +B,p? +C,p* InT"*
+D,p" +E,InT" +F, (7.21)
The coefficient 4, — F, appearing in eq. (7.21) are reported

by Gray and Gubbins [$1]. In order to evaluate cq. (7.18),

Wwe use the superposition approximation for g§(n3,ms,h3)
ie. [52)

£ (ni2,m53,13) = £§(n2)g5 (23 )85 (3) (7.22)

and replace LJ(12-6) g(r,) by hard sphere gfis(r;) with
properly chosen hard sphere diameter. The numerical
integration v1' ! in general is time consuming except for the
p-p-peand O-O-Q interactions. Boublik {53] has obtained the
values of L by Monte-Carlo (MC) integration, which is fitted
to formgyla

Ly = 0.0236(1 + 217 + 272) [ K1 063, (7.23)

i&,y@ = 0.0155 exp(4.3158 1)/ K2 63265, (7.24)

T heoretézal developments for classical molecular fluids are
given bylGubbins e al [54], Shing and Gubbins [551, Ananth
etal [5?, Shukla et al [S7] and Watanabe et al [58]. Shukla
et al have discussed the problem in presence of three-body
interactipns. The three-body interaction is not taken into
considefation in the present article.

The thermodynamic properties of the classical LI(12-6)
system can be calculated using the Verlet-Weis (VW) [59]
version of the Weeks-Chandler-Andersen (WCA) [60]
perturbation theory. According to the WCA scheme, the free
energy per particle of the reference system is given by

fE=1E+ e (7.25)
where f¢ is the free energy per particle of the classical

reference system and f is the first order perturbation
correction. Thus [59],

BIE = n(4=3n)(1 - )? +1260°

x (141.7597-5.2497*)/(1- )*, (7.26)
where 7= (7/6)p*(d")*,
P = po?, (7.27)
d' =dlo.
Here, d is the diameter of a hard sphere and is given by [59]
d=dy[1+ 48], (7.28)
where
dy = o[1.068+0.38877" ]/[1+0.4293T"], (7.29)

A=(1-4.253, +1.363n% - 0.875173, ¥(1-1,)%, (7.30)

5 =[210.31+404.6T"]", (7.31)
Ny =1-(116)72. (7.32)
The second term of eq. (7.25) is given by
B = 27[/)! w(r)gf,s(r)rzdr’ (7.33)
0

where gf;s(r) is the PDF of the classical hard-spehere fluid
of diameter d and w(r) is defined as
wr)=-¢ r<2Vo,

=uy(r). r>2¥g. (1.34)
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Using the standard relations, we can calculate the other
thermodynamic properties from the free energy of the
classical LJ(12-6) fluid.

7.2. Quantum corrections to thermodynamic properties :

Substituting eqs. (2.5), (2.6) and (7.7) in eq. (7.2), the first
order quantum correction to the frec energy per particle due
to the translational contribution is given by

() =R @n] +[ A (n)] +[ A (perm)]
+[ £ (anis - dis)] +[ £ (shape)]
+[ £ (perm - dis)] +[ f (dis ~in)]
+[ i (shape —in)] +[ £ (shape - dis)] ", (7.35)
where
[AWn] =0/ 2)(p IT2) 2244 - 515).
[ALGn)] = (/z)(pa" /T"2)
x[(2)((52)0y — (2T* ) (22120 = ST )
+ (Q.)z(”w - (TN (221 "5116))],(7.36b)

(1.36a)

[ (perm)]” = ~(V62)(p*1T*)[(1*)' Iy
+6(u°Q") To +14(Q)* 1),

[fi (anis - dis)] = ~(&7)(p"/T"*)K2(1+19K2) s,

(7.36¢)

(7.36d)
[ 4 (shape)] = =(704/57)(p" D2/T*3) by, (7.36¢)
[ 4 (perm - dis)]” = (12/)(0* KQ*2/T*) 13, (7.361)

[f!(dis-in)]" = -(4/57)(p"a*/T* (V)"
x (5-9K2)1,4 +(86/7)Q"2K )4 ].(7.36g)
[ 4 (shape - in)] = (4/57)(p"a" DIT*)
x[27u'2 Iy +(376/7)Q"2 15, ], (7.36h)
[ (shape - dis)] = (432/5x)(0" KDIT™) g~ (1.360)

Similarly, the first order quantum correction to the free
energy per particle due to the rotational contribution is given
by

(fih)" = [ AL (perm)] + [ £ (in)] +[ fih (anis - dis)]”
+[ b (shepe)] "+ £ (perm - dis)]
+[ /i (perm — shape)] "+ [ £, (dis — in)]|
+[ £, (shape —im)] +[ £ (shape - dis)]", (7.37)

where
[fb(perm)] = (V6)(o" T (U3)(* Y I + (1120)
x (4* Q") Iy + (106/27)(Q")* 1o ], (7.38a)
[fh ()] =(1207)(p*a® /T%3)

x[(u*)* I+ 6(Q°)? Iyg], (7.38b)

[ fib(anis - dis)]* = (4/57)(p°/T*3)K?
X(]+3.8K2)1]2, (7.38C)
[ £, (shape)]” = (16/57)(p° DT") Ly, (7.384)

[ £ (perm —in)] = -(183/16807) (0" @’ @*/T*3) ;5.
(7.38¢)

[ /4 (perm —shape)]” = (143/807) (0" Q"2 DIT**) 1,
. (7.380)
[Ah(dis-in)] =(12357)(p"a"Q2KIT) Ly, (138y)

[ £, (shape —in)] = (48/357)(@* Q"2 DIT"3) Ly, (7.38h)

[ £y (shape - dis)]" = ~(8/57)(p" DK/T*) g, (7.38)

Other thermodynamic properties can be obtained from
eq. (7.4). Thus, the equation of state is given by

(BPIp)~(8P<1p) = (A) (PE) +(8")'(B). 039
where (R)" = o[ R) Jo0'],

GO TAYE)

The coefficients A/ )‘ and (P}, ). are the first order quantum

correction to the pressure due to the translational and
rotational contribution, respectively.

(7.40a)

(7.40b)

The entropy S and internal energy U, correct to the first
order quantum correction, are given by
(SINK) = (5INE) = (A°)*(54) +(8°)" (St (741

L]

where (S}) -—(a/ar')[r‘a( 1) /ar] (7.429)

(Sh)" = ~(@rer)| 1A f4)' fer”],

and  (U/NKT)-(U°/NKT) =(A‘)2(U{, ) +(8* ) (Ul ),

(7.42b)

(1.43)
where (U}) = "T.[ﬁ(uilr). fer ] (1:448)
(Ul) =-T* [dU,’m)'/éT']. (7.44b)

Here, P<, S* and U~ are the pressure, entropy and internal
energy of the classical molecular fluids.
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Singh and Sinha [27,28] and Dey and Sinha [26] have
obtained egs. (7.35) and (7.37) for the first order quantum
correction terms for the linear molecular fluids.

73 Applications :

The theory has been applied to calculate the quantum
correction to thg thermodynamic properties of simple
molecular fluids. Powles and Rickayzen [29] estimated the
quantum corrections to the free energy of the molecular
fluids with the dipole-dipole (up) and qudrupole-qudrupole
(QQ) interactions, based on the Monte-Carlo (MC) values
61,62] of (F'2) and (7°2). Dey and Sinha [26] have
estimated the quantum correction terms numerically. The
value of (4 — A°) for these fluids at density pr* = 0.80 at
temperature T° = 0.719 are compared in Figs. 1 and 2,
respectively for * = 0.07 and 0.001. The agreement is good
for low values of 42 or Q"2 The discrepancy increases

x10?
3

2.5 4

2 4

1.5 4

-4 Y (Nh124mo®)

1 4

0.5 4

Y T 2 g T

0 02 04 08 08 1 1.2
w1
Figure 1. Quantum correction to the free energy (4 — A)Y/(Nh24mc?)
for a diatomic fluid with pair potential u; + u,, where u, is the dipole-
dipole or quadrupole-quadrupole potential, at p° = 0.80, T* = 0.719 for
I"-0.07 Solid and dashed curves represent theoretical and Monte Carlo
values (taken from Ref. [26]).

X10t

(A-A)(Nh2124mc?)

-2

v v v v

0 02 o4 o8 08 1 1.2
p!/Q.Z
Figure 2. Same as Figure 1 for I* = 0.001 (taken from Ref. [26]).

with ingrease of 4'%/Q'? and/or decrcase of /. This
discrepancy is mainly due to approximation (7.7) for g* used
in calculating (£/)* and (f{,)".

Eqgs. (7.36) and (7.38) are used to estimate the contribution
of variogs branches of pair interactions to the first order
quantum;icorrections to the free energy. The contributions
of thesejterms are found to be small but not negligible
[26,27]. ;

Dey ind Sinha (DS) [26] have also applied the theory to
evaluate he quantum effects on the thermodynamic properties
of HCL. Fable 6 demonstrates the percentage of the quantum
correctioii to the free energy per particle of HCI. This shows
that the quantum effect for HCI is small but not negligible
particulagly at high density or low temperature. Powles and
Rickayzen [29] also estimated roughly the quantum
corrections to the configurational energy and pressure for
several liquids like Ny, F; and HCI, where the quantum
effects are found to be small but not negligible at low
temperature.

Table 6. Quantum correction to free energy per particle of HCI (taken
from [26]).

prt ™ (- /)1 % 100

045 1552 -0.94
1.710 -075

0.65 0900 ~2.83
1.584 -1.47

085 0658 -5.64
1127 -3.07

For hydrogen isotopes like H,, D, the quantum effects
are appreciable. Therefore, the truncation of the WK series
after the first order quantum correction term is justified for
them at moderately high temperatures. Clancy and Gubbins
|49] calculated the quantum correction to the equation of
state of H, using the pair potential model

u=uytuggt uas + up (7.45)

and found that the 0(A2) correction significantly improves
the results for the temperatures range 100-200 K. However
they have not taken u,, into their calculations.

Singh and Sinha (SS) [28] have estimated the influence
of quantum effects on the configurational internal energy,
entropy and pressure for fluid H, with u, given by eq. (2.6)
as shown in Table 7. From the table we find that the quantum
effects increase with the increase of density and/or decrease
of temperature. The calculated values of the pressure SP/p
and entropy S/Nk are compared with the experimental data
[62] in Table 8. The agreement is found to be good at high
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temperature and decreases when temperature decreases. For
low temperature, the results can be improved by considering
the second order quantum correction term.

Table 7. Quantum correction to the configuration intcrnal cnergy, entropy
and pressure for flmd H; (taken from Ref [28])

TK) p (U=IRTEY (S-S (P -Poyr)

(mol -1 1) = 100 > 100 <100

100 947 -2529 151 8 85

1497 -2337 247 14 45

3032 -22 10 670 3357

80 947 -4232 286 1535

14.97 3852 473 2589

3032 --3390 12 46 64.29

Table 8. Pressure and entropy of fluid H,.
K P fPlp SINK

(mol-11) 1_;);0_!’7 m‘“ﬂlnixp.l ‘Theory “i;pt
120 9468 10743 1.0726 79689 7996
100 11.540 1 0665 10560 7.3240 7.400
80 14973 1 0484 10174 63342 6642
60 21.619 1.0430 0.9395 513521 5557

7.4. Concluding remarks :

In this section, we have discussed the method to evaluate the
PDF and thermodynamic properties of molecular fluids
using the WK expansion method, in which the expansion of
properties is made in terms of the distribution functions of
the classical molecular fluid. The PDF and thermodynamic
properties of the classical molecular fluid are calculated by
using a second perturbation expansion, where the LJ(12-6)
potential is taken as a reference and the angle-dependent
potential as a perturbation. Thus the quantum correction
terms are expressed in terms of the distribution functions of
the LJ(12-6) fluid. Inspite of these approximations the
theory is able to predict qualitative, and frequently
quantitative, account of the influence of quantum effects on
the thermodynamic properties of molecular fluids. In
particular, the quantum corrections for H, are appreciable
and does not fall within the errors introduced in theory due
to these approximations. Even with these approximations,
the theory predicts good results when compared with
experiments in some cases. This shows the usefulness of the
theory.

The 0(h2) expansion is suitable when the quantum
effects are small. For H, the quantum corrections are
particularly large at low temperature, so that the first order
correction term alone is not sufficient at low temperature
and full quantum treatment becomes necessary [64].

For heavier fluids (e.g. HCl, Nj, N3), the quantum effec
are considerably smaller. They can be safely considereq
as classical molecular fluids except at very |oy
temperatures.

From the results quoted above, we find that the quantup,
effects increase with increase of density and/or decrease of
temperature. At liquid densities, one has to consider higher
order quantum correction terms, which involve higher order
distribution functions of the classical molecular fluids. Aj]
these suggest that the expansion method is not suitable
treat the propertics of the condensed state.

8. Effective pair potential method

8.1. Introduction :

Effective pair potential method has proven to be useful and
general for discussing the equilibrium properties of fluids,
The quantum features (excluding those due to the exchange
effects) can be included in the calculation of the equilibrun
properties of atomic fluids through the effective pair potential
[65-69]. The effective pair potential is not unique-difterent
properties lead to different effective potential {70]. When the
bare LJ(12-6) potential is used, the effective pair potential
is expressed in the ‘modified’ LJ(12--6) potential form by
simply replacing o by o(7",4%) and & by €(7°,A4") m
¢q.(2.4) [71,72]. This approach has been extended fo
molecular fluids.

The ‘preaveraged’ potential mecthod originalh
developed by Cook and Rowlinson [73] and generalised
and extended by other [74,75] is the starting point for most
of our understanding of thermodynamic properties of
molecular fluids. In this metod the orientation-dependent
contribution to the pair potential may be averaged to
give an ‘effective’ temperature dependent (preaveraged)
potential, which is independent of orientations. This is
thermodynamically equivalent to the orientation-dependent
pair interaction. In its original form, it is employed t0
calculate the properties of classical polar gases. This
method was extended to calculate the thermodynamic
properties of classical molecular fluid [41,76], considering
all branches of anisotropic pair interactions. The 'preaveraged
pair potential may be termed as the effective pair potential
in the sense that it is a function of intermolecular separation
only.

Using the ‘preaveraged’ pair potential, obtained by
Shukla et al [76], recently Karki ef al [77] have derived an
effective potential in the LJ(12-6) potential form for the
classical molecular fluid. This was further extended w0
include the quantum effects by Dey and Sinha [78] and Karki
and Sinha [79].
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g2 Effective pair potential for semiclassical molecular

fluids :
substituting eq. (4.24) in eq (3.15) and integrating by parts,
we get

zy = [...[explp@1[1-{(n252 [24m)
x Y (V2@)+(h2p2 [241)Y V2, @}

N
O(hz)]gdx,. 8.1

Assuming the total interaction potential to be pair-wise
additive, eq. (8.1) can be written as

Zy =j...jexp‘ -ﬂZU(x,x,)Jﬁdx,, 82)
1<) 1=}
where U(x,x,)=u(x,x,)+(h*p? /l2m)VEu u(x,x,)
+(h2ﬁ2/121)V§,'u(x,xj)+0(h4). (8.3)
Using eq. (2.5), eq. (8.3) can be written as
U(x,x,)=Uy(r, )+ U,(x;x)), 8.4)

where Uo('}, )= ("y )+(h2ﬂ2 /lZm)ny uO(rij )

Uu(xixj ) = ua(xtx/ ) +(h2ﬂ2 /’12'")V3,, Uy (xlxj)

+ (hzﬂZ/IZI)Vﬁ,‘ua(x,x., ). 8.5)

Here, (Jy is the effective central potential and U, the effective
angle-dependent potential. Thus the quantum effects are
included in the effective potential.

Substituting eq. (8.3) in eq. (8.2) and after angle-
integrations, Karki and Sinha [79] have expressed the
configurational integral in the form

Zy = [..fexp| -BE () [T 8.6)
=1

1<)
where ¥(r,) is the orientation-independent effective
‘preaverged’ pair potential of the semiclassical molecular
fluid and expressed as

) =P+ AP+ PLE) @D

where ¥(r) is the ‘preaveraged’ pair potential for classical
molecular fluid, and [¥/(r)] and [¥(r)] are the first
order quantum corrections arising from the translational

and rotational contribution, respectively. They are expressed
as

(% ("] =(c2p?/4872) [(VEu(rw,a)z )

o)\@2

- ﬁ(u,(rw,a)z Wu(ro,w, ))w”2 + ], (8.8)

[#4a0)) = (82 /4877) | (3, s i)

0,

_p’(ua(rm,mz )Vﬁ,l ua(ra),wz)> X +...].(3,9)

o\

Shukle et al [76] obtained expression of ¥(r) for
the classical molecular fluid with u, given by eq. (2.6),
and Karki and Sinha [79] have obtained expressions for
[% ("] and [¥L(M]. Finally, eq. (8.7) can be written in
the foxm;f

%(’)g =4 e([A1(a/r)" + 412 (a/r)? + A3 (a/r)P
L (Lig + Aig Xo/r) + A5 (o] P)'S + Ay (a/r)
+ A17(a/r)'7 + Aig(a/r)'® + Ao (o/r)"®
+ A (0/r)* + Ay (o/r)* + Ap(o/r)?
+ Ap(0[r)? + Ay (a/r)® + Ays(afr)¥
+ Ay (0/r) ]~ [45(a/r)® + 4¢ (c/r)S
+(Ly + 43 X(o/r)® + Ao (c/r)'°]),

where the coefficient L,, associated with the LJ(12-6) potential
arc expressed as

Ly = (5/872T*) A2,

(8.10)

Ly =(11/422T°) A",
whereas the coefficient 4,, are given in Ref. [79].

Eq. (8.10) can be expressed in the L.J(12-6) potential
form by simply replacing oc—o,(T",4",8°) and

cer (T*,A",68") in eq. (2.4). In order to obtain
expressions for o, and &, we approximate r/o= 1 in Ly,
as the quantum effects are largely determined from the hard-
core [80] and approximate r/o = ry,, /o = 2Y6 in 4, [81].
Then eq. (8.10) can be written as

(8.11)

¥(r) =4 €[X(a/r)? - Y(o/r)¢), (8.12)
where X and Y are expressed in compact form
X=a+(b/T*)+(c/[T"?), (8.13)
Y =14(d/T*)+(e/T"2)+(f/T"). (8.14)
The coefficients a, b, ... are given by
a=1+(1/2)a’u'? +(3/42V))a" 0", (8.152)
b=[an2)(u'2)? +(1/4@1))u"20"
+(1/20@20))(Q"2)} |+ (A2 /82)
x[5+(5/2@"))a" w2 +(7/(2%))a Q)
~(6°2/822)[(2¢/120)0"?], (8.15b)
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o= (A2/8x2 )[(1/6(2‘/3 W' )z
+(1/@¥P)y 20" )]+(5'2/s”2)[(1/1s)(,,-z )’

+ (1120290 + (53/a05(22) (02|
(8.15¢)
d =[~(4/5)K2(1+1.9K?)~(4/5)D? +(8/5)DK
+(2/5)a" 12D +(24/35(2"%))a" Q" (D~ K)]

+(11/472) A2, (8.162)

e=[(2ve/5)(u?) @ + (63521 ) ()
+(18/245(212 ))(Q'2)3]+(A‘2/ﬂ2)
x [-a12(0?) -@ K2 (1+19K)
+(22/5(2'3)) D2 +(27/5(2'/%)) DK]
+(6°2/x2)[(1/10)K2 (1 + 3.8K2) +(1/10) D2
+(1/10)DK +(3/70(2"3))a* "2 K
+(3/352'*))a"Q"* D),

1 =(n800)(u?)". (8.16¢)
Eq. (8.12) can be expressed in the LJ(12-6) form

(8.16b)

w(r) =4 &r(ar/r) - (or/r)°] ®.17)

where o= 0, /o= F V6, (8.18a)
€=epf/e= XF?,

=[1 +(d[T")+(e/T*?)+( f/r'-‘)]F2 (8.18b)

and  F=Y/X=[a+(b/T")+(c/T*?)] [/[1+(d/T")

+(e/T)+(f/T*)]

Thus, the quantum effects and angle-dependent part of
potential modify the values of o and e. The salient feature
of this approach is that once the effective pair potential is
expressed in the LJ(12-6) potential form, the system can be
treated as the classical LJ(12-6) system. The effective
potential ¥(r) dcpends on temperature and so is not a trug
potential. However use of such effective potential simplifies
the calculations by using the simple and accurate theories
developed for classical atomic fluids. For the angle dependent
parts Karki and Sinha [79] have considered multipole
moments, induced multipole moments, dispersion and overlap
shape interactions. They obtained the effective potential
parameters .or and ey for semiclassical molecular fluid and
applied to the fluids of hydrogen isotopes, namely H,, HD
and D,, whefe the quantum effects are appreciable.

(8.19)

8.2.1. Classical molecular fluids :

In the classical limit A* = & = 0 in egs. (8.15) and (8.16).
Karki ef al [77] have not taken the overlap shape interactio
into consideration and obtained expressions for a, b, ... fa;

a=1+(1/2)a"u'* +(3/4(2"3))a"Q"? (8.20a)
b=N2)() +(1/a21))u20"?

+(7/20227)(0?) (8.20)
c=0 (8.20¢)
d = —(4/5)K?(1+1.9K?) - (24/35(2%))

xa'Q'?K (8:21a)
e=(2V6/5)(u'2) 0% +(6/35(2"8 )"} (@)’

+(18/24522)(@"2)’ 821b)
£=/1800)("?)" (8221¢)

Karki et a/ [77] have neglected the term ‘e’ as its contribution
is found to be very small for the fluids like N3, O, considered
there.

8.2.2. Classical polar fluids :

For classical polar fluids, where the LJ(12-6) potential 15
taken as a central potential and for the angle dependent part
of potential, dipole-dipole, dipole-qudrupole and qudrupolc-
qudrupole interactions are taken into consideration, a = ¢ =
d =0 and only b, ¢ and f of egs. (8.20) and (8.21) contribute
to derive or and ;. Recently, Karki and Sinha [82] have
employed this theory to study the phase equilibria of polar
Lennard Jones (PLJ) fluid.

Thus, we come to the conclusion that when the effective
pair potential is expressed in the LJ(12-6) form, the molecular
system can be treated as the classical LJ(12-6) system.

In the following sections, we apply this theory to
discuss different thermodynamic properties of the molecular
fluids.

8.3. Thermodynamic properties of molecular fluids :
This theory may be applied to estimate the thermodynamic
properties of (semiclassical) molecular fluids. In this approach,
we consider the reduced density p* = po?® and reduced
temperature T* = kT/e and replace p" by p7 = p'o> and
T* by T = T*/&. Then the free energy and pressure of the
semiclassical molecular fluid can be given by

Ap*,T", A, 8%) = Au(p7, T7 ),
P(p", T, A, 8%) = Ry(ph, TP ) (8.23)

where A;(p7.Tr) and R;(p7,Tr) are, respectively, free
energy and pressure of the classical LJ(12-6) fluid at the

(8.22)
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reduced density pr and reduced temperature 77. In case of
the classical molecular fluid 4 and P are not functions of
" and &°.

Virial equation of state for dilute molecular fluids :

/7

x31
At low densities we may express the pressure of the fluid
n the virial form

AP/p=A+BIV+C/V?+..., (8.24)

where 4 = 1, B and C are, the second and third virial
cocfficients, which are given by

B=by & BLy(T7), (8.25)
C=(by ) CL(TT), (8.26)
where by =2aNao3/3, 827

Table 9. Second and third virial coefficients for H; and D (taken from
Ref [79])

:[(.K) B(cm3-mol-") C(cm®-mol 2)
Theory Expt Theory Expt
H
173 843 916 3562 3694
RRR] 11 54 1210 3363 3500
in 14 82 15.17 310.8 323.0
473 15.59 15.71 301.3 290.0
D,
173 9.67 8.39 876.8 439.0
223 10.78 11.51 361.5 410.0
323 14.17 14.45 311.2 30.0
473 15.39 15.55 303.2 335.0

Here, B7y(77) and C7y(77) are the reduced second and
third virial coefficients for the classical LJ(12-6) fluid at the
reduced temperature 7; They can be evaluated numerically
and are available [i5).

Karki and Sinha (KS) [79] have claculated the second
and third virial coefficients for H, and D, where the quantum
effects are appreciable and treated semiclassically. The
results are compared with the exact [38] and experimental
[38] data in Table 9. The agreement of B is good at high
temperature. For C, the agreement is moderately good. When
compared with the values of Singh et al [24] for H; reported
in Table 4, we find them in close agreement.

83.2. Thermodynamics for dense molecular fluids :

Thermodynamic properties of the dense semiclassical
molecular fluids can be calculated using the Verlet-Weis
(VW) method [59] discussed in Section 7.1, where uo(r) is
replaced by ¥.(r) given in eq. (8.17). Karki and Sinha (KS)
[79] have applied this theory to calculate the equation of
state, BP/p for fluid H, at different densities and temperature.
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They are compared with experimental data [63] and results
of Singh and Sinha (SS) [28] in Table 10. The agreement
is good. The table shows that the KS theory underestimates
while the SS theory overestimates the values.

Table 10:. Equation of state SP/p for fliid H; (taken from Ref [79))

T(K) 3 p(mol/1) KS SS Lxpt.

120 ;9468 10583 10743 1.0736

100 ;11540 10381 10665 10560
80 i 14973 0.9809 1.0484 10174
60§ 21619 09273 1.0430 09395
0, 16342 0.8949 09940 09391

b~

Sometimes it is intcresting to calculate the thermodynamic
properties such as Gibb's free encrgy G, enthalpy H and
molar volume V at zero pressure (i.e. P = 0). These propertics
at-zero pressure can be calculated using the expressions
given by Grundke ef a/ [83]. Thus,

BAIN = BG/N = -4.50151-2.23463.X
- 0.00255[8X2 (N2 —1)+1],

U/N ey=HIN €= -5.47348 -1.03040.X
+0.22235(2.X2 - 1)-0.06177.X(4.X2 - 3)
+0.01857[8X2 (Y2 - 1)+1], (8.29)

No? [V =0.782792 +0.138646.X
~0.030534(2.X% = 1)+0.009398.X(4 X2 - 3)
+0.002908[8.X2 (Y2 —1)+1), (8.30)

(8.28)

where X =(2.5/7})-3.25,
Tg" = k7~/67' = T‘/'é

Table 11. Gibbs free energy G, enthalpy H and molar volume ¥ of fluids
at P =0 at 7'= 83 82°K (taken from Ref [77]

System ~(G() mol V) ~H(J mol-!) ¥(em? mol-t)

Nz Theory 2873 50 4844 89 3591
MD 4980.00 36.12

0, Thcor}‘/ 3994 25 6467 29 2510
MD 6443.00 2724

Ar Theory 3560 40 5852.72 28.41
MD 6066.00 28.21

Karki er al [77] have calculated G, H and V of fluids
N,, O; and Ar (treating classically) at P =0 and 7= 83.82°K.
The results are compared with the molecular dynamic
(MD) values [84] in Table 11. The agreement is found to

be good.

84. Concluding remarks :

In this section we have discussed the method of calculating
the thermodynamic properties of the semiclassical molecular
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fluids, using the effective LJ(12-6) potential. This potential
is obtained simply by replacing o — o, (7", A", 6") and
e€—> ep (T*, A',8*) in the bare LJ(12-6) potential. The
influence of the quantum effects and the angle dependent
potential, which are usually of opposite nature, are
incorporated through the expressions of oy-and 7. Then the
system can be treated as the classical LJ(12-6) system. For
the classical molecular fluids, orand ey are not the functions
of A" and &°.

This approach is simple and provides method of predicting
the thermodynamics with reasonable accuracy over a wide
range of temperaturc and density.

9. Theory of corresponding state for semiclassical
molecular fluids

The effective LJ(12-6) potential can be employed to obtain

the theory of corresponding state for the semiclassical

molecular fluid. For the classical LJ(12-6), the law of

corresponding state is written as

P =P P, T"), ©.1)
where P* = Po3/e, p* = po’and T* = kT/e. This gives
the reduced pressure as a universal function of reduced
density and temperature.

In order to study the theory of corresponding state for
the semiclassical molecular fluids, we replace o — o and
€— e and write the equation of state as

peop* (o7 ), %.2)

where P* = Pol Jer, p} = po} and T} = kT/ep. Here,
Py(p7 Tr) is the pressure of the classical LJ(12-6) fluid
at the reduced density p; and reduced temperature T;.
Eq. (9.2) is the statement of the theory of corresponding state
for the semiclassical molecular fluids. It is possible to
calculate properties of the semiclassical molecular fluids
from this theory of corresponding states.

9.1. Critical point location :

We apply this theory to study the critical temperature T,
critical volume V, and critical pressure P, for molecular
fluids. For the classical LI(12-6) fluid, they are given by

T = kT ,/e=1.26, (9.2a)
V2 =V.INo? =316, (9.2b)
P’ =P.elo? =0.117. (9.2¢)

In order to study the critical constants of the semiclassical
fluids, we replace €€y and o — o in eq. (9.2). Thus,
we get

T’ =126¢ (93a)
v, =3lo, (9.3b)
* =0.117 &6 (9.3¢)

Eq. (9.3a) may be solved by the ‘iterative’ process. Afg
knowing T, one may estimate V' and F.'. Karki and Sipp,
[72,79] have used eq. (9.3) to calculate the T¢, ¥, and P, ¢
semiclassical molecular fluids of Hy, HD and D; moleculeg
with and without u,. These results are compared with the
experimental data [67,85] in Table 12. The agreement i
found to be good.

Table 12. Critical constants for fluids of hydrogen isotopes.

System method T. v; 10P vip
H, KS [79] 0.90 412 0642 0288
KS [72] 0.92 3.90 0.680 0288

Expt [67] 0.90 4.42 0.646 0318

HD KS [79) 100 3.68 0.804 0288
KS [72] 1.02 368 0.813 0.288

Expt [67] 1.03 410 0730 0310

D, KS [79] 1.09 3.59 0.877 0288
KS [72] 108 3.50 0.891 0288

Expt. [67] 1.10 3.90 0.860 0305

9.2. Surface tension :

As an application of this theory to the thermodynamic
properties below T,, we consider the surface tension (ST) of
the semiclassical molecular fluids along the liquid-vapour
phase boundary. The ST of the classical LJ(12-6) fluid 15
given by

)127

v =yole=2.666(1-T"/T; 94

where 7' = 1.26. In order to obtain expression of the ST
of the semiclassical molecular fluid, we replace e—>€; and
o> oy in eq. (9.4). Then the ST of the semiclassical
molecular fluid is expressed as

7" =yole=(852)2.666(1- T7/1.26)' 7,

where 77 = kT/&. In this approach, the amplitude is modificd
but the exponent remains a constant with a value of 1.27.
Eq. (9.5) is applicable to a semiclassical molecular fluid over
a wide ranges of temperatures. Recently, eq. (9.5) was
employed to calculate the ST ¥* for H, and D, [79]. They
are compared with the experimental data [85] in Table 13.
The values of »* decreases with rise of temperature 7°. 1t i
found that the agreement is good.

9.5

Table 13. Surface tension »* of H; and D, fluids.

System T 7" Theory y* Expt
[79] (851
H, 0.40 0.369 0.468
0.53 0.281 0.320
0.66 0.178 0.190
0.80 0.061 0.046
——
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1able 13. {Cont'd.).

Gvstem T 7" Theory ¥* Expt.
{791 [85)
1z 0.50 0.681 0.675
0.55 0.632 0.625
0.60 0.572 0.575
0.65 0.509 051§

y 3 Liquid-vapour coexistence curve :

Next we apply this theory to study the behaviour of the
liquid-vapour coexistence curve of the semiclassical molecular
fiuid. The behaviour of the classical LJ(12-6) fluid may be

described by the equations [86]
e =1+ (314)A =TT )+ (114)YA-T* /T )3 (9.6)
1V =14+ (A =TT )= (U4 =T T3 (9.7)
where 1*, ¥, and V. are the reduc;ed liquid, vapour and

critical molar volume. Here 7, = 1.26 and V; = 3.16. These
equations represent the behaviour of V!/V* for T* < T!.

A quantity of particular significance for our study is the
rectilinear diameter
d=R VIR )+ (VA IV ) = 1+ (34)(1=T*IT?) (9.8)

Replacing e—> e and o — o5 in egs. (9.6){9.8), the
behaviour of the semiclassical molecular fluid can be
described by

VIV =(6./6)° [1 +(3/4)(1- T}/1.26)

(a1 -Tin.26)" | (9.9)

VIVs =(5.16) [1+(3/4)(1 - T#/1.26)
—(14)(1-Tp1.24)" 3] (9.10)
and  d=(5./5)"[1+(3/4)(1- T3/1.26)] (.11

where &, is the value of & at T° =T

Karki and Sinha [79] have applied this theory to estimate
VZIV* for fluid Hy with and without u,. These values are
shown in Figure 3 along with the experimental data [67,85].
Figure shows that the angle dependent potential u, lowers
the values of ¥/F;* and the experimental data lie between
these values.

94. Conclusions :

Using the effective LJ(12—-6) potential, we obtain
Computationally convenient approximations to study the
thermodynamic properties of the semiclassical molecular
fluids. The quantum features (excluding those due to the
exchange effects) and influence of the angle-dependent part
of potential can be included in an essentially simple classical

description if the LJ(12-6) potential is replaced by the
effective LJ(12-6) potential.

25 -
‘-
) é.
15 4
. ——— Theory (with u,)
S --~-Theory(without u,)
2 ;'] ees Expt
b
‘0}5 ry v ey

0 04 065 076 0.84 093 1
p(g-cm)

Figure 3. Values of ¥*/¥ as a function of 7°/ T;' along the liquid-vapour
coexistence curve of H,

We have also found that the effective pair potential
method, described in Section 8, is quite simple and general
in the sense that it can be applied to any molecular fluid
under the scheme of any theory of the classical LJ(12-6)
fluid, provided the effective pair potential is expressed in the
LJ(12-6) form.

10. Some concluding remarks

There is much interest in the properties of quantum fluids
in recent years, However this is confined to the simple
atomic fluids, as it requires the solution of N-body problem
in quantum mechanics, which is a difficult task.

The semiclassical fluid is quantum fluid at high
temperature, where the quantum effects are-small. In the
present work, we have discussed methods of estimating the
quantum corrections to the properties of semiclassical fluids,
such as H,, D, efc, where the quantum effects are appreciable.
When the quantum effects are large, the first order quantum
correction term alone is not sufficient at low temperature and
a full quanum treatment becomes necessary [64]. Apart from
direct application of such studies to real system, they may
help in framing a theory for quantum fluids. Thus, the
theoretical methods developed to describe the properties of
molecular fluids in the semiclassical limit are of general
interest and can be of use in other area of physics.

The Feynman path integral approach [87] makes possible
to compute large quantum corrections. In this formulation,
one begins with the quantum mechanical partition function

O(B.V)=[dn [ Dx(r)exp(-SIx(x)]),  (10.1)

where S[x(r)] = [ dr H(x(r)) (10.2)
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is the Euclidian action corresponding to the path x(7) in
Euclidian time rand Dx(7) implies that paths are constrained
to begin and end at x,. In the discrete path representation,
the Euclidian time 7 is discretized in units € = Sh/P, where
P is an integer and the continuous path x(7) is assumed to
be straight line path between neighbouring times. Then eq.
(10.1) can be expressed as

Op = (mPr2znf)f...[ dxy...dxp

x exp[— P p (x1...xp, )] (10.3)
where x, = x(ifh/P), xp,, = x; and
I)
@p(xy...xp, f)=(mPI23202)Y (X, = x,4y )?
=1
I)
+2 u(x,), (10.4)

11

Eq. (10.4) is equivalent to the classical configurational
partition function of P classical particle with potential @,
and the quantum system is said to be isomorphic [88-91] to
a classic P particle cyclic chain polymer.

In path integral simulation, we empirically determine and
use that P beyond which the thermodynamic properties do
not effectively change. The isomorphic classical system can
be simulated by Monte Carlo (MC) [92] or molecular
dynamics (MD) [93] to evaluate path integrals. These
simulation methods arc called path integral Monte Carlo
(PIMC) and path integral Molecular Dynamic (PIMD).
Equilibrium properties of the quantum system can be obtained
by solving the equivalent classical problem by using PIMC
and PIMD techniques [94]. The path integral methods have
been used to study the interesting and difficult problems of
quantum systems [94]. No attempts have, however, been
made so far to apply these methods in simulation of the
equilibrium properties of quantum fluids.

One major advantage of path integral simulations of
quantum system is that they can be made as accurate as one
wishes by increasing the number of points used to approximate
the continuous paths. For a strong quantum system, however,
the convergence to the correct result, P —» «, can be very
slow, which poses a serious computational problem [89].
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